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In an effort to quantify and combat sexual assault, U.S. colleges and
universities are required to disclose the number of reported sexual assaults
on their campuses each year. However, many instances of sexual assault are
never reported to authorities, and consequently, the number of reported as-
saults does not fully reflect the true total number of assaults that occurred;
the reported values could arise from many combinations of reporting rate and
true incidence. In this paper we estimate these underlying quantities via a
hierarchical Bayesian model of the reported number of assaults. We use in-
formative priors, based on national crime statistics, to act as a tiebreaker to
help distinguish between reporting rates and incidence. We outline a Hamilto-
nian Monte Carlo (HMC) sampling scheme for posterior inference regarding
reporting rates and assault incidence at each school and apply this method to
campus sexual assault data from 2014-2019. Results suggest an increasing
trend in reporting rates for the overall college population during this time.
However, the extent of underreporting varies widely across schools. That
variation has implications for how individual schools should interpret their
reported crime statistics.

1. Introduction. Sexual assault on college campuses is a pressing public health concern
in the United States, prompting government action such as the 2014 formation of the White
House Task Force to Protect Students from Sexual Assault (Obama (2014)) and the “It’s on
us” awareness campaign (Somanader (2014)). Per the Clery Act of 1990, U.S. colleges and
universities are required to report annual crime statistics for their campuses and adjacent ar-
eas. These crime statistics include the number of reported sexual assaults, but because sexual
assault is widely believed to be underreported, these figures do not tell the whole story. The
number of reported assaults in the Clery data could arise from many different combinations
of reporting rates and true underlying numbers of assaults. Without further assumptions it is
equally plausible that a given school has a large number of assaults and a low reporting rate,
or few assaults and a high reporting rate.

To estimate the true incidence and reporting rates of sexual assault in the U.S. college
population, we construct a hierarchical Bayesian model of the reported data, together with a
Markov chain Monte Carlo (MCMC) sampling scheme for posterior inference. More gener-
ally, underreported count data arises in many disciplines, with applications including crimi-
nology (Moreno and Girén (1998), Fernandez-Fontelo et al. (2019)) as well as epidemiology
(Bailey et al. (2005), Bracher and Held (2021)), traffic safety (Kumara and Chin (2005), Ma
and Li (2010)), and economics (Winkelmann (1996), Fader and Hardie (2000)). The central
challenge in such problems is to disentangle the per-school reporting rate from the true la-
tent counts. This issue can be remedied either through the use of validation data not subject
to underreporting or by using domain knowledge to assign more informative prior distribu-
tions to latent variables. In the case of campus sexual assault, fully observed validation data
is unavailable, and so we use national crime statistics as a source of external information.
The absence of fully observed validation data also has implications for model assessment.
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Without knowledge of the true total number of assaults, we use predictive checks applied to
held-out data to demonstrate the fitted model’s compatibility with the data.

In general, we find that inference for the latent total number of assaults and reporting rate
at a given school offer a clearer picture of the campus environment than the reported figures
alone. In particular, these estimates can suggest the relative contributions of reporting rate
and incidence to year-over-year changes in the reported number of assaults. This is a relevant
line of inquiry, given that ex ante an increase in the reported number of assaults could equally
be explained by an increase in the reporting rate (a positive outcome, indicating that students
are aware of campus support resources) or an increase in the true total number of assaults (a
bad outcome).

The remainder of this paper is structured as follows. Section 2 reviews related work, fol-
lowed by an overview of the dataset in Section 3. The proposed modeling methodology is
outlined in Section 4. Section 5 discusses modeling results and insights, and Section 6 offers
concluding remarks and directions for future work.

2. Related literature. There are various perspectives on underreported count data.
Some studies consider underreporting as a type of censoring. In this formulation each ob-
served value is possibly right-censored and has an accompanying latent censoring indicator.
de Oliveira, Loschi and Assuncdo (2017) take this view and assign a covariate-dependent
prior distribution to the latent censoring indicators, including the censoring indicators as a
target for posterior inference.

Underreporting also has conceptual overlap with positive-unlabeled (PU) learning. In PU
learning, data consist of labeled positive cases and unlabeled cases, which may be positive or
negative (Letouzey, Denis and Gilleron (2000)). The recorded number of positive cases is thus
a lower bound for the true number of positive cases, which can be viewed as an example of
underreporting. The application of PU learning techniques to underreported data is explored
in Shanmugam and Pierson (2021) and Wu et al. (2023).

Within the broader literature on underreported count data models, one particular line of
work is most relevant to modeling reports of sexual assault. These modeling approaches begin
with an assumption that the latent true number of events, z, follows a Poisson distribution with
rate parameter A. It is common to further suppose that each of these z-many events may or
may not be reported, independently of all others, with reporting probability p. The number
of reported events x, where x < z, is the data value we observe.

Moreno and Girén (1998) articulate the identifiability issue in this setup: marginally, the
observed data x, ..., x,, follow a Poisson(Ap) distribution, so without further constraints or
assumptions, one cannot distinguish among the possible pairs (A, p) with the same product.
Moreno and Girén (1998) further demonstrate that placing uninformative prior distributions
on A and p is insufficient to produce useful inference. For instance, the choice of a uniform
prior on p and a Jaynes (Jaynes (1968)) or Jeffreys (Jeffreys (1946)) prior on A results in
infinite posterior expectations for A and z, given the observed data. In some research appli-
cations, this identifiability issue is remedied through the use of validation data not subject to
underreporting (Powers, Gerlach and Stamey (2010), Dvorzak and Wagner (2016)). An al-
ternative approach is to use external information to assign informative prior distributions, as
Schmertmann and Gonzaga (2018) and Stoner, Economou and Drummond Marques da Silva
(2019) do for the reporting probability. Because external information is available regarding
both the incidence and reporting rate of sexual assault, we take this latter approach, choosing
informative priors for both components of the model.

Earlier work on underreporting models explored the somewhat simpler case of i.i.d. obser-
vations governed by a single reporting probability and incidence parameter A (Moreno and
Girén (1998), Fader and Hardie (2000)). In this paper we adopt the more recent extension of
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works, such as Dvorzak and Wagner (2016) and Stoner, Economou and Drummond Marques
da Silva (2019), allowing p and A to vary across units. When modeling A; and p;, we intro-
duce school features as covariates to account for demographic differences among schools, as
detailed in Section 4.

Posterior distributions for latent variables in this type of underreporting model are gen-
erally intractable. However, choosing conditionally conjugate priors for A and p (Gamma
and Beta distributions, respectively) leads to analytic expressions for their marginal posterior
distributions (Moreno and Girén (1998), Fader and Hardie (2000)). Alternatively, MCMC
approaches to posterior inference allow greater flexibility in choice of priors in exchange for
a greater computational burden. Dvorzak and Wagner (2016) use a bespoke implementation
of a Gibbs-style sampler, while Stoner, Economou and Drummond Marques da Silva (2019)
use slice sampling. Our paper extends this line of work by demonstrating the viability of
gradient-based samplers such as HMC for posterior inference in this model setting.

With respect to the application context, the most relevant work comes from Ferndndez-
Fontelo et al. (2019), who model underreporting of domestic violence complaints across dis-
tricts in Spain. Unlike the campus sexual assault data, observations in the dataset compiled
by Fernandez-Fontelo et al. (2019) are dense in the time domain (quarterly for 10 years),
motivating the authors to adopt time series methodology.

3. Dataset. The dataset contains 11,369 records for 1973 U.S. colleges and universities
over the 2014-2019 time frame,! where a “record” consists of the total number of assaults
reported at a particular school in one particular calendar year. Schools located in the 50 U.S.
states, the District of Columbia, and Puerto Rico are included in this analysis. Annual campus
crime statistics are furnished by the U.S. Department of Education’s Office of Postsecondary
Education. All schools that receive federal financial aid funding under Title IV of the Higher
Education Act of 1965 are required to submit annual campus crime reports. Most schools
have records for all six years in this time frame, though 8% appear in fewer years due to
schools opening/closing or beginning/ ceasing to participate in Title I'V.

School characteristics and demographic data are available through the National Center
for Education Statistics (NCES), which publishes comprehensive institutional profile infor-
mation through its IPEDS database.”> Preprocessed data is included in the Supplementary
Material; raw data is available publicly and from the corresponding author upon reasonable
request. Additional dataset details are included in Appendix A in the Supplementary Material
(Bradshaw and Blei (2024)).

We exclude institutions with no degree-granting programs and institutions with no pro-
grams classified as “academic” in nature. We also exclude institutions with no residential
housing facilities. For such schools the school does not represent the students’ community,
and we would not reasonably expect students to report sexual assaults to the school.

Institutions in this dataset range in size from to 79,500 in-person students, with a median
of 2350. Public institutions comprise 41% of the dataset, religiously affiliated institutions
36%, and private, nonreligiously affiliated institutions 22%. The reported sexual assault data
is notably sparse: 42% of records show zero reported assaults, and 22% of institutions show
no assaults across all six years. The distribution of reported values, shown in Figure 1, has
a long right tail, with a handful of schools reporting more than 100 assaults in a given year.
This sparsity pattern is not explained by student population size alone: schools with as many
as 36,000 students had zero reported assaults, while assaults were reported at schools with as
few as several hundred students.

IData from 2020 and 2021 are excluded. Because the COVID-19 pandemic significantly disrupted patterns of
social interaction, campus sexual assault data from this time are not well described by the same model used for
other years.

2https://nces.ed,gov/ipeds/.


https://nces.ed.gov/ipeds/

BAYESIAN MODEL OF UNDERREPORTING FOR SEXUAL ASSAULT 3149

0.4

0.3

Proportion of Records
0.1 0.2

[

0 1 2 3 4 5-10 11+

0.0
L

Reported Assaults

FI1G. 1. School-level reported sexual assault data is sparse, with 42% of records showing zero assaults, and a
median of one assault.

The total number of assaults reported across schools increased steadily from 2014 to 2018,
growing by nearly 50% before falling in 2019 (see Figure 2). The total in-person student
population was relatively stable over this time period, remaining close to 10.6 million.

Campus crime numbers in this dataset are a direct tally of the individual assaults for which
a student voluntarily made a formal report to campus authorities. Note that those reports
do not arise from a survey process or broad inquiry about student experiences; on its own
this dataset contains no information about underreporting. For complementary information
about reporting rates, we consider the National Crime Victimization Survey (NCVS). The
NCVS is a large-scale annual survey conducted on behalf of the behalf of the U.S. Bureau
of Justice Statistics to determine incidence rates of personal and property crimes, including
sexual assault. This survey dates back 50 years, and one of its primary objectives is to quantify
the extent of crime not reported to authorities. By attempting to measure crimes not reported
to authorities, the NCVS provides additional context which is absent from the college campus
Clery Report data.

4. Methodology. For a particular school i in a particular year j, suppose that the true,
unknown number of assaults z;; comes from a Poisson distribution with rate parameter A;;.
Further suppose that each of those z;; assaults is independently reported, or not reported, with
probability of reporting equal to p;;. This produces the reported value x;; that we observe,
according to a binomial thinning process,

(D xijlzij, pij ~ Binom(z;;, pij).
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FIG. 2. The total number of reported assaults grew from 2014 to 2018. Total student population fluctuated
relatively little, resulting in per capita reporting trends moving with the overall total number of reports.
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FI1G. 3. Graphical model diagram.

With this likelihood model, we construct a hierarchical generative model for the re-
ported campus sexual assault data. The proposed hierarchical model, diagrammed in Fig-
ure 3, entails a component describing the reporting probability, and a component describ-
ing the Poisson rate governing the true number of assaults. A common approach in the

underreporting literature is to model log(2;;) and/or log(; L Zii) as deterministically equal

to a linear function of covariates (Dvorzak and Wagner (2016), Stoner, Economou and
Drummond Marques da Silva (2019), de Oliveira et al. (2021)). To provide additional
flexibility, we instead model the Poisson rate and reporting probability as random func-
tions of their respective covariates. Full details of each model component are discussed be-
low.

4.1. Modeling z. For each record in the dataset, we suppose the true number of assaults
arises from a Poisson distribution parameterized by A;;, where ;; depends on observed char-
acteristics v of school i in year j as follows:

2) zZij|Aij ~ Poisson(A;;),

@) log(ij) = 'Bo,vlf” + }31ng2~) + ﬁzvg) +&i +nij,
Bo.1, Bo.2, Boz ~ N(=5.5,0.5),
B1~N(,0.1),
B2~ N(0,4),
& ~ N(0,0.75),
nij ~ N(0,0.1).

The covariates associated with A are:

VEI)Z degree of urbanization of school i’s campus:

1 = urban;
2 = suburban;
3 = rural.
Vg): log(number of in-person students) for school i in year j.
VS.’): (fraction of women in student body at school i in year j — 0.5)%.
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This generative model considers in-person student population, degree of campus urbaniza-
tion, and student body gender composition® as covariates of interest. The functional form of
equations (2)—(3) implies that for the expected number of assaults we have

E(zij|B, v) ocexp(B, o + ﬁzvgj))exp(ﬂl log(student population,;))
“) o

o (student population;; )P

This modeling choice allows for the possibility that the number of assaults does not scale
linearly with the number of in-person students. Because the number of interpersonal interac-
tions does not always scale linearly with community size, this type of “power law” dynamic
has been observed for various social phenomena, including crime (Bettencourt et al. (2007),
Chang et al. (2018)).

Incorporating separate intercepts in (3) allows for different incidence patterns at urban,
suburban, and rural schools. This decision is motivated by the national differences in violent
crime victimization rates across locales of varying urbanization (Truman and Langton (2014,
2015), Truman and Morgan (2016), Morgan and Kena (2018), Morgan and Truman (2018),
Morgan and Thompson (2020)).

Gender composition of the student body is included as a covariate because most perpetra-
tors of sexual assault are men, while most victims are women (Sinozich and Langton (2014)).
We center the proportion of women in the student body by subtracting 0.5, and square this
value, to allow for the possibility that schools with more extreme gender imbalances may
have different rates of assault.

Per-school intercepts ¢; allow for between-school differences in assault incidence patterns
which are not otherwise captured by covariates. Per-record noise terms 7;; allow for within-
school differences across years. Supposing that 1 = 1 (linear relationship between student
population and number of assaults) and 8> = 0 (no relationship between student body gender
composition and expected number of assaults), priors on &, 1, and intercepts By are set so that
the resulting distribution over assaults per 1000 persons roughly corresponds with external
estimates from the National Crime Victimization Survey (NCVS). The resulting distribution
is displayed in Figure 4. Note that, conditional on covariates, the Poisson rate A;; follows a
log-normal distribution, leading to a number of assaults z;; whose marginal distribution is
overdispersed relative to a Poisson.
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Fi1G. 4. Prior distributions on Py, €, and n imply a distribution over incidence centered at 4.1 per 1000 persons,
with a central 50% range of 2.3 to 7.4.

3The gender categories reported by NCES are currently “male” and “female.”.
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TABLE 1
Sexual assault incidence per 1000 persons in the U.S., by age group

18-20 21-24 12+
2014 1.2% 3.8 1.1
2015 32 1.6* 1.6
2016 3.8 1.8 1.1
2017 8.6 2.4 1.4
2018 10.1 6.0 2.7
2019 7.1 6.4 1.7

* Per BJS: “[estimate is] based on 10 or fewer sample cases or coefficient of variation is greater than 50%.”

The NCVS is a large sample survey conducted annually on behalf of the U.S. Bureau of
Justice Statistics to determine incidence rates of personal and property crimes. This survey
includes crimes reported and not reported the police. Over the 2014-2019 time period, the
estimated incidence of sexual assault in the overall population aged 12 and older ranged
from 1.1 to 2.7 per 1000 persons. As shown in Table 1, estimated incidence skewed higher
in the 18-20 and 21-24 age groups, which are particularly relevant to the college student
population.

4.2. Modeling p. As formulated in equation (1), the reported number of assaults arises
from the latent true number of assaults z and the reporting probability p. Having discussed
a model for z, we now turn to modeling the reporting probability p. Of the total z;; assaults
occurring at school i in year j, suppose that each individual assault is reported, independently,
with probability p;;, where p;; depends on observed characteristics w of school i in year j
as follows:

10g<1 pi; > =ag+a1w ) +oow + 3wl +agwiy + i +8j.
— i

ap~ N(—1.25,0.5),

5) ay, a2, ~ N(0,2),
a3, a4~ N(0,4),

i ~ N(0, 1.25),

8;; ~ N(0,0.5).

The covariates associated with p are:

w'V: school i issues associate degrees only (€ {0, 1}).

)
. school i substantially engaged in religious instruction (€ {0, 1}).

Wl
w,@: (women as fraction of student body at school i in year j — 0.5).
w

J
g'): Pell grant recipients as fraction of student body at school i in year j, median
centered.

The reporting probability at school i in year j accounts for two school-level covariates
that are fixed across years and two that vary. The first fixed school-level covariate is wfl) , an

indicator for whether school i is a junior college, issuing only associate degrees as opposed

to bachelor degrees or higher. The reporting probability also incorporates an indicator wl.(z)
for whether school i is substantially engaged in religious instruction. A theological seminary,
for instance, would satisfy this definition, whereas a religiously affiliated liberal arts college

would not. The inclusion of these school-level random effects encourages the probabilities
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Religious Instruction Associate Degrees Only
5.3% of 0.2% of 13.2% of
institutions institutions institutions
0.4% of 0.0% of 7.2% of
students students students

F1G. 5. Junior colleges and institutions of religious instruction comprise a minority of the dataset.

for an individual school to exhibit similarity across years. Junior colleges comprise roughly
13% of institutions in the dataset and account for 7% of total in-person students. Institutions
of religious instruction make up a relatively smaller portion of the dataset and, generally,
have small student populations. These two categories of institution have negligible overlap,
as detailed in Figure 5.

Gender composition of a school’s student body also contributes to the reporting proba-
bility and varies across years. Many institutions in this dataset have approximately gender-
balanced student populations. Across records, the proportion of female students is centered
around 57%, with smaller peaks at each end of the spectrum corresponding to all-male and
all-female schools. The final covariate incorporated in the reporting rate is the fraction of
Pell grant recipients in the student body. Pell grants are federal financial aid awarded to stu-
dents on the basis of exceptional financial need. This variable is included as a proxy for so-
cioeconomic status, which research indicates may be correlated with reporting rates (Fisher
et al. (2003), Sabina and Ho (2014)). The median percentage of undergraduates receiving
Pell grants is 36%, and values are more widely spread over the unit interval compared to the
gender composition composition covariate.

As in the model of Poisson rate A;;, per-school intercepts y; in equation (5) allow for
between-school differences in assault incidence patterns not captured by covariates, while
per-record noise terms §;; allow for within-school differences across years. Supposing that
o] =ap = a3 = a4 =0, priors on &, n, and intercepts Bo are chosen to be broadly consis-
tent with NCVS estimates of the percentage of sexual assaults reported to police. Over the
2014-2019 time period, the estimated rate of reporting to police ranged from 23% to 40%
in the overall 124 population, while reporting rates for the 18-20 and 21-24 age groups
tended to be lower (see Table 2). The induced prior distribution over values of p, when
o] = oy = a3 =ag4 =0, is depicted in Figure 6 below.

In these models of z and p, global coefficients o and B encourage the sharing of informa-
tion across schools, while school-level terms py and e capture local properties of individual

TABLE 2
Percentage of sexual assaults reported to police, by age group

18-20 21-24 12+
2014 0.0* 16.48 33.6
2015 10.6* 26.0x% 325
2016 10.2* 31.0% 232
2017 45.3 38.3x% 40.4
2018 11.0* 10.2% 24.9

2019 17.5% 24.7% 33.9
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FI1G. 6.  Prior distributions on «q, v, and & imply a distribution over reporting probability centered at 22%, with
a central 50% range of 10% to 43%.

schools. This partial pooling model structure is a compromise between complete pooling, in
which no school-level differences are permitted (y and ¢ omitted), and no pooling, in which
each school i is modeled separately from all others, with its own coefficient vectors «; and
Bi. Compared to the complete-pooling and no-pooling alternatives, the partial pooling model
assigns higher likelihood to held-out observational data refer to Appendix C in the Supple-
mentary Material (Bradshaw and Blei (2024)) for details.

4.3. Inference. The model does not admit closed form expressions for posterior quanti-
ties of interest. We draw samples from the joint posterior distribution over latent variables via
MCMC. The true number of assaults z;; is a discrete latent variable, which presents an obsta-
cle to gradient-based sampling schemes such as Hamiltonian Monte Carlo (HMC). However,
this can be circumvented by marginalizing out z;;. Instead of working with z;;, one can take
advantage of the fact that, conditional on the event rate A;; and reporting probability p;;
but not the true number of assaults z;;, the reported number of assaults follows a Poisson
distribution,

XijlAij, pij, Wij, Vij ~ Poisson(a;; pj;).
See Appendix B in the Supplementary Material (Bradshaw and Blei (2024)) for derivation.
This marginalizes out the discrete latent variable z;;, allowing for gradient-based MCMC

sampling from the posterior p(A, p|x, w, v). However, the latent true number of assaults z;;
is also a quantity of interest. To address this, first note the conditional distribution of the

number of unreported assaults, u;; (where u;; défzi = Xij)s
wijlxij, hij, pij ~ Poisson(A;; (1 — pij)).
Because u;; is conditionally independent of the covariates v;; and w;;, given latent param-
eters A;; and p;j, it is equivalently true that

wijlxij, Mijs pij» Wij, Vij ~ Poisson(a;; (1 — pij)).

Each MCMC sample ()Lgs.), pi(s.) ) drawn from (approximately) p(X;;, pijlxij, Wij, Vij) can be

ij » Fij
augmented by sampling a corresponding ul(js.) from p(u|x;j, Aij, pij). The sampled value ulgj)

(s)

1) :
Altogether, the sample (X(S), p(s), z(s)) constitutes an MCMC sample from p(A, p, z|x). This
sampling procedure is outlined in Algorithm 1 and can be conveniently implemented in a
probabilistic programming language. Posterior inference for this work was conducted using
HMC in Stan (Stan Development Team (2023)).

can then be added to the observed count x;; to produce a sample for the latent count z
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Algorithm 1: Posterior Sampling Scheme
Input:
e Datax
Covariates w, v
Index set Z (pairs (i,j) for which the dataset contains a record x;;
MCMC algorithm SAMPLER (e.g., HMC)
Markov chain length §

Output: samples from the posterior p(z, A, p|X, w, v);
for sin 1:S do
Draw (A®), p®)) from SAMPLER approximating p (A, p|x, w, v) for (i, j) in Z do
Draw u;; ~ Poisson((1 — pl-(;))kgj)) ;
Set zij = u;j + xij ;
end
end
return {(z), 1), p(“))}f:1

4.4. Model assessment. Fully-observed data, including the true total number of assaults,
are not available and thus cannot be used for model validation. Instead, the predictive dis-
tribution provides information about the quality of the model fit. The posterior distribution
of the latent variables implies a predictive distribution over future observations p(x™V|x)
and, accordingly, over summary statistics of future observations. This motivates the notion of
posterior predictive checks (Guttman (1967), Box (1980), Rubin (1984), Gelman, Meng and
Stern (1996)) that a satisfactory model will yield predictive distributions over key summary
statistics under which the actual values observed in the dataset are not extreme. As detailed
in Moran, Blei and Ranganath (2019) and Li and Huggins (2022), such posterior predictive
checks can be overly optimistic about model fit due to double use of the data (both to fit the
model and to evaluate it). The aforementioned works propose randomly reserving a portion of
the original dataset to use exclusively for model assessment, an approach that demonstrably
achieves a more accurate gauge of model performance by avoiding the pitfall of data reuse.
In the spirit of this suggestion, roughly 20% of entries in the campus sexual assault dataset
are held out, with the remaining 80% used for posterior inference. Held out data points are
sampled at the level of (school, year) pairs. The held-out data set includes records from all
years in scope (2014-2019) and does not contain data from any additional schools not seen
in the main sample. Predictive samples for the held-out data points are generated as follows.

As noted in Section 3, each year many schools had zero reported assaults, and the median
number of reports was one. Generating 10,000 resampled datasets according to Algorithm 2
and calculating the proportion of records with zero reported assaults produces the distribution
shown below in Figure 7(a). Within the held-out dataset, 42.1% of records had zero reported
assaults, while values ranged from roughly 38% to 44% in datasets sampled from the pre-
dictive distribution. The distribution of reported assault numbers has been pulled slightly
away from the extreme end such that the observed proportion of zeroes falls toward the high
end of the predictive distribution. However, the median number of assaults was equal to one
in all datasets sampled from the predictive distribution, and the true proportion of held-out
records x;; with < 1 assaults sits comfortably within its respective predictive distribution
(Figure 7(b)). Overall, the model adequately captures the bottom-heaviness of the distribu-
tion of reported assault numbers.
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Algorithm 2: Predictive Distribution Sampling
Input:
e Index set Z (pairs (i,j) for which the held-out dataset contains a record x
e Covariates w"%, vV for held-out dataset
e Posterior distribution p(e, B, y, €|X, W, V)

I'ICW)

VHCW) .
s

Output: Sample dataset from the predictive distribution p(x"*V|x, w, v, w™¥

Draw (f, B°, %, &%) ;
for (i, j) inZ do
Draw §;; ~ N(0,0.5) ;
Draw n;; ~ N(0,0.2) ;
if school i € training data then
‘ Vi < V,’S ;
g <& ;
else
Draw y; ~N(0, 1) ;
Draw g; ~ N(0,0.5) ;

end

pij < invlogit(ag + (o, wij™V) + yi + 8;j) ;
Aij < eXP(,B(S)’U + (B, v new )+ & +1nij) s
Draw z;; ~ P01sson(X,J) ;

Draw xl“jew ~ Binom(z;;, pij);

end

return x"V

Other quantities of interest are the total number of reported assaults };; x new and the
amount of within-school variability. The predicted number of assaults reported by an indi-
vidual school should not be too rigid or too flexible over time, relative to the trends seen in
the actual data. This summary statistic is quantified as )_; var(x;®™"). The total number of
reported assaults and the within-school variability observed in the held-out dataset are both
plausible under their respective predictive distributions, shown in Figure 7(c)—(d), suggesting
that the model adequately captures these characteristics of the data.

4.5. Capabilities and limitations. Let us pause to examine what this estimation method
can and cannot do in terms of resolving the central 1dent1ﬁab111ty issue introduced in Sec-

tions 1 and 2. First, consider a toy example in which z1, ..., zy S Poisson(Ag) are latent and
x; ~ Binom(z;, pg), i =1, ..., N are observed. The observed dataset identifies the product
Ao po, while only the prior distributions provide information about A9 and pg individually.
The posterior distribution of the product Ag pg concentrates as the number of observations in-
creases. The posterior distributions of Ag and pg, however, do not become arbitrarily concen-
trated in the infinite data limit but rather approach p(Ag|Aopo) and p(pol|ropo), respectively,
as demonstrated in Figure 8.

Furthermore, the posterior distribution p(Ag|xy, ..., xx) will not necessarily be centered at
the true value Ao (and likewise for pg); the data provide information about the product Ag po,
but conditional on Agpg, posterior estimates of Ay and pg are determined by their respective
prior distributions.

A similar relationship emerges when the toy model is extended to include covariates for A
and p. Let log(X;) = Bo + Bv; and log(lf"pi) =ag+aw; forv;,,w;eR. Fori=1,..., N,
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FIG. 7.  Summary statistics of the held-out data are plausible under the predictive distribution. Solid lines in-
dicate the value calculated on the held-out data, dashed lines indicate the 2.5th and 97.5th percentiles of the
predictive distribution: (a) Proportion of reports indicating zero assaults, (b) Proportion of reports indicating < 1
assaults, (c) Total number of reported assaults across all schools and all years, (d) Within-school variability of

reported numbers over time.

latent counts are generated as z; ~ Poisson(A;), and we observe the reported counts x; ~
Binom(z;, p;). Performing posterior inference on data simulated from this model reveals that
increasing the amount of observational data is more effective at reducing posterior uncertainty
about the slope parameters 8 and o than about the intercepts By and «. Figure 9 illustrates
the relative difficulty of learning one of the intercept parameters from data.

= o
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FIG. 8. The posterior distribution of Aopg concentrates as the amount of observational data increases, but the
posterior distribution of py has some amount of uncertainty that cannot be eliminated by observational data: (a)
Kernel density estimates of posterior samples of p, conditioned on observed datasets of size N, with a solid line
representing p(polropo), (b) Kernel density estimates of posterior samples of Agpg, conditioned on observed

datasets of size N.
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FIG. 9. Additional observational data is more effective at reducing posterior uncertainty about the slope coeffi-
cient B than about the intercept: (a) Kernel density estimates of posterior samples of By, conditioned on observed
datasets of size N, (b) Kernel density estimates of posterior samples of By, conditioned on observed datasets of
size N, displayed on x-axis interval of equal width as left-hand plot.

In light of these dynamics, Appendix E in the Supplementary Material (Bradshaw and Blei
(2024)) explores sensitivity to the prior information elicited from NCVS estimates. While
some reasons for not reporting a sexual assault are less relevant in a survey setting (such as
fear of retaliation or lack of faith that the perpetrator will be held accountable), it is neverthe-
less plausible that some NCVS respondents choose not to disclose their sexual assault vic-
timization. In line with the discussion in this section, inferences about the role of covariates
are relatively more stable if the extent of underreporting is larger than estimated by NCVS,
while inferences about the true overall incidence and reporting rate exhibit more sensitivity.

5. Results.

5.1. Role of covariates. Sampling from the model in Section 4 yields the posterior means
and quartiles given in Table 3 below.

The posterior distribution for f; is concentrated around 0.82, which corresponds to sub-
linear growth in the expected number of assaults as a function of number of students. The
proposed power law relationship between student population and expected number of assaults
(4) implies a similar relationship between student population and the expected per-capita rate

TABLE 3
Posterior means and quartiles of latent variables

Variable Mean 25% Median 75% R hat¥
B 0.82 0.81 0.82 0.84 1.00
B —4.05 —4.53 —4.05 —3.56 1.00
Bo.1 —4.54 —4.67 —4.54 —4.42 1.00
Bo.2 —4.40 —4.53 —4.40 —4.28 1.00
Bo.3 —4.32 —4.45 —4.32 —4.21 1.00
Qg —1.43 —1.50 —1.43 —1.36 1.00
o] —1.97 —-2.06 —-1.97 —1.88 1.00
ap —2.48 —2.73 —2.48 —2.23 1.00
a3 0.49 0.26 0.49 0.73 1.00
oy -3.00 —3.18 —3.00 —2.83 1.00

1R hat, also known as the potential scale reduction factor, is a convergence diagnostic proposed in Gelman and
Rubin (1992)
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Consequently, the posterior distribution suggests an inverse relationship between the size
of the student population and the expected per-capita number of assaults in a given year. With
all other covariates held equal, we expect a school to have 13% more assaults per capita than
an equivalent school twice its size, and 28% more than a school four times its size. Similarly,
because the posterior distribution suggests 8; < 1, the variance of the per capita number of

Zij . . .
assaults, Var(Wpulationii |B, V), scales inversely with the number of students. With other

covariates held constant, the expected number of assaults per capita is more variable at small
schools than at large ones.

Posterior distributions for the intercepts fo.1, Bo.2, and Bp 3 are similar to each other. Re-
sults are mildly suggestive of higher sexual assault incidence in rural areas than in cities but
do not reveal a substantial difference in expected number of assaults based on degree of cam-
pus urbanization. The negative values for 8> suggest that a gender imbalance in a school’s
student body is associated with lower expected incidence of sexual assault, while o3 > 0
suggests that a higher proportion of female students corresponds to a higher reporting prob-
ability. Conversely, a higher proportion of students receiving Pell grants (a proxy for lower
socioeconomic status) appears associated with a lower probability of reporting. Negative es-
timates for oy and «» signal lower expected reporting probabilities for junior colleges and
institutions of religious instruction.

5.2. Systemwide results. Drawing posterior samples of the true number of assaults at
each school induces a distribution over the total number of assaults across schools each year.
The posterior median for total assaults ranges from 2.6 to 2.8 per 1000 persons over the
2014-2019 time period. Although the median estimated incidence is higher in later years,
compared to 2014, posterior uncertainty is large enough that the true trend in incidence could
conceivably be flat or even increasing, as can be seen in Figure 10 below.

Posterior estimates of the true reporting rate, however, show more movement over time.
Figure 11 depicts posterior summaries for the actual number of reported assaults across
schools as a fraction of the estimated true number of assaults. The posterior median reporting
rate was lowest in 2014, at 17.3% and highest in 2018 at 24.2%, with reporting rates trending
upward over those years.

Taken together, these two results suggest that the increase in total sexual assaults reported
nationwide over the 2014-2019 period is more likely attributable to an increase in reporting
rates than an increase in the true number of assaults that occurred.

o

™ % posterior median
mid-50% range
mid-95% range

3.0

* * * * *

Assaults per 1000 Persons
25

2.0

T T T T T I
2014 2015 2016 2017 2018 2019

FIG. 10. Posterior distribution of total incidence per 1000 persons in the college population does not exhibit a
clear pattern of year-over-year change.
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FIG. 11.  Posterior estimates of the overall reporting rate in the college population exhibit an increasing trend
from 2014 to 2018.

5.3. School-level results. While the systemwide increase in reported assaults may be
more easily explained by an increase in reporting rates, aggregate trends are not necessar-
ily representative of the dynamics at an individual school. Examining the posterior medians
of the reporting rate p;; and true incidence per 1000 persons across all records in the dataset
reveals considerable heterogeneity, as displayed in Figure 12.

While sexual assault is susceptible to underreporting at all schools, the estimated degree
of underreporting varies widely. Figure 12(b) illustrates that some schools have extremely
low reporting probabilities, while others are considerably higher than the population-level
reporting rates published in the NCVS. This variation across schools has implications for how
individual schools should interpret their reported crime statistics. With only the prior belief
that sexual assault is significantly underreported, one might be equally inclined to attribute
an increase in reported assaults at any school to an increase in the reporting probabilities.
However, this may lead to flawed conclusions.

Suppose that for a particular school, the true number of assaults in a future year, included
in the dataset, remains the same as the true number of assaults in 2019. With an unchanged
number of true assaults, how large of a change in the reported number of assaults is plausible
due to variation in the reporting probability alone? For school i the predictive distribution for
a future year’s number of reported assaults can be sampled as follows:

(1) Draw (152019, ot(()s) o) yi(s)) from model’s posterior distribution.
(2) Draw ™% ~ N(0, 0.5).

(3) Set p™* = inviogit(er” + (@), Wi 2010) + ;> + 81Y).

(4) Draw x"% ~ Binom(z; 2019, p"%).
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FIG. 12.  Per-record posterior medians for incidence and reporting rate exhibit heterogeneity: (a) Posterior me-
dians for incidence are centered slightly below the overall population value at 2.3 per 1000, but 25% of records
have posterior median incidence greater than 3.4, and another 25% below 1.6. (b) Posterior medians for report-
ing probabilities are predominantly below 30%, but for some records are as high as 74%.
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assaults in subsequent year at: (a) Randolph College than at (b) University of South Carolina-Columbia. Solid-
colored bar corresponds to number of reported assaults in 2019.

Randolph College and the University of South Carolina-Columbia (USCC) had a simi-
lar number of reported assaults in 2019 (four and five, respectively). However, Randolph
College’s estimated reporting rate was considerably higher, with a posterior median of 53%
compared to only 14% at USCC. Assuming that the true number of assaults is held constant,
the predictive distributions for the number of reported assaults are shown in Figure 13.

Under this scenario there is a roughly 13% chance of an increased number of reported
assaults at Randolph College in a subsequent year, due to variation in the reporting rate, and
less than a 1% chance of the reported number to double to eight or more. At USCC, variation
in reporting rate has a comparatively larger chance of producing an increased number of
reported assaults (42%) and a 12% chance of doubling the number of reported assaults to 10
or more.

Ursinus College and Temple University provide another illustration of such school-level
differences. Of the two, Ursinus had a much higher estimated reporting probability in 2019,
and changes in reporting probability are comparatively less likely to drive an increase in re-
ported assaults at Ursinus compared to Temple, as can be seen from their respective predictive
distributions in Figure 14.

These disparities underscore the opaque nature of reported campus sexual assault data and
the potential pitfalls of a one-size-fits-all approach to interpreting school-level reports over
time.

6. Discussion. Colleges and universities prioritize reducing the incidence of sexual as-
sault on their campuses, but underreporting diminishes the interpretability of their published
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FIG. 14. Without a change in the true number of assaults, the number of reported assaults has a 44% chance of
increasing in a subsequent year at. (a) Ursinus College, and a 67% chance at (b) Temple University.
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sexual assault incidence data. This paper constructs a generative model of underreported
campus sexual assault data, which allows for estimation of true incidence and reporting rates.
Fitting this model reveals that lower socioeconomic status, as measured by the percentage of
a school’s undergraduates receiving Pell grants, appears associated with a lower probability
of reporting. Status as a junior college or institution of religious instruction appear similarly
associated with lower reporting probability, while gender imbalance in a school’s student
body is associated with lower true incidence of assault.

For the overall college population, estimated incidence of sexual assault remained fairly
stable over 2014-2019, while reporting probabilities increased. Results at individual schools,
however, varied widely. Estimates of school-level incidence and reporting probabilities may
help university officials; for instance, Title IX coordinators assess the effectiveness of initia-
tives to reduce incidence of sexual assault or to familiarize students with reporting resources
and decide where to make changes and improvements moving forward.

One avenue for future work concerns repeat victimizations of the same individual. High-
frequency series victimizations, for instance, in the case of patterns of intimate partner vio-
lence, can produce extreme values in the reported number of assaults. As an example, in 2017
the University of Nebraska-Lincoln received 104 reports of sexual assault corresponding to
the same victim and perpetrator. Such extreme outliers are not easily accommodated and,
in particular, may violate the modeling assumption that the reporting decisions for each as-
sault are independent (conditional on reporting probability). Violations of the independence
assumption can degrade the quality of posterior inferences; see Appendix D in the Supple-
mentary Material (Bradshaw and Blei (2024)) for further details. More broadly, the Bureau
of Justice Statistics has acknowledged the difficulty of accurately incorporating series vic-
timization in its national crime estimates (Lauritsen et al. (2012)).
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SUPPLEMENTARY MATERIAL

Appendices (DOI: 10.1214/24-A0AS1928SUPPA; .pdf). This file contains Appendices
A-E to the main text.

Code and data (DOI: 10.1214/24-A0AS1928SUPPB; .zip). This file contains R and Stan
implementations of methods from the main text, along with preprocessed data.
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