


model. An MoE model is efficient because its pre-

diction of the next token only invokes a subset of

parameters (i.e., experts) and thus is sparsely ac-

tivated. For example, Mixtral-8x7B (Jiang et al.,

2024), compared to a dense 7B model, uses approx-

imately 8× parameters and 2× computation, i.e.,

only 2 out of 8 experts are dynamically selected to

compute the next token. However, there are two

key limitations when using sparse upcycling in in-

struction tuning: (i) Slow scaling: it is reported

that sparse upcycling improves the performance

of dense models marginally with limited training

steps, requiring orders of magnitude of extra com-

pute to achieve decent improvement (Komatsuzaki

et al., 2023); (ii) Inference cost: although MoE is

more efficient than directly scaling up the size of

dense LLMs, MoE is still expensive, especially at

inference, as it introduces significantly more param-

eters (i.e., memory) and computes during inference,

compared to its dense counterparts.

In this paper, we propose XFT: by simply

merging upcycled MoE models, we push the per-

formance limit of instruction-tuned code LLMs.

While vanilla sparse upcycling fails to improve

instruction tuning efficiently (Komatsuzaki et al.,

2023), XFT addresses this challenge by isolating

one expert as the shared expert among all the other

experts in each MoE layer, inspired by DeepSeek-

MoE (Dai et al., 2024) and MoCLE (Gou et al.,

2024). XFT also proposes a novel routing weight

normalization strategy to eliminate scale mismatch

between the upcycled MoE layer with the shared

expert and the original dense layer, which will oth-

erwise lead to performance degradation (Wu et al.,

2022). After the upcycled MoE model finishes

its SFT phase, motivated by Model Soups (Worts-

man et al., 2022), XFT uses a learnable model

merging mechanism to output a dense model by

merging all the expert networks in the upcycled

MoE, i.e., the final dense model is of the same

model structure and size as the original pre-trained

model, achieving similar performance without pay-

ing extra inference cost as the sparse upcycling.

With only 1.3B parameters, XFT achieves 67.1

pass@1 on HumanEval and 64.6 pass@1 on Hu-

manEval+, which is the new state-of-the-art for

tiny code LLMs (<3B). Compared with SFT, XFT

achieves 13% improvement on HumanEval+. Sur-

prisingly, our learnable merging mechanism can

preserve or even further boost the performance of

the upcycled MoE with only around 1/8× parame-

ters! We conclude our contribution as follows:

• Dimension: We open a new dimension of im-

proving instruction tuning of code LLMs by

advancing its training scheme, using enhanced

sparse upcycling and learnable model merging

mechanism, which neither changes the final

model structure nor requires more training data.

• Technique: We present XFT, a new training

scheme for code instruction tuning. XFT in-

volves two steps: upcycling and merging. A pre-

trained dense LLM is first upcycled into an MoE

with the shared expert setting and then fine-tuned

on the instruction dataset. We propose a novel

routing weight normalization strategy to avoid

the performance degradation caused by the scale

mismatch problem. In addition, we introduce the

first learnable mechanism for merging the upcy-

cled MoE into a dense model, eliminating ad-

ditional inference overhead while preserving or

even improving the upcycled MoE performance.

• Results: With only 1.3B parameters, XFT

achieves 67.1 pass@1 on HumanEval and 64.6

pass@1 on HumanEval+, which is the new state-

of-the-art for tiny code LLMs (<3B). Compared

with normal SFT, XFT achieves a significant

13% improvement on HumanEval+! XFT also

achieves consistent improvements from 2% to

13% on MBPP, MultiPL-E, and DS-1000 over

SFT, demonstrating its generalizability.

2 Related Work

2.1 Mixture-of-Experts

Mixture-of-Experts (MoE) can efficiently scale up

model sizes with only sub-linear increases in com-

putation (Shazeer et al., 2017). Compared with

the standard Transformer, MoE replaces each Feed-

Forward Network (FFN) layer with an MoE layer,

which uses N (i.e., multiple) expert networks that

are structurally equivalent to the original FFN layer

and uses a router that directs each input token to

K out of N expert networks. Formally, for the l-th
MoE layer, output hidden state hl

t of the t-th input

token is computed as follows (Dai et al., 2024):

hl
t =

N
∑

i=1

(gi,tFFNi(u
l
t)) + ul

t

gi,t =

{

si,t si,t ∈ Topk(st,K)

0 otherwise

st = {si,t | 1 ≤ i ≤ N}

si,t = Softmaxi(u
l
t

T
eli)

(1)
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where gi,t refers to the gate value for the i-th expert

given the t-th token, FFNi(·) refers to the i-th ex-

pert, ul
t refers to the hidden states of the t-th token

which is the input of the l-th MoE layer, si,t refers

to the affinity score between the i-th expert and the

t-th token, Topk(S,K) refers to a function extract-

ing K highest scores out of S, and eli refers to the

centroid of the i-th expert in the l-th MoE layer. By

definition, each token will only be computed in the

top K experts among all the N experts and such

sparsity assures the efficiency of MoE.

Recently, many works have been proposed to

scale model sizes with MoE architecture (Lepikhin

et al., 2020; Du et al., 2022; Fedus et al., 2022;

Jiang et al., 2024; Xue et al., 2024). While most

MoE models are trained from scratch, sparse up-

cycling (Komatsuzaki et al., 2023) is proposed to

initialize MoE models based on pre-trained dense

models, which can efficiently reduce the compu-

tational costs of training MoE models, compared

with training MoE models from scratch. Specif-

ically, sparse upcycling constructs a new MoE

model by initializing each expert of each MoE layer

as a copy of the original FFN layer in the dense

model, while directly copying the remaining layers

from the dense model to the new MoE model.

2.2 Instruction Tuning

Instruction tuning is designed to improve the

instruction-following ability of LLMs by fine-

tuning them on the instruction datasets in a su-

pervised fashion (Wei et al., 2022). The quality of

the instruction dataset is significant for the effec-

tiveness of instruction tuning and researchers have

proposed multiple methods to improve data qual-

ity. For example, SELF-INSTRUCT (Wang et al.,

2023) synthesizes high-quality instruction data by

prompting a foundation LLM with carefully de-

signed prompts. To improve SELF-INSTRUCT,

Evol-Instruct (Xu et al., 2023) enhances the com-

plexity and diversity of the instruction dataset by

prompting ChatGPT with heuristic prompts. OSS-

INSTRUCT (Wei et al., 2023) queries ChatGPT to

generate instruction-output pairs by getting inspira-

tion from real-world code snippets.

Recently, some parameter-efficient fine-tuning

techniques have been proposed to use MoE for

better instruction tuning. For example, Lo-

RAMoE (Dou et al., 2023) and MoCLE (Gou et al.,

2024) propose MoE-like modules that are con-

structed with Low-Rank Adaptations (LoRA) to

improve instruction tuning, while PESC (Wu et al.,

2024) proposes to integrate adapters into MoE that

are upcycled from dense models. Unlike these

works, XFT focuses on full-parameter fine-tuning,

which is proven generally stronger than parameter-

efficient fine-tuning (Chen et al., 2022).

2.3 Weight Averaging

Weight averaging is a commonly used technique

to improve the performance of deep learning mod-

els. For example, Model Soups (Wortsman et al.,

2022) averages the weights of multiple models that

are initialized from the same pre-trained model but

finetuned with different hyperparameter configura-

tions to improve the accuracy and robustness of the

fine-tuned model. However, only a few works have

been proposed to merge experts of an MoE layer

to a normal FFN layer with weight averaging to

reduce both parameter and computation overhead

of inference. For example, OneS (Xue et al., 2022)

proposes several simple weight averaging meth-

ods to merge expert networks of a BERT-based

MoE model. Closely related to our work, Experts

Weights Averaging (EWA) (Huang et al., 2023) pro-

poses to convert an MoE model to a dense model

with two steps: (i) During MoE training, EWA con-

ducts weighted averaging of all the expert weights

after each weight update of MoE, which is based

on a manually-crafted hyperparameter β; (ii) After

training, EWA converts each MoE layer into an

FFN layer by uniformly averaging the experts.

Different from all the aforementioned existing

works, XFT is the first work proposing a learnable

mechanism to merge expert networks in the upcy-

cled MoE model. Furthermore, while the training

scheme of EWA is deeply coupled to a specific

MoE architecture, XFT can be easily adapted to

different MoE architectures by only adjusting the

final merging process. In addition, unlike EWA,

XFT does not introduce any hyperparameters into

the training of large MoE models, significantly re-

ducing the computational resources for hyperpa-

rameter searching. Our empirical results in Section

4 also demonstrate the clear advantage of XFT.

3 XFT

We describe the details of XFT in this section.

There are two steps in our framework: upcycling

(Section 3.1) and merging (Section 3.2). During up-

cycling, we construct an Mixture-of-Experts (MoE)

model from the pre-trained dense model, namely

MoEDS, which is then fine-tuned on coding instruc-
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given the t-th token (which is also the input of

the l-th MoE layer), si,t refers to the affinity score

between the i-th expert and the t-th token, stmax

refers to the maximum affinity score among all

the experts besides the shared expert, Topk(S,K)
refers to a function extracting K highest scores

out of S, StK refers to a set of K − 1 highest

affinity scores among all the experts besides the

shared expert, and eli refers to the centroid of the

i-th expert in the l-th MoE layer.

FFN1 is chosen as the shared expert in each MoE

layer and each token will be assigned to top K
experts including one shared expert and K − 1
other normal experts. Compared with the original

sparse upcycling, there are two major differences:

• Weighted Shared Expert. Following Mo-

CLE (Gou et al., 2024), with the token-to-expert

affinity score si,t, we get the maximum affinity

score stmax and use its complement 1 − stmax

as the routing weight of the shared expert.

• Routing Weight Normalization. Although

the shared expert setting is also used in recent

works (Dai et al., 2024; Gou et al., 2024), we can-

not directly follow their routing strategy because

they cannot handle a scale mismatch problem

that is unique for sparse upcycling. The scale

mismatch problem is that differences between

the scale of the output of the upcycled MoE layer

and that of the original FFN layer can cause per-

formance degradation (Wu et al., 2022). To han-

dle this problem, we need to ensure the sum of

gi,t equals 1, so that the output of the MoE layer

matches that of the FFN layer in scale. To do

so, we normalize the affinity scores of top K − 1
normal experts with Softmax and scale their sum

to stmax to make sure that the sum of the gi,t of

top K experts, including one shared expert and

K − 1 normal experts, equals 1.

3.2 Merging

We propose a learnable model merging method to

convert the large MoE model, namely MoEDS, back

to a dense model XFTDS. By doing so, we expect

XFTDS to keep the boosted performance gained

during upcycling while keeping its model size the

same as the original dense model size to avoid any

additional inference overhead. Inspired by Model

Soups (Wortsman et al., 2022), we choose to merge

MoEDS by learning the mixing coefficients that

can be used to average the parameters of all experts

in each MoE layer to obtain a normal FFN layer,

while directly copying other remaining layers.

Formally speaking, given the weights of N ex-

perts at the l-th layer W l
1
,W l

2
, · · · ,W l

N , the pro-

cess of merging each MoE layer to an FFN layer

can be stated below:

W l =

N
∑

i=1

αl
iW

l
i (3)

where W l denotes the merged parameter of all N
experts and αl

i denotes the learnable mixing co-

efficient of expert W l
i . Mixing coefficients α is

parameterized as the output of a softmax, ensuring

that αl
i is positive and

∑N
i=1

αl
i = 1. Given input

x, we denote the output of a neural network with

parameters θ as f(x; θ). For loss L and instruction

dataset {(xi, yi)}
m
i=1

, such mixing coefficients α
of all the L layers can be learned via:

argmin
α

m
∑

j=1

L(f(xj ; θo, (W l)1:L), yi) (4)

where θo refers to all the remaining layers of

MoEDS other than MoE layers.

While the learning process defined in Eq. (4)

is the most intuitive way of learning α, our pre-

liminary experiment shows that, due to the shared

expert setting, it tends to increase the mixing coef-

ficient of the shared expert at each layer as much

as possible to decrease the loss. It is not helpful

because, although the shared expert has learned

general knowledge across the whole instruction

dataset and needs a relatively large mixing coeffi-

cient, we still need to keep the scale of the mixing

coefficient of other normal experts at a certain level

to keep the specific knowledge learned by other

normal experts in the merged parameter W l.

To solve this issue, we introduce a shared expert

rate λ to fix the mixing coefficient of the shared

expert and learn the mixing coefficients of the re-

maining normal experts which sums to 1 − λ in

each layer. By doing so, we can easily control the

scale of the mixing coefficient of the shared expert,

while still being able to learn the optimal layer-wise

mixing coefficients of other normal experts. Let’s

say W l
1

is the shared expert of the l-th layer, then

Eq. (3) and Eq. (4) can be reformulated as follows:

W l
λ = λW l

1 +
N
∑

i=2

αl
iW

l
i (5)

argmin
α

m
∑

j=1

L(f(xj ; θo, (W l
λ)1:L), yi) (6)
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In practice, we uniformly initialize the mix-

ing coefficients α of all the normal experts as
1−λ
N−1

, which is then trained on the same instruc-

tion dataset used during upcycling.

4 Main Evaluation

4.1 Experimental Setup

Training. DeepSeek-Coder-Base 1.3B (Guo

et al., 2024) is used as our main base code

LLM. evol-codealpaca-v1, an open-source

Evol-Instruct (Luo et al., 2023) dataset contain-

ing 110K samples, is used as our code instruction

dataset. MoEDS, our MoE model upcycled from

the base model, is implemented following Llama-

MoE (LLaMA-MoE Team, 2023). It is constructed

with 8 experts in one MoE layer and the top 6

experts1 are activated for each token, including

one shared expert. As such, we denote the model

size of MoEDS as 8×1.3B. Other training settings

are detailed in Appendix A.1. We further obtain

XFTDS by using the learned mixing coefficients to

compile MoE layers inside MoEDS to normal FFN

layers. Note that XFTDS is the final instruction-

tuned code LLM we output, while MoEDS is only

an intermediate product of our XFT framework.

Baselines. To study the effectiveness of XFT,

we build a baseline model, namely SFTDS, by di-

rectly performing SFT for DeepSeek-Coder-Base

1.3B on evol-codealpaca-v1. To compare XFT

with EWA (Huang et al., 2023), we also implement

a baseline EWADS and instruction-tune it using

the same hyperparameter setting as SFTDS, which

is described in Appendix A.1. More implementa-

tion details of EWADS are described in Appendix

A.2. Furthermore, we incorporate multiple tiny

open-source LLMs (<3B) as our baselines, includ-

ing DeepSeek-Coder-Base 1.3B, DeepSeek-Coder-

Instruct 1.3B (Guo et al., 2024), Phi-2 2.7B, and

STABLE-CODE 3B (Pinnaparaju et al., 2024).

4.2 Python Text-to-Code Generation

HumanEval (Chen et al., 2021) and MBPP (Austin

et al., 2021) benchmarks are the two most widely-

used collections of Python code generation tasks.

We further employ HumanEval+ and MBPP+,

which use more tests automatically generated by

EvalPlus (Liu et al., 2023) for more rigorous eval-

uation. We leave the detailed description of Hu-

manEval(+) and MBPP(+) in Appendix A.3.

16 is the best-performing number of activated experts per
our HumanEval+ experiments using top {2, 4, 6} experts.

Table 1 shows the pass@1 results of different

LLMs. XFT achieves 67.1 pass@1 on HumanEval

and 64.6 pass@1 on HumanEval+, which makes

it the new state-of-the-art tiny code LLM (<3B).

We can also observe that XFTDS has a clear im-

provement over the SFTDS on both benchmarks,

with 13% and 2% improvement on HumanEval+

and MBPP+ respectively. In contrast, EWADS not

only underperforms XFTDS on both benchmarks,

but also fails to improve SFTDS on MBPP(+). Sur-

prisingly, XFTDS even surpasses MoEDS on Hu-

manEval and HumanEval+, despite only using

around 1/8× parameters and around 1/6× compu-

tations, which showcases the effectiveness of our

simple learnable merging technique. More com-

prehensive experiments in Appendix A.4 demon-

strate the statistical significance of the improve-

ments brought by XFT. Furthermore, while XFT

will inevitably introduce training overhead, our ex-

periment in Appendix A.5 shows that XFT still

significantly outperforms SFT using the same train-

ing budget, demonstrating the ability of XFT to

unlock the power of code instruction tuning.

4.3 Multilingual Code Generation

We use MultiPL-E (Cassano et al., 2022), a multi-

programming benchmark that supports 18 program-

ming languages in addition to Python, to evalu-

ate the multilingual ability and generalizability of

XFT. Following previous work (Wei et al., 2023),

we choose six representative programming lan-

guages in our evaluation for their distinct language

features: Java, JavaScript, C++, PHP, Swift, and

Rust. Table 2 shows that, among all 1.3B mod-

els, XFTDS achieves the best average multilingual

performance and performs the best on five (out of

six) programming languages and overall largely im-

proves SFTDS which uses standard SFT. Notably,

the overall performance of EWADS is on par with

SFTDS, indicating that EWADS fails to improve

SFT on multilingual coding. Appendix A.6 further

studies whether each expert in MoEDS specializes

differently in different programming languages.

4.4 Code Generation for Data Science

The DS-1000 dataset (Lai et al., 2022) is a collec-

tion of 1000 realistic data science coding problems

ranging from seven popular data science libraries

in Python, including Matplotlib (plt), NumPy (np),

Pandas (pd), SciPy (scp), Scikit-Learn (sk), Py-

Torch (py), and TensorFlow (tf). We evaluate XFT

on DS-1000 to understand its effectiveness for prac-
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Model Size
Instruction

Dataset

Dataset

Size

Benchmark

HumanEval (+) MBPP (+)

GPT-3.5 (May 2023) - Private - 73.2 (66.5) -

STABLE-CODE 3B - - 28.7 (25.6) 53.6 (44.1)

DeepSeek-Coder-Base 1.3B - - 28.7 (25.6) 55.6 (46.9)

Phi-2 2.7B - - 48.8 (45.1) 62.7 (52.9)

DeepSeek-Coder-Instruct 1.3B Private 2B 65.2 (59.8) 63.9 (53.1)

SFTDS 1.3B Evol-Instruct 0.3B 61.6 (57.3) 59.6 (49.1)

EWADS 1.3B Evol-Instruct 0.3B 67.1 (63.4) 58.9 (48.4)

MoEDS 8×1.3B Evol-Instruct 0.3B 65.2 (62.2) 60.4 (50.1)

XFTDS 1.3B Evol-Instruct 0.3B 67.1 (64.6) 60.4 (50.1)

Table 1: Pass@1 results of different code LLMs on HumanEval (+) and MBPP (+) computed with greedy decoding,

following the setting of prior works (Wei et al., 2023; Liu et al., 2023). We report the results consistently from

the EvalPlus (Liu et al., 2023) Leaderboard. Note that numbers in bold refer to the highest scores among all 1.3B

models fine-tuned on public datasets, which is the same for all the other tables.

Model Size
Programming Language

Average
C++ PHP Java JS Swift Rust

DeepSeek-Coder-Base 1.3B 28.1 22.9 27.2 28.7 10.9 18.0 22.6

SFTDS 1.3B 40.4 38.5 40.2 46.2 16.4 27.7 34.9

EWADS 1.3B 39.4 38.4 37.3 45.2 20.9 28.6 35.0

MoEDS 8×1.3B 42.2 42.2 35.4 49.8 24.7 30.6 37.5

XFTDS 1.3B 42.7 41.5 36.0 49.7 25.3 32.1 37.9

Table 2: Pass@1 results on MultiPL-E (Cassano et al., 2022) following the same hyperparameter settings as

prior works (Wei et al., 2023; Luo et al., 2023): temperature = 0.2, top_p = 0.95, max_length = 512, and

num_samples = 50. All models are evaluated using bigcode-evaluation-harness (Ben Allal et al., 2022).

tical data science engineering. We follow the eval-

uation setting of prior works (Guo et al., 2024; Wei

et al., 2023). Table 3 shows that XFTDS achieves

the best overall performance among all the eval-

uated 1.3B models. Specifically, XFTDS consis-

tently surpasses SFTDS among all the seven studied

libraries and outperforms EWADS in general.

5 Ablation Study

5.1 Effect of Shared Expert with Routing

Weight Normalization

We demonstrate the importance of the shared ex-

pert of XFT by comparing its performance with

the original sparse upcycling (Komatsuzaki et al.,

2023) baseline that does not employ any shared ex-

pert. As shown in Table 4, the performance of the

original sparse upcycling (with the "- Shared Ex-

pert" label) drops greatly compared with MoEDS.

Notably, the sparse upcycling model performs even

worse than SFTDS on HumanEval+, indicating its

ineffectiveness for instruction tuning.

While the shared expert setting is also employed

in most recent works (Dai et al., 2024; Gou et al.,

2024), their routing strategy will cause perfor-

mance degradation due to the scale mismatch prob-

lem, which is handled by the routing weight nor-

malization design in XFT. To demonstrate its im-

portance, we conduct an ablation experiment by

excluding it from XFT. Table 4 shows that, after

removing routing weight normalization, the per-

formance substantially decreases, despite still per-

forming better than the original sparse upcycling

that does not use the shared expert setting.

5.2 Effect of Merging Strategy

In this section, we demonstrate the effectiveness of

our learnable merging technique by comparing it

with (1) directly merging experts with initialized

mixing coefficients, and (2) the learnable merging

technique without the shared expert rate setting,

which is the same setting as the learned soup in

Model Soups (Wortsman et al., 2022) and is de-

scribed in Eq. (3) and Eq. (4). Specifically, we

initialize the learnable mixing coefficient of the
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Model Size
Data Science Library

Overall
np pd plt py scp tf sk

DeepSeek-Coder-Base 1.3B 25.1 5.8 34.5 12.7 9.8 11.1 12.7 16.4

SFTDS 1.3B 30.9 17.0 40.5 32.7 18.3 21.1 24.4 25.9

EWADS 1.3B 32.9 19.4 41.8 25.7 17.7 22.2 33.0 27.8

MoEDS 8×1.3B 33.2 21.3 38.4 41.8 21.8 23.5 37.5 30.0

XFTDS 1.3B 32.9 20.2 38.9 41.4 21.1 16.9 37.5 29.3

Table 3: Pass@1 results on DS-1000 (completion format) with temperature = 0.2, top_p = 0.5, max_length =
1024, and num_samples = 40, following the same hyperparameter setting used in prior works (Wei et al., 2023).

Model HumanEval HumanEval+

SFTDS 61.6 57.3

MoEDS 65.2 62.2

MoEDS

- Normalization
63.4 59.1

MoEDS

- Shared Expert
61.6 56.7

Table 4: Ablation over the design of MoEDS. "- Normal-

ization" removes the routing weight normalization from

the router, making it the same design as MoCLE (Gou

et al., 2024). "- Shared Expert" removes the shared ex-

pert setting, making MoEDS the same architecture as

original sparse upcycling (Komatsuzaki et al., 2023).

Model HumanEval HumanEval+

MoEDS 65.2 62.2

XFTDS (INIT) 66.5 64.0

XFTDS 67.1 64.6

XFTDS

- Shared Expert Rate
66.5 64.0

Table 5: Ablation over the design of XFTDS. "(INIT)"

refers to directly using the initialized mixing coefficients

to merge experts without training. "- Shared Rate" re-

moves the shared rate setting from XFTDS, which is the

same as the learned soup (Wortsman et al., 2022).

shared expert as 0.75 and that of the other 7 normal

experts as 1

28
for a fair comparison. As shown in

Table 5, trained mixing coefficients outperform the

initialized mixing coefficients for merging. Fur-

thermore, removing the shared rate setting will

degrade the performance of XFTDS on both Hu-

manEval and HumanEval+, demonstrating its im-

portance. An ablation study on the shared expert

rate in Appendix A.7 further shows that (1) XFTDS

consistently outperforms SFTDS regardless of their

shared expert rate, and (2) both the general knowl-

edge learned in the shared expert and the specific

knowledge learned in other experts are important

and integral for better performance after merging.

Model HumanEval HumanEval+

SFTSTABLE 62.2 56.1

MoESTABLE 64.0 59.1

XFTSTABLE 68.3 62.2

Table 6: Ablation over the effect of the base model

by replacing DeepSeek-Coder-Base 1.3B with STABLE-

CODE 3B. XFT can consistently improve the instruction

tuning performance of different base code LLMs.

5.3 Effect of Code LLM Choice

To show that the effectiveness of XFT is not depen-

dent on any specific code LLMs, we apply XFT

to STABLE-CODE 3B (Pinnaparaju et al., 2024),

whose architecture is different from DeepSeek-

Coder-Base 1.3B (Guo et al., 2024), to study

whether XFT can still improve the performance

of this new model. The training settings are de-

tailed in Appendix A.8. As shown in Table 6,

XFTSTABLE significantly improves SFTSTABLE by

10% on HumanEval and 11% on HumanEval+ re-

spectively. Furthermore, XFTSTABLE consistently

boosts the performance of MoESTABLE while only

using 1/4× parameters and 1/2× inference compu-

tations. These results show that the effectiveness of

XFT is generalizable across different code LLMs.

6 Discussion

6.1 Scaling up XFT to 7B Scale

We scale up XFT to 7B-level code LLMs by ap-

plying it to DeepSeek-Coder-Base 6.7B (Guo et al.,

2024). The training settings are detailed in Ap-

Model HumanEval HumanEval+

SFTDS-6.7B 77.4 70.7

MoEDS-6.7B 81.1 75.6

XFTDS-6.7B 81.7 76.8

Table 7: Experiments on scaling up XFT to 7B scale.

It shows that XFT can also consistently improve the

instruction tuning performance of 7B-level code LLMs.
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Model
Discipline

Overall
Humanities Social Science STEM Other

SFTTL 25.38 23.30 24.20 26.78 24.97

MoETL 23.85 26.32 27.40 28.03 26.11

XFTTL 23.91 26.49 27.72 28.29 26.30

Table 8: Experiments on the generalizable effectiveness of XFT for general tasks in MMLU benchmark (Hendrycks

et al., 2021). It shows that XFT can improve the general instruction tuning performance of LLMs.

pendix A.9. As shown in Table 7, XFTDS-6.7B

significantly improves SFTDS-6.7B by 6% on Hu-

manEval and 9% on HumanEval+ respectively.

Moreover, XFTDS-6.7B further boosts the perfor-

mance of MoEDS-6.7B with only 1/8× parameters

and 1/2× computations during inference! These

promising results demonstrate the consistent effec-

tiveness of XFT on 7B-level code LLMs.

6.2 Generalizability for General Tasks

To demonstrate that XFT can also improve the per-

formance of LLMs on general tasks across different

domains, we apply XFT to general instruction tun-

ing. We use TinyLlama 1.1B (Zhang et al., 2024) as

the base model and use evol-instruct-70k (Xu

et al., 2023) as the training dataset for general in-

struction tuning. Following existing work (Zhang

et al., 2024), we use MMLU (Hendrycks et al.,

2021) with the 5-shot setting as our evaluation

benchmark to evaluate the general performance of

instruction-tuned LLMs. More training settings are

detailed in Appendix A.10. As shown in Table 8,

XFTTL improves SFTTL by 5% on MMLU in gen-

eral, demonstrating the generalizable effectiveness

of XFT for general instruction tuning.

6.3 Preliminary Theoretical Explanation

We provide a preliminary theoretical explanation of

XFT by considering a simplified variant of it. Let’s

start by analyzing the two major steps of XFT:

• Step 1: Upcycling. According to the scaling

laws (Kaplan et al., 2020), the upcycled MoE

model performs better than the normal SFT

dense model due to more trainable parameters.

• Step 2: Merging. We consider a simplified vari-

ant of XFT, where the upcycled MoE model

(e.g., MoEDS) can be viewed as the ensembling

of two dense models and the merged dense

model (e.g., XFTDS) can be viewed as the merg-

ing of the same two dense models. More details

are included in Appendix A.11. As such, we

can directly apply the theoretical analyzing pro-

cess in Section 4 of Model Soups (Wortsman

et al., 2022) to analyze the performance differ-

ence between the upcycled MoE model and the

merged dense model, which is initially designed

to analyze the performance difference between

model ensembling and model merging. Accord-

ing to the analysis (Wortsman et al., 2022), the

convexity of the loss can help the merged dense

model achieve a similar expected loss as that of

the upcycled MoE model.

Overall, our preliminary theoretical explanation

shows that (1) the Upcycling step improves the

performance with more trainable parameters, and

(2) the Merging step can provably maintain the

performance of the aforementioned simplified MoE

model with only dense-model compute.

7 Conclusion

This paper introduces XFT to unlock the power

of code instruction tuning by simply merging up-

cycled MoE. Similar to SFT, XFT starts with a

dense LLM and outputs a fine-tuned dense LLM

with the exact size and model structure. Yet, XFT

improves SFT by upcycling the pre-trained dense

LLM to an MoE model for fine-tuning, after which

we compile the MoE model back to an efficient

dense LLM with a learnable merging mechanism.

As such, we unleash the performance limit of in-

struction tuning without any additional inference

overhead. Using the same training dataset, XFT

outperforms SFT on a variety of benchmarks, in-

cluding HumanEval(+), MBPP(+), MultiPL-E, and

DS-1000, from 2% to 13%. By applying XFT

to DeepSeek-Coder-Base 1.3B, we create the new

state-of-the-art tiny code LLM (<3B). The final

dense LLM produced by XFT preserves or even

outperforms the full upcycled MoE which uses 8×
parameters as much as our final dense LLM. XFT

is fully orthogonal to the existing instruction tuners

such as Evol-Instruct and OSS-INSTRUCT, open-

ing a new dimension for code instruction tuning.

12949



Limitations

To balance the general knowledge in the shared ex-

pert and the specific knowledge in other normal ex-

perts, we introduce a hyperparameter λ in the merg-

ing process of XFT, which might slightly increase

the efforts for hyperparameter search. It would be

interesting to explore other hyperparameter-free

techniques to tackle this challenge. Furthermore,

while we have provided a preliminary theoretical

explanation for the strong empirical performance of

XFT, it would be interesting to provide a complete

theoretical explanation in the future.
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Model HumanEval HumanEval+

SFTDS 61.6 57.2

EWADS 62.7 58.8

XFTDS 64.5 60.9

Table 9: Average pass@1 results of 200 experiments on

HumanEval (+) computed with sampling. XFT clearly

outperforms both EWADS and SFTDS.

Model HumanEval HumanEval+

XFTDS vs. EWADS 2.6e-18 8.0e-23

XFTDS vs. SFTDS 9.6e-30 3.7e-33

Table 10: p-values for XFTDS vs. EWADS and XFTDS

vs. SFTDS in 200 experiments on HumanEval (+) con-

ducted using sampling. Results show that improvements

brought by XFT are statistically significant.

A.4 Statistical Significance Analysis

In our main experiments, we follow prior

works (Wei et al., 2023; Lozhkov et al., 2024)

to conduct experiments on HumanEval(+) using

greedy decoding. To demonstrate the statistical

significance of our improvements, we change our

setting from greedy decoding to sampling. In detail,

to conduct one experiment on HumanEval(+), the

model will sample one solution for each problem

in HumanEval(+) with top p = 0.95 and tempera-

ture = 0.8, which is the same setting used in prior

works (Liu et al., 2023; Chen et al., 2021).

Following prior work (Liu et al., 2023), we re-

peat this experiment 200 times for three techniques:

XFTDS, EWADS, and SFTDS. EWADS is included

because it is the best-performing baseline in our

main experiment. We first compute their average

pass@1 performance in these 200 experiments. As

is shown in Table 9, XFTDS outperforms both

EWADS and SFTDS.

Furthermore, we use the Wilcoxon signed-rank

test (Wilcoxon, 1945; Dror et al., 2018), a widely

used statistical test, to check if the improvements

brought by XFT are statistically significant. As

shown in Table 10, the p-values for both XFTDS

vs. EWADS and XFTDS vs. SFTDS are much

smaller than both 0.0025 (the significance level rec-

ommended for NLP work (Søgaard et al., 2014))

and 0.05 (the most common significance level),

demonstrating the statistical significance of the im-

provements brought by XFT.

A.5 Training Overhead Analysis

Compared with SFT, XFT will inevitably introduce

additional overhead in the training process because

Model HumanEval HumanEval+

SFTDS

w/ same steps
61.6 57.3

SFTDS

w/ same budget
62.2 57.3

XFTDS 67.1 64.6

Table 11: Experiments on the effect of training over-

head. For our two SFT baselines, "w/ same steps" refers

to one SFT baseline using the same training steps as

XFT while "w/ same budget" refers to the other SFT

baseline using the same training budget as XFT. XFT

can consistently outperform both SFT baselines to a

large extent, further demonstrating the ability of XFT

to unlock the power of code instruction tuning.

XFT needs to fine-tune the upcycled MoE model,

which contains more parameters than the original

dense model and thus requires more computation.

In contrast, the normal SFT technique only needs

to fine-tune the original dense model. To better un-

derstand the effect of such overhead, we conduct an

experiment using the same training budget (i.e., the

same GPU hours) instead of the same training steps

for the normal SFT baseline. As shown in Table

11, although sharing the same training budget as

XFTDS, the performance of SFTDS is still signif-

icantly worse than that of XFTDS, demonstrating

the ability of XFT to unlock the power of code

instruction tuning using the same training budget.

A.6 Expert Specialization Analysis

Inspired by recent works (Jiang et al., 2024; Xue

et al., 2024), we analyze whether each expert in

MoEDS has different specializations in different

programming languages by visualizing the routing

decision of the tokens from different programming

languages in the MultiPL-E benchmark (includ-

ing Python). We collect the routing decision for

the MultiPL-E benchmark when conducting ex-

periments in Section 4.3. For Python, we collect

the routing decision by running HumanEval ex-

periment following the same setting used in Sec-

tion 4.3. Following the analysis setting of recent

work (Jiang et al., 2024), we get the visualization

results from layers 0, 11, and 23 in MoEDS, where

layer 0 and layer 23 are the first and the last layers

of MoEDS. As shown in Figure 4, we do not ob-

serve any obvious patterns in the assignment of ex-

perts based on the type of programming languages,

which is in line with the findings reported by recent

works (Jiang et al., 2024; Xue et al., 2024).
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MoESTABLE can be described as 4×3B. We use a

batch size of 64 and a learning rate of 5e-5 with

a linear scheduler to fine-tune MoESTABLE for 4

epochs with 500 warmup steps. Similar to XFTDS,

we obtain XFTSTABLE by learning mixing coef-

ficients to merge MoE layers inside MoESTABLE

as normal FFN layers, which is fine-tuned with a

batch size of 64, a shared expert rate λ of 0.85, and

a learning rate of 1e-5 with a linear schedule for 1

epoch with 125 warmup steps. Our baseline model,

namely SFTSTABLE, is fine-tuned for 5 (= 4 + 1)

epochs with a batch size of 64, a learning rate of

5e-5, and 625 warmup steps for a fair comparison.

A.9 Training Settings for

DeepSeek-Coder-Base 6.7B

We use evol-codealpaca-v1 as the training

dataset. We upcycle a new MoE model from

DeepSeek-Coder-Base 6.7B, namely MoEDS-6.7B.

We construct MoEDS-6.7B with 8 experts in one

MoE layer, where the top 2 experts are activated for

each token, including one shared expert. As such,

MoEDS-6.7B includes 8×6.7B parameters. We use

a batch size of 64 and a linear scheduler to fine-

tune MoEDS-6.7B for 4 epochs with 500 warmup

steps. We choose the best-performing learning

rate from {2e − 5, 5e − 5} for MoEDS-6.7B. Be-

cause the FFN weights of MoEDS-6.7B are too large

to fit in our GPU memory, during our merging

step, we realize that one part of computation in

the training of XFTDS-6.7B has to be moved to

CPUs, which significantly slows down the training

speed. Consequently, we use a batch size of 16, a

shared expert rate λ of 0.75, a constant learning

rate of 1e-4, and 400 training steps in merging to

obtain XFTDS-6.7B. Our baseline model, namely

SFTDS-6.7B, is fine-tuned for 5 epochs with a batch

size of 64 and 625 warmup steps for a fair compar-

ison. We also choose the best-performing learning

rate from {2e− 5, 5e− 5} for SFTDS-6.7B.

A.10 Training Settings for TinyLlama 1.1B

Using TinyLlama 1.1B as the base model, we up-

cycle a new MoE model, namely MoETL, from the

pre-trained dense model. Following the setting of

MoEDS, we construct MoETL with 8 experts in one

MoE layer, where the top 6 experts are activated

for each token, including one shared expert. As

such, the number of parameters for MoETL can be

written as 8×1.1B. We use a batch size of 64 and a

learning rate of 5e-5 with a linear scheduler to fine-

tune MoETL for 4 epochs with 240 warmup steps.

To obtain XFTTL, we learn mixing coefficients to

merge MoE layers inside MoETL by fine-tuning

them with a batch size of 64, a shared expert rate

λ of 0.85, and a learning rate of 2e-5 with a linear

schedule for 1 epoch with 60 warmup steps. For

a fair comparison, we fine-tune a baseline model

SFTTL for 5 (= 4 + 1) epochs with a batch size of

64, a learning rate of 5e-5, and 300 warmup steps.

A.11 Details of Preliminary Theoretical

Explanation

We consider a simplified variant of XFT as follows:

• The original dense model is a one-layer trans-

former model, which contains one attention layer

connected with one feed-forward network (FFN)

layer. As such, the upcycled MoE model is also

a one-layer transformer model, containing one

attention layer connected with an MoE layer.

• The upcycled MoE model only has two experts

(e1 and e2), both of which are always selected

for processing the input tokens.

• The router in the MoE model assigns constant

weights to each expert, regardless of the input

token. Consequently, the output of the MoE

layer for the t-th token ht can be represented

as (1 − α)e1(ut) + αe2(ut), where 1 − α is

the router weight assigned to e1, α is the router

weight assigned to e2, and ut is the input of the

MoE layer for the t-th token.

• We simplify the process of merging the MoE

model back to a dense model as Weα = (1 −
α)We1 + αWe2 , where We refers to the weight

of e and eα refers to the weight of the FFN in

the merged dense model.

In this simplified scenario, if we denote f(x; θ)
as the output of the model θ for the input x, the out-

put of this simplified MoE model for input token x
can be represented as f(x; θMoE). Interestingly, if

we define two new dense models θ1 and θ2, where

θ1 and θ2 both use the attention layer of this MoE

model as their attention layer while using e1 and e2
as their FFN layer respectively, f(x; θMoE) can be

represented as (1−α)f(x; θ1)+αf(x; θ2). Conse-

quently, the computation process of this simplified

MoE model can be viewed as ensembling the out-

puts of two dense models θ1 and θ2. Meanwhile,

the process of merging the upcycled MoE model

back to a dense model in this simplified scenario

can be represented as θα = (1−α)θ1+αθ2, which

can be viewed as the model merging of the same

two dense models θ1 and θ2.
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