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Fault-tolerant quantum computation with bosonic qubits often necessitates the use of noisy discrete-

variable ancillae. In this work, we establish a comprehensive and practical fault-tolerance framework for

such a hybrid system and synthesize it with fault-tolerant protocols by combining bosonic quantum error

correction (QEC) and advanced quantum control techniques. We introduce essential building blocks of

error-corrected gadgets by leveraging ancilla-assisted bosonic operations using a generalized variant of

path-independent quantum control. Using these building blocks, we construct a universal set of error-

corrected gadgets that tolerate a single-photon loss and an arbitrary ancilla fault for four-legged cat qubits.

Notably, our construction requires only dispersive coupling between bosonic modes and ancillae, as well as

beam-splitter coupling between bosonic modes, both of which have been experimentally demonstrated

with strong strengths and high accuracy. Moreover, each error-corrected bosonic qubit is comprised of only

a single bosonic mode and a three-level ancilla, featuring the hardware efficiency of bosonic QEC in the full

fault-tolerant setting. We numerically demonstrate the feasibility of our schemes using current experimental

parameters in the circuit-QED platform. Finally, we present a hardware-efficient architecture for fault-

tolerant quantum computing by concatenating the four-legged cat qubits with an outer qubit code utilizing

only beam-splitter couplings. Our estimates suggest that the overall noise threshold can be reached using

existing hardware. These developed fault-tolerant schemes extend beyond their applicability to four-legged

cat qubits and can be adapted for other rotation-symmetrical codes, offering a promising avenue toward

scalable and robust quantum computation with bosonic qubits.
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I. INTRODUCTION

Quantum error correction (QEC) enables reliable quan-

tum information processing [1–3]. However, paradigmatic

QEC schemes, particularly those employing surface codes

with physical qubits [4–7], suffer from huge resource

overhead [8,9]. This resource-intensive nature creates a

substantial gap between the theoretical potential of fault

tolerance and the capabilities of current noisy intermediate-

scale quantum [10] devices.

Encoding quantum information into bosonic systems

[11–15] by leveraging their infinite-dimensional Hilbert

spaces offers a promising avenue to reduce the overhead

of QEC [16–21]. While robust quantum memories based

on single-mode bosonic codes have been experimentally

demonstrated with improved memory lifetime [22–24],

realizing error-corrected operations on these bosonic qubits

remains a formidable task.

One of the primary complexities stems from the weak

nonlinear interactions inherent in bosonic modes, neces-

sitating the use of discrete-variable ancillae in systems such

as circuit quantum electrodynamics (circuit-QED) platform

[25,26]. However, a significant challenge arises in this

hybrid system, as errors in the ancillae tend to propagate

back to the bosonic mode, potentially compromising the

encoded quantum information [27]. To address this issue,

several methods have been developed to maintain precise

control over the bosonic mode even in the presence of noisy

ancillary systems [28–30]. Nevertheless, a comprehensive

fault-tolerance framework for this hybrid system, along

with guidelines for constructing fully fault-tolerant proto-

cols using advanced quantum control concepts, remains

conspicuously absent. Consequently, while universal

error-detection operations on bosonic qubits have been

constructed [31,32] and demonstrated [33], achieving a

complete set of error-corrected operations has remained a

significant challenge.

In this work, we bridge this gap by introducing a fault-

tolerance framework tailored to the hybrid system

composed of bosonic data modes and discrete-variable

ancillae. Inspired by concatenated qubit codes [34], we

identify essential properties for gadgets encoded in bosonic

codes (referred to as “level-1” gadgets) in Sec. III. These
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properties play a crucial role in determining the fault

tolerance of a level-1 circuit, where the overall failure

probability must be suppressed to a certain order of

the physical error rate. Furthermore, we demonstrate

how the defined fault tolerance can be achieved through

the integration of bosonic QEC with compatible quantum

control techniques. Specifically, in Secs. IV and V,

we establish a connection between a generalized version

of path-independent control [30] (referred to as GPI)

and fault tolerance, highlighting the importance of

GPI operations as fundamental building blocks for

error-corrected gadgets.

As an application of these fault-tolerant tools, in Sec. VI,

we construct universal error-corrected gadgets using GPI

operations for the four-legged cat qubit [14,35,36]. These

gadgets can tolerate a single-photon loss and an arbitrary

ancilla fault while relying on only dispersive coupling

between bosonic modes and ancillae [29,37,38] and beam-

splitter (BS) coupling between bosonic modes [39,40].

Importantly, these coupling mechanisms have been exper-

imentally demonstrated with strong coupling strengths.

Each level-1 logical qubit, encoded in a four-legged cat

code, utilizes only a single bosonic mode and a three-level

ancilla, featuring the hardware efficiency of bosonic QEC.

We numerically demonstrate the first-order error suppression

for the level-1 gadgets. Moreover, we show that, using a

teleportation gadget that pumps energy into the system

and suppresses phase-rotation errors, a robust cat-encoding

memory is feasible even in the presence of finite χ

mismatches in the circuit quantum electrodynamics (cQED)

platform with current experimental parameters [29].

Compared to former constructions involving only bosonic

modes [41], our constructed operations can be more practical

by leveraging the strong interaction between the bosonic

modes and the qudit ancillae in, e.g., the cQED platform.

See Sec. VIII for more details.

Finally, in Sec. VII, we present a practical and

hardware-efficient architecture for fault-tolerant quantum

computing by concatenating the four-legged cat qubits

with an outer qubit code. While we primarily focus on

the four-legged cat code throughout this work, we discuss

in Sec. VIII that the fault-tolerant schemes developed

herein can be readily adapted to other rotation-symmetric

bosonic codes [41].

II. SYSTEM DESCRIPTION AND ERROR MODEL

We first introduce some notations. We denote ½k� ≔
f1; 2;…; kg as the set of integers from 1 to k. We denote

½
R

th
dth�h∈ ½k� ≔

R

tk
dtk

R

tk−1
dtk−1 � � �

R

t1
dt1 as the multiple

integral over variables in fthgh∈ ½k�, and similarly

½
P

ah
�
h∈ ½k� ≔

P

ak

P

ak−1
� � �

P

a1
as the sum over variables

in fahgh∈ ½k�. We denote A ∝ B if there exists some c∈C

such that A ¼ cB. We denote T as the time ordering

operator.

A. Preliminaries

1. Bosonic codes

Single-mode bosonic error-correcting codes encode

logical information into a subspace of the infinite-

dimensional Hilbert space of an oscillator. Among them,

the four-legged cat code [14,35,36] encodes a single logical

qubit and has code words

jμLi ¼ cμ½jαi þ j − αi þ ð−1Þμðjiαi þ j − iαiÞ�; ð1Þ

where μ¼0=1, jγi denotes a coherent statewith an amplitude

γ ∈C, andcμ¼1=f2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2expð−jαj2Þ½coshjαj2þð−1Þμcosjαj2�
p

g
are normalization constants. Given any quantum code encod-

ing a single logical qubit, we denote Pc ≔ j0Lih0Lj þ
j1Lih1Lj as the projection onto the code space and X̄c, Ȳc,

and Z̄c the logicalX-, Y-, andZ-Pauli operators, respectively.
The capability of an error-correcting code to correct a

given set of errors E is given by the Knill-Laflamme (KL)

condition [42]: PcE
†
iEjPc ∝ Pc for any Ei; Ej ∈E. More

specifically, we can evaluate the 2 × 2 QEC matrix ϵcjk for

any pair of errors Ej, Ek [36]:

PcE
†
jEkPc ¼ ϵcjk; ð2Þ

where ϵcjk can be parametrized as ϵcjk ¼ ccjkPc þ xcjkX̄cþ
ycjkȲc þ zcjkZ̄c, where ccjk; x

c
jk; y

c
jk; z

c
jk ∈C. The KL condi-

tion is satisfied if xcjk ¼ ycjk ¼ zcjk ¼ 0 for any j and k.

Consider the four-legged code and an error set contain-

ing a single-photon loss E ¼ fI; ag, where a denotes the

annihilation operator. First, we have PcaPc ¼ 0, indicating

that a single-photon loss is perfectly detectable. Second,

Pca
†aPc ¼ n̄Pc þ

δn

2
Z̄c; ð3Þ

where n̄ ≔ ðh0Lja†aj0Li þ h1Lja†aj1LiÞ=2 denotes the

mean photon number and δn≔ h0Lja†aj0Li−h1Lja†aj1Li
denotes the photon number difference between the

two code words. For an arbitrary α, δn ≠ 0, indicating

that a single-photon loss is not perfectly correctable.

However, δn ¼ Oðe−2α2Þ as α ≫ 1 and a single-photon

loss is approximately correctable for large α. Furthermore,

δn ¼ 0 is exactly satisfied at a discrete set of finite α [43],

which we refer to as sweet spots. Similarly, one can

show that, for a continuous set of phase-rotation errors

R ¼ feiθa†agθ∈ ½−θm;θm�, the KL condition is approximately

satisfied for large α if θm < Ã=4 [41]. First,

Pce
−iθ1a

†aeiθ2a
†aPc ¼ c12Pc þ z12Z̄c for any θ1; θ2 ∈R,

since eiðθ2−θ1Þa
†a preserves the photon number. Next,

z12 ¼
�

hþLjeiðθ2−θ1Þa
†aj−Li þ h−Ljeiðθ2−θ1Þa

†ajþLi
�

=2

≈

�

hiαjαeiðθ2−θ1Þi þ h−iαjαeiðθ2−θ1Þi
�

=2þ H:c:; ð4Þ
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where the approximation utilizes that jþLi ≈ ðjαi þ j −
αiÞ=

ffiffiffi

2
p

and j−Li ≈ ðjiαi þ j − iαiÞ=
ffiffiffi

2
p

for large α.

Obviously, z12 → 0 as α ≫ 1 as long as jθ2 − θ1j ≠ Ã=2,
which holds if θm < Ã=4.
In conclusion, the four-legged cat code can approxi-

mately correct a single-photon loss and a continuous set

of phase rotations with amplitude smaller than Ã=4 (for

large α). In fact, cat codes serve as numerically optimized

codes for certain regimes of a bosonic channel with both

loss and dephasing errors [44].

2. Open quantum system and Markovian

quantum evolution

A noisy Markovian evolution of a quantum system is

described by a Lindblad master equation:

dÄ

dt
¼ LðtÞÄ ¼ −i½HðtÞ; Ä� þ

�

X

j

D½ ffiffiffiffi

γj
p

Jj�
�

Ä; ð5Þ

where HðtÞ is the system Hamiltonian, D½O� ¼ O •O† −
1
2
fO†O; •g is a Lindblad superoperator associated with a

jump operator O, and γj is the jump rate for the error Jj.

Denote HeffðtÞ ≔ HðtÞ − ði=2Þ
P

j γjJ
†
jJj as the effec-

tive Hamiltonian and S ≔
P

j γjJj • J
†
j as the superoper-

ator describing quantum jumps. The Lindbladian LðtÞ can
be rewritten as LðtÞ ¼ −i½HeffðtÞ; •� þ S. Then, the joint

quantum channel, given by the time integral of Eq. (5),

admits a Dyson expansion with respect to S [30]:

ÄðtÞ ¼ Gðt; 0ÞÄð0Þ ¼
X

∞

q¼0

Gqðt; 0ÞÄð0Þ; ð6Þ

where G0ðt;0Þ¼Wðt;0Þ≔Wðt;0Þ•W†ðt;0Þ, with Wðt;0Þ≔
T exp½−i

R

t
0
Heffðt0Þdt0�, describes evolution without any

quantum jumps and

GqðtÞ ¼
�
Z

t

th¼0

dth

�

h∈ ½q�
T ðWðt; tqÞS � � �

× SWðt2; t1ÞSWðt1; 0ÞÞ; ð7Þ

where Gq (q ≥ 1) describes the evolution with q quantum

jumps. We refer to such an expansion as the jump

expansion and G½n� ≔
P

n
q¼0 Gq as the nth-order truncation

of G under the jump expansion.

For quantum error correction, we care about the expan-

sion of the channel G in terms of the small noise parameter

p ≔ γit given an evolution time t (here, we have assumed

equal noise rates for simplicity):

Gðt; 0Þ ¼
X

q0
pq0G0

q0ðt; 0Þ: ð8Þ

Such an expansion can be obtained by Dyson expanding G

with respect to the full Lindblad superoperators of the noise

ðPj D½ ffiffiffiffi

γj
p

Jj�Þ in Eq. (5), instead of their quantum-jump

components S. We refer to such an expansion of G as its

noise expansion and G0½n� ≔
P

n
q0¼0

G0
q as the nth-order

truncation of G under the noise expansion.

Observe that G½n� ¼ G0½n� þOðpnþ1Þ; i.e., the nth-order
truncation of a channel G in terms of its jump expansion or

its noise expansion is equivalent up to nth order of p. Since

G½n� is easier to evaluate for the purpose of this work, we

mostly consider the jump expansion of channels. A nice

property of a channel’s jump expansion is that it is

automatically in a Kraus form:

Gðt; 0Þ ¼
X

q¼0

�
Z

t

th¼0

dth

�

h∈ ½q�

�

X

N

jh¼1

�

h∈ ½q�

× Gqðfthg; fjhgÞ •G†
qðfthg; fjhgÞ; ð9Þ

where

Gqðfthg; fjhgÞ ≔ T WðT; tqÞEjq
…Ej2

Wðt2; t1ÞEj1
Wðt; 0Þ:

ð10Þ

One can, therefore, view Gqðfthg; fjhgÞ as a Kraus

operator of the channel with discrete indices q; fjhg and

continuous indices fthg.

B. General setup

As shown in Fig. 1(a), we consider gadgets for some

bosonic code consisting of a sequence of ancilla-assisted

operations (AAOs). For each AAO, a dA ≥ 2 ancilla A is

initialized in some initial state jiiA, interacts with the

bosonic mode C for some time T, and is finally measured

in some basis BA. We consider continuous Markovian

interactions between A and C, which is described by the

Lindblad master equation in Eq. (5) with a Hamiltonian

HACðtÞ that acts on the joint system, a set of bosonic jump

operators f ffiffiffiffi

κi
p

Fig, and a set of ancilla jump operators

f ffiffiffiffi

γj
p

Jjg. We allow adaptively choosing the later AAOs

using the earlier ancilla measurement outcomes. Note that a

direct operation on the bosonic mode can be viewed as a

trivial AAO with the ancilla being initialized in some

state jii, idling for the evolution time, and measured in jii
without any errors.

Such an AAO-composed bosonic gadget forms a channel

N on the bosonic mode, which can be decomposed as

N ¼ N n ∘N 0, where N 0 is the target bosonic operation

and N n ¼
P

k Nk • N
†

k is a data noise channel represented

by a set of noise Kraus operators fNkg. Fault tolerance
essentially concerns the relation between the physical

channels fGg and the resultant bosonic channel N .

More specifically, we need to study how the noise in G,
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which we refer to as faults, propagates to the data errors

fNkg in N n. We need to quantify the size of the faults and

the data errors and design AAOs such that small faults

propagate only to small data errors. We refer to a physical

channel G that contains no more than t faults as its nth-order

truncation G½n�. To quantify the size of the data bosonic

errors, we need to specify a bosonic error-correcting code

and an error basis. In this work, we primarily focus on the

cat codes [14,35,45] and a basis we term loss-dephasing

basis, which is closely related to photon loss and bosonic

dephasing errors.

C. Loss-dephasing basis and error metrics

Typical bosonic errors include excitation loss (a), heating

(a†), and bosonic dephasing (a†a). For such errors, a natural

basis to use is fe−iθa†aak; a†k0eiθ0a†agk;k0 ∈N;θ;θ0 ∈ ð−Ã;Ã�,
which is a complete basis for all single-mode bosonic

operators. Neglecting heating errors a†, which are typically

small [29,31], the relevant errors are then spanned by

fEkðθÞ ≔ e−iθa
†aakgk∈N ;θ∈ ð−Ã;Ã�, which we refer to as

the loss-dephasing basis.

A four-legged cat code can correct only errors EkðθÞwith
small k and jθj (see Sec. II A 1). This motivates us to

quantify the size of EkðθÞ as jEkðθÞjw≔ ðk; jθjÞ∈N× ½0;Ã�.
We compare the size of two errors by introducing a partial

order with respect to the proper cone R2
þ ≔ ½0;∞Þ×

½0;∞Þ, i.e., jEk0ðθ0Þjw≥ jEkðθÞjw↔ ðk0−k; jθ0j− jθjÞ∈R2
þ.

We say that a bosonic noise channel N n contains at most

ðk; θÞ errors if all its Kraus operators have size at most

ðk; θÞ, and a state jϕ0i is at most ðk; θÞ far from a target state

jϕi if there exists a N n containing at most ðk; θÞ errors

such that jϕ0i is in the support of N nðjϕihϕjÞ. With this

quantification of error sizes, for α ≫ 1, the four-legged cat

can correct errors jEkðθÞjw ≤ ð1; Ã=4Þ [36]. Figure 2(a)

illustrates the two-dimensional error space indicated by the

number of photon loss and dephasing angle.

III. FAULT TOLERANCE

In this section, we formalize a fault-tolerance framework

for the hybrid system with bosonic modes and discrete-

variable ancillae in the context of concatenated codes [34].

Since the single-mode cat code alone cannot arbitrarily

suppress logical errors, one needs to concatenate it with an

outer qubit code for fault-tolerant quantum computing.

That is, we have three levels of gadgets. The level-0 gadgets

are the physical operations; the level-1 gadgets are encoded

in the cat code, and the level-2 gadgets are encoded in the

outer qubit code. A quantum circuit is fault-tolerantly

executed using level-2 gadgets, and each level-2 gadget

is executed using a level-1 circuit with multiple level-1

gadgets. In order for each level-2 gadget (or, equivalently, a

level-1 circuit) to be executed with a failure rate Oðptþ1Þ,
which suppresses the physical error rate p to certain order

tþ 1, the level-1 gadgets suffice to satisfy the following

properties.

First, there exists a function f∶N → N × ½0; Ã� that

satisfies

(1) fðm1Þ ≤ fðm2Þ↔ m1 ≤ m2 if m1; m2 ≤ t;
(2) fðm1 þm2Þ ¼ fðm1Þ þ fðm2Þ if m1 þm2 ≤ t.

Roughly speaking, fðmÞ constrains the maximal size of

data errors that a faults during a protocol can propagate to.

For instance, for a bosonic code that can correct

phase rotations smaller than θmax, we choose fðmÞ ¼
ðm;mθ0 mod ÃÞ for some θ0 ∈ ½0; θmax=t�, which

FIG. 2. Illustration of bosonic error decomposition and the error

propagation function fðmÞ. (a) The bosonic loss-dephasing error

can be expanded by the basis EkðθÞ. By defining a partial order of
the size EkðθÞ, the bosonic error EkðθÞ with at most ðk; θmÞ error
can be illustrated as the green region in the plot. Here, k ¼ 2.

(b) Suppose m faults occur during the gate implementation. To

capture the propagation of faults to the final bosonic error, we

introduce a function fðmÞ ¼ ðm;mθ0 mod ÃÞ as an upper bound

of the induced final loss and dephasing errors.

AAO

Level-1 gadget

FIG. 1. (a) Illustration of a level-1 bosonic gadget consisting of

a sequence of ancilla-assisted operations. For each AAO, the

ancilla is initialized to some state jii and measured in some basis

BA. The later AAOs can be performed adaptively using the earlier

ancilla measurement outcomes. (b) Illustration of the AAO, GPI,

and PI operations. As a special case of AAO, the GPI operations

with bosonic QEC can handle bosonic errors induced by relevant

ancilla faults. The previous PI operations [30] can be regarded as

a special GPI without bosonic QEC, which are designed to avoid

any introduction of bosonic errors due to relevant ancilla faults.
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constrains that m faults can propagate to at most m photon

losses and phase rotations of size at mostmθ0. We illustrate

such an error propagation constrained by f in Fig. 2(b).

Given f and t, we then define t-FT fault-tolerant gadgets,

including gate, error correction, state preparation, and

measurement, for the hybrid system by generalizing the

definitions in Ref. [34] for qubits. We remark that the

following FT definitions are related to the choice of

the function f.
Definition 1 (t-FT gate). A gate is t-FT if it satisfies

the following: For an input code word that has an error

of size ðk; θÞ, if at most m faults occur during the gate

with ðk; θÞ þ fðmÞ ≤ fðtÞ, the output state is at most

ðk; θÞ þ fðmÞ far from the code space. Furthermore,

ideally, decoding the output state gives the same code

word as first ideally decoding the input state and then

applying the ideal gate.

Note that this condition for the gate corresponds to the

combination of Properties 2 and 3 in Ref. [34].

Definition 2 (t-FT QEC). A QEC gadget is t-FT if it

satisfies the following:

(i) For an input code word with an error of size ðk; θÞ,
if at most m faults occur during the protocol with

ðk; θÞ þ fðmÞ ≤ fðtÞ, ideally, decoding the output

state gives the same code word as ideally decoding

the input state.

(ii) For at most m faults during the protocol with

fðmÞ ≤ fðtÞ, no matter the size of the error on

the input state, the output state is at most fðmÞ far
from the code space.

Note that conditions (i) and (ii) correspond to Properties

1 and 0 in Ref. [34], respectively.

State preparation and measurement are special cases of

FT gates.

Definition 3 (t-FT state preparation).A state-preparation

gadget is 1-FT if it satisfies the following: If at most m ≤ t
faults occur during the protocol, the output state is at

most fðmÞ far from the target state. Furthermore, ideally,

decoding the output state gives the ideal target state.

Definition 4 (t-FT measurement). A measurement gadget

is t-FT if it satisfies the following: For an input code word

that has an error of size ðk; θÞ, if at most m faults occur

during the gate with ðk; θÞ þ fðmÞ ≤ fðtÞ, the measure-

ment is equivalent to applying the ideal measurement to the

input code word.

Based on the definition of the t-FT gadgets, we have the

following proposition.

Proposition 1. Using t-FT level-1 gadgets, any level-1

circuit has a failure rate Oðptþ1Þ, where p∈ ½0; 1Þ is the

physical error rate, i.e., the probability that one fault

happens in the gadget.

Proof. We follow the extended-rectangle formalism in

Ref. [34]. Without loss of generality, we consider an ideal

quantum circuit in Fig. 3(e). Here, we take the single-qubit

level-1 circuit as an example. In practice, we realize this

circuit using the noisy t-FT level-1 gadgets shown in

Fig. 3(a). To analyze the fault-tolerance property of

this circuit, we draw several dashed boxes to cover

the whole circuit. The dashed boxes are called extended

rectangles exRec. For a quantum gate, an extended rec-

tangle exRec [a dashed box in Fig. 3(a)] is a composition

of a front EC gadget, a gate, and a rear EC gadget,

i.e., exRec ¼ EC ∘Ga ∘EC.

We say that any operation Op is t-good if it contains no

more than t faults. In what follows, we show that, if all the

dashed boxes in Fig. 3(a) are t-good, we can reduce the

noisy circuit to the ideal circuit following the stream in

Fig. 3. To this end, we introduce the ideal decoder ID (the

blue triangles in Figs. 3 and 4), which performs an ideal

recovery given a bosonic code. We also introduce a ðk; θÞ
filter ½ðk; θÞ�F (the orange thin rectangles in Fig. 4) which

performs a projection onto the space spanned by all states

that can be obtained by acting on a code word with an error

no larger than ðk; θÞ.
First of all, we notice that, if the last box in Fig. 3(a) is

t-good, then, based on the definition of t-FT QEC and

measurement, we can equivalently convert the circuit in

Figs. 3(a) and 3(b).

Then, we follow the procedures in Fig. 4 to reduce the

extended gadgets of quantum gates to the ideal gadgets:

Denote the faults that occur in the front EC gadget, the

gate gadget, and the rear EC gadget to be s, r, and s0,
respectively. Since the dashed box is t-good, we have

sþ rþ s0 ≤ t. Figures 4(a) and 4(b) are equivalent due to

the second requirement of FT QEC in Definition 2; (b) and

(c) are equivalent due to the first requirement of the FT gate

in Definition 2; (c) and (d) are equivalent due to the first

FIG. 3. Reduction of a FT level-1 circuit to the ideal circuit.

The left half-circles, the right half-circles, the triangles, the “EC”

squares, and the “Ga” circles indicate the state preparation

gadgets, the measurement gadgets, the decoding gadgets, the

error-correction gadgets, and the logical gates, respectively. The

yellow and blue gadgets indicate noisy and ideal (noiseless)

gadgets, respectively.
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requirement of FT QEC in Definition 2; (d) and (e)

are equivalent due to the second requirement of the FT

gate in Definition 1. Then we can transform the circuit from

Figs. 3(b)–3(d) using the reduction in Fig. 4.

Finally, we use the property of FT state preparation to

reduce Figs. 3(d)–3(e). The argument is similar to the ones

for the extended gadgets of quantum gates in Fig. 4.

In our gadget setup in Sec. II B, errors represented by

quantum jump happen independently in the level-1 gadgets.

Consider a level-1 circuit composed of many t-FT level-1

gadgets that can be grouped into extended rectangles [see

e.g., Fig. 3(a)]. If there are at most t quantum errors in each

extended rectangle, we can convert it to an ideal gadget. In

that case, only when more than t errors occur in the same

extended rectangles at the same time can one logical error

happen, which owns a probability of Oðptþ1Þ. ▪

In the following, we focus on constructing FT level-1

bosonic gadgets that satisfy the above definitions by

integrating bosonic quantum error correction and quantum

controls. More specifically, given a bosonic code C that can

correct loss and phase-rotation errors, e.g., the cat code, we

try to design error-corrected C-encoded gadgets by care-

fully engineering the Hamiltonian of their composing

AAOs so that physical faults propagate controllably to

data errors. An analogous example in the context of qubit

fault tolerance is the use of transversal gates [46], which

guarantees that a single circuit fault propagates only to a

single data error per code block. However, this quantum

control task is more sophisticated when involving bosonic

modes, as we need to consider complicated continuous

evolution in a larger Hilbert space.

In order for a level-1 gadget to be FT, it has to tolerate

both bosonic faults and ancilla faults. Tolerance against

bosonic faults can be achieved relatively easily by using

the error-transparency control [47] or, more generally, the

error-closure control [32]. Tolerance against ancilla errors

is usually harder to achieve, since some DVancilla errors

tend to propagate uncontrollably and a small ancilla fault

could lead to a catastrophic error in the bosonic mode.

Fortunately, path-independent control [29,30,48] has

been proposed for controlling the ancilla fault propaga-

tion to the bosonic mode. However, the previously

defined PI condition [30] is more stringent than what

is required by fault tolerance. Thus, in the next section,

we generalize the PI control, relax its requirement, and

rigorously connect its generalized version to fault toler-

ance analyzed in this section.

IV. GENERALIZED PATH-INDEPENDENT

OPERATIONS

We first review the PI control proposed in Ref. [30].

Again, we consider a Markovian interaction between a

bosonic mode C and a d ≥ 2-level ancilla A described by

Eq. (5), where only the ancilla noises are considered, i.e.,

dÄ

dt
¼ −i½HACðtÞ; Ä� þ

X

j

D½ ffiffiffiffi

γj
p

Jj�Ä; ð11Þ

where Jj are some jump operators acting only on the

ancillary system. The ancilla is initialized in some initial

state jiiA and measured in a certain basis fjriAg after an

interaction time T. Let GðTÞ denote the joint channel

generated by the Lindblad master equation in Eq. (11)

for a time T. With a slight abuse of notation, we may

neglect the subscripts A or C labeling the ancilla or the

bosonic mode for states or operators without ambiguity. We

denote ⟪rjGji⟫ ≔ hrjGðjiihij ⊗ •Þjri as the (unnormalized)

channel on the bosonic mode conditioned on the initial

and final ancilla states jii and jri [48]. A PI gate is defined

as follows.

Definition 5 (PI gate). An ancilla-assisted gate GðTÞ is PI
in an ancilla basis BA with an ancilla initial state jii if, for
any jri∈BA,

⟪rjGðTÞji⟫ ∝ Uri • U
†
ri; ð12Þ

where Uri is some r-dependent unitary on the bosonic

mode.

The PI condition in Eq. (12) implies that each condi-

tional channel does not contain any errors (it is a unitary

channel without information loss) propagated from the

ancilla, although the unconditional channel might. In other

words, no information is lost to the environment by

performing such a noisy operation if the ancilla

FIG. 4. Reduction of the extended rectangular to an ideal

gadget. The gadgets and symbols follow the same convention

as that in Fig. 3, in addition to that the thin rectangles indicate the

filters introduced in the text. An index, e.g., s, r, and s0, above any
noisy gadget indicates the number of faults that occur during that

gadget. An index below each filter indicates the error size on the

bosonic mode constrained by the filter (see the text for details).

XU, ZENG, XU, and JIANG PHYS. REV. X 14, 031016 (2024)

031016-6



measurement outcome is accessible. See Fig. 5 for an

illustration of such a PI gate.

Note that the PI condition in Eq. (12) is for the joint

channel, which could be hard to evaluate directly. As such,

Ref. [48] provided an easy-to-evaluate algebraic condition

for the Hamiltonian HACðtÞ and the jump operators fJjg
in order for G to satisfy Eq. (12), which we present in

Appendix A.

The PI definition in Definition 5 considers an infinite

number of ancilla faults, since it examines the full GðTÞ. In
practice, when the ancilla noises are small, by correcting

only a finite number of ancillary faults, we can suppress the

real logical error rates to a higher order. As such, we define

the following finite-order PI gate that concerns only a finite

truncation of GðTÞ.
Definition 6 (finite-order PI gate). An ancilla-assisted

gate is n-PI in an ancilla basis BA with an ancilla initial state

jii if, for any jri∈BA and any k ≤ n,

⟪rjG½k�ðTÞji⟫ ∝ Uri •U
†
ri; ð13Þ

where Uri is some r-dependent unitary on the bosonic

mode.

In Appendix A, we present an algebraic condition for

the Hamiltonian and jump operators in order for G to

satisfy Eq. (13).

The PI condition, even with a finite order, is demanding,

since it requires the conditional channels to be exactly

unitary channels and, thus, allows no error propagation at

all. However, observe that if the bosonic mode is protected

by some bosonic codes, fault tolerance can still be achieved

even if we allow error propagations, as long as the

propagated errors are small and correctable. Based on this

observation, we generalize the PI control and present a less

stringent condition that, nevertheless, still complies with

the idea of fault tolerance.

Definition 7 (GPI operation). Given a single-mode

bosonic code with a code space projection Pc, we say

that an ancilla-assisted operation is nth-order generalized

path-independent (GPI) in an ancilla basis BA with an

initial ancilla state jii if, for any jri∈BA and k ≤ n,

⟪rjG½k�ðTÞji⟫ ∝

�

X

s

Ks
ri • K

s†
ri

�

; ð14Þ

where fKs
rigs satisfies the KL condition, i.e.,

PcK
s†
riK

s0
riPc ∝ Pc for any Ks

ri; K
s0
ri ∈ fKs

rigs.
Note that any conditional channel ⟪rjG½k�ðTÞji⟫ can be

written in the form of Eq. (14), with a set of ðr; iÞ-dependent
Kraus operators fKs

rigs. The condition that fKs
rigs satisfies

the KL condition implies that the conditional channel

⟪rjG½k�ðTÞji⟫ contains only correctable errors.

The GPI condition generalizes from the PI condition in

Definition 6 from the following two aspects. First, the GPI

condition considers any operation (any completely positive

trace-preserving map) to the bosonic mode as a target,

while the PI condition considers only unitary gates.

Second, the GPI condition allows finite propagation of

ancilla faults to the bosonic mode for each conditional

channel, as long as the propagated errors are correctable by

the bosonic code. See Fig. 1(b) for an illustration of the

relation between ancilla-assisted operations, GPI opera-

tions, and PI operations.

In Appendix A, we present an algebraic condition for

GPI operations again by examining only the Hamiltonian

and jump operators. Note that we directly present the GPI

condition in the finite-order form, which is of practical

relevance.

A. GPI examples

Here, we provide two examples of GPI operations for the

four-legged cat code.

1. GPI SNAP gate with a three-level χ -mismatched ancilla

As an example, we consider the photon-number selective

phase (SNAP) gate [37] in circuit-QED systems. In the

rotating frame, a three-level ancilla with levels fjgi; jei; jfig
is dispersively coupled to a bosonic mode via the

Hamiltonian

H0 ¼ −ðχfjfihfj þ χejeihejÞ ⊗ a†a; ð15Þ

and the ancilla is frequency-selectively driven between jgi
and jfi states:

HcðtÞ ¼ Ω

X

N

n¼0

e−iðnχft−ϕnÞjfihgj þ H:c:; ð16Þ

where ϕ⃗ ≔ ðϕ0;ϕ1;…;ϕNÞ is some phase vector that

we can choose. We consider ancilla jump operators

fJ1¼
ffiffiffi

γ
p jeihfj;J2¼

ffiffiffi

γ
p jgihej;J3¼

ffiffiffi

γ
p P

s∈fe;fgΔsjsihsjg,
where J1 describes the ancilla decays from jfi to jei, J2 the

FIG. 5. Illustration of a PI gate. Given an ancilla initial state jii
and a measurement basis BA, the bosonic mode undergoes an

r-dependent unitary Uri for any ancilla measurement outcome

jri∈BA, independent of the different system paths (see, e.g., the

green and orange curves, where an ancilla relaxation happens for

the green curve).
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ancilla decay from jei to jgi, and J3 an ancilla dephasing

with arbitrary phases Δe;Δf ∈C. We use this error model

throughout the paper whenever using a three-level ancilla.

In the interaction picture associated with H0, the system

Hamiltonian reads

H̃ ¼ Ω

h

jfihgj ⊗ Sðϕ⃗Þ þ H:c:
i

; ð17Þ

where Sðϕ⃗Þ ≔
P

N
n¼1 e

iϕn jnihnj applies a number-

dependent phase shift ϕ⃗ to the bosonic mode. Note that

we have performed the rotating wave approximation by

assuming Ω ≪ χf. Denote Δχ ≔ χf − χe as the χ mis-

match. The ancilla jump operators transform to J̃1ðtÞ ¼
ffiffiffi

γ
p jeihfj ⊗ e−iΔχta

†a, J̃2ðtÞ ¼
ffiffiffi

γ
p jgihej ⊗ e−iχeta

†a, and

J̃3 ¼ J3.
We initialize the ancilla in jgi, let the system evolve

for a time T ¼ Ã=2Ω, and measure the ancilla in the

fjgi; jei; jfig basis. In the absence of errors, the ancilla

will end up in jfi while the central system undergoes

the target number-dependent phase shifts Sðϕ⃗Þ, i.e.,

hfje−iH̃cT jgi ¼ Sðϕ⃗Þ. With ancilla errors, we can explicitly

write down the truncated conditional channels (in the

interaction picture) up to the first order:

⟪gjG̃½1�ðTÞjg⟫∝I ;

⟪fjG̃½1�ðTÞjg⟫∝Sðϕ⃗Þ •S†ðϕ⃗Þ;

⟪ejG̃½1�ðTÞjg⟫∝
Z

T

t¼0

dte−iΔχta
†aSðϕ⃗Þ •S†ðϕ⃗ÞeiΔχta†a; ð18Þ

If there is no χ mismatch, i.e., Δχ ¼ 0, this gate is strictly a

1-PI gate [see Eq. (13)]; if there is a finite χ mismatch, the

gate is no longer PI. Nevertheless, for a bosonic code that

can correct phase rotations in the range ½−θm=2; θm=2�
(e.g., θm ¼ Ã=2 for the four-legged cat), the gate is still a

1-GPI gate if ΔχT ≤ θm [see Eq. (14)].

In Appendix A, we show that one can verify the GPI

property of this SNAP gate more easily without calculating

the conditional channels by checking a set of algebraic

conditions for the Hamiltonian and jump operators. Also, in

Appendix C, we present another GPI SNAP scheme using a

qutrit and an extra flag qubit, which can tolerate even larger

χ mismatch ΔχT.

2. GPI parity measurement with a three-level

χ -mismatched ancilla

As another example of GPI operations, we consider the

parity measurement for correcting photon loss errors [38]

using a three-level χ-mismatched ancilla.

The system Hamiltonian (in the rotating frame) is

H0 ¼ −ðχejeihej þ χfjfihfjÞ ⊗ a†a (without ancilla

drives). We denote j�i as ðjgi � jfiÞ=
ffiffiffi

2
p

. The ancilla is

initialized in jþi and measured in the basis fjþi; j−i; jeig.

In the absence of ancilla errors, the operation performs a

projection onto the even (odd) subspace of the bosonic

mode conditioned on the ancilla measured in jþi (j−i):

⟪þ jG½0�j þ ⟫ ¼ Pþ • Pþ;

⟪ − jG½0�j þ ⟫ ¼ P− • P−; ð19Þ

where P� ≔ ðI � e−iÃa
†aÞ=2 is the projection on the even

and odd parity subspace of the bosonic mode.

In the presence of ancilla errors fJ1 ¼
ffiffiffi

γ
p jeihfj,

J2 ¼
ffiffiffi

γ
p jgihej, J3 ¼

ffiffiffi

γ
p P

s∈ fe;fg Δsjsihsjg, we move to

the interaction picture associated with H0. Now, the system

Hamiltonian is 0 and the ancilla jump operators read

J̃1ðtÞ¼
ffiffiffi

γ
p jeihfj⊗e−iΔχta

†a, J̃2ðtÞ¼
ffiffiffi

γ
p jgihej⊗e−iχeta

†a,

and J̃3 ¼ J3 ¼
ffiffiffi

γ
p P

s∈ fe;fgΔsjsihsjg, the same as those

in the previous SNAP example. Here, without loss of

generality, we set Δf ¼ −1.

We can calculate the noise expansion of the joint channel

up to the first order [see Eq. (9)]:

G̃½1�ðTÞ ¼ WðT; 0Þ •W†ðT; 0Þ þ γ

Z

T

t¼0

G1ðt; 1Þ • G†

1ðt; 1Þ

þ γ

Z

T

t¼0

G1ðt; 3Þ • G†

1ðt; 3Þ; ð20Þ

where Wðt2; t1Þ ≔ exp ½−iHeffðt2 − t1Þ� with Heff ≔

−ði=2Þ
P

3
j¼1 J̃

†
j J̃j¼− i

2
γ½ð1þjΔej2Þjeihejþ2jfihfj� and

G1ðt; jÞ ≔ WðT; tÞJ̃jðtÞWðt; 0Þ. Note that we have dropped
the term associated with the first-order quantum jump with

J̃2, which is zero when the ancilla starts from jþi. Going
back to the lab frame, the truncated channel is G½1�ðTÞ ¼
G̃½1�ðTÞ ∘ ½U0ðTÞ • U†

0ðTÞ�, where U0ðTÞ ≔ e−iH0T . Then,

we can calculate the truncated conditional channels:

⟪þjG½1�jþ⟫¼
��

1−
p

2

�

Pþþ
p

2
P−

�

•

��

1−
p

2

�

Pþþ
p

2
P−

�

þpP− •P−þOðp2Þ;

⟪− jG½1�jþ⟫¼
��

1−
p

2

�

P−þ
p

2
Pþ

�

•

��

1−
p

2

�

P−þ
p

2
Pþ

�

þpPþ •PþþOðp2Þ;

⟪ejG½1�jþ⟫¼ p

2T

Z

T

t¼0

dte−iðΔχtþÃÞa†a
•eiðΔχtþÃÞa†a

þOðp2Þ; ð21Þ

where p ≔ γT. For a four-legged cat with α ≫ 1, Eq. (21)

satisfies the GPI condition as long asΔχT < Ã=2. Note that
the first two terms in Eq. (21) imply that one might obtain

wrong parity measurement outcomes with a probability

OðpÞ if the ancilla is measured in j�i. Such effective

measurement errors can be suppressed to the second order
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by repeating the above parity measurement three times and

performing majority voting, which is discussed in the next

section when we rigorously consider fault tolerance.

V. CONNECTION BETWEEN GPI

AND FAULT TOLERANCE

In this section, we establish the connection between

GPI quantum control and fault tolerance defined in Sec. III.

Let the bosonic mode be encoded in some bosonic code

with a code projection Pc.

Proposition 2. Each AAO contained in a t-FT level-1

gadget with an ancilla initial state jii and an ancilla

measurement basis BA has to be t-GPI with respect to jii,
BA, and the code projection Pc.

Proof. Any t-FT gadget requires that if any m ≤ t faults
occur during the protocol, the output is guaranteed to be

correct. However, if one AAO is not t-GPI, there exists an
ancilla measurement outcome r, conditioned on which the

bosonic channel [see Eq. (14)] contains noncorrectable

errors. As a result, the final output can no longer be

guaranteed to be correct. ▪

Conversely, we can combine pieces of t-GPI operations
to get t0 ≤ t-FT gadgets, as shown in Fig. 1. In order to

make t0 ¼ t, there are extra requirements for the AAOs,

which are typically easier to satisfy than GPI. Instead of

making rigorous statements about these requirements for

generic gadgets, we make case studies when constructing

concrete FT gadgets. Nevertheless, we comment on some

high-level ideas used to design the extra ingredients that

can be combined with GPI to achieve fault tolerance here:

(i) Operations are error transparent or closure against

bosonic errors (see Appendix B); (ii) the propagation from

ancilla faults to bosonic errors is linear; (iii) there exists at

least one ancilla state jri such that the ideal conditional

bosonic channel ⟪rjG½0�ji⟫ gives the target operation.

As the first example, we construct 1-FT Z-axis rotation
ZðθÞ for the four-legged cat using the GPI SNAP gate

presented in Sec. IVA 1. To implement a ZðθÞ gate, we

choose a GPI SNAP gate with ΔχT < Ã=2 and

Sðθ⃗Þ ¼ P0 þ P3 þ eiθðP2 þ P1Þ; ð22Þ

where Pj ≔
P

i¼0 j4iþ jih4iþ jj. We consider the same

ancilla jump errors as those presented in Sec. IVA 1. In

addition, we consider a single-jump operator a representing

a single-photon loss for the bosonic mode. Then, we

implement the 1-FT ZðθÞ gate based on Algorithm 1

below. The three-level ancilla basis is denoted by jgi,
jei, and jfi according to Eq. (15).

Now, we verify that the above protocol satisfies the

definition of a 1-FT gate in Definition 1. Here, we choose

fðmÞ ¼ ðm;mΔχT=2Þ with ΔχT=2 < Ã=4. Suppose the

input error is of size ðk; θ0Þ and there arem faults during the

protocol. There are two cases where ðk;θ0ÞþfðmÞ≤fð1Þ.

First, m ¼ 0 and ðk; θ0Þ ≤ ð1;ΔχT=2Þ. Obviously, the gate
is error transparent to the phase rotation e−iθa

†a; i.e., it

simply commutes through the gate and remains at the

output, since it commutes with the system Hamiltonian

[see Eqs. (15) and (16)]. Moreover, as we show in

Appendix B 1, the gate is also error transparent to a

single-photon loss a when using the form of Sðϕ⃗Þ in

Eq. (22). Therefore, the input ðk ≤ 1; θ ≤ ΔχT=2Þ error

simply remains at the output and stays correctable. Second,

m ¼ 1 and ðk; θÞ ¼ ð0; 0Þ. In this case, either an ancilla

dephasing, or an ancilla decay, or a single-photon loss

occurs during the protocol. A single-ancilla dephasing

might cause the ancilla ending in jgi instead of jfi but

does not add any error to the bosonic mode; a single-ancilla

decay from jfi to jei causes only a correctable phase

rotation with an angle jδθj ≤ ΔχT=2 < Ã=4 [49]; a single-

photon loss simply remains at the output and stays

correctable.

As the second example, we construct a 1-FT QEC

protocol for correcting a single-photon loss. Note that

we present a full EC gadget correcting both photon loss and

dephasing errors in the next section. The protocol utilizes

the 1-GPI parity measurement presented in Sec. IVA 2,

with a χ mismatch ΔχT < Ã=2.
Now, we verify that the protocol in Algorithm 2

satisfies the definition of a 1-FT QEC in Definition 2.

Similar to the previous ZðθÞ gate example, we choose

fðmÞ ¼ ðm;mΔχT=2Þ. Assume there is an input error of

size ðk; 0Þ andm faults occur during the protocol. Note that

since we are correcting only single-photon losses for now,

we assume the input has no dephasing errors. To verify

condition (i) in Definition 2, we consider either k ¼ 1,

m ¼ 0 or k ¼ 0, m ¼ 1. In the earlier case, the single-

photon loss can be perfectly corrected and the output has no

error; in the latter case, we consider either an ancilla

dephasing, an ancilla decay, or a single-photon loss. An

ancilla dephasing may flip a single-parity measurement

outcome but does not affect the final majority voting; a

single-ancilla decay causes only a correctable phase rota-

tion with amplitude ≤ ΔχT=2 < Ã=4, which is a correct-

able error; a single-photon loss during the protocol either

gets corrected or goes undetected but remains as a

correctable single-photon loss at the output.

Algorithm 1. 1-FT ZðθÞ gate.

1 o ← e. // o records the ancilla measurement

outcome

2 while o ≠ f do

3 Prepare the ancilla in the jgi state, apply the GPI SNAP

gate with Sðθ⃗Þ in Eq. (22) for a time T ¼ Ã=2Ω, and
measure the ancilla in the jgi; jei; jfi basis with an

outcome o∈ fg; e; fg.
4 if o ¼ e, then
5 Apply a phase rotation eiΔχTa

†a=2 to the bosonic mode.
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For condition (ii) in Definition 2, one simply observes

that a single-photon loss error at the input can be detected

and then corrected (although a logical error may happen

when combined with another photon loss during the

protocol), while a single-photon loss or an ancilla

decay that occurs during the protocol can cause at most

a fð1Þ ¼ ð1;ΔχT=2Þ error that can go undetected and

remains at the output.

VI. FAULT-TOLERANT OPERATIONS

OF FOUR-LEGGED CAT CODE

In this section, we focus on the four-legged cat and

construct universal 1-FT level-1 gadgets that can correct a

single-photon loss and any single-ancilla fault, using GPI

operations.

The universal operation set we consider is

S ¼ fEC; ZðθÞ; XðϕÞ; XXðδÞ;PjþLi;MZ;MXg; ð23Þ

including error correction, Z-axis rotation, X-axis rotation,
XX rotation [expð−iδXX=2Þ], state preparation in the

X basis, measurement in the Z basis, and measurement

in the X basis.

One essential element for our construction is the GPI

SNAP gate and GPI parity measurement described in

Secs. IVA 1 and IVA 2, respectively. Recall that both of

these operations use a three-level ancilla, which is dis-

persive coupled to the bosonic mode via −ðχejeihej þ
χfjfihfjÞ ⊗ a†a, potentially with a χ mismatch

Δχ ≔ χf − χe. Denote the gate time for the SNAP gates

as T and that for a parity measurement as TP. Typically,

T ≫ TP since the driving strength Ω for the SNAP gate

[see Eq. (16)] is much smaller than χf in order for the

rotating-wave approximation to hold [29]. We choose

fðmÞ ¼ ðm;mΔχT=2ÞwithΔχT=2 < Ã=8 [50] for proving
the fault tolerance of the gadgets. Unless specially noted, all

the SNAP gates and parity measurement gadgets we use

have a χ mismatch Δχ.

Similar to the previous sections, we consider fa; jeihfj;
jgihej;

P

s∈ fe;fgΔsjsihsjg as the errors, representing a

single-photon loss, an ancilla decay from jfi to jei, an
ancilla decay from jei to jgi, and an ancilla dephasing,

respectively.

A. Z-axis rotation

A 1-FT Z-axis rotation with an arbitrary angle (θ) using

GPI SNAP gate is presented in Algorithm 1 in the previous

section. Note that a 1-FT logical gate using a strictly PI

SNAP gate (with no χ mismatch) has been experimentally

demonstrated for a small binomial bosonic code [29].

Here, the main difference is that our protocol allows a

finite χ mismatch.

B. X-axis rotation

In the large α limit, an X-axis rotation is given by

XðϕÞ ≈ eiϕjCþ
α ihCþ

α j þ jCþ
iαihCþ

iαj; ð24Þ

where jC�
β i ≔ c�β ðjβi � j − βiÞ, with c�β being normaliza-

tion constants. We implement XðϕÞ by adding a phase ϕ to

the subspace spanned by the two coherent states jαi and

j − αi. As illustrated in Fig. 6(a), we first displace the

cavity by α and apply a phase shift to the vacuum

Sðϕ⃗Þ ¼ eiϕj0ih0j þ I − j0ih0j using the SNAP gate (see

Sec. IVA 1). Then we displace the cavity by −2α and apply

another S. Finally, we displace the cavity by α back to the

code space. The joint operation is

UX ¼ DðαÞSðϕ⃗ÞDð−2αÞSðϕ⃗ÞDðαÞ
¼ ½DðαÞSðϕ⃗ÞDðαÞ†�½Dð−αÞSðϕ⃗ÞDð−αÞ†�
≈ eiθP�α þ I − P�α; ð25Þ

where P�α≔ jαihαjþj−αih−αj¼ jCþ
α ihCþ

α jþjC−
α ihC−

α j.
We now show that this gate is 1-FT if the χ mismatch

during the SNAP gates is zero. Assume there is a ðk; δθÞ
input error and m faults occur during the gate. Again, for

1-FT gate (see Definition 1), we need only to consider

either ðk¼0;δθ¼0Þ, m¼1 or ðk≤1;δθ≤ΔχT=2Þ, m ¼ 0.

First, we consider a single fault occurring during UX.

A single-photon loss simply commutes through the entire

gate, since the two SNAP gates S are error transparent (see

Appendix B) and DðαÞ commutes with a up to a constant.

A single-ancilla decay or dephasing during the S gate does

not cause any error to the bosonic mode when assuming

perfect χ matching. Therefore, a single fault during the gate

causes at most a ð1; 0Þ < fð1Þ error at the output, which is

correctable.

Second, we consider a ðk ≤ 1; δθ ≤ ΔχT=2Þ input

error eiδθa
†aak. We first notice that UXe

iδθa†aakPc ∝

akUXe
iδθa†aPc, since UX is error transparent for ak [see

Algorithm 2. 1-FT photon-loss correction.

1 oi ← e for i∈ f1; 2; 3g. // foigi∈ ½3� record three

consecutive parity measurement outcomes

2 for i ← 1 to 3 do

3 while oi ¼ e do

4 Prepare the ancilla in the jþi state, apply the

dispersive coupling for a time T ¼ Ã=χf, and measure

the ancilla in the ¼ fjþi; j−i; jeig basis with an

measurement outcome oi.
5 if oi ¼ e, then
6 Apply a phase rotation eiΔχTa

†a=2 to the bosonic

mode.

7 Apply a parity correction based on the majority voting over

foigi∈ ½3�.

XU, ZENG, XU, and JIANG PHYS. REV. X 14, 031016 (2024)

031016-10



Eq. (25)]. Here, Pc ≔ jþLihþLj þ j−Lih−Lj ≈ jCþ
α ihCþ

α j þ
jCþ

iαihCþ
iαj is the projector onto the code space of the four-

legged cat. Then, we need only to make sure that UX is also

error transparent to dephasing eiδθa
†a. Let E ≔ UXe

iδθa†aU†
X

be the effective error that eiδθa
†a propagates to after the gate.

E satisfies

EPc ¼ eiδθa
†aPc þ ð1 − e−iϕÞðP�α − IÞeiδθa†ajCþ

α ihCþ
α j

þ ðeiϕ − 1ÞP�αe
iδθa†ajCþ

iαihCþ
iαj; ð26Þ

where we can see that UX is not error transparent against the

dephasing due to the last two terms in Eq. (26). Fortunately,

we canmake it approximately error transparent bymodifying

the SNAP gate:

Sðϕ⃗Þ→ eiϕðP½s�Þ þ I − P½s�; ð27Þ

where P½s� ≔
P

s
i¼0 jiihij is the projection onto the s

neighborhood of vacuum. Then, the gate unitary

becomes UX → eiϕP�α;s þ I − P�α;s, where P�α;s ≔

DðαÞP½s�D
†ðαÞ þDð−αÞP½s�D

†ð−αÞ is the projection onto

a neighborhood of jαi and j − αi. Now, the effective error for
the dephasing error becomes

EPc ¼ eiδθa
†aPc þ ð1 − e−iϕÞðP�α;s − IÞeiδθa†ajCþ

α ihCþ
α j

þ ðeiϕ − 1ÞP�α;se
iδθa†ajCþ

iαihCþ
iαj: ð28Þ

For jδθj ≤ ΔχT=2 < Ã=8, we can choose s ¼ Oðjαj2Þ such
that the last two terms vanish in the α ≫ 1 limit, i.e.,

hCþ
αeiδθ

jP�α;sjCþ
αeiδθ

i→ 1;

hCþ
iαeiδθ

jP�α;sjCþ
iαeiδθ

i→ 0: ð29Þ

Then, we have EPc ≈ eiδθa
†aPc and the gate is error trans-

parent to dephasing as well.

Note that 1-fault tolerance can no longer be rigorously

attained (even in the larger-α limit) if using SNAP gates S

with a finite χ mismatch. Taking the second S gate as

an example, and suppose it has a χ mismatch Δχ0, a

single-ancilla decay could cause a eiδθ
0a†a phase rotation

with jδθ0j ≤ Δχ0T=2 after S, which propagates to

e−iδθ
0½a†aþαðaþa†Þþα2� after the later displacement. The extra

displacement error after the gate is uncorrectable. Thus, a

single-ancilla fault during the X rotation can cause a first-

order logical error with a probability cp, where c is a

constant depending on Δχ0T. Nevertheless, if Δχ0T is small

enough, the coefficient c can be made comparable to or

even smaller than p, and we can still achieve good error

suppression in practical regimes, as is shown in later

numerical results in Fig. 7(a).

C. XX rotation

For large α, the XX rotation reads

XXðδÞ ≈ eiδðjCþ
α ; C

þ
α ihCþ

α ; C
þ
α j þ jCþ

iα; C
þ
iαihCþ

iα; C
þ
iαjÞ

þ ðjCþ
α ; C

þ
iαihCþ

α ; C
þ
iαj þ jCþ

iα; C
þ
α ihCþ

iα; C
þ
α jÞ:

ð30Þ

We implement XXðδÞ by adding a phase δ to the subspace

spanned by j�α;�αi and j�iα;�iαi. As illustrated in

Fig. 6(b), we interfere the two modes through a 50∶50

beam splitter, apply the number-dependent phase shift

Sðδ⃗Þ ¼ e−iδj0ih0j þ I − j0ih0j to both ports, and then

interfere through another 50∶50 beam splitter:

UXX ¼ BS

�

Ã

2

�

†

ðS ⊗ SÞBS
�

Ã

2

�

; ð31Þ

where BSðθÞ ≔ exp½ðθ=2Þðab† − a†bÞ� with a and b
denoting the annihilation operator of the two involved

modes, respectively.

To understand the effect of UXX, we consider a coherent-

state input jα; βi. The first BS interferes the two coherent

states:

BSjα; βi ¼ jðαþ βÞ=
ffiffiffi

2
p

; ðα − βÞ=
ffiffiffi

2
p

i: ð32Þ

We take the approximation Sjγi ≈ e−iδ1½γ¼0�jγi, where 1½x�
is the indicator function. Then, the two SNAP gates in

Eq. (31) add a nontrivial phase to the rhs of Eq. (32) if

α ¼ β or α ¼ −β:

ðS⊗SÞBSjα;βi¼e−iδð1½α¼β�þ1½α¼−β�Þ
	

	

	

	

αþβ
ffiffiffi

2
p ;

α−β
ffiffiffi

2
p




: ð33Þ

Finally, the last BS restores the input coherent state

potentially with an extra phase:

UXXjα; βi ¼ e−iδð1½α¼β�þ1½α¼−β�Þjα; βi: ð34Þ

FIG. 6. Illustration of the X-axis rotation (a), XX rotation (b),

and teleportation-based EC (c) in the level-1 gadgets S for the

four-legged cat.
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We remark that, when α and β are chosen only from a set of

discrete values fαigi which are well separated in the phase

space, Eq. (34) provides an exact expression of the action

of UXX. The rigorous form of UXX is given in Eq. (B10) in

Appendix B 3. In conclusion, a two-mode coherent state

accumulates a nontrivial phase if and only if the two

coherent states have matched amplitudes and aligned or

antialigned phases. Let P�ðiÞα be the projection onto a four-
dimensional subspace spanned by jαi; j − αi; jiαi; j − iαi;
we then have

P�ðiÞα ⊗ P�ðiÞαUXXP�ðiÞα ⊗ P�ðiÞα

¼ eiδðP�α ⊗ P�α þ P�iα ⊗ P�iαÞ
þ ðP�α ⊗ P�iα þ P�iα ⊗ P�αÞ: ð35Þ

Note that Eq. (35) implies P
ðABÞ
c UXXP

ðABÞ
c ¼ XXðθÞ, where

PAB
c ¼ P

ðAÞ
c ⊗ P

ðBÞ
c is the projector onto the collective code

space of a four-legged cat on bosonic modes A and B.
Now, we prove this XXðθÞ gate is 1-FT according to

Definition 1. We first consider the case where there is

an input error eiðδθaa
†aþδθbb

†bÞbkbaka with ka; kb ≤ 1 and

jδθaj; jδθbj ≤ ΔχT=2 < Ã=8 but no fault during the gate.

bkbaka simply commutes through the gate when acting on

the code space due to the error-transparency form ofUXX in

Eq. (35). Similar to the proof for the X-axis rotation in

Eq. (28), one can show thatUXX is also approximately error

transparent to the phase rotation eiðδθaa
†aþδθbb

†bÞ by replac-

ing S → e−iδðPs
i¼0 jiihijÞ þ I − ðPs

i¼0 jiihijÞ. We put the

proof in Appendix B 3. As a result, the input error

commutes through the gate and remains correctable.

To complete the proof that the UXX is 1-FT, we also

need to show that, for a perfect input state and any single

fault during UXX, each of the two output modes has an

error of size at most fð1Þ ¼ ð1;ΔχT=2Þ. As shown in

Appendix B 3, a single-photon loss during the gate prop-

agates to an error of the form c1aþ c2b, where c1; c2 ∈C,

due to the error transparency of the SNAP gates and the

error closure of the BSs. By using a χ-matched ancilla for

each SNAP gate, any single-ancilla fault does not propagate

to any bosonic data errors.

We note that, similar to the X-axis rotation, the XX
rotation is not strictly 1-FT if there is a finite χ mismatch

when executing the SNAP gates, as an induced phase

rotation would propagate to uncorrectable errors after the

last BS. Nevertheless, as we show numerically in Fig. 7,

high-fidelity XX rotation can still be realized in practical

regimes even with a finite but small χ mismatch.

D. X-basis state preparation

Theþ 1 X-basis eigenstate is a two-legged cat state with
an even photon parity jþLi ¼ jCþ

α i ¼ cþα ðjαi þ j − αiÞ.
Observe that jþLi ∝ Pþjαi, i.e., the even-parity projection

of a coherent state jαi. Thus, we can prepare the even

cat state by first preparing a coherent state jαi and then

performing a nondestructive parity measurement to project

it to an even cat state (up to a parity frame update). For 1-FT

state preparation, unlike the 1-FT photon-loss correction

protocol in Algorithm 2, we do not need to repeat the parity

measurement three times, as it allows a noisy output

with up to fð1Þ ¼ ð1;ΔχT=2Þ error for up to a single

fault during the parity measurement (see Definition 3).

Concretely, we implement the following protocol.

Note that the X-basis state preparation here allows a

finite χ mismatch.

FIG. 7. (a) Average infidelities of an error-correction gadget

using teleportation in Fig. 6(c) as a function of γ=Ω with perfect χ

matching (blue line) or finite χ mismatches (orange line).

Here, we use experimental parameters from Ref. [29] for the

coherent interaction strengths χf ¼ 2Ã × 1 MHz,Ω ¼ 0.3χf , and

gBS ¼ 2χf. We consider single-photon loss, ancilla decay from f

to e, ancilla decay from e to g, and ancilla dephasing D½jeihej þ
2jfihfj�Þ with rates κ, γf→e, γe→g, and γϕ, respectively. We

assume the ancilla error rates are much larger than the cavity loss

rate and set γf→e ¼ γe→g ¼ γ, γϕ ¼ γ=4, and κ ¼ γ=10 [29]. We

choose α ¼ 2.9, which is a sweet spot for the four-legged cat that

minimizes the backaction of photon loss [43]. (b) The accumu-

lation of average infidelity and decay of mean photon number

ha†ai for 40 rounds of repeated parity measurements (infidelities

are shown for every two rounds) followed by teleportation. We

use the same coherent parameters χf, Ω, and gBS as in (a), a finite

χ mismatch Δχ ¼ Ω=10, and the experimental error rates from

Ref. [29]: κ ¼ 2 KHz, γf→e ¼ γe→g ¼ γ ¼ 20 KHz, and γϕ ¼
5 KHz [with the same ratios between these error rates are in (a)].

The teleportation pumps energy into the system and suppresses

the random phase rotations caused by Δχ. The three Wigner plots

depict the density matrix at the input, before and after the

teleportation, respectively. The numerical simulation is per-

formed with the PYTHON QUTIP package [51], and the codes

are available on GITHUB [52].
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E. Z-basis measurement

The Z-basis measurement admits the form of measuring

photon number modulo 4. In order to obtain the correct

logical measurement outcome in the presence of a single-

photon loss, as required by Definition 4, we insert a

nondestructive parity measurement before each logical Z
measurement. The full FT protocol is presented in

Algorithm 4.

Note that each modulo-4 photon number measurement

oi;b is conditioned on the parity measurement outcome oi;a;

i.e., we distinguish the photon number between 0 mod 4

and 2 mod 4 for even parity (oi;b ¼ þ) and between 3 mod

4 and 2 mod 4 for odd parity (oi;a ¼ −).

To verify that the 1-FT measurement condition in

Definition 4 holds, one simply observe that a single-photon

loss before the measurement can be captured by the parity

measurements, and any single fault during the measure-

ment protocol can cause only at most one measurement

error on one of foi;bgi¼1;2;3 and, thus, does not affect the

majority voting. Note that the Z-basis measurement here

can also allow a finite χ mismatch between the ancilla

and the bosonic mode, as dephasing errors commute with

the measurements.

F. X-basis measurement

The X-basis measurement amounts to distinguishing the

phase of the coherent states modulo Ã. We achieve this by

interfering the mode ai with another mode bi in a coherent

state jαi through a 50∶50 beam splitter and measuring if the

two output modes ao and b0 have less than s photons. We

obtain a logical − if both modes have more than s photons
and a logicalþ otherwise; i.e., we implement the following

positive operator-valued measures (POVMs):

M− ¼
�

Iao −
X

s

i¼0

ðjiiaohijÞ
�

⊗

�

Ibo −
X

s

i¼0

ðjiibohijÞ
�

≈

�

Iai −
X

s

i¼0

ðjα; iiaihα; ijÞ
�

×

�

Iai −
X

s

i¼0

ðj − α; iiaih−α; ijÞ
�

;

Mþ ¼ I −M−

≈
X

s

i¼0

ðjα; iiaihα; ijÞÞ þ
X

s

i¼0

ðj − α; iiaih−α; ijÞÞ; ð36Þ

where each subscript labels the mode that a state or an

operator belongs to.

Measuring if one mode has less than s photons can be

realized by dispersively coupling it to a qubit, driving the

qubit from jgi to jei conditioned on the mode having less

than s photons, and measuring the qubit in the jgi; jei basis.
In the interaction picture associated with the dispersive

coupling, the Hamiltonian reads

H̃AC ¼ Ωðjeihgj ⊗ P½s� þ H:c:Þ: ð37Þ

Recall that P½s� ≔
P

s
i¼0 jiihij. In the absence of errors, the

zeroth-order conditional operations are

⟪ejG½0�ðTÞjg⟫ ¼ P½s� • P½s� þOðpÞ;
⟪gjG½0�ðTÞjg⟫ ¼ ðI − P½s�Þ • ðI − P½s�Þ þOðpÞ: ð38Þ

A single fault will affect the measurement outcome or cause

a bosonic error diagonal in the Fock basis. The former can

be tolerated by repeating the above measurement 3 times

and performing majority voting, while the latter simply

commutes with the measurements and does not affect the

(later) measurement outcome.

Algorithm 3. 1-FT X-basis state preparation.

1 Prepare the bosonic mode in the coherent state jαi.
2 o ← e // records the parity measurement

outcome

3 while o ¼ e do

4 Prepare the ancilla in the jþi state, apply the dispersive

coupling for a time T ¼ Ã=χf, and measure the ancilla in

the ¼ fjþi; j−i; jeig basis with an measurement

outcome o.
5 if o ¼ e, then
6 Apply a phase rotation eiΔχTa

†a=2 to the bosonic mode.

7 Apply a parity correction if o ¼ −.

Algorithm 4. 1-FT Z-basis measurement.

1 for i ← 1 to 3 do

2 oi;a ← e;
3 while oi;a ¼ e do

4 Prepare the ancilla in the jþi state, apply the

dispersive coupling for a time T ¼ Ã=χf, and

measure the ancilla in the fjþi; j−i; jeig basis with

an measurement outcome oi;a.

5 oi;b ← e;
6 while oi;b ¼ e do

7 if oi;a ¼ þ, then

8 Prepare the ancilla in the jþi sate, apply the

dispersive coupling for a time T ¼ Ã=2χf, and

measure the ancilla in the fjþi; j−i; jeig basis

with an measurement outcome oi;b.

9 else

10 Prepare the ancilla in the jþi sate, apply the

dispersive coupling for a time T ¼ Ã=2χf, apply

an ancilla phase rotation e−i
Ã
2
jfihfj, and measure the

ancilla in the fjþi; j−i; jeig basis with an

measurement outcome oi;b.

11 Obtain the logical measurement outcome as the majority

voting of foi;bgi¼1;2;3.
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To check this X-basis measurement scheme is 1-FT

according to Definition 4, we also need to verify that the

measurement outcome is correct for any input error

ðk; θÞ ≤ ð1;ΔχT=2Þ. First, a single-photon loss does not

affect the measurement outcome, since a does not change

the phase of any coherent states. Second, a small phase

rotation rotates jαi to jαeiθi. Similar to the argument for the

X-axis rotation, the X-basis measurement outcome is

correct as long as the POVM Mþ captures j � αeiθi but

not j�iαeiθi.

G. Error correction

To correct both loss and dephasing errors, i.e., data errors

with ðk > 0; jθj > 0Þ, we employ a Knill-type QEC [53]

using a teleportation circuit shown in Fig. 6(c). A fresh

ancilla bosonic mode b is initialized in jþi state and gets

entangled with the data mode a via a XX rotation along

with single-mode rotations. The data mode a is then

measured in the Z basis, where the measurement outcome

is used to apply a feedback Z operation on the bmode. All

the gadgets here are 1-FT using previous constructions.

Moreover, they are error transparent to any input error on

the a mode smaller than fð1Þ ¼ ð1;ΔχT=2Þ. Therefore,
the input data error simply commutes through all the

gates and does not propagate to the bmode. Furthermore,

the 1-FT Z-basis measurement is correct for an error

smaller than fð1Þ. Therefore, such an input error can be

corrected by the EC gadget.

To verify the 1-FT EC conditions, we need to further

show that a single fault during the teleportation circuit leads

only to a correctable residual error of size at most fð1Þ at
the output of the bmode. Since we are using 1-FT gates, the

output for the a or b mode (before the Z measurement) has

an error at most fð1Þ.
As shown in Fig. 7(a), we numerically evaluate the

average infidelity of the teleportation gadget in Fig. 6(c). In

the absence of χ mismatch (see the blue curve), we show

that it has an error rate that scales as ðγ=ΩÞ2, manifesting

the fault tolerance of its composing gadgets, which cover

the entire S other than the X-basis measurement. There is

an error floor in the low γ=Ω regime, which is exponentially

suppressed by jαj2, due to the finite-size imperfection of the

X rotation and the XX rotation. In the presence of a finite χ

mismatch, a rigorous second-order error suppression can

no longer be attained due to the induced random phase

rotations during the X- and XX-rotation gates. However,

sufficient error suppression can still be achieved with a

finite but small χ mismatch in practically relevant regimes

(see the orange and green curves).

In practice, where photon loss is typically the predomi-

nant error source, repeated parity measurements that correct

photon losses (see Algorithm 2) suffice for extending the

lifetime of the cats. Such a robust memory that reaches the

break-even point has been experimentally demonstrated

[22]. However, only parity measurements are not enough to

protect the cats during long computational tasks, as the

mean photon number would keep decaying (the parity

measurement and gates in S are energy-preserving oper-

ations that commute with a†a) due to deterministic energy

loss to the environment. We propose to solve this problem

by inserting the teleportation gadget periodically in

between certain rounds of parity measurements, which

pumps energy into the system and restores the amplitude of

the cats. Furthermore, the teleportation can suppress the

accumulation of random phase rotations if, for example,

there is some finite χ mismatch or small cavity dephasing

errors κϕD½a†a�. We demonstrate such effects numerically

in Fig. 7(b). We note that the reason why the teleportation

gadget has a larger logical error rate compared to the parity

measurement in Fig. 7(b) is primarily because it has a larger

overhead associated with more gates and a longer time.

Also, the teleportation-based QEC scheme for rotation-

symmetrical codes was first proposed in Ref. [41].

Compared to their teleportation circuit, our circuit in

Fig. 6 uses different gates and measurements that are

assisted by a transmon ancilla and more compatible with

the standard circuit-QED platform.

VII. CONCATENATED QEC AND

HARDWARE-EFFICIENT FAULT TOLERANCE

With the set of 1-FT level-1 gadgets in S, we can

concatenate the level-1 logical qubits (four-legged cats)

with a level-2 qubit code to further suppress the level-1

errors.

We expect that the level-1 errors at the cat-qubit level

will be dominated by Pauli errors based on the following

analysis: (i) A single-photon loss is correctable, and two

photon losses lead to a logical X error. (ii) Ancilla decays

(two decays or a single decay in the presence of a large χ

mismatch) can introduce phase-rotation errors to the cat

qubits. Importantly, by designing the X measurement such

that it can tolerate small phase rotations (see Sec. VI F), we

have effectively defined the code words jþic and j−ic as

the neighborhood of ðjαi þ j − αiÞ and ðj − αi þ j − iαiÞ,
respectively, up to small phase rotations. In addition, the cat

gates, particularly the entangling XX rotation, are error

transparent to phase rotations (see Sec. VI C). As such,

even if we do not actively correct the phase-rotation errors

in every level-2 QEC cycle, they do not create leakage

and spread across the system. Instead, they either remain

uncorrelated small rotations on individual modes or

become logical Z errors. We note that the accumulation

of phase rotations can also be suppressed by the telepor-

tation gadget that is periodically introduced in the level-2

QEC cycles (which we discuss later). (iii) Ancilla dephas-

ings do not propagate to the bosonic modes at all due to the

GPI properties of the cat gadgets. (iv) The backaction of

photon losses creates a deterministic reduction of the

amplitude of the cat coherent states, which can be simply

tracked and incorporated by the cat operations. Moreover,
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such an energy decay can also be deterministically reverted

by using the teleportation gadget. These level-1 Pauli errors

can then be corrected by a standard level-2 qubit code such

as the surface code. We leave the detailed analysis of the

level-1 noise channel and the channel-adaptive optimiza-

tion of the level-2 code to future work.

We illustrate a two-dimensional concatenated architec-

ture in Fig. 8. The basic elements for each level-1 qubit are

simply a storage bosonic mode and a three-level ancilla that

are dispersively coupled. The ancilla is used for the fault-

tolerant operation of the bosonic qubit in each storage

mode, including state preparation, photon-loss correction,

gates, and measurements (see Sec. VI). In addition, a small

number of extra bosonic modes shared by neighboring

storage modes, which we refer to reservoir modes, are used

to pump energy into the storage modes periodically via

teleportation [see Fig. 6(c)]. We note that there are certain

trade-offs between the number of reservoir modes and the

length of the outer QEC cycles (on average). In the extreme

case where each data mode is paired with a neighboring

reservoir mode, which is also coupled to the corresponding

syndrome qubits of the outer code, we can simply swap the

data information between the data and the reservoir modes

without affecting the outer QEC. In the opposite case that

many data modes share a single reservoir mode, which is

not connected to all the required syndrome qubits, we can

perform the same teleportation twice to make sure that the

data information remains in the data modes, at a price of

slightly increasing the outer QEC cycle. We leave the

optimization of the architecture to future work.

The level-2 QEC requires certain couplings between

level-1 qubits. Importantly, we can achieve this by

introducing only BS coupling between nearest-neighbor

storage bosonic modes (see Fig. 8) for 2D stabilizer codes.

The level-2 syndrome-extraction circuits are made of

nondestructively measurement of high-weight Pauli oper-

ators, featuring a sequence of two-qubit entangling gates

such as the CNOT gate. In Fig. 9(a), we show how one can

get a level-1 CNOT gate using 1-FT single-mode and two-

mode rotations in S. Although the compiled circuit is long

with a depth 6, we note that one can usually reduce the

depth per CNOT gate when considering the full stabilizer

measurement circuits. As an example, we can measure a

weight-n X Pauli operator using a circuit of depth 2nþ 4

[see Fig. 9(b)]. We leave the evaluation and optimization of

the error rates of level-1 gates, e.g., the CNOT gate, as well

as the threshold and resource overhead of concatenated

codes to future work. Nevertheless, we remark that each

CNOT gate [see Fig. 9(a)] uses similar gadgets as those for

teleportation [see Fig. 6(c)], and each CNOT gate in a

syndrome extraction depth [see Fig. 9(b)] has a similar

depth as the teleportation on average; we expect the CNOT

gates to have a similar error rate as the teleportation shown

in Fig. 7(b). Using this rough estimate, a gate error rate

below 10−2, which corresponds to the gate error threshold

for the surface codes, is achievable using the current circuit-

QED hardware.

To sum up, our construction of S in this work enables a

practical, hardware-efficient architecture for fault-tolerant

quantum computing, which features only one bosonic

mode and one qutrit per level-1 logical qubit and requires

only low-order physical interactions (dispersively coupling

and beam-splitter interaction) that have been experimen-

tally demonstrated. Furthermore, realizing high-fidelity

level-1 gadgets with error rates below the threshold require-

ment of the level-2 codes is promising for near-term

experimental demonstrations.

VIII. DISCUSSION

The fault-tolerant gadgets S that we develop in Sec. VI

for the four-legged cat can be applied to other rotation-

symmetric codes [41], whose code words are invariant

Storage mode Three-level ancilla

...

...

...

...

...

...

...

...

Reservoir mode 

FIG. 8. Hardware layout for concatenated 2D codes with four-

legged cats. Each level-1 logical qubit (blue box) consists of a

storage bosonic mode and a three-level ancilla, which are

dispersively coupled. BS coupling between neighboring storage

bosonic modes is required for the level-2 QEC. In addition,

reservoir modes (with only one shown here as an example) shared

between neighboring storage modes are used to pump energy into

the system via teleportation [see Fig. 6(c)].

FIG. 9. Compilation of level-1 CNOT (a) and a stabilizer X⊗2

measurement circuit (b) using our constructed 1-FT level-1

gadgets in S.
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under an N-fold rotation R ¼ exp½ið2Ã=NÞa†a�. Taking

N ¼ 2, for example, an arbitrary code with a twofold

rotation symmetry has code words

jþΘi ≈
1
ffiffiffiffiffiffiffiffi

N þ
p ðI þ eiÃa

†aÞjΘi;

j−Θi ≈
1
ffiffiffiffiffiffiffiffi

N −

p ðeiÃa†a=2 þ ei3Ãa
†a=2ÞjΘi; ð39Þ

where N � are normalization constants, and the approxi-

mation holds when the base state jΘi is localized in phase

space, i.e., hΘjeiÃa†a=2jΘi ≈ 0. The fault-tolerant gadgets in

S can be applied to such an arbitrary rotation-symmetric

code with a localized base state jΘi, except that, for the
X-basis state preparation in Algorithm 3, we need to

replace the initial state with jΘi in the first step. In

particular, the X rotation and XX rotation still work, since

they are based on the phase-space locality of the base state.

In Table I, we compare our construction of fault-tolerant

gadgets for rotation-symmetrical codes that can correct

photon losses with those in the literature. In particular,

Ref. [41] studies fault-tolerant gates for rotation-

symmetrical codes by utilizing self-Kerr and cross-Kerr

interactions between bosonic modes, as well as phase

measurements [54]. Recent experimental efforts have

demonstrated the realization of self-Kerr interaction in

superconducting cavities [55], and there have been pro-

posals for achieving cross-Kerr interaction [56] using

ancillary nonlinear circuit-QED devices. Although there

are still challenges in realizing the phase measurements in

the circuit-QEC platform, there is both experimental [57]

and theoretical [58] progress along this line. Our scheme

complements the scheme in Ref. [41] by focusing

on ancilla-assisted operations that harness the strong

dispersive coupling between a bosonic mode and a trans-

mon ancilla, which is the standard resource in the current

circuit-QEC platform (see, e.g., Refs. [29,31,37,38]), and

rendering a different path toward fault-tolerant quantum

computing with rotation-symmetrical codes using existing

devices and techniques.
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APPENDIX A: ALGEBRAIC CONDITIONS

FOR PI AND GPI

In this section, we provide algebraic conditions for PI

gates (Definitions 5 and 6) and GPI gates (special case of

Definition 7 when the target operation is a unitary).

Recall that we are considering a Markovian evolution for

the joint system of ancilla A and bosonic modeC, described
by the Lindblad master equation in Eq. (11), with a joint

Hamiltonian HACðtÞ and a set of ancilla errors fJjg.
We first provide definitions and properties of a set of

structured algebras that we use.

Let BA ¼ fjmiAgm∈ ½dA� be an orthonormal basis for a

dA-dimensional ancilla and BC ¼ fjniCgn∈ ½∞� be an ortho-
normal basis for an infinite-dimensional bosonic mode. Let

MA (MC) be the ordinary matrix algebra for the ancilla

(bosonic mode). MA (MC) is a vector space over C with a

basis fjmiAhnjgm;n∈ ½dA� (fjmiChnjgm;n∈ ½∞�). In addition,

TABLE I. Comparison of different constructions of fault-tolerant gadgets for rotation-symmetrical codes that can correct photon

losses. We denote Z-type gates as those that preserve the photon number (alternatively, those that add photon-number-dependent phases)

and X-type gates as those that do not preserve the photon number.

Gadgets Prior schemes Our scheme

Error correction PI parity measurement [38]; two one-bit teleportation

with two ancillary bosonic modes [41]; engineered

dissipation [18,59]

GPI parity measurement + one-bit teleportation

with a shared ancillary mode

Z-type gates PI SNAP gate [29,30]; self-Kerr ða†aÞ2 Hamiltonian [41] GPI SNAP gate

X-type gates Teleported Hadamard gate with an ancillary

bosonic mode [41]

X-axis rotation using cavity displacements

and SNAP gates

Entangling gate CZ gate using cross-Kerr a†a ⊗ b†b [41] XX rotation using beam splitter þ SNAP gates.

X-basis measurement Phase measurement [41] Beam splitter þ SNAP gates.
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MA (similarly for MC) is equipped with a multiplication

operation

jaiAhbjjciAhdj ¼ δb;cjaiAhdj; ðA1Þ

for any a; b; c; d∈ ½dA�. For any algebra M, we denote

MM ¼ hSi for a set S if any element a inM can be written

as a ¼
P

j cjαj, where cj ∈C and αj is a product of some

elements in S. In other words, M is generated by S. Let

MAC ¼ MA ⊗ MC be the matrix algebra for the joint

system.

We define the reduction of an algebra on the joint system

to an algebra only on the ancilla as a surjective map from

MAC to MA.

Definition 8 (reduction of a joint algebra). Given any

algebra H ⊆ MAC on the joint system and an ancilla basis

BA, we define the reduction of a on BA as

HjBA
≔ hfjmihnjjjmi; jni∈BA; ∃ h∈H; hmjhjni ≠ 0gi:

ðA2Þ

Next, we define a family of subalgebras of MAC that

satisfy a special property.

Definition 9 (PI matrix algebra, Definition 1 in

Ref. [48]). Let BA be some orthonormal basis for A. We

say that a subalgebra P of MAC is a PI algebra associated

with BA if it satisfies

(1) P ¼ hfjmihnj ⊗ Umngi for some set of ðm; nÞ∈
½dA� × ½dA� and ðm; nÞ-dependent unitaries

Umn ∈MC.

(2) P is isomorphic to its reduction on BC via the

map jmihnj ⊗ Umn → jmihnj.
Note that the second condition posts three requirements

on the unitaries Umn:

(1) UmaUbn ¼ δa;bUmn.

(2) Umn ¼ U†
nm.

(3) Umm ¼ I.
These requirements lead to the following properties of

operators in a PI algebra.

Proposition 3 (property of operators lying in a PI

algebras). Let P ¼ hfjmihnj ⊗ Umngi be some PI algebra

associated with an ancilla basis BA, and let PjBA
be its

reduction on BA. For any operator O∈P and jri; jii∈BA,

we have hrjOjii ∝ Uri, where Uri ≔ I if jrihij ∉ PjBA
.

Proof. IfO∈P, we canwriteO asO¼
P

m;nomnjmihnj⊗
Umn for some omn ∈ C. If jrihij∈PjBA

, we have hrjOjii ¼
oriUri ∝ Uri; if jrihij ∉ PjBA

, we have hrjOjii ¼ 0 × I ▪.

Note that Proposition 3 also implies that, for any operator

O ¼
Q

iOi that is a product of operators lying in a PI

algebra P ¼ hfjmihnj ⊗ Umngi, we have hrjOjii ∝ Uri.

1. PI conditions

Reference [48] provides a simple algebraic condition for

PI gates using PI algebras.

Proposition 4 (algebraic condition for PI gates, Theo-

rem 1 in Ref. [48]). An ancilla-assisted gate is PI (see

Definition 5) in an ancilla basis BA if the Hamiltonian and

all the Lindblad jump operators are all in some PI algebra

associated with BA.

Note that the condition in Proposition 4 guarantees PI up

to infinite order. In the following, we generalize it for finite-

order PI gates.

First, the effective Hamiltonian Heff ¼ HACðtÞ −
ði=2Þ

P

j J
†
jJj needs to be in some PI algebra, i.e.,HeffðtÞ¼

PdA
m;n¼1ξmnðtÞjmihnj⊗Umn for some ξmnðtÞ∈C and uni-

taries Umn.

Next, we define a nth-order path algebra p½n� containing
all the possible paths contained in the noise expansion

of the system dynamics up to nth order and an associated

nth-order reachable state set S
½n�
A containing all ancilla states

reachable via the nth-order paths in p½n� when starting

from jii, and an nth-order error set E½n� ⊆ fJjg containing

all possible errors that can act nontrivially on S
½n−1�
A .

Definition 10 (finite-order path algebras, reachable

states, and error sets). Given a Hamiltonian HACðtÞ that

lies in some PI algebra associated with an ancilla basis BA,

a set of errors fJjg, and an initial ancilla state jii, we define
the zeroth-order path algebra p½0� as an algebra that contains
all the paths in the effective Hamiltonian HeffðtÞ ≔
HACðtÞ − ði=2Þ

P

j J
†
jJj ¼

PdA
m;n¼1 ξmnðtÞjmihnj ⊗ Umn:

p½0� ≔ hfjmihnj ⊗ Umnj ∃ t∈ ½0; T�; ξmnðtÞ ≠ 0gi: ðA3Þ

Let p½0�jBA
be the reduction of p½0� on BA. We define a

zeroth-order reachable state set including all states reach-

able via the zeroth-order paths when starting from jii:

S
½0�
A ≔ fjmi∈BAjjmihij∈p½0�jBA

g; ðA4Þ

and we define a zeroth-order error set E½0� ≔ ∅.

Then, we define a n ≥ 1th-order path algebra p
½n�
AC and an

nth-order reachable state set inductively:

E½n� ¼ E½n� ∪ fJjj ∃ jmi∈S
½n−1�
A ; Jjjmi ≠ 0g;

p½n� ¼ hp½n−1� ∪ E½n��i;

S
½n�
A ¼ fjmijjmihij∈p½n�jBA

g: ðA5Þ

Proposition 5 (algebraic conditions for finite-order PI

gates). Given an ancilla-assisted gate GðTÞ generated

by a Hamiltonian HACðtÞ and jump errors fJjðtÞg, GðTÞ
is n-GPI in an ancilla basis BA for an initial ancilla state jii
if HACðtÞ ∪ fJ†jJjg ∪ E½n� are in some PI algebra, where

E½n� is the nth-order error set constructed from

½HACðtÞ; fJjg;BA; jii�.
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Proof. LetHACðtÞ ∪ fJ†jJjg ∪ E½n� be in some PI algebra

P ¼ hfjmihnj ⊗ Umngi. The effective Hamiltonian

HeffðtÞ ¼ HACðtÞ − ði=2ÞJ†jJj ∈P. Furthermore, the non-

jump propagator Wðt2; t1Þ ≔ T exp½−i
R t2
t¼t1

dtHeffðtÞ� is

also in P. Let Ik ≔ fjjJj ∈E½k�g be the indices of the

kth-order error set. Now, consider a kth-order Dyson

expansion of GðTÞ [see Eq. (9)]:

⟪rjGkðTÞji⟫ ¼
�
Z

T

th¼0

dth

�

h∈ ½k�

"

X

jh ∈ Ik

#

h∈ ½k�

×Gk
riðfth; jhgh∈ ½k�Þ •G†k

ri ðfth; jhgh∈ ½k�Þ;
ðA6Þ

where

Gk
riðfth; jhgh∈ ½k�Þ

¼ hrjT
�

WðT; tkÞ
Y

k

h¼1

Kjh
ðthÞWðth; th−1Þ

�

jii; ðA7Þ

with t0 ¼ 0. Since all the operators in Eq. (A7) are in P0, we
haveGk

riðfth; jhgh∈ ½k�Þ ∝ Uri according toPropositionA.As

such, ⟪rjGkðTÞji⟫∝Uri •Uri. Therefore, ⟪rjG½k�ðTÞji⟫∝
Uri •Uri for any k ≤ n and the n-PI condition in Eq. (13)

is satisfied. ▪

2. GPI conditions

Here, we further relax the condition for finite-order

PI in Proposition 5 and provide algebraic conditions for

finite-order GPI gates.

Proposition 6 (algebraic conditions for finite-order GPI

gates). Given a bosonic code with a code projection Pc and

an ancilla-assisted gate generated by a Hamiltonian HACðtÞ
and jump errors fJjðtÞg, GðTÞ is n-GPI in an ancilla basis

BA for an initial ancilla state jii if
(1) There exists some PI algebra P ¼ hfjmihnj ⊗

Umngi such that HACðtÞ∈P, and any error

JjðtÞ∈E½n�, where E½n� is the nth-order error set

constructed from ½HACðtÞ; fJjg;BA; jii�, is in the

form JjðtÞ ¼
P

m;n jmihnj ⊗ R
j
mnðtÞUmn, where

R
j
mnðtÞ are unitaries.

(2) Let ξ ≔ fRj
mnðtÞjJj ∈E½n�;m; n∈ ½dA�; t∈ ½0; T�g.

Any error E∈ ξ satisfies

½E;Umn� ¼ 0: ðA8Þ

(3) Let ϵ ≔ fT Q

n
i¼1 EiðtiÞgEiðtiÞ∈ ξ∪I . Errors in ϵ satisfy

the Knill-Laflamme condition with respect to Pc.

Proof. We follow the same proof as that for Proposition 5.

Now, each Kraus operator Gk
riðfth; jhgÞ of ⟪rjGkðTÞji⟫ [see

Eqs. (A6) and (A7)] reads

Gk
riðfth; jhgÞ ¼ Uri

X

mh;nh

cmh;nh

�

T
Y

k

h¼1

R
jh
mhnhðthÞ

�

; ðA9Þ

for some cmh;nh
∈C. Here, we have replaced the form of Jj

in the first condition of Proposition 6 into Eq. (A7). The

operators R
jh
mhnh cumulate to the front as if they were

transparent to the unitaries due to the second condition in

Proposition 6. Then, the Kraus operators of ⟪rjGkðTÞji⟫,
given by the union of all Gk

riðfth; jhgÞ, are all linear

combinations of errors in fUriT
Q

k
i¼1 EiðtiÞgEiðtiÞ∈ ξ, where

ξ is defined in the second condition of Proposition 6. Finally,

the Kraus operators of ⟪rjG½n�ðTÞji⟫ are all linear combi-

nations of errors in ϵ, up to a same unitary Uri. Therefore,

the errors are correctable if ϵ satisfies the KL condition

Proposition 6. ▪

As an example, we consider the GPI SNAP gate in

Sec. IVA 1 using a χ-mismatched three-level transmon.

In the presence of the ancilla relaxations, one can show that

this gate is 1-GPI by checking the conditions in Proposition

6. In the interaction picture, the first-order error set

E½1� ¼ fjeihfj ⊗ e−iΔχta
†ag. We can find a PI algebra such

that the first condition of Proposition 6 is satisfied:

P ¼ hfjfihgj ⊗ S; jgihfj ⊗ S†; jeihfj ⊗ Igi: ðA10Þ

Here, there is only a single Jj with RefðtÞ ¼ e−iΔχta
†a.

Therefore, ξ ¼ fRefðtÞgt∈ ½0;T� and ϵ ¼ ξ ∪ I. By choosing

S as a logical operator for the four-legged cat and

noticing that ½RefðtÞ; S� ¼ ½RefðtÞ; S†� ¼ 0, the second

condition of Proposition 6 is also satisfied. Finally,

ϵ ¼ fRefðtÞgt∈ ½0;T� ∪ I satisfies the KL condition

with respect to Pc of the four-legged cat as long as

ΔχT < Ã=2 (see Sec. II A 1).

APPENDIX B: ERROR-TRANSPARENT

AND -CLOSURE CONTROL FOR

BOSONIC ERRORS

In this section, we review the error-transparent [47] and

error-closure [32] quantum control techniques that enable

fault tolerance against central system (bosonic) errors. For

bosonic errors, we neglect their contribution to the no-jump

evolution (the no-jump propagator is purely generated by

the Hamiltonian) in the jump expansion of a quantum

channel [see Eq. (7)]. Such an approximation can be

justified when considering the photon loss, whose back-

action associated with a†a is correctable in the large-α

regime for cat codes (see Sec. II A 1).

We consider a unitary UðtÞ generated by a Hamiltonian

HðtÞ that acts only on the bosonic mode. Consider a

bosonic code with a code projection Pc and a bosonic

error E. The error-transparent control aims to engineerHðtÞ
such that the dynamics is transparent to E; i.e., errors that
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occur during the gate are equivalent to those that occur after

the unitary:

UðT; tpÞE…EUðt2; t1ÞEUðt1; 0ÞPc ∝ EpUðT; 0ÞPc; ðB1Þ

for any T > tp > � � � > t1 > 0 and p ≥ 1. We say that the

unitary is kth-order error-transparent to E if Eq. (B1) is

satisfied for p ≤ k.
When using UðT; 0Þ as a logical gate for the bosonic

code, we typically require HðtÞ [and, thereby, UðtÞ] to be

block diagonal, i.e., ðI − PcÞHðtÞPc ¼ 0. In this case,

Eq. (B1) is equivalent to

UðT; tÞEU†ðT; tÞPj ∝ EPj; ðB2Þ

for any T > t > 0 and j ≤ k − 1, where Pj ≔ EjPc.

Obviously, Eq. (B2) is satisfied if E commutes with

HðtÞ when acting on the error spaces up to (k − 1)th

order, i.e.,

½E;HðtÞ�Pj ¼ 0; ðB3Þ

for j ≤ k − 1. We note that Eq. (B3) is only a sufficient

condition for the error-transparency definition in

Eq. (B2). For instance, Eq. (B2) is also satisfied if

½E;HðtÞ�Pj ∝ EPj.

In this work, we are interested in ancilla-assisted gates.

Similar to the PI and GPI, in the case where we initialize

the ancilla in jii and projectively measure it in a basis

BA ¼ fjmiAg, we care about only the conditional bosonic

channels given a measurement outcome m. As such, we

consider the following conditional error transparency,

which is easier to achieve than unconditional error trans-

parency presented above.

Definition 11 (conditional error transparency). Given a

bosonic code with a code projection Pc, an initial ancilla

state jii, and an ancilla orthonormal basis BA ¼ fjmiAg, we
say that an ancilla-assisted unitary UðtÞ is ðPc; jii;BAÞ-
error-transparent to a bosonic error E up to kth order if, for

any jri∈BA and p ≤ k,

hrjUðT; tpÞE…EUðt1; 0ÞPc ∝ EphrjUðT; 0ÞjiiPc: ðB4Þ

Reference [32] generalizes the error-transparency con-

dition to the so-called error-closure condition. In the case

of a single error E and a static Hamiltonian H0, they first

construct a vector space ϵ with a basis fE; ½H0; E�g over C,
and the error-closure condition is satisfied if, for any e∈ ϵ,

(1) ½H0; e�∈ ϵ;

(2) errors in ϵ are correctable (satisfying the KL con-

dition) with respect to Pc.

Such a condition guarantees that each first-order error

trajectory gives

eiH0ðT−tÞEeiH0t¼eiH0ðT−tÞEe−iH0ðT−tÞeiH0t¼E0eiH0t; ðB5Þ

where E0 ≔ eiH0ðT−tÞEe−iH0ðT−tÞ ∈ ϵ using the first condi-

tion. Then, the desired unitary is implemented up to a

correctable error E0 according to the second condition. The

error-closure condition generalizes the error-transparency

condition, as it allows errors to propagate to correctable

errors rather than rigorously commuting through the

unitary, in a similar spirit as our generalization from PI

to GPI.

1. Z-axis rotation

Recall that a Z-axis rotation is implemented by a GPI

SNAP gate (see Sec. IVA 1). In the interaction picture

associated with the base Hamiltonian H0 ¼ −ðχfjfihfjþ
χejeihejÞ ⊗ a†a, the Hamiltonian is static H̃ ¼ Ω½jfihgj ⊗
Sðϕ⃗Þ þ H:c:�, and the photon-loss error reads ãðtÞ ¼
eiðχf jfihfjþχejeihejÞt ⊗ a. Note that ½ãðtÞ; H̃�I ⊗ Pc ≠ 0 and

the unconditional error transparency does not hold.

Fortunately, we now show that the conditional error

transparency in Eq. (B4) holds up to a single-photon loss

if we choose Sðϕ⃗Þ appropriately. For p ¼ 1, the lhs of

Eq. (B4) reads

hrjŨðT; tÞãðtÞUðt; 0ÞjgiPc

¼
X

m∈ ff;gg
eiχmtŨrmðT; tÞaŨmgðt; 0ÞPc: ðB6Þ

Recall that Ũðt2; t1Þ is in a PI algebra (see Appendix A)

P ¼ hfjfihgj ⊗ S; jgihfj ⊗ S†; jgihgj ⊗ I; jeihej ⊗ I;

jfihfj ⊗ Igi. Therefore, Ũfg ∝ Sðϕ⃗Þ, Ũgf ∝ S†ðϕ⃗Þ, and
Ũgg; Ũff ∝ I. Choosing Sðϕ⃗Þ as a logical gate, we

have Ũmgðt; 0ÞPc ¼ PcŨmgðt; 0ÞPc for m∈ ff; gg. If

½ŨrmðT; tÞa�Pc ¼ 0 for any r;m∈ fg; fg, we can then

swap ŨmiðT; tÞ and a in Eq. (B6) and obtain

hrjŨðT; tÞãðtÞUðt; 0ÞjgiPc ∝ aŨrgðT; 0ÞPc. Such a condi-

tion is equivalent to

½a; Sðϕ⃗Þ�Pc ¼ ½a; S†ðϕ⃗Þ�Pc ¼ 0; ðB7Þ

which is simply that the applied unitary Sðϕ⃗Þ=S†ðϕ⃗Þ is

error transparent to a. This can be satisfied by setting

SðϕÞ ¼ P0 þ P3 þ eiθðP2 þ P1Þ.

2. X-axis rotation

Here, we show that the X-axis rotation is error trans-

parent to a single-photon loss by showing the two involved

SNAP gates [see Eq. (25)] satisfy the conditional error

transparency in Definition 11. Taking the first SNAP gate

as an example, the proof is the same as that for the Z-axis
rotation in the previous section, except that we now need

to change Pc to DðαÞPc when verifying Eq. (B7). Recall

that S ¼ eiθP½s� þ I − P½s� for the X-axis rotation, where

P½s� ¼
P

s
i¼0 jiihij is a projection into a neighborhood of
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vacuum. We take the large-α approximation jþLi ≈ jCþ
α i

and j−Li ≈ jCþ
iαi. Then,

aSDðαÞjþLi ≈ 2αj2αi ≈ SaDðαÞjþLi;
aSDðαÞj−Li ≈ aDðαÞj−Li ≈ SaDðαÞj−Li; ðB8Þ

where we use Sjβi ≈ jβi for jβj ≫ 1. Equation (B8) thus

verifies that S commutes with a when acting on DðαÞPc.

3. XX rotation

Here, we show that the XX rotation gate in Sec. VI C is

robust against a small input phase rotation or the ancilla

relaxation or dephasing or cavity loss that occurs in the

middle.

We first consider the input phase-rotation error

E ¼ eiðδθaa
†aþδθbb

†bÞ. Our aim is to show that

UXXEU
†
XXðPc ⊗ PcÞ ≈ EðPc ⊗ PcÞ: ðB9Þ

If we consider the SNAP gate S to be replaced to the

robust version S ¼ e−iθP½s� þ ðI − P½s�Þ, we can write UXX

in the following form:

UXX ¼ eiθPh½s�;Ii þ ðI − Ph½s�;IiÞ; ðB10Þ

where

Ph½s�;Ii ¼ BS

�

Ã

2

�

†

ðP½s� ⊗ I þ I ⊗ P½s�ÞBS
�

Ã

2

�

ðB11Þ

is a projector onto the space where the input bosonic modes

A and B have almost clean interference results (i.e., one

output mode is close to vacuum) under the balanced beam

splitter BSðÃ=2Þ. We can get Eq. (34) in Sec. VI C from

Eq. (B10). To prove Eq. (B9), we note that

UXXEU
†
XXðPc ⊗ PcÞ

¼ EP�;� þ EP�;∓ þ ðe−iθ − 1ÞðI − Ph½s�;IiÞEP�;�

þ ðeiθ − 1ÞPh½s�;IiEP�;∓; ðB12Þ

where

P�;� ¼ jþL;þLihþL;þLj þ j−L;−Lih−L;−Lj;
≈ jCþ

α ; C
þ
α ihCþ

α ; C
þ
α j þ jCþ

iα; C
þ
iαihCþ

iα; C
þ
iαj;

P�;∓ ¼ jþL;−LihþL;−Lj þ j−L;þLih−L;þLj;
≈ jCþ

α ; C
þ
iαihCþ

α ; C
þ
iαj þ jCþ

iα; C
þ
α ihCþ

iα; C
þ
α j: ðB13Þ

To simplify Eq. (B12), we notice that

hCþ
αeiδθa

; Cþ
αeiδθb

jPh½s�;IijCþ
αeiδθa

; Cþ
αeiδθb

i

¼ hCþ
αeiδθa

; Cþ
αeiδθb

jBS
�

Ã

2

�

†

ðP½s� ⊗ I þ I ⊗ P½s�Þ

× BS

�

Ã

2

�

jCþ
αeiδθa

; Cþ
αeiδθb

i: ðB14Þ

Since

BS

�

Ã

2

�

jCþ
αeiδθa

;Cþ
αeiδθb

i

¼μ2αBS

�

Ã

2

�

ðjαeiδθaiþj−αeiδθaiÞAðjαeiδθbiþj−αeiδθbiÞB

¼μ2αððj
α
ffiffiffi

2
p ðeiδθaþeiδθbÞiÞAðj

α
ffiffiffi

2
p ðeiδθa−eiδθbÞiÞB

þj αffiffiffi
2

p ðeiδθa−eiδθbÞiÞAðj
α
ffiffiffi

2
p ðeiδθaþeiδθbÞiÞB

þj αffiffiffi
2

p ð−eiδθaþeiδθbÞiÞAðj
α
ffiffiffi

2
p ð−eiδθa−eiδθbÞiÞB

þj αffiffiffi
2

p ð−eiδθa−eiδθbÞiÞA
�

j αffiffiffi
2

p ð−eiδθaþeiδθbÞiÞB
�

:

ðB15Þ

Here, μα ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½1þ expð−2jαj2Þ�
p

is the normalization

factor of the cat state. When jδθaj; jδθbj < Ã=8, we have

jeiδθa − eiδθb j < 2 sinðÃ=8Þ. As a result, either the compo-

nents on mode A or the ones on mode B will be almost

covered in the region of P½s�, which implies that when

α ≫ 1, we can choose a value of s ¼ Oðjαj2Þ such that

hCþ
αeiδθa

; Cþ
αeiδθb

jPh½s�;IijCþ
αeiδθa

; Cþ
αeiδθb

i → 1: ðB16Þ

Similarly, we will have

hCþ
iαeiδθa

; Cþ
iαeiδθb

jPh½s�;IijCþ
iαeiδθa

; Cþ
iαeiδθb

i → 1;

hCþ
αeiδθa

; Cþ
iαeiδθb

jPh½s�;IijCþ
αeiδθa

; Cþ
iαeiδθb

i → 0;

hCþ
iαeiδθa

; Cþ
αeiδθb

jPh½s�;IijCþ
iαeiδθa

; Cþ
αeiδθb

i → 0: ðB17Þ

When Eqs. (B16) and (B17) hold, we can simplify

Eq. (B12) to

UXXEU
†
XXðPc ⊗ PcÞ ≈ EðP�;� þ P�;∓Þ ¼ EðPc ⊗ PcÞ;

ðB18Þ

i.e., UXX is robust against small phase rotation.

Now, we consider the error occurs during the process

of XX rotation. First, we show that a single-photon loss

during the XX rotation can propagate only to at most a

single loss per mode by combing the idea of error trans-

parency and error closure. Recall that a XX rotation

is implemented by two SNAP gates sandwiched by two

BSs: UXX ¼ BSðS ⊗ SÞBS. We first show that a single-

photon loss during the BS can propagate only to an error
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of the form c1aþ c2b, where c1; c2 ∈C, since the BS

satisfies the error-closure condition. A BS is generated by

HBS ¼ gBSa
†bþ g�BSab

†. Any single-photon loss on one of

the modes, e.g., a, satisfies the error-closure condition,

since ϵ¼ha; ½HBS;a�i¼ha;bi, and for any e ¼ c1aþ c2b,
where c1; c2 ∈C, we have (i) ½HBS; e�∈ ϵ; (ii) e is a

correctable error if both a and b modes are encoded in a

four-legged cat.

Next, we show that the SNAP gates S ⊗ S are error

transparent to both a single-photon loss during the gates

and an input error of the form c1aþ c2b. According to the

analysis in Appendix B 2, the former error is satisfied if

½S ⊗ S; a�BSPc ¼ ½S ⊗ S; b�BSPc ¼ 0, which is a special

case of the condition for the latter error:

½S ⊗ S; c1aþ c2b�BSPc ¼ 0: ðB19Þ

To prove Eq. (B19), we take the approximation

jþLi ≈ jCþ
α i and j−Li ≈ jCþ

iαi and show that ½S ⊗ S; c1aþ
c2b�BSj�L;�Li ¼ 0. For jþL;−Li,

ðS ⊗ SÞðc1aþ c2bÞBSjþL;−Li
¼ ðc1aþ c2bÞBSjþL;−Li
¼ ðc1aþ c2bÞðS ⊗ SÞBSjþL;−Li; ðB20Þ

since S ⊗ S acts trivially on both BSjþL;−Li and

ðc1aþ c2bÞBSjþL;−Li. The same argument also applies

to j−L;þLi. For jþL;þLi, we have BSjþL;þLi ∝
ðj2α; 0i þ j0; 2αi þ j−2α; 0i þ j0;−2αiÞ. Then,

ðS⊗ SÞðc1aþ c2bÞBSjþL;þLi
¼ eiθ2α½c1ðj2α;0i þ j−2α;0iÞ þ c2ðj0;2αi þ j0;−2αiÞ�
¼ ðc1aþ c2bÞðS⊗ SÞBSjþL;þLi: ðB21Þ

Similarly, we can show ½S⊗S;c1aþc2b�BSj−L;−Li¼0.

Combining the error-closure property of the BSs and

the error-transparency property of the SNAP gates, we

conclude that a single-photon loss during the execution

of the XX rotation can propagate to an error of the form

c01aþ c02b, which is correctable by the four-legged cats.

APPENDIX C: MORE GPI EXAMPLES

Here, we provide more examples of ancilla-assisted

bosonic operations that are GPI.

Recall that the SNAP gate using a three-level transmon

that we present in the main text (Sec. IVA 1) is GPI only if

the χ mismatch Δχ is smaller than Ã=2T. In the scenario

where Δχ ≥ Ã=2T, we can add another flag qubit [60–62]

to make the gate GPI.

Notice that the major reason why the SNAP gate with a

single ancilla is not GPI whenΔχ is large is that the random

dephasing range on the bosonic mode is too large due to the

uncertainty of when an ancilla relaxation from jfi to jei
happens. Therefore, we can add an extra flag qubit to

narrow down the ancilla-relaxation time window, thus

reducing the dephasing range.

As shown in Fig. 10, we apply two X gates to the flag

qubit controlled by the ancilla jei state at time T=2 and T,
respectively. As before, we consider adjacent-level relax-

ation errors for both the ancilla and the flag qubits, as well

as arbitrary forms of dephasing errors. The flag qubit starts

from jgi and gets excited to jei only if the ancilla relaxes

from jfi to jei at a time t∈ ½T=2; T�. As such, a single-

ancilla relaxation incurs a random phase rotation of angle

θ ¼ Δχt on the bosonic mode, where t∈ ½0; T=2� if the flag
qubit is measured in jgi while t∈ ðT=2; T� if the flag qubit

is measured in jei. Formally, we can calculate the bosonic

channels conditioned on the measurement outcomes of

both the ancilla and flag qubits:

⟪g; gjG½1�jg; g⟫ ∝ I ;

⟪f; gjG½1�jg; g⟫ ∝ S • S†;

⟪e; gjG½1�jg; g⟫ ∝

Z

ΔχT=2

θ¼0

Se−iθa
†a
• eiθa

†aS†;

⟪e; ejG½1�jg; g⟫ ∝

Z

ΔχT

θ¼ΔχT=2

Se−iθa
†a
• eiθa

†aS†; ðC1Þ

where the first and second bits represent the ancilla and

the flag qubit state for jϕ;ψ⟫, respectively. According to

Eq. (C1), the gate is 1-GPI if ΔχT=2 < Ã=2 or Δχ < Ã=T.
Therefore, we can allow twice as large χ mismatch by

introducing another flag qubit. Note that we do not

necessarily require the CNOT gates to be infinitely fast

and noiseless, and Eq. (C1) holds as long as the CNOT

Hamiltonian is diagonal in the ancilla basis, e.g.,

HCNOT ∝ jeiAhej ⊗ ðjeifhgj þ jgifhejÞ.
We remark that one can similarly construct a 1-GPI

parity measurement that can tolerate larger χ mismatch by

introducing another flag qubit.

APPENDIX D: DETAILS OF NUMERICAL

SIMULATIONS

Here, we provide the details of numerical simulations of

the teleportation-based QEC and the parity measurement

Ancilla

Flag

FIG. 10. GPI SNAP gate with a flag qubit. The flag qubit is

excited to jei only if the ancilla decays from jfi to jei at

t∈ ½T=2; T�.
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shown in Fig. 7. In Fig. 6(c), we have shown that the

teleportation-based QEC circuit can be decomposed to a

logical jþLi state preparation gadget, a XðÃ=2Þ gate on the

input mode, two ZðÃ=2Þ gates acting on two bosonic

modes, respectively, a XXðÃ=2Þ gate on two bosonic

modes, a logical Z measurement on the input mode, and

a potential Z gate on the output mode. Note that the final Z
gate can be done in the software by updating the Pauli

frame. The XðÃ=2Þ and XXðÃ=2Þ gates can further be

decomposed to displacement operators, SNAP gates,

and/or beam-splitting operations following Figs. 6(a)

and 6(b). The 1-FT jþLi-state preparation and the 1-FT

logical Z measurement are done by the procedures in

Algorithms 3 and 4, respectively, based on repeated single-

shot parity or Z-basis measurement by dispersive coupling

to a three-level ancilla and majority vote.

In the numerical simulation, we assume the displacement

operations can be performed quickly and ignore the faults

that occur during them. We also assume a perfect prepa-

ration of the coherent state jαi and the measurement on the

three-level ancilla. On the other hand, we consider a noisy

simulation of all other three basic gadgets including the

dispersive coupling between a bosonic mode and a three-

level ancilla, the SNAP gate, and the beam-splitting

interaction. Below, we discuss the simulation details of

these three noisy gadgets.

The dispersive coupling Hamiltonian H0 is given by

Eq. (15). We set the dispersive coupling coefficient

χf ¼ 2Ã × 1 MHz. In the simulation, we mainly consider

four types of Markovian noise: ancilla relaxation Jf→e ¼
ffiffiffiffiffiffiffiffiffi

γf→e
p jeihfj, Je→g ¼ ffiffiffiffiffiffiffiffiffi

γe→g
p jeihfj, ancilla dephasing

Jph ¼
ffiffiffiffiffi

γϕ
p ðjeihej þ 2jfihfjÞ, and cavity loss Fa ¼

ffiffiffiffiffi

κ1
p

a.

The SNAP gate Hamiltonian H̃ in the interaction picture

of H0 is given by Eq. (17). For the convenience of

numerical simulation, we move to another interaction

picture associated with a χ-matched Hamiltonian:

H0
0 ¼ −χfðjfihfj þ jeihejÞ ⊗ a†a: ðD1Þ

In the interacting picture ofH0
0, the SNAP gate Hamiltonian

becomes

H̃0 ¼ Δχjeihej ⊗ a†aþΩ½jfihgj ⊗ Sðϕ⃗Þ þ H:c:�; ðD2Þ

where Δχ ¼ χf − χe. We set the Rabi drive strength

Ω ¼ 0.3χf. The jump operators are then converted to

J̃f→e ¼ ffiffiffiffiffiffiffiffiffi

γf→e
p jeihfj, J̃e→g ¼ ffiffiffiffiffiffiffiffiffi

γe→g
p jeihfjeiχfta†a, J̃ph ¼

ffiffiffiffiffi

γϕ
p ðjeihej þ 2jfihfjÞ, and F̃a ¼

ffiffiffiffiffi

κ1
p ½Pg þ eiχftðPeþ

PfÞ� ⊗ a, where Pk ≔ jkihkj for k ¼ g, e, and f. Note

that J̃e→g and F̃a are time dependent which rotate quickly.

To ease the simulation, we make a conservative estimate

and approximate J̃e→g by J̃
0
e→g ¼ ffiffiffiffiffiffiffiffiffi

γe→g
p jeihfj ⊗ eiðÃ=4Þa

†a;

i.e., as long as the e → g relaxation happens, a large

dephasing error will be introduced on the cavity. To

simplify F̃a, we first notice that D½F̃a� ≈D½ ffiffiffiffiffi

κ1
p

Pg ⊗ a�þ
D½ ffiffiffiffiffi

κ1
p ðPe þ PfÞ ⊗ a�, where we ignore all the fast rotat-

ing terms. This can be understood as a dephasing error

between Pg and Pe þ Pf introduced by the cavity loss. As a

simple approximation, we merge the cavity-induced ancilla

dephasing with the real ancilla dephasing; i.e., we set

the cavity loss jump operator to be F̃0
a ¼

ffiffiffiffiffi

κ1
p

a, while the

effective ancilla dephasing rate for J̃f→e becomes γ0ϕ ¼
γϕ þ κ1=4. The factor 1=4 is introduced because we set

Δf ¼ 2 for f level in Jph.

The beam-splittingHamiltonian isHBS¼igBSðab†−a†bÞ,
where gBS is the BS interaction strength. We set the beam-

splitting interaction strength gBS ¼ 2χf. The major noise

we consider during the procedure are the cavity losses

Fa ¼
ffiffiffiffiffi

κ1
p

a and Fb ¼
ffiffiffiffiffi

κ1
p

b.

To simulate the dissipative time evolution described

above, we use the Monte Carlo solver in the QUTIP package

[63]. This can be easily done for a composite system with

one bosonic mode and a three-level ancilla. However, in the

simulation of a XXðÃ=2Þ gate, we need to finish the

following three-step simulation.

(1) For a product input state jψiA ⊗ jψ 0iB on two

bosonic modes A and B, simulate the noisy beam-

splitting interaction BSðÃ=2Þ. The output state is a

two-mode entangled state jΨiAB.
(2) For the entangled state jΨiAB input, simulate the

noisy tensored SNAP gate S ⊗ S with two three-

level ancillas A0 and B0. The output state is a two-

mode entangled state jΨ0iAB.
(3) For the entangled state jΨ0iAB input, simulate the

noisy beam-splitting interaction BS†ðÃ=2Þ. The out-
put state is a two-mode entangled state jΨ00iAB.

The major bottleneck is step 2, where we need to

consider a simulation of two bosonic modes A and B
and two three-level ancillas A0 and B0. To get rid of this

costly simulation, we first perform a Schmidt decomposi-

tion on the entangled state jΨ0iAB¼
P

k

ffiffiffiffiffi

pk

p jukiA⊗ jvkiB.
Then, we simulate the SNAP gate on the bosonic modes A
and B separately. Then, we simulate the SNAP gate on each

components juki or jvki separately, i.e., ðS ⊗ SÞjΨ0iAB ¼
P

k

ffiffiffiffiffi

pk

p ðSjukiAÞ ⊗ ðSjvkiBÞ. Then, taking the simulation

of the SNAP gate on mode A as an example, we need to

estimate when the quantum jumps occur and which jump

operator occurs [63]. This is determined by the following

unnormalized expectation values:

OjðtÞ ¼ hΨ̃ðtÞjJ†jJjjΨ̃ðtÞi; ðD3Þ

where

jΨ̃ðtÞi ¼ e−itHeff jΨiAB ⊗ jggiA0B0 ;

Heff ¼ ðH0
0ÞAA0 ⊗ IBB0 −

i

2

X

j

J†jJj: ðD4Þ
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Here, the summation of j is taken for the four

different jump operators we consider. We can simplify

the form of pj to

OjðtÞ ¼
X

k

pkO
ðkÞ
j ðtÞ

¼
X

k

pkhuk ⊗ gjeitHeffJ†jJje
−itHeff juk ⊗ gi: ðD5Þ

Here, juk ⊗ gi ≔ jukiA ⊗ jgiA0 . It is easy to verify that, for

the ancillary relaxation and dephasing, the values ofO
ðkÞ
j ðtÞ

for all the Schmidt components are the same. We also check

numerically that, for the cavity loss, the values of O
ðkÞ
j ðtÞ

for the Schmidt components with large weight pk are

almost the same. This means that we can approximate

the overall simulation of jΨiAB by fixing the quantum

jump location of all the components fjukiA ⊗ jgiA0g to be

the same. This can be done in the Monte Carlo solver

in QUTIP by passing the same random seed for all the

Schmidt components.
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