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Abstract—With the development of space-air-ground inte-
grated networks, Low Earth Orbit (LEQO) satellite networks are
envisioned to play a crucial role in providing data transmission
services in the 6G era. However, the increasing number of con-
nected devices leads to a surge in data volume and bursty traffic
patterns. Ensuring the communication stability of LEO networks
has thus become essential. While Lyapunov optimization has been
applied to network optimization for decades and can guarantee
stability when traffic rates remain within the capacity region,
its applicability in LEO satellite networks is limited due to the
bursty and dynamic nature of LEO network traffic. To address
this issue, we propose a robust Lyapunov optimization method
to ensure stability in LEO satellite networks. We theoretically
show that for a stabilizable network system, traffic rates do not
have to always stay within the capacity region at every time
slot. Instead, the network can accommodate temporary capacity
region violations, while ensuring the long-term network stability.
Extensive simulations under various traffic conditions validate
the effectiveness of the robust Lyapunov optimization method,
demonstrating that LEO satellite networks can maintain stability
under finite violations of the capacity region.

Index Terms—Robust Lyapunov Optimization, network Rout-
ing Control, queueing theory.

I. INTRODUCTION

The rapid expansion of the Internet of Things (IoT) and
the proliferation of wireless devices have significantly in-
creased data traffic, challenging the capabilities of the sixth-
generation (6G) networks to deliver ubiquitous, reliable global
data services and extensive connectivity [1]. Traditional ter-
restrial networks face obstacles such as uneven infrastructure
development and limited backhaul capacity, thus limiting their
ability to handle the escalating data traffic [2]. LEO satellite
networks, which consist of hundreds to thousands of low-Earth
orbit (LEO) satellites, offer a promising solution by providing
high-capacity backhaul, seamless global coverage, and flexible
network access services [3]. These networks not only enhance
mobile communication services in remote areas beyond the
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Fig. 1. Illustration of LEO satellite networks in a space-air-ground integrated
network.

reach of terrestrial networks, but also offer faster and more
reliable services than current wireless technologies [4], [S].
As a critical complement to terrestrial networks, LEO satellite
networks are poised to play a vital role in the development of
the next-generation networks.

Moreover, Starlink predicts that LEO satellite networks will
provide reliable global connectivity over the next 20 years
[6]. LEO satellite networks will be integrated with terrestrial
systems to offer broadband Internet services to both consumers
and enterprises [7]. The architecture of the space-air-ground
integrated network, illustrated in Fig. 1, highlights the critical
role of LEO satellite networks in extending mobile broadband
and machine-type communication services to areas beyond
terrestrial wireless networks, such as oceans, skies, and remote
regions. This integration ensures seamless global data flow.

With the ongoing construction of LEO satellite networks,
these systems will become vital for rapid information diffu-
sion, addressing the surge in online social networks, advanced
mobile networks, and the proliferation of IoT devices [8].
This growth causes an information explosion and increased
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data burstiness within LEO satellite networks. Consequently,
efficiently transmitting, delivering, and processing the mas-
sive amount of generated data becomes crucial. As a result,
traffic routing control in LEO satellite networks emerges as
a critical issue [9]. Existing research has explored routing
strategies from various perspectives, including hop-count [10],
load-balancing [11], and latency [12]. Despite these efforts,
ensuring system stability in LEO satellite networks remains a
significant open challenge, especially considering the bursti-
ness characteristic of traffic flows.

To investigate system stability, Lyapunov optimization is a
powerful mathematical tool for developing stable scheduling
strategies in network optimization. In large-scale multi-hop
networks, such as LEO satellite networks, Lyapunov optimiza-
tion is particularly effective for routing control. This is because
it only requires solving linear programming problems and re-
lies on queue backlog observations rather than detailed system
dynamics [13], [14], [15], [16]. For instance, the Distance-
based Back-Pressure Routing (DBPR) algorithm addresses
load balancing in LEO satellite networks by optimizing queue
backlogs and propagation delays using a distance delay-based
routing metric [17].

While Lyapunov optimization is an effective tool for design-
ing routing controllers with stability guarantees, it typically
assumes that traffic flow remains within the capacity region
[15]. However, given the bursty nature of traffic flow in
LEO satellite networks, this assumption is often unrealistic.
This significantly underestimates the resilience and capacity
region of these networks. In this paper, we propose robust
Lyapunov optimization to provide a robust guarantee for the
stability of LEO satellite networks. Our main contributions are
summarized below:

o To portray the characteristics of LEO satellite networks,
we propose a multi-hop queueing network model based
on the Walker Constellation, ascending and descending
satellites, and the inter-satellite link (ISL) model. This
model incorporates LEO satellite topology information
into the queueing network model, leading to more accu-
rate modeling and contributing to better control policies.

o To the best of our knowledge, we are the first to propose
the robust Lyapunov optimization framework. Unlike
traditional Lyapunov optimization, which ensures system
stability by requiring network traffic to remain within
or interior to the capacity region, robust Lyapunov opti-
mization demonstrates that a stabilizable network system
can tolerate finite violations of the capacity region while
maintaining network stability. This method provides a
robust guarantee of stability for LEO satellite networks,
even when subjected to dynamic traffic burstiness.

The rest of this paper is organized as follows: Section
IT introduces the system model of LEO satellite networks.
Section III presents the proposed scheme using robust Lya-
punov optimization. Section IV provides simulation results and
performance evaluation. Finally, Section V offers concluding
remarks and future work.

II. SYSTEM MODEL
A. Multi-Hop Queueing Network Model

1) ISL Channel Model: As illustrated in Fig. 1, we study
the connection of ground users through a LEO satellite net-
work. Each user is covered and serviced by an access satel-
lite. We assume that during data transmission, each ground
user maintains a continuous connection with a single access
satellite [18]. Although in practical scenarios, ground users
may switch their access satellite due to the movement of the
Earth and satellites, the variation in network topology remains
regular when satellites are evenly distributed [19].

In the LEO satellite network, each satellite is considered
a node, with the set of neighboring nodes of node ¢ denoted
by N;. The network operates in slotted time ¢ € {0,1,2,...},
and the time horizon is 7. During each time slot, routing and
transmission scheduling decisions are made to ensure that all
data reach their intended destinations. The network handles K
classes of data, with data of class k destined for sink dj. The
set of data classes is denoted by K. The link capacity between
nodes ¢ and j is represented as Cj;.

At the beginning of time slot ¢, each node ¢ has Q;(t)
buffered packets of class k and receives a; (t) external packets
of class k. For simplicity, we assume that Q;;(0) = 0 for
each node ¢ and class k. Simultaneously, routing decisions
are made, with f;;x(¢) denoting the number of packets of
class k transmitted to a neighbor j, as decided by the network
controller under a given policy. The set of all f;;,(t) at time ¢
is denoted by F(t). Mathematically, the queue backlogs evolve
according to the following rule:

+

Quk(t+1) = | Qur(t) + am(t) = Y fijn(t)
JEN; @))

+ Z Fiin(t)

JEN;

where fjik(t) represents the actual number of packets trans-
mitted.

Considering physical limitations, without loss of generality,
we further assume that:

for some constant D > 0.

B. LEO Satellite Networks System

1) Walker Constellation: In this paper, we focus on Walker-
Delta constellations (e.g. StarLink), where satellites are uni-
formly distributed within their orbits. Typically, a Walker-
Delta constellation-based LEO satellite network can be repre-
sented by the tuple < Np, Mp,a >, where Np is the number
of orbit planes, Mp is the number of satellites per plane, and
« is the orbital inclination with respect to the equator. The
commonly used system characteristic formulas for Walker-
Delta:

o« AQ = ]%—’; is the difference in the right ascension of the

ascending node (RAAN) between adjacent planes.
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Fig. 2. Illustration of LEO satellite networks and inter-satellite links.

o« AD = 131—7; represents the phase difference between
consecutive satellites in each plane.
o« Af = Ni’“ﬂp denotes the phase offset between satellites

in neighboring planes, where F' is phasing factor and F' €
[l — Np,Np—1].

As shown in Fig. 2, in the Inter-Satellite Link (ISL)
connection mode, each satellite establishes four permanent
ISLs with its neighboring satellites: two intra-plane links and
two inter-plane links. Considering the link instability caused
by the high relative motion between neighboring ascending
and descending satellites, no inter-plane links are established
between them.

Based on [20], the link capacity (in bps) of the ISL between
satellites 7 and j, denoted by Cj; is givens as follows:

PtGiGjLij
kBUs(Eb/NO)rqu '

2
C
L”'_<47r.SR.f> ’

where P, is the transmission power of the transmitting satellite.
G; and G; are the transmitting antenna gain of LEO satellite ¢
and the receiving antenna gain of LEO satellite j respectively.
Additionally, kp represents the Boltzmann constant (in JK—1)
and U denotes the total system noise temperature (in K).
(Ep/No)req is the required ratio of received energy-per-bit
to noise density, and A is the link margin. L;; is the free
space loss of the ISL, c is the speed of light (in km/s), SR is
the slant range (in km), and f is the communications center
frequency (in Hz) of ISLs.

Cij =

3)

III. ROBUST LYAPUNOV OPTIMIZATION-BASED
NETWORKS ROUTING CONTROL

Lyapunov optimization is a widely used tool for designing
feasible routing strategies with stability guarantees. Its core
principle is based on the Lyapunov’s second method, which
states that if a system is subjected to small disturbances while
in its stable state, it will always stay near the stable equilibrium
as long as the drift of the Lyapunov function is less than
or equal to zero. When applying Lyapunov optimization to
the design of network routing strategies, we first define a
quadratic Lyapunov function of the queue backlog sizes. This

TABLE I
VARIABLE NOTATIONS AND DEFINITION
Notation Definition
N The number of queues in the queueing network
N; The set of neighboring nodes of node ¢
K The set of data types
Cij The link capacity between nodes ¢ and j
dp, The destination of the data of class k
T The time horizon
L(t) Lyapunov function value at time ¢
AL(t) Lyapunov drift at time ¢
B An upper bound for Lyapunov drift
Qir(t) The queue backlog of class k at node ¢ at time ¢
a;k(t) The number of external packets of class k arriving at node
1 at time ¢
fjk(t), Z;k(t) The planned and actual number of packets of class k
transmitted from nodes ¢ to j at time ¢
Np Number of orbit planes
Mp Number of satellites per plane
« Orbit inclination with respect to the equator

function serves as a scalar measure of the instability level of
the network system, as shown below:

1
L(t) =5 D @A), )
ik

where L(t) is a positive definite Lyapunov function that
equals zero if and only if all queue backlogs Q.1 (t) are zero.
To control the growth of the Lyapunov function in (4), we
minimize the one-slot Lyapunov drift AL(t) = L(t+1)— L(t)
during each time slot:

AL(t) = L(t +1) = L(¢)
<B4 Qu(t)AQik(t), )

i,k

where B is a constant that depends on the maximum service
rate and maximum arrival rate, derived using the assumptions
in (2), and AQ;x(t) is the queue difference, defined as:

{ B=N3KD? + NKD? + N2KD?,

AQik(t) = ain(t) — X jen, fij() + 2 e, fiin(t), ©

Considering stochastic network dynamics, taking the con-
ditional expectation of (5) yields:

E[AL®)Q(H)] < B+ > Qu(HE[AQu(1)|Q(t)]. 7

ik

To minimize the Lyapunov drift AL(t), it is equivalent to
minimizing

S QuE | > fiuw) = D fip®QE)|  ®)
ik JEN; JEN;

By the principle of opportunistically minimizing an expecta-
tion, the above expectation can be minimized by minimizing
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the function inside it, i.e.,

fr() = argmfinZQik(t)' S fiik— > fik| s

JEN; JEN;
st figr >0, Zfijk < Cy.
%

©))

If the traffic flow always remains within the capacity region,
the expectation E [AQ;x(t)|Q(¢)] in (7) will be negative. Let
it be a value greater than zero, denoted as € > 0, i.e.,

E |aw(t) = > fir)+ Y fin@®IQE) | < —e (10)

JEN; JEN;

This implies that as long as the queue backlog in the network
system is sufficiently large, ie., >, , Qir(t) > £, the Lya-
punov drift AL(t) will always be less than or equal to zero.
Consequently, it will drive the network system back to a stable
state. Specifically, the queue backlog in the network system
will be constrained within % over the long term, as shown
below:

lim E

t—o00

B
=, (11)
€

> Qu(t)| <
ik

Based on the above analysis, we can see that in de-
signing a routing controller based on Lyapunov optimiza-
tion, to obtain routing strategies with stability guarantees,
it is necessary to assume that the traffic of the network
system always remains within the capacity region, i.e.,
E [air(t) = X jen, fin(t) + Ty, fﬂk<t>|cz<t>l < -l
is of interest to note that € represents the distance between the
traffic flow and the boundary of the capacity region. However,
considering the bursty nature of traffic flow, this assumption is
unrealistic and overly conservative. This raises the question:
Do we need to continually expand the LEO satellite network
system to handle occasional traffic burstiness? The answer is
no. Clearly, the above assumption significantly underestimates
the network system’s capacity and resilience.

In this paper, we propose robust Lyapunov optimization
to provide a more rigorous stability analysis for Lyapunov
optimization-based network routing control methods. The core
idea of robust Lyapunov optimization is that, for a stabilizable
network, the traffic flow does not need to remain within the
network capacity region at every time slot. It can violate the
capacity region, but as long as these violations are finite, robust
Lyapunov optimization can ensure the stability of the network
system.

Lemma 1. Let L(t) be a discrete-time function defined on
[0,T) (0 < T < +00), satisfying the following inequality:

L(t+1) < cL(t) + di(H)L{t) + do(t), t=0,1,... (12)
where —1 < ¢ < 1, dy and ds are non-negative time functions
satisfying:

T T
(di(t)7 < S and D (di(t))* < S,

t=0

(13)
t=0

where o > 1, £ > 1. Under this assumption, L(t) is bounded
from the above on [0,T) and, precisely:

L(t) < KGL(0) + Ky Vte[0,T) (14)
with K1 and K5 depending only on o, £, S1 and Ss.
Moreover, if T is infinite, then
limsup L(t) < 0. (15)

t—o00

Proof. The proof of Lemma 1 is based on the discrete-time
Gronwall lemma and Holder’s inequality [21]. A detailed proof
will be provided in a subsequent journal version. [

Lemma 1 indicates that the Lyapunov function does not
need to be strictly monotonically decreasing to ensure system
stability. While it may fluctuate during its descent, as long
as the overall trend is downward, the system will remain
stable. In the context of network routing control, the controller
greedily minimizes the Lyapunov drift AL(¢) by solving an
optimization problem. However, due to the bursty nature of
traffic flow, it is challenging to guarantee that the Lyapunov
function will be monotonically decreasing, i.e., AL(t) < 0, V.
But the stability of the network system is still guaranteed as
long as the overall trend of the Lyapunov function remains
downward, as shown in Theorem 1.

Theorem 1. The network system (1)-(2) under the control
policy (9) is robustly stable.

IV. NUMERICAL EXPERIMENTS

To validate the effectiveness of robust Lyapunov optimiza-
tion, we evaluated its performance on a Celestri-based LEO
satellite network system. The Celestri Walker-Delta constel-
lation is represented by the tuple < Np = 7, Mp = 9, =
48° > and has an orbital altitude of 1,400 km.

The ISL link capacity between adjacent satellites is calcu-
lated using (3). Based on the work of [20], the transmitting and
receiving antenna gains for all satellites are set to 35 dB, with
a transmission power P, of 70 W. The communications center
frequency is 15 GHz, with a total system noise temperature
Us; of 25 dB K. The required ratio of received energy-per-
bit to noise density (E}/No)req is 10 dB, and a link margin
A of 3 dB. The arrival nodes and sink nodes in the LEO
satellite network are randomly generated, including 15 arrival
nodes and 15 sink nodes. The link capacities between the sink
nodes and the destination (C's_.p) are set to 0.3 Gbps. The
time slot is set to 1 second, and the simulation time horizon
T is set to 12,000 seconds. At the beginning of each time
slot, external packets arrive at the arrival nodes according to
a uniform distribution as follows:

o Celestri: Celestri: a(t) ~ Unif{0,...,0.5}, t € [0,T].

Additionally, considering the bursty nature of traffic flow,
the arrival nodes of the LEO satellite network system will
experience dynamic traffic burstiness. This burstiness affects
each arrival node at stochastic time periods but with a consis-
tent duration of 10 seconds, i.e., dg = 10s. The starting times
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of burstiness periods are uniformly selected throughout the en-
tire simulation time horizon, i.e., t5 € Unif{0,...,12,000}.
The burstiness intensity is categorized into six levels.

To validate the effectiveness of robust Lyapunov optimiza-
tion, we examine its performance under varying intensities of
dynamic traffic burstiness. For simplicity, there is only one
class of traffic, and all packets can exit the system via any of
the sink nodes leading to the destination d. In this scenario,
due to the absence of admission control, the controller admits
all external arrivals at the arrival nodes. It then determines
which neighboring satellites will relay the buffered packets to
ensure they reach destination d by solving (9) [15], using a
classical Lyapunov optimization-based routing algorithm.

In the absence of dynamic traffic burstiness, the expected
external arrivals per time slot are 0.5 x 0.5 x 15 = 3.75
(Gbps), while the total service rate is 0.3 x 15 = 4.5 (Gbps).
Clearly, the traffic is within the capacity region, allowing the
network controller to keep the entire network stable. Note that
the link capacities between neighboring nodes are sufficiently
large and will not become bottlenecks for the network. How-
ever, considering the impact of dynamic traffic burstiness, at
burstiness intensity level 6, the expected external arrivals in
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Fig. 5. Queue backlog evolution under dynamic burstiness.
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Fig. 6. Statistical results of the average queue difference evolution under
dynamic burstiness.

some time slots increase to 0.5 X 0.5 X 15+ 5.5 x 0.5 = 6.5
(Gbps), exceeding the network system’s total service rate. This
raises the question: Can the LEO satellite network system
remain stable under dynamic traffic burstiness? This scenario
falls outside the explanatory scope of the traditional Lyapunov
optimization. However, according to Robust Lyapunov Opti-
mization, the answer is yes. We will explain this based on
simulation results in the sequel.

In our simulation experiments, we first examine the impact
of varying degrees of dynamic traffic bursts on network queue
backlogs, i.e.,zi’ i Qik(t). The results are illustrated in Fig. 3.
Our findings demonstrate that the proposed robust Lyapunov
optimization method maintains network system stability across
different intensities of dynamic traffic bursts. Notably, the
queue backlogs of various LEO constellation systems exhibit
fluctuations throughout the entire experimental time range 7.
These fluctuations are attributed to the randomized selection of
time slots for traffic bursts. Despite these variations, the overall
stability of the system remains largely unaffected. We also
observe that as the intensity of dynamic traffic bursts increases,
the network system’s queue backlogs correspondingly rise.
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Fig. 4 presents the statistical results of queue backlogs, clearly
showing an upward trend in the steady-state mean of network
system queue backlogs as the intensity of dynamic traffic
bursts increases. More significantly, the impact on the standard
deviation of queue backlogs is even more pronounced: higher
burst intensities lead to greater variability in queue backlogs.

We then investigate the impact of varying traffic
burst intensities on the average queue difference, i.e.,
ik E[AQu(1)[Q(1)] /N, in LEO satellite network systems,
as illustrated in Fig. 5. The data reveals persistent fluctua-
tions in the average queue difference throughout the entire
experimental timeframe 7', due to the influence of dynamic
traffic bursts. This observation deviates from the stability
assumptions of the traditional Lyapunov optimization theory.
Notably, this deviation is not confined to specific moments
but persists throughout the experiment. Despite these chal-
lenging conditions, our proposed robust Lyapunov optimiza-
tion method successfully maintains network system stability,
aligning with theoretical predictions. This outcome suggests
that for a stabilizable network system, it is not necessary for
the system to strictly remain within the capacity region at every
time slot. As long as excursions beyond the capacity region
are limited, the system can still maintain the overall stability.
We also note that as the intensity of dynamic bursts increases,
the fluctuations in the average queue difference become more
pronounced. Fig. 6 presents statistical results of the average
queue difference under various intensities of dynamic traffic
bursts. The data clearly shows that the mean of the average
queue difference is slightly above zero. Furthermore, we
observe that the standard deviation increases with the intensity
of dynamic bursts, consistent with the simulation results shown
in Fig. 5.

V. CONCLUSION

In this paper, we focus on the stability issues of LEO
satellite constellation network systems. Traditional Lyapunov
optimization, based on the Lyapunov’s second stability crite-
rion, assumes that network traffic must remain within the ca-
pacity region at all times to ensure system stability. However,
this assumption is overly conservative and underestimates the
resilience and the actual capacity of LEO satellite networks. To
address this limitation, we have proposed a robust Lyapunov
optimization method. Unlike the traditional approaches, this
new method provides rigorous stability guarantees for network
systems that would be considered unstable under the conven-
tional frameworks. Our research demonstrates that network
traffic flows do not have to strictly remain within the capacity
region at all times. Instead, network systems can tolerate lim-
ited capacity violations while maintaining the overall stability.
Through extensive simulation experiments on a Celestri-based
LEO satellite network system, we validate the effectiveness
of the proposed robust Lyapunov optimization method under
varying intensities of dynamic traffic burstiness, demonstrating
that LEO satellite networks can maintain stability under finite
violations of the capacity region.
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