XFT: Unlocking the Power of Code Instruction Tuning
by Simply Merging Upcycled Mixture-of-Experts

Yifeng Ding, Jiawei Liu, Yuxiang Wei, Lingming Zhang
University of Illinois Urbana-Champaign
{yifeng6, lingming}@illinois.edu

Abstract

We introduce XFT, a simple yet powerful
training scheme, by simply merging upcycled
Mixture-of-Experts (MoE) to unleash the per-
formance limit of instruction-tuned code Large
Language Models (LLMs). While vanilla
sparse upcycling fails to improve instruction
tuning, XFT introduces a shared expert mecha-
nism with a novel routing weight normalization
strategy into sparse upcycling, which signif-
icantly boosts instruction tuning. After fine-
tuning the upcycled MoE model, XFT intro-
duces a learnable model merging mechanism
to compile the upcycled MoE model back to
a dense model, achieving upcycled MoE-level
performance with only dense-model compute.
By applying XFT to a 1.3B model, we create a
new state-of-the-art tiny code LLM (<3B) with
67.1 and 64.6 pass@1 on HumanEval and Hu-
manEval+ respectively. With the same data and
model architecture, XYFT improves supervised
fine-tuning (SFT) by 13% on HumanEval+,
along with consistent improvements from 2%
to 13% on MBPP+, MultiPL-E, and DS-1000,
demonstrating its generalizability. XFT is
fully orthogonal to existing techniques such
as Evol-Instruct and OSS-INSTRUCT, open-
ing a new dimension for improving code in-
struction tuning. Codes are available at https:
//github.com/ise-uiuc/xft.

1 Introduction

Program synthesis (or code generation) is a long-
standing problem explored since the early days of
computer science (Manna and Waldinger, 1971).
Recently, instruction tuning of code Large Lan-
guage Models (LLMs) has been used to improve
many coding tasks (Chaudhary, 2023; Luo et al.,
2023; Wei et al., 2023), such as text-to-code gener-
ation (Chen et al., 2021; Austin et al., 2021), code
completion (Cassano et al., 2022), and data science
engineering (Lai et al., 2022).

A typical instruction tuning flow involves two
steps (Zhang et al., 2023): (i) curating an instruc-

Dense | | Dense Dense
LLM LLM LLM
Expert ‘
Mixture-of-Experts :
\ Expert Expert |i | ’ i

Mixture-of-Experts
LLM

XFT (Ours)

Dense | : :
LM |

SFT Sparse Upcycling

—» Fine-Tuning - Learned Merging

Figure 1: Overview of SFT, sparse upcycling, and XFT.

tion dataset of instruction-output pairs, where the
instruction reflects human intents in natural lan-
guage and the output includes target code snip-
pets that correspond to the intent; and (ii) super-
vised fine-tuning of pre-trained LLM on the in-
struction dataset. In the realm of code instruc-
tion tuning, most recent works have been focus-
ing on curating high-quality instruction datasets.
For example, Code Evol-Instruct (Luo et al., 2023)
uses ChatGPT to obtain complex synthetic code
instructions with heuristic prompts, while OSS-
INSTRUCT (Wei et al., 2023) prompts ChatGPT to
generate new coding problems by drawing inspira-
tion from open source code snippets. Since existing
works focus on the data perspectives of instruction
tuning, they all follow the standard SFT, leaving
room for exploring advanced training schemes.
We argue that prior works largely overlook the
possibility of improving code instruction tuning by
advancing existing training schemes. Figure 1 de-
picts supervised fine-tuning (SFT), which directly
uses the pre-trained weights and architecture for
fine-tuning. The model is dense here because all
parameters are activated to predict the next token
(assuming it is a decoder-only LLLM). In contrast
to fine-tuning a dense model, following the scal-
ing laws (Kaplan et al., 2020) (i.e., more param-
eters, better performance), sparse upcycling (Ko-
matsuzaki et al., 2023) is proposed to efficiently
upgrade the model size by upcycling a dense LLM
to a sparsely activated Mixture-of-Experts (MoE)

12941

Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 12941-12955

August 11-16, 2024 ©2024 Association for Computational Linguistics

model. An MoE model is efficient because its pre-
diction of the next token only invokes a subset of
parameters (i.e., experts) and thus is sparsely ac-
tivated. For example, Mixtral-8x7B (Jiang et al.,
2024), compared to a dense 7B model, uses approx-
imately 8 parameters and 2x computation, i.e.,
only 2 out of 8 experts are dynamically selected to
compute the next token. However, there are two
key limitations when using sparse upcycling in in-
struction tuning: (i) Slow scaling: it is reported
that sparse upcycling improves the performance
of dense models marginally with limited training
steps, requiring orders of magnitude of extra com-
pute to achieve decent improvement (Komatsuzaki
et al., 2023); (ii) Inference cost: although MoE is
more efficient than directly scaling up the size of
dense LLMs, MoE is still expensive, especially at
inference, as it introduces significantly more param-
eters (i.e., memory) and computes during inference,
compared to its dense counterparts.

In this paper, we propose XFT: by simply
merging upcycled MoE models, we push the per-
formance limit of instruction-tuned code LLMs.
While vanilla sparse upcycling fails to improve
instruction tuning efficiently (Komatsuzaki et al.,
2023), XFT addresses this challenge by isolating
one expert as the shared expert among all the other
experts in each MoE layer, inspired by DeepSeek-
MoE (Dai et al., 2024) and MoCLE (Gou et al.,
2024). XFT also proposes a novel routing weight
normalization strategy to eliminate scale mismatch
between the upcycled MoE layer with the shared
expert and the original dense layer, which will oth-
erwise lead to performance degradation (Wu et al.,
2022). After the upcycled MoE model finishes
its SFT phase, motivated by Model Soups (Worts-
man et al., 2022), XFT uses a learnable model
merging mechanism to output a dense model by
merging all the expert networks in the upcycled
MokE, i.e., the final dense model is of the same
model structure and size as the original pre-trained
model, achieving similar performance without pay-
ing extra inference cost as the sparse upcycling.
With only 1.3B parameters, XFT achieves 67.1
pass@1 on HumanEval and 64.6 pass@1 on Hu-
manEval+, which is the new state-of-the-art for
tiny code LLMs (<3B). Compared with SFT, XFT
achieves 13% improvement on HumanEval+. Sur-
prisingly, our learnable merging mechanism can
preserve or even further boost the performance of
the upcycled MoE with only around !/8x parame-
ters! We conclude our contribution as follows:

* Dimension: We open a new dimension of im-
proving instruction tuning of code LLMs by
advancing its training scheme, using enhanced
sparse upcycling and learnable model merging
mechanism, which neither changes the final
model structure nor requires more training data.

* Technique: We present XFT, a new training
scheme for code instruction tuning. AX'FT in-
volves two steps: upcycling and merging. A pre-
trained dense LLM is first upcycled into an MoE
with the shared expert setting and then fine-tuned
on the instruction dataset. We propose a novel
routing weight normalization strategy to avoid
the performance degradation caused by the scale
mismatch problem. In addition, we introduce the
first learnable mechanism for merging the upcy-
cled MoE into a dense model, eliminating ad-
ditional inference overhead while preserving or
even improving the upcycled MoE performance.

* Results: With only 1.3B parameters, XFT
achieves 67.1 pass@1 on HumanEval and 64.6
pass@1 on HumanEval+, which is the new state-
of-the-art for tiny code LLMs (<3B). Compared
with normal SFT, XFT achieves a significant
13% improvement on HumanEval+! X'FT also
achieves consistent improvements from 2% to
13% on MBPP, MultiPL-E, and DS-1000 over
SFT, demonstrating its generalizability.

2 Related Work

2.1 Mixture-of-Experts

Mixture-of-Experts (MoE) can efficiently scale up
model sizes with only sub-linear increases in com-
putation (Shazeer et al., 2017). Compared with
the standard Transformer, MoE replaces each Feed-
Forward Network (FFN) layer with an MoE layer,
which uses NV (i.e., multiple) expert networks that
are structurally equivalent to the original FFN layer
and uses a router that directs each input token to
K out of N expert networks. Formally, for the [-th
MOoE layer, output hidden state hff of the ¢-th input
token is computed as follows (Dai et al., 2024):

N

hi = (9:.FFN;(u))) + ug
=1

it = Si,t
=
2, 0

St:{si,t|1§i§N}

si+ € Topk(st, K)

otherwise

ey

T
si+ = Softmax; (uf5 eﬁ)

12942

where g; ; refers to the gate value for the i-th expert
given the ¢-th token, FEN;(+) refers to the i-th ex-
pert, u} refers to the hidden states of the -th token
which is the input of the [-th MoE layer, s; ; refers
to the affinity score between the i-th expert and the
t-th token, Topk(S, K) refers to a function extract-
ing K highest scores out of S, and eé refers to the
centroid of the i-th expert in the [-th MoE layer. By
definition, each token will only be computed in the
top K experts among all the NV experts and such
sparsity assures the efficiency of MoE.

Recently, many works have been proposed to
scale model sizes with MoE architecture (Lepikhin
et al., 2020; Du et al., 2022; Fedus et al., 2022;
Jiang et al., 2024; Xue et al., 2024). While most
MOoE models are trained from scratch, sparse up-
cycling (Komatsuzaki et al., 2023) is proposed to
initialize MoE models based on pre-trained dense
models, which can efficiently reduce the compu-
tational costs of training MoE models, compared
with training MoE models from scratch. Specif-
ically, sparse upcycling constructs a new MoE
model by initializing each expert of each MoE layer
as a copy of the original FFN layer in the dense
model, while directly copying the remaining layers
from the dense model to the new MoE model.

2.2 Instruction Tuning

Instruction tuning is designed to improve the
instruction-following ability of LLMs by fine-
tuning them on the instruction datasets in a su-
pervised fashion (Wei et al., 2022). The quality of
the instruction dataset is significant for the effec-
tiveness of instruction tuning and researchers have
proposed multiple methods to improve data qual-
ity. For example, SELF-INSTRUCT (Wang et al.,
2023) synthesizes high-quality instruction data by
prompting a foundation LLM with carefully de-
signed prompts. To improve SELF-INSTRUCT,
Evol-Instruct (Xu et al., 2023) enhances the com-
plexity and diversity of the instruction dataset by
prompting ChatGPT with heuristic prompts. OSS-
INSTRUCT (Wei et al., 2023) queries ChatGPT to
generate instruction-output pairs by getting inspira-
tion from real-world code snippets.

Recently, some parameter-efficient fine-tuning
techniques have been proposed to use MoE for
better instruction tuning. For example, Lo-
RAMOE (Dou et al., 2023) and MoCLE (Gou et al.,
2024) propose MoE-like modules that are con-
structed with Low-Rank Adaptations (LoRA) to
improve instruction tuning, while PESC (Wu et al.,

2024) proposes to integrate adapters into MoE that
are upcycled from dense models. Unlike these
works, XFT focuses on full-parameter fine-tuning,
which is proven generally stronger than parameter-
efficient fine-tuning (Chen et al., 2022).

2.3 Weight Averaging

Weight averaging is a commonly used technique
to improve the performance of deep learning mod-
els. For example, Model Soups (Wortsman et al.,
2022) averages the weights of multiple models that
are initialized from the same pre-trained model but
finetuned with different hyperparameter configura-
tions to improve the accuracy and robustness of the
fine-tuned model. However, only a few works have
been proposed to merge experts of an MoE layer
to a normal FFN layer with weight averaging to
reduce both parameter and computation overhead
of inference. For example, OneS (Xue et al., 2022)
proposes several simple weight averaging meth-
ods to merge expert networks of a BERT-based
MoE model. Closely related to our work, Experts
Weights Averaging (EWA) (Huang et al., 2023) pro-
poses to convert an MoE model to a dense model
with two steps: (i) During MoE training, EWA con-
ducts weighted averaging of all the expert weights
after each weight update of MoE, which is based
on a manually-crafted hyperparameter [3; (ii) After
training, EWA converts each MoE layer into an
FFN layer by uniformly averaging the experts.

Different from all the aforementioned existing
works, X'FT is the first work proposing a learnable
mechanism to merge expert networks in the upcy-
cled MoE model. Furthermore, while the training
scheme of EWA is deeply coupled to a specific
MoE architecture, XFT can be easily adapted to
different MoE architectures by only adjusting the
final merging process. In addition, unlike EWA,
XFT does not introduce any hyperparameters into
the training of large MoE models, significantly re-
ducing the computational resources for hyperpa-
rameter searching. Our empirical results in Section
4 also demonstrate the clear advantage of X'FT.

3 XFT

We describe the details of XFT in this section.
There are two steps in our framework: upcycling
(Section 3.1) and merging (Section 3.2). During up-
cycling, we construct an Mixture-of-Experts (MoE)
model from the pre-trained dense model, namely
MoEps, which is then fine-tuned on coding instruc-

12943

Original Dense Block

Layer | | Attention —| Layer | MLP [—
Norm Norm
H Upcycling MLP layers
___ oo
MoE Shared i Instruction
i Tuning
Upcycled MoE Block]
Layer Laver Normalized
Y > Attention Y Router Weighted
Norm Norm Sum

Merged Dense Block i

\:] Before Training

Layer . Layer
A{ Nt H Attention H N H MLP (merged) }—~

|:] Post Training

Figure 2: Overview of XFT.

tion data. For merging, we propose a learnable
model merging method to convert the instruction-
tuned MoEps back to a normal dense model by
merging each MoE layer into an FEN layer through
weight averaging while directly copying other re-
maining layers. Consequently, we can obtain
XFTps that has the same model architecture and
size as the original pre-trained dense model, which
eliminates all the additional inference overhead
brought by the original sparse upcycling, while
preserving or even improving the performance of
MoEps. Our framework is illustrated in Figure 2.

3.1 Upcycling

Inspired by sparse upcycling (Komatsuzaki et al.,
2023), we convert the pre-trained dense LLM to a
new MoE by initializing each expert of each MoE
layer as a copy of the original FFN layer in the
dense model, while directly copying the remaining
layers from the dense model to the new MoE model.
However, the performance gain brought by sparse
upcycling is negligible with a limited training bud-
get (Komatsuzaki et al., 2023) — which is exactly
the situation we are facing during instruction tun-
ing. Intuitively, it is because each expert in the up-
cycled MoE model is trained on fewer instruction
data than the original dense model does because tra-
ditional routers used in sparse upcycling will assign
different tokens to different experts and thus reduce
the amount of data each expert is trained on (Gou
et al., 2024). Consequently, inspired by DeepSeek-
MoE (Dai et al., 2024) and MoCLE (Gou et al.,
2024), XFT introduces the shared expert setting
into sparse upcycling to tackle this challenge. We
further propose a novel routing weight normaliza-
tion strategy for X'FT to avoid the potential perfor-

mance degradation caused by the scale mismatch
problem (Wu et al., 2022).

3.1.1 Shared Expert for Upcycling

During upcycling, we isolate one shared expert
among all the other normal experts in each MoE
layer, where the shared expert will be deterministi-
cally assigned to handle all the tokens while other
normal experts are assigned by the router. By doing
so, the upcycled MoE model can achieve a clear
performance boost in instruction tuning, where the
shared expert learns general knowledge across the
whole instruction dataset while other normal ex-
perts learn specific knowledge among different in-
structions assigned by the router. Formally, the
output hidden state hff of the [-th MoE layer when
processing the ¢-th token can be expressed as:

N
hi = > (9:FFN;(u})) + uf
i=1
1 — Stmax i=1
git = { Softmax;(si¢) - Stmax Sit € St
0 otherwise

Six = Topk({si |1 <i < N}, K —1)
Stmax = max({si; | 1 <i < N})
1 =1

—00
Sit = T .
' Softmax;(u}” e!) i >2

2

2)

where IV refers to the total number of experts, K
refers to the number of activated experts, g; ; refers
to the gate value for the ¢-th expert given the ¢-th
token, FFN;(-) refers to the i-th expert, u! refers to
the output hidden state of the [-th attention layer

12944

given the ¢-th token (which is also the input of
the [-th MoE layer), s; ; refers to the affinity score
between the i-th expert and the ¢-th token, s,
refers to the maximum affinity score among all
the experts besides the shared expert, Topk(S, K)
refers to a function extracting K highest scores
out of S, Six refers to a set of K — 1 highest
affinity scores among all the experts besides the
shared expert, and eﬁ refers to the centroid of the
i-th expert in the [-th MoE layer.

FFN; is chosen as the shared expert in each MoE
layer and each token will be assigned to top K
experts including one shared expert and K — 1
other normal experts. Compared with the original
sparse upcycling, there are two major differences:

* Weighted Shared Expert. Following Mo-
CLE (Gou et al., 2024), with the token-to-expert
affinity score s; ;, we get the maximum affinity
SCOre S¢max and use its complement 1 — Sty
as the routing weight of the shared expert.

* Routing Weight Normalization. Although
the shared expert setting is also used in recent
works (Dai et al., 2024; Gou et al., 2024), we can-
not directly follow their routing strategy because
they cannot handle a scale mismatch problem
that is unique for sparse upcycling. The scale
mismatch problem is that differences between
the scale of the output of the upcycled MoE layer
and that of the original FFN layer can cause per-
formance degradation (Wu et al., 2022). To han-
dle this problem, we need to ensure the sum of
gi+ equals 1, so that the output of the MoE layer
matches that of the FFN layer in scale. To do
so, we normalize the affinity scores of top K — 1
normal experts with Softmax and scale their sum
t0 S¢max to make sure that the sum of the g; ; of
top K experts, including one shared expert and
K — 1 normal experts, equals 1.

3.2 Merging

We propose a learnable model merging method to
convert the large MoE model, namely MoEpg, back
to a dense model XFTps. By doing so, we expect
XFTpg to keep the boosted performance gained
during upcycling while keeping its model size the
same as the original dense model size to avoid any
additional inference overhead. Inspired by Model
Soups (Wortsman et al., 2022), we choose to merge
MoEpg by learning the mixing coefficients that
can be used to average the parameters of all experts
in each MoE layer to obtain a normal FFN layer,

while directly copying other remaining layers.

Formally speaking, given the weights of N ex-
perts at the [-th layer Wll, WZI, .- 7WJZV, the pro-
cess of merging each MoE layer to an FFN layer
can be stated below:

N
Wh=>"alw} 3)
=1

where W! denotes the merged parameter of all N
experts and ozé denotes the learnable mixing co-
efficient of expert W}. Mixing coefficients « is
parameterized as the output of a softmax, ensuring
that o/ is positive and 3. | o} = 1. Given input
x, we denote the output of a neural network with
parameters 6 as f(x;). For loss £ and instruction
dataset {(x;, y;)}!", such mixing coefficients «
of all the L layers can be learned via:

arg ngnz L(f(zj; 00, (W)LL)’ ¥i) (4
j=1

where 6, refers to all the remaining layers of
MoEps other than MoE layers.

While the learning process defined in Eq. (4)
is the most intuitive way of learning «, our pre-
liminary experiment shows that, due to the shared
expert setting, it tends to increase the mixing coef-
ficient of the shared expert at each layer as much
as possible to decrease the loss. It is not helpful
because, although the shared expert has learned
general knowledge across the whole instruction
dataset and needs a relatively large mixing coeffi-
cient, we still need to keep the scale of the mixing
coefficient of other normal experts at a certain level
to keep the specific knowledge learned by other
normal experts in the merged parameter W,

To solve this issue, we introduce a shared expert
rate) to fix the mixing coefficient of the shared
expert and learn the mixing coefficients of the re-
maining normal experts which sums to 1 — X in
each layer. By doing so, we can easily control the
scale of the mixing coefficient of the shared expert,
while still being able to learn the optimal layer-wise
mixing coefficients of other normal experts. Let’s
say Wll is the shared expert of the [-th layer, then
Eq. (3) and Eq. (4) can be reformulated as follows:

N
W= W]+ oW} ©)
1=2
argmin Y L(f (@53 00, (W)1L)31) (6)
j=1

12945

In practice, we uniformly initialize the mix-
ing coefficients o of all the normal experts as
]{,;_/\1, which is then trained on the same instruc-
tion dataset used during upcycling.

4 Main Evaluation

4.1 Experimental Setup

Training. DeepSeek-Coder-Base 1.3B (Guo
et al., 2024) is used as our main base code
LLM. evol-codealpaca-vl, an open-source
Evol-Instruct (Luo et al., 2023) dataset contain-
ing 110K samples, is used as our code instruction
dataset. MoEpg, our MoE model upcycled from
the base model, is implemented following Llama-
MoE (LLaMA-MoE Team, 2023). It is constructed
with 8 experts in one MoE layer and the top 6
experts! are activated for each token, including
one shared expert. As such, we denote the model
size of MoEpg as 8 x 1.3B. Other training settings
are detailed in Appendix A.1. We further obtain
XFTpg by using the learned mixing coefficients to
compile MoE layers inside MoEpg to normal FFN
layers. Note that XYFTpg is the final instruction-
tuned code LLM we output, while MoEpg is only
an intermediate product of our XFT framework.
Baselines. To study the effectiveness of XFT,
we build a baseline model, namely SFTpg, by di-
rectly performing SFT for DeepSeek-Coder-Base
1.3B on evol-codealpaca-v1. To compare XYFT
with EWA (Huang et al., 2023), we also implement
a baseline EWApg and instruction-tune it using
the same hyperparameter setting as SFI'ps, which
is described in Appendix A.1. More implementa-
tion details of EWApg are described in Appendix
A.2. Furthermore, we incorporate multiple tiny
open-source LL.Ms (<3B) as our baselines, includ-
ing DeepSeek-Coder-Base 1.3B, DeepSeek-Coder-
Instruct 1.3B (Guo et al., 2024), Phi-2 2.7B, and
STABLE-CODE 3B (Pinnaparaju et al., 2024).

4.2 Python Text-to-Code Generation

HumanEval (Chen et al., 2021) and MBPP (Austin
et al., 2021) benchmarks are the two most widely-
used collections of Python code generation tasks.
We further employ HumanEval+ and MBPP+,
which use more tests automatically generated by
EvalPlus (Liu et al., 2023) for more rigorous eval-
uation. We leave the detailed description of Hu-
manEval(+) and MBPP(+) in Appendix A.3.

16 is the best-performing number of activated experts per
our HumanEval+ experiments using top {2, 4, 6} experts.

Table 1 shows the pass@1 results of different
LLMs. XFT achieves 67.1 pass@ 1 on HumanEval
and 64.6 pass@1 on HumanEval+, which makes
it the new state-of-the-art tiny code LLM (<3B).
We can also observe that XYFTpg has a clear im-
provement over the SFTpg on both benchmarks,
with 13% and 2% improvement on HumanEval+
and MBPP+ respectively. In contrast, EWApg not
only underperforms XFTpg on both benchmarks,
but also fails to improve SFTps on MBPP(+). Sur-
prisingly, XYFTpg even surpasses MoEps on Hu-
manEval and HumanEval+, despite only using
around 1/8x parameters and around 1/6x compu-
tations, which showcases the effectiveness of our
simple learnable merging technique. More com-
prehensive experiments in Appendix A.4 demon-
strate the statistical significance of the improve-
ments brought by XFT. Furthermore, while XYFT
will inevitably introduce training overhead, our ex-
periment in Appendix A.5 shows that X'FT still
significantly outperforms SFT using the same train-
ing budget, demonstrating the ability of XFT to
unlock the power of code instruction tuning.

4.3 Multilingual Code Generation

We use MultiPL-E (Cassano et al., 2022), a multi-
programming benchmark that supports 18 program-
ming languages in addition to Python, to evalu-
ate the multilingual ability and generalizability of
XFT. Following previous work (Wei et al., 2023),
we choose six representative programming lan-
guages in our evaluation for their distinct language
features: Java, JavaScript, C++, PHP, Swift, and
Rust. Table 2 shows that, among all 1.3B mod-
els, XYFTpg achieves the best average multilingual
performance and performs the best on five (out of
six) programming languages and overall largely im-
proves SFTps which uses standard SFT. Notably,
the overall performance of EWApg is on par with
SFTps, indicating that EWApg fails to improve
SFT on multilingual coding. Appendix A.6 further
studies whether each expert in MoEpg specializes
differently in different programming languages.

4.4 Code Generation for Data Science

The DS-1000 dataset (Lai et al., 2022) is a collec-
tion of 1000 realistic data science coding problems
ranging from seven popular data science libraries
in Python, including Matplotlib (plt), NumPy (np),
Pandas (pd), SciPy (scp), Scikit-Learn (sk), Py-
Torch (py), and TensorFlow (tf). We evaluate YFT
on DS-1000 to understand its effectiveness for prac-

12946

. Instruction Dataset Benchmark
Model Size .
Dataset Size HymanEval (+) MBPP (+)

GPT-3.5 (May 2023) - Private - 73.2 (66.5) -
STABLE-CODE 3B - - 28.7 (25.6) 53.6 (44.1)
DeepSeek-Coder-Base 1.3B - - 28.7 (25.6) 55.6 (46.9)
Phi-2 2.7B - - 48.8 (45.1) 62.7 (52.9)
DeepSeek-Coder-Instruct 1.3B Private 2B 65.2 (59.8) 63.9 (53.1)
SFTps 1.3B Evol-Instruct 0.3B 61.6 (57.3) 59.6 (49.1)
EWAps 1.3B Evol-Instruct 0.3B 67.1 (63.4) 58.9 (48.4)
MoEps 8x1.3B Evol-Instruct 0.3B 65.2 (62.2) 60.4 (50.1)
XFTps 1.3B Evol-Instruct 0.3B 67.1 (64.6) 60.4 (50.1)

Table 1: Pass@]1 results of different code LLMs on HumanEval (+) and MBPP (+) computed with greedy decoding,
following the setting of prior works (Wei et al., 2023; Liu et al., 2023). We report the results consistently from
the EvalPlus (Liu et al., 2023) Leaderboard. Note that numbers in bold refer to the highest scores among all 1.3B
models fine-tuned on public datasets, which is the same for all the other tables.

Programming Language

Model Size Average
C++ PHP Java JS Swift Rust
DeepSeek-Coder-Base 1.3B 28.1 229 272 287 109 18.0 22.6
SFTps 1.3B 40.4 385 40.2 462 164 27.7 349
EWAps 1.3B 394 384 373 452 209 28.6 35.0
MoEpsg 8x1.3B 422 422 354 498 247 30.6 37.5
XFTps 1.3B 427 415 360 49.7 253 321 37.9

Table 2: Pass@]1 results on MultiPL-E (Cassano et al., 2022) following the same hyperparameter settings as
prior works (Wei et al., 2023; Luo et al., 2023): temperature = 0.2, top_p = 0.95, max_length = 512, and
num_samples = 50. All models are evaluated using bigcode-evaluation-harness (Ben Allal et al., 2022).

tical data science engineering. We follow the eval-
uation setting of prior works (Guo et al., 2024; Wei
et al., 2023). Table 3 shows that XFTpg achieves
the best overall performance among all the eval-
uated 1.3B models. Specifically, YFTpgs consis-
tently surpasses SFTps among all the seven studied
libraries and outperforms EWApg in general.

5 Ablation Study

5.1 Effect of Shared Expert with Routing
Weight Normalization

We demonstrate the importance of the shared ex-
pert of XFT by comparing its performance with
the original sparse upcycling (Komatsuzaki et al.,
2023) baseline that does not employ any shared ex-
pert. As shown in Table 4, the performance of the
original sparse upcycling (with the "- Shared Ex-
pert" label) drops greatly compared with MoEpgs.
Notably, the sparse upcycling model performs even
worse than SFTps on HumanEval+, indicating its
ineffectiveness for instruction tuning.

While the shared expert setting is also employed

in most recent works (Dai et al., 2024; Gou et al.,
2024), their routing strategy will cause perfor-
mance degradation due to the scale mismatch prob-
lem, which is handled by the routing weight nor-
malization design in XFT. To demonstrate its im-
portance, we conduct an ablation experiment by
excluding it from X'FT. Table 4 shows that, after
removing routing weight normalization, the per-
formance substantially decreases, despite still per-
forming better than the original sparse upcycling
that does not use the shared expert setting.

5.2 Effect of Merging Strategy

In this section, we demonstrate the effectiveness of
our learnable merging technique by comparing it
with (1) directly merging experts with initialized
mixing coefficients, and (2) the learnable merging
technique without the shared expert rate setting,
which is the same setting as the learned soup in
Model Soups (Wortsman et al., 2022) and is de-
scribed in Eq. (3) and Eq. (4). Specifically, we
initialize the learnable mixing coefficient of the

12947

Data Science Library

Model Size Overall
np pd plt Py scp tf sk
DeepSeek-Coder-Base 1.3B 251 58 345 127 98 11.1 127 16.4
SFTps 1.3B 309 17.0 405 327 183 21.1 244 25.9
EWAps 1.3B 329 194 41.8 257 177 222 33.0 27.8
MoEps 8x1.3B 332 213 384 41.8 21.8 235 375 30.0
XFTps 1.3B 329 20.2 389 414 211 169 375 29.3

Table 3: Pass@1 results on DS-1000 (completion format) with temperature = 0.2, top_p = 0.5, max_length =
1024, and num_samples = 40, following the same hyperparameter setting used in prior works (Wei et al., 2023).

Model HumanEval HumanEval+

SFTsTABLE 62.2 56.1
MOESTABLE 64.0 59.1
XFTSTABLE 68.3 62.2

Model HumanEval HumanEval+

SFTps 61.6 57.3

MoEps 65.2 62.2

MoEps 63.4 59.1
- Normalization

MoEps 61.6 56.7
- Shared Expert

Table 4: Ablation over the design of MoEpgs. "- Normal-
ization" removes the routing weight normalization from
the router, making it the same design as MoCLE (Gou
et al., 2024). "- Shared Expert" removes the shared ex-
pert setting, making MoEpg the same architecture as
original sparse upcycling (Komatsuzaki et al., 2023).

Model HumanEval HumanEval+

MoEpg 65.2 62.2

XFTps (INIT) 66.5 64.0

XFTps 67.1 64.6

AFTps 66.5 64.0
- Shared Expert Rate

Table 5: Ablation over the design of XYFTpg. "(INIT)"
refers to directly using the initialized mixing coefficients
to merge experts without training. "- Shared Rate" re-
moves the shared rate setting from XFTpg, which is the
same as the learned soup (Wortsman et al., 2022).

shared expert as 0.75 and that of the other 7 normal
experts as % for a fair comparison. As shown in
Table 5, trained mixing coefficients outperform the
initialized mixing coefficients for merging. Fur-
thermore, removing the shared rate setting will
degrade the performance of XFI'pg on both Hu-
manEval and HumanEval+, demonstrating its im-
portance. An ablation study on the shared expert
rate in Appendix A.7 further shows that (1) XYFTpg
consistently outperforms SFTpg regardless of their
shared expert rate, and (2) both the general knowl-
edge learned in the shared expert and the specific
knowledge learned in other experts are important
and integral for better performance after merging.

Table 6: Ablation over the effect of the base model
by replacing DeepSeek-Coder-Base 1.3B with STABLE-
CODE 3B. XFT can consistently improve the instruction
tuning performance of different base code LLMs.

5.3 Effect of Code LLM Choice

To show that the effectiveness of X'FT is not depen-
dent on any specific code LLMs, we apply XFT
to STABLE-CODE 3B (Pinnaparaju et al., 2024),
whose architecture is different from DeepSeek-
Coder-Base 1.3B (Guo et al., 2024), to study
whether XFT can still improve the performance
of this new model. The training settings are de-
tailed in Appendix A.8. As shown in Table 6,
XFTstasLE significantly improves SFTstagLE by
10% on HumanEval and 11% on HumanEval+ re-
spectively. Furthermore, XYFTstapLE consistently
boosts the performance of MoEgtaprLg While only
using 1/2x parameters and 1/2x inference compu-
tations. These results show that the effectiveness of
XFT is generalizable across different code LLMs.

6 Discussion

6.1 Scaling up XFT to 7B Scale

We scale up X'FT to 7B-level code LLMs by ap-
plying it to DeepSeek-Coder-Base 6.7B (Guo et al.,
2024). The training settings are detailed in Ap-

Model HumanEval HumanEval+

SFTps.6.78 77.4 70.7
MOEDS—6.7B 81.1 75.6
XFTps-6.7B 81.7 76.8

Table 7: Experiments on scaling up XFT to 7B scale.
It shows that XFT can also consistently improve the
instruction tuning performance of 7B-level code LLMs.

12948

Discipline

Model Overall
Humanities Social Science STEM Other

SFTtL 25.38 23.30 2420 26.78 24.97

MoErT, 23.85 26.32 27.40 28.03 26.11

XFTTL 2391 26.49 2772 28.29 26.30

Table 8: Experiments on the generalizable effectiveness of XFT for general tasks in MMLU benchmark (Hendrycks
etal., 2021). It shows that XYFT can improve the general instruction tuning performance of LLMs.

pendix A.9. As shown in Table 7, XFTps.¢.78
significantly improves SFTps.¢.78 by 6% on Hu-
manEval and 9% on HumanEval+ respectively.
Moreover, XFTps.¢.7 further boosts the perfor-
mance of MoEps.¢ 78 with only 1/8x parameters
and 1/2x computations during inference! These
promising results demonstrate the consistent effec-
tiveness of XFT on 7B-level code LLMs.

6.2 Generalizability for General Tasks

To demonstrate that XFT can also improve the per-
formance of LLMs on general tasks across different
domains, we apply XFT to general instruction tun-
ing. We use TinyLlama 1.1B (Zhang et al., 2024) as
the base model and use evol-instruct-70k (Xu
et al., 2023) as the training dataset for general in-
struction tuning. Following existing work (Zhang
et al., 2024), we use MMLU (Hendrycks et al.,
2021) with the 5-shot setting as our evaluation
benchmark to evaluate the general performance of
instruction-tuned LLMs. More training settings are
detailed in Appendix A.10. As shown in Table 8,
XFTtL improves SFTt, by 5% on MMLU in gen-
eral, demonstrating the generalizable effectiveness
of X'FT for general instruction tuning.

6.3 Preliminary Theoretical Explanation

We provide a preliminary theoretical explanation of
XFT by considering a simplified variant of it. Let’s
start by analyzing the two major steps of XFT:

* Step 1: Upcycling. According to the scaling
laws (Kaplan et al., 2020), the upcycled MoE
model performs better than the normal SFT
dense model due to more trainable parameters.

* Step 2: Merging. We consider a simplified vari-
ant of XFT, where the upcycled MoE model
(e.g., MoEpg) can be viewed as the ensembling
of two dense models and the merged dense
model (e.g., YFTpg) can be viewed as the merg-
ing of the same two dense models. More details
are included in Appendix A.11. As such, we
can directly apply the theoretical analyzing pro-

cess in Section 4 of Model Soups (Wortsman
et al., 2022) to analyze the performance differ-
ence between the upcycled MoE model and the
merged dense model, which is initially designed
to analyze the performance difference between
model ensembling and model merging. Accord-
ing to the analysis (Wortsman et al., 2022), the
convexity of the loss can help the merged dense
model achieve a similar expected loss as that of
the upcycled MoE model.

Overall, our preliminary theoretical explanation
shows that (1) the Upcycling step improves the
performance with more trainable parameters, and
(2) the Merging step can provably maintain the
performance of the aforementioned simplified MoE
model with only dense-model compute.

7 Conclusion

This paper introduces X'FT to unlock the power
of code instruction tuning by simply merging up-
cycled MoE. Similar to SFT, XFT starts with a
dense LLM and outputs a fine-tuned dense LLM
with the exact size and model structure. Yet, XYFT
improves SFT by upcycling the pre-trained dense
LLM to an MoE model for fine-tuning, after which
we compile the MoE model back to an efficient
dense LLM with a learnable merging mechanism.
As such, we unleash the performance limit of in-
struction tuning without any additional inference
overhead. Using the same training dataset, YFT
outperforms SFT on a variety of benchmarks, in-
cluding HumanEval(+), MBPP(+), MultiPL-E, and
DS-1000, from 2% to 13%. By applying XFT
to DeepSeek-Coder-Base 1.3B, we create the new
state-of-the-art tiny code LLM (<3B). The final
dense LLM produced by XFT preserves or even
outperforms the full upcycled MoE which uses 8 x
parameters as much as our final dense LLM. XFT
is fully orthogonal to the existing instruction tuners
such as Evol-Instruct and OSS-INSTRUCT, open-
ing a new dimension for code instruction tuning.

12949

Limitations

To balance the general knowledge in the shared ex-
pert and the specific knowledge in other normal ex-
perts, we introduce a hyperparameter A in the merg-
ing process of X'FT, which might slightly increase
the efforts for hyperparameter search. It would be
interesting to explore other hyperparameter-free
techniques to tackle this challenge. Furthermore,
while we have provided a preliminary theoretical
explanation for the strong empirical performance of
XFT, it would be interesting to provide a complete
theoretical explanation in the future.

Acknowledgement

We extend our special thanks to Terry Yue Zhuo
for his assistance with the scale-up experiments on
DeepSeek-Coder-Base 6.7B (§6.1) after our sub-
mission. His contributions are good enough to
merit authorship; however, due to the policy of
ACL 2024, post-submission authorship changes
are not permitted. As a result, we have included
him in the author list of our arXiv version. We also
thank Sea AI Lab and Dr. Qian Liu for their valu-
able feedback and computing resource assistance.
We appreciate all the reviewers for their insightful
comments. This work was partially supported by
NSF grant CCF-2131943, as well as Kwai Inc.

References

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models.

Loubna Ben Allal, Niklas Muennighoff, Lo-
gesh Kumar Umapathi, Ben Lipkin, and
Leandro von Werra. 2022. A framework
for the evaluation of code generation mod-
els. https://github.com/bigcode-project/
bigcode-evaluation-harness.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, Arjun Guha, Michael Greenberg,
and Abhinav Jangda. 2022. Multipl-e: A scalable
and extensible approach to benchmarking neural code
generation.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. https:
//github.com/sahil280114/codealpaca.

Guanzheng Chen, Fangyu Liu, Zaigiao Meng, and
Shangsong Liang. 2022. Revisiting parameter-
efficient tuning: Are we really there yet?

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X.
Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li,
Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui,
and Wenfeng Liang. 2024. Deepseekmoe: Towards
ultimate expert specialization in mixture-of-experts
language models.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Jun
Zhao, Wei Shen, Yuhao Zhou, Zhiheng Xi, Xiao
Wang, Xiaoran Fan, Shiliang Pu, Jiang Zhu, Rui
Zheng, Tao Gui, Qi Zhang, and Xuanjing Huang.
2023. Loramoe: Revolutionizing mixture of experts
for maintaining world knowledge in language model
alignment.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi
Reichart. 2018. The hitchhiker’s guide to testing sta-
tistical significance in natural language processing.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1383—1392, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret
Zoph, Liam Fedus, Maarten Bosma, Zongwei Zhou,
Tao Wang, Yu Emma Wang, Kellie Webster, Marie
Pellat, Kevin Robinson, Kathleen Meier-Hellstern,
Toju Duke, Lucas Dixon, Kun Zhang, Quoc V Le,
Yonghui Wu, Zhifeng Chen, and Claire Cui. 2022.
Glam: Efficient scaling of language models with
mixture-of-experts.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity.

Yunhao Gou, Zhili Liu, Kai Chen, Langing Hong, Hang
Xu, Aoxue Li, Dit-Yan Yeung, James T. Kwok, and

12950

Yu Zhang. 2024. Mixture of cluster-conditional lora
experts for vision-language instruction tuning.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming — the rise of
code intelligence.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing.

Yongqi Huang, Peng Ye, Xiaoshui Huang, Sheng Li,
Tao Chen, Tong He, and Wanli Ouyang. 2023. Ex-
perts weights averaging: A new general training
scheme for vision transformers.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William EI Sayed. 2024. Mix-
tral of experts.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp,
Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie,
Yi Tay, Mostafa Dehghani, and Neil Houlsby. 2023.
Sparse upcycling: Training mixture-of-experts from
dense checkpoints.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Scott Wen tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-1000:
A natural and reliable benchmark for data science
code generation.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding.

Jiawei Liu, Chungqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chat-
GPT really correct? rigorous evaluation of large lan-
guage models for code generation. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

LLaMA-MoE Team. 2023. Llama-moe: Building
mixture-of-experts from llama with continual pre-
training.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur
Zucker, Younes Belkada, Zijian Wang, Qian Liu,
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,
Wenhao Yu, Lucas Krauf3, Naman Jain, Yixuan Su,
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai,
Niklas Muennighoff, Xiangru Tang, Muhtasham
Oblokulov, Christopher Akiki, Marc Marone, Cheng-
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui,
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas
Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten
Scholak, Sebastien Paquet, Jennifer Robinson, Car-
olyn Jane Anderson, Nicolas Chapados, Mostofa Pat-
wary, Nima Tajbakhsh, Yacine Jernite, Carlos Muiioz
Ferrandis, Lingming Zhang, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm
de Vries. 2024. Starcoder 2 and the stack v2: The
next generation.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct.

Zohar Manna and Richard J Waldinger. 1971. Toward
automatic program synthesis. Communications of
the ACM, 14(3):151-165.

Nikhil Pinnaparaju, Reshinth Adithyan, Duy Phung,
Jonathan Tow, James Baicoianu, , and Nathan Cooper.
2024. Stable code 3b.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer.

Anders Sggaard, Anders Johannsen, Barbara Plank,
Dirk Hovy, and Hector Martinez Alonso. 2014.
What’s in a p-value in NLP? In Proceedings of the
Eighteenth Conference on Computational Natural
Language Learning, pages 1-10, Ann Arbor, Michi-
gan. Association for Computational Linguistics.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned
language models are zero-shot learners.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120.

Frank. Wilcoxon. 1945. Individual comparisons by
ranking methods. Biometrics, 1:196-202.

12951

Mitchell Wortsman, Gabriel IlTharco, Samir Yitzhak
Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S. Morcos, Hongseok Namkoong, Ali Farhadi,
Yair Carmon, Simon Kornblith, and Ludwig Schmidt.
2022. Model soups: averaging weights of multiple
fine-tuned models improves accuracy without increas-
ing inference time.

Haoyuan Wu, Haisheng Zheng, and Bei Yu. 2024.
Parameter-efficient sparsity crafting from dense to
mixture-of-experts for instruction tuning on general
tasks.

Lemeng Wu, Mengchen Liu, Yinpeng Chen, Dongdong
Chen, Xiyang Dai, and Lu Yuan. 2022. Residual
mixture of experts.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large language
models to follow complex instructions.

Fuzhao Xue, Xiaoxin He, Xiaozhe Ren, Yuxuan Lou,
and Yang You. 2022. One student knows all experts
know: From sparse to dense.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zang-
wei Zheng, Wangchunshu Zhou, and Yang You.
2024. Openmoe: An early effort on open
mixture-of-experts language models. arXiv preprint
arXiv:2402.01739.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024. Tinyllama: An open-source small
language model.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, and Guoyin Wang. 2023. Instruc-
tion tuning for large language models: A survey.

A Appendix for "' YFT: Unlocking the
Power of Code Instruction Tuning by
Simply Merging Upcycled
Mixture-of-Experts"'

A.1 Training Settings for
DeepSeek-Coder-Base 1.3B

We use a batch size of 64 and a learning rate of
5e-5 with a linear scheduler to fine-tune MoEpg
for 4 epochs with 500 warmup steps, following the
implementation of previous work (Wei et al., 2023).
We further use a batch size of 64, a shared expert
rate A of 0.75, and a learning rate of le-5 with
a linear schedule to fine-tune the learnable mix-
ing coefficients for experts in the instruction-tuned
MOoEpg on the same instruction-tuning dataset for
1 epoch with 125 warmup steps. Detailedly, we use
Softmax to keep the sum of the mixing coefficients
of the other 7 normal experts as 0.25. For SFTpg

and EWApg, we use the same hyperparameter set-
ting as XFT, where the batch size is 64 and the
learning rate is Se-5 with a linear scheduler. Be-
cause X'FT is trained for 4 epochs during upcycling
and 1 epoch during merging, for a fair comparison,
we train SFTps and EWApg for 5 (=4 + 1) epochs
with 625 warmup steps.

A.2 Implementation details of EWA

Because EWA (Huang et al., 2023) does not release
their implementation, we implement EWA by our-
selves, including the constant schedule setting and
the linear schedule setting. We use a share rate 3 of
0.3, following the original setting of EWA. While
EWA with the constant schedule setting achieves
reasonable performance in our evaluation, the train-
ing loss of EWA with the linear schedule setting
is unstable during instruction tuning, as shown in
Figure 3, and thus cannot achieve reasonable per-
formance. As a result, we report the results of EWA
with the constant schedule setting in Section 4.

164

—— Constant schedule
—— Linear schedule

=
o
L

Training loss
©

(I) 20I00 40I00 60I00 80b0
Training steps

Figure 3: Training loss curve of EWA with the constant
schedule setting and the linear schedule setting.

A.3 Details of HumanEval(+) and MBPP(+)

In these benchmarks, each task consists of a task
description in English, which is sent to LLMs as
the prompt, and LLMs are expected to generate the
corresponding code to satisfy the requirements in
the description. While these benchmarks provide
a handful of test cases to validate the correctness
of the generated code, these tests are often insuf-
ficient for more rigorous evaluation. As such, Hu-
manEval+ and MBPP+ proposed by EvalPlus (Liu
et al., 2023) are usually used to evaluate the correct-
ness of the generated code, which provides 80x/35x
more tests compared with the original benchmarks.

12952

Model HumanEval HumanEval+

SFTps 61.6 57.2
EWApsg 62.7 58.8
XFTpg 64.5 60.9

Table 9: Average pass@1 results of 200 experiments on
HumanEval (+) computed with sampling. XFT clearly
outperforms both EWApg and SFTpg.

Model HumanEval HumanEval+
XFTps vs. EWAps 2.6e-18 8.0e-23
XFTps vs. SFTpg 9.6e-30 3.7e-33

Table 10: p-values for XYFTpg vs. EWApg and XFTpg
vs. SFTpg in 200 experiments on HumanEval (+) con-
ducted using sampling. Results show that improvements
brought by X'FT are statistically significant.

A.4 Statistical Significance Analysis

In our main experiments, we follow prior
works (Wei et al., 2023; Lozhkov et al., 2024)
to conduct experiments on HumanEval(+) using
greedy decoding. To demonstrate the statistical
significance of our improvements, we change our
setting from greedy decoding to sampling. In detail,
to conduct one experiment on HumanEval(+), the
model will sample one solution for each problem
in HumanEval(+) with top p = 0.95 and tempera-
ture = 0.8, which is the same setting used in prior
works (Liu et al., 2023; Chen et al., 2021).

Following prior work (Liu et al., 2023), we re-
peat this experiment 200 times for three techniques:
XFTDs, EWADs, and SFTDs. EWADS is included
because it is the best-performing baseline in our
main experiment. We first compute their average
pass@1 performance in these 200 experiments. As
is shown in Table 9, XFTIpg outperforms both
EWADS and SFTDs.

Furthermore, we use the Wilcoxon signed-rank
test (Wilcoxon, 1945; Dror et al., 2018), a widely
used statistical test, to check if the improvements
brought by X'FT are statistically significant. As
shown in Table 10, the p-values for both XYFTpg
vs. EWAps and XFTps vs. SFTps are much
smaller than both 0.0025 (the significance level rec-
ommended for NLP work (S¢gaard et al., 2014))
and 0.05 (the most common significance level),
demonstrating the statistical significance of the im-
provements brought by XFT.

A.5 Training Overhead Analysis

Compared with SFT, XFT will inevitably introduce
additional overhead in the training process because

Model HumanEval HumanEval+
SFTps 61.6 57.3
w/ same steps
SFTps
w/ same budget 622 373
XFTps 67.1 64.6

Table 11: Experiments on the effect of training over-
head. For our two SFT baselines, "w/ same steps" refers
to one SFT baseline using the same training steps as
XFT while "w/ same budget" refers to the other SFT
baseline using the same training budget as XYFT. XYFT
can consistently outperform both SFT baselines to a
large extent, further demonstrating the ability of XYFT
to unlock the power of code instruction tuning.

XFT needs to fine-tune the upcycled MoE model,
which contains more parameters than the original
dense model and thus requires more computation.
In contrast, the normal SFT technique only needs
to fine-tune the original dense model. To better un-
derstand the effect of such overhead, we conduct an
experiment using the same training budget (i.e., the
same GPU hours) instead of the same training steps
for the normal SFT baseline. As shown in Table
11, although sharing the same training budget as
XFTps, the performance of SFTpg is still signif-
icantly worse than that of XYFTpg, demonstrating
the ability of XFT to unlock the power of code
instruction tuning using the same training budget.

A.6 Expert Specialization Analysis

Inspired by recent works (Jiang et al., 2024; Xue
et al., 2024), we analyze whether each expert in
MoEps has different specializations in different
programming languages by visualizing the routing
decision of the tokens from different programming
languages in the MultiPL-E benchmark (includ-
ing Python). We collect the routing decision for
the MultiPL-E benchmark when conducting ex-
periments in Section 4.3. For Python, we collect
the routing decision by running HumanEval ex-
periment following the same setting used in Sec-
tion 4.3. Following the analysis setting of recent
work (Jiang et al., 2024), we get the visualization
results from layers 0, 11, and 23 in MoEpg, where
layer 0 and layer 23 are the first and the last layers
of MoEps. As shown in Figure 4, we do not ob-
serve any obvious patterns in the assignment of ex-
perts based on the type of programming languages,
which is in line with the findings reported by recent
works (Jiang et al., 2024; Xue et al., 2024).

12953

Selection proportion

Expert ID

Python s C++ 0 PHP

o Java

IS [Swift B Rust

Figure 4: Proportion of tokens assigned to each expert on different programming languages from MultiPL-E
(including Python) for layers 0, 11, and 23. The shared expert FFN; is excluded from the chart because all the
tokens are always assigned to it. The gray vertical line % is the proportion expected with the uniform sampling.

A.7 Effect of Shared Expert Rate

We further study the effect of the shared expert rate
A on the performance of the final merged dense
model. We evenly choose five shared expert rates,
including 0.00, 0.25, 0.50, 0.75, and 1.00, to per-
form the learnable merging process and evaluate
each merged dense model accordingly. Note that
0.75 is the default shared expert rate used in our
main experiments. If the shared expert rate is 0.00,
it means that the shared expert is ignored when
constructing the merged dense model from the up-
cycled MoE model; if the shared expert rate is
1.00, it means that the final dense model is built
by simply extracting the shared expert from the
upcycled MoE model. As shown in Table 12, there
are mainly three interesting observations:

* The performance of the final merged dense
model improves gradually when the shared ex-
pert rate grows from 0.00 to 0.75, indicating
that general knowledge learned by the shared
expert is important for better performance.

* The performance of the final merged dense
model drops significantly when the shared ex-
pert rate grows from 0.75 to 1.00, showing that
specific knowledge learned by other experts
is also integral and ignoring them will lead to a

Model A HumanEval HumenEval+

SFTps - 61.6 57.3
0.00 62.8 59.8
0.25 64.6 61.0

XFTps 0.50 65.9 62.8
0.75 67.1 64.6
1.00 63.4 60.4

Table 12: Ablation over the effect of the shared ex-
pert rate A in our learnable merging technique. XFT
can consistently outperform the normal SFT baseline
regardless of the shared expert rate, while A = 0.75 is
the optimal setting in our experiments.

significant performance drop.

¢ All the final merged dense models consistently
outperform the normal SFT baseline regard-
less of their shared expert rate, further demon-
strating the effectiveness of X'FT.

A.8 Training Settings for STABLE-CODE 3B

We use evol-codealpaca-v1 as the training
dataset. Since STABLE-CODE 3B is the base model,
we upcycle a new MoE model from the base model,
namely MoEgraprLg. We construct MoEsTaBLE
with 4 experts in one MoE layer, where the top
2 experts are activated for each token, includ-
ing one shared expert. Consequently, the size of

12954

MoEsTtaBLE can be described as 4 x3B. We use a
batch size of 64 and a learning rate of 5e-5 with
a linear scheduler to fine-tune MoEgtagLg for 4
epochs with 500 warmup steps. Similar to XFTpsg,
we obtain XFTgtapLg by learning mixing coef-
ficients to merge MoE layers inside MOEsTABLE
as normal FFN layers, which is fine-tuned with a
batch size of 64, a shared expert rate A of 0.85, and
a learning rate of le-5 with a linear schedule for 1
epoch with 125 warmup steps. Our baseline model,
namely SFTstABLE, is fine-tuned for 5 (=4 + 1)
epochs with a batch size of 64, a learning rate of
5e-5, and 625 warmup steps for a fair comparison.

A.9 Training Settings for
DeepSeek-Coder-Base 6.7B

We use evol-codealpaca-v1 as the training
dataset. We upcycle a new MoE model from
DeepSeek-Coder-Base 6.7B, namely MoEpg.¢.78.
We construct MoEpg_¢.73 with 8 experts in one
MOoE layer, where the top 2 experts are activated for
each token, including one shared expert. As such,
MoEps.6.7p includes 8 x6.7B parameters. We use
a batch size of 64 and a linear scheduler to fine-
tune MoEps.¢.78 for 4 epochs with 500 warmup
steps. We choose the best-performing learning
rate from {2e — 5,5e¢ — 5} for MoEps.¢.75. Be-
cause the FFN weights of MoEpg.¢.7p are too large
to fit in our GPU memory, during our merging
step, we realize that one part of computation in
the training of XFTps.¢.78 has to be moved to
CPUs, which significantly slows down the training
speed. Consequently, we use a batch size of 16, a
shared expert rate A of 0.75, a constant learning
rate of le-4, and 400 training steps in merging to
obtain XFTpg_¢.75. Our baseline model, namely
SFTps.¢.78, is fine-tuned for 5 epochs with a batch
size of 64 and 625 warmup steps for a fair compar-
ison. We also choose the best-performing learning
rate from {2e — 5,5e — 5} for SFTps_6.78.-

A.10 Training Settings for TinyLlama 1.1B

Using TinyLlama 1.1B as the base model, we up-
cycle a new MoE model, namely MoEry,, from the
pre-trained dense model. Following the setting of
MoEps, we construct MoET, with 8 experts in one
MOoE layer, where the top 6 experts are activated
for each token, including one shared expert. As
such, the number of parameters for MoEr, can be
written as 8 X 1.1B. We use a batch size of 64 and a
learning rate of 5e-5 with a linear scheduler to fine-
tune MoEr, for 4 epochs with 240 warmup steps.

To obtain XYFTty,, we learn mixing coefficients to
merge MoE layers inside MoEr,, by fine-tuning
them with a batch size of 64, a shared expert rate
A of 0.85, and a learning rate of 2e-5 with a linear
schedule for 1 epoch with 60 warmup steps. For
a fair comparison, we fine-tune a baseline model
SFTry, for 5 (=4 + 1) epochs with a batch size of
64, a learning rate of Se-5, and 300 warmup steps.

A.11 Details of Preliminary Theoretical
Explanation

We consider a simplified variant of XFT as follows:

* The original dense model is a one-layer trans-
former model, which contains one attention layer
connected with one feed-forward network (FFN)
layer. As such, the upcycled MoE model is also
a one-layer transformer model, containing one
attention layer connected with an MoE layer.

* The upcycled MoE model only has two experts
(e; and ey), both of which are always selected
for processing the input tokens.

 The router in the MoE model assigns constant
weights to each expert, regardless of the input
token. Consequently, the output of the MoE
layer for the t-th token h; can be represented
as (1 — a)er(uy) + aez(u;), where 1 — « is
the router weight assigned to ej, « is the router
weight assigned to eo, and uy is the input of the
MOoE layer for the ¢-th token.

* We simplify the process of merging the MoE
model back to a dense model as W, = (1 —
a)We, + aWe,, where W, refers to the weight
of e and e, refers to the weight of the FFN in
the merged dense model.

In this simplified scenario, if we denote f(x;)
as the output of the model @ for the input x, the out-
put of this simplified MoE model for input token =
can be represented as f(x; Oyok). Interestingly, if
we define two new dense models 61 and 65, where
01 and 6> both use the attention layer of this MoE
model as their attention layer while using e; and e
as their FFN layer respectively, f(x; OpoE) can be
represented as (1 —) f(z;61) +af(x;02). Conse-
quently, the computation process of this simplified
MOoE model can be viewed as ensembling the out-
puts of two dense models 6; and 6. Meanwhile,
the process of merging the upcycled MoE model
back to a dense model in this simplified scenario
can be represented as 6, = (1 —«)f; + b, which
can be viewed as the model merging of the same
two dense models 61 and 05.

12955

