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ST1: Trust in Automated Vehicles

Introduction
In partially automated vehicles, drivers are expected to moni-
tor the surrounding environment, resume manual control 
when the vehicle reaches operational design domain (ODD) 
limits, and remain vigilant to automation errors (SAE, 2021). 
However, vigilance requires mental effort (Bainbridge, 1983; 
Warm et al., 2008), and sustained visual attention while moni-
toring the roadway can be compromised by several factors (J. 
Lee et al., 2019). For example, driving for an extended period 
using automated systems in a monotonous environment can 
di-minish the useful field of view (Roge et al., 2002). People 
be-come less vigilant when experiencing constantly reliable 
auto-mation (Parasuraman et al., 1993). Also, drivers can 
decide to engage in non-driving relevant tasks that can under-
mine the perception of crucial information and a decrease in 
situation awareness (Casner & Schooler, 2015). Such effects 
are not lim-ited to vehicle automation and have also been 
documented in many studies that have explored responses to 
automation errors between constantly reliable and variably 
reliable automation. These studies show error detection was 
worse in groups with constantly reliable automation com-
pared to groups that experi-ence automation with variable 
reliability (Molloy & Parasuraman, 1996; Parasuraman et al., 
1993). Overall, experience with highly reliable automation 
undermines automation error detec-tion and response, which 
ultimately reduces driving safety (Greenlee et al., 2022).

Understanding the factors that contribute to overreliance 
can help mitigate it. One such factor is trust in automation. 
Trust has been identified as a factor that influences automa-
tion use (J. D. Lee & See, 2004). More specifically, overtrust 
in automated systems can lead to misuse. Overtrust is defined 
as “poor cali-bration in which trust exceeds the systems 
capabilities” and misuse is defined as an “overreliance on 
automation” (J. D. Lee & See, 2004; Parasuraman & Riley, 
1997). In previous studies, this effect of trust on automated 
system reliance has been demonstrated by promoting trust in 
some drivers and low-ering trust in others (Körber et al., 
2018). Results show that in a safety-critical situation, the 
trust-promoted group took longer to respond than the trust-
lowered group. In this present study, we extend this research 
by exposing drivers to reliable driving automation followed 
by an automation error, where the vehicle fails to stop at a 
stop-controlled intersection. The effect of trust on drivers’ 
responses to automation errors is examined. Exist-ing studies 
generally examine trust variation using subjective trust rat-
ings or introduce trust variation as a between-subject variable 
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(Kohn et al., 2021). This research uses objective trust mea-
sures and implements mixture models to account for trust-
related variability in responses to the automation error.

Methods

Participants
Twenty-four people (16 female, 8 male; aged between 25 and 
55, M = 29, SD = 5) participated in the study. Participants 
were drivers from the Madison, WI area. Inclusion criteria 
in-cluded possession of a valid driver’s license for at least 2 
years. The study lasted approximately 2 hours per participant 
and driv-ers were compensated US $30/hr. This study was 
approved by the Education and Social/Behavioral Science 
Institutional Re-view Board at the University of Wisconsin 
– Madison.

Apparatus
A fixed-based simulator (NADS Minisim™) was used for 
the study. The driving scenario was a four-lane suburban 
street. This was visible via three 43 x 25.4-inch monitors 
with the cen-ter monitor placed 4.5 feet from the driver, pro-
ducing a 135o field of view.

Experimental Design and Independent Variables
A 4 (intersection type) x 3 (automation style) within-sub-ject 
design was implemented. A replicated Latin square design 
was used to counterbalance the conditions.

Intersection type. There are four intersection types: two inter-
sections with stop signs and two without stop signs. These 
were differentiated by the presence of cross-path traffic 
which drivers could see but did not interact with.

Automation style. Drivers experienced three automated driv-
ing styles: conservative, moderate, and aggressive. All au-
tomation styles detect and brake at stop-controlled 
intersections and were capable of longitudinal and lateral 
control of the ve-hicle. Figure 1 shows how the speed pro-
files distinguish the three automated driving styles. Pilot 
study data from the manual driving scenarios guided the 
development of the automated driving style. The aggressive, 
moderate, and conservative styles were determined using the 
15th, 50th, and 85th percentile of driv-ers’ manual driving 
data such as mean deceleration, mean ac-celeration, distance 
to the stop line when the speed first goes below 1 mph during 
the approach to stop-controlled intersec-tions and stop dura-
tion at stop-controlled intersections (Domeyer et al., 2019; 
Kamaraj et al., 2023; J. D. Lee et al., 2021). Table 1 shows 
the values that differentiate each driving style. Note that, 
during the error event the automation did not detect a stop 

sign and failed to brake but maintained longitudi-nal and lat-
eral control.

Dependent Variables
Dependent measures examined here include subjective and 
objective trust in automation and response to automation 
errors. Subjective trust is assessed via questionnaires while 
objective trust is inferred from the driver’s pedal inputs while 
monitoring the automation. Prior research suggests that 
pedal inputs can measure trust (J. D. Lee et al., 2021). This 
research uses objec-tive trust in automation to predict driv-
ers’ responses to automa-tion errors. Subjective ratings of 
trust in automation (Muir & Moray, 1996) were used for 
post-hoc descriptive data analysis.

Trust in automation. Trust in the automation was assessed 
subjectively via surveys at the end of each automated drive. 
In addition, drivers were asked to press the brake pedal if 
they felt the automation was driving too fast and to press the 
gas pedal if they felt the automation was going too slow. The 
time drivers press the accelerator and brake pedals is used as 
an objective trust measure. More time pressing the pedals 
indicates lower trust in automation and vice versa. The time 
spent pressing the pedals was estimated using all non-zero 
values of pedal presses.

Response to automation error. The error event in this study 
was a failure of the automation to stop at a stop-controlled 
intersection. During this event, drivers were expected to 
press the brake pedal. Note that the most conservative driv-
ing style begins decelerating 963 ft before the stop line. We 
use this point as the stimulus onset, i.e., the first observable 
evidence of an automation error. Brake pedal presses 
recorded after this point indicate response onset, and indicate 
the time taken to respond to the automation error (Engström 

Figure 1. Speed vs distance to stop line for the conservative, 
moderate, and aggressive driving styles. Styles are differentiated 
by the difference in the initiation of braking and stopping distance 
from the stop line.



1146 Proceedings of the Human Factors and Ergonomics Society Annual Meeting 67(1)

et al., 2022). The response time is the difference between the 
response and stimulus onset. Fast responders braked closer 
to the 963 ft mark and slow re-sponders braked closer to the 
stop line. Drivers who responded after the stop line were 
labeled late responders and drivers who responded to the 
automation error before the stop line were la-beled early 
responders. For drivers who did not respond to the error 
event (n = 2), the average response time of the late re-
sponders was used in place of the non-response data point.

Procedure
Once drivers arrived at the study site, inclusion criteria (valid 
driver’s license, age, driving experience) were verified. 
Drivers were briefed about the study's purpose as well as 
poten-tial risks and benefits before obtaining informed con-
sent. They then completed pre-study questionnaires and drove 
practice drives to acquaint them with the simulator. Data col-
lection commenced with two manual drives to further allow 
familiarity with the simulator, three automated drives where 
the automa-tion performed reliably (each automation style 
experienced twice consecutively), and a final drive automated 
drive where the automation fails at a stop-controlled intersec-
tion. Wellness questionnaires were administered after each 
drive to monitor for simulator sickness. The driving style for 
the final error event was assigned such that drivers were 
equally distributed across the three styles (i.e., eight drivers 
experienced the error in the conservative, eight in the moder-
ate, and eight in the aggressive driving style). During auto-
mated driving, drivers were informed that the vehicle is a 
fully self-driving car that will center itself on the lane and 
brake and stop at intersections. They were asked to imagine 
that they were test driving different automated vehi-cles. The 
gas and brake pedal were inactive during automated driving. 
Drivers were asked to monitor the vehicle automation and 
press the brake pedal if they thought the automation was 
going too fast and the accelerator pedal if they thought the 
au-tomation was going too slow. After all the drives were 
com-pleted, drivers were interviewed about their experience 
with the automation, debriefed, and paid for their time.

Data Processing and Analysis
The tidyverse R package was used for data wrangling and 
visualization. Preliminary analysis of the data revealed pos-
sible heterogeneity of the response time to the automation 

error, vio-lating the assumption of a single underlying distri-
bution for the data. To address this, regression mixture mod-
els were used to analyze the data, implemented via the 
flexmix R package (Grun & Leisch, 2007; Tan & Mueller, 
2016).

Mixture models. Behavior data such as those obtained from 
driving behavior often exhibit heterogeneity (Park et al., 
2010). For instance, if we assume that driver behavior may 
vary based on factors such as age or gender. When fitting 
regression mod-els to these data, the models are likely to 
vary across these dif-ferent groups of data. At times, the fac-
tors influencing the het-erogeneity in the data are unidenti-
fied or unobservable. For ex-ample, risk-seeking vs. 
risk-averse driving behavior may influ-ence the response to 
certain stimuli but may not be observed. In such cases, mix-
ture models help model the probability of sub-groups belong-
ing to unobserved groups in the data. This study applied 
regression mixture models to identify sub-groups in the data. 
These models assume that sub-groups are defined by dif-
ferent regression models. The method implemented here 
uses the Expectation-Maximization (EM) algorithm to find 
the max-imum likelihood estimates for each subgroup. First, 
members of the group are randomly assigned to each sub-
group and max-imum likelihood estimates are found for each 
subgroup. Group members that are more likely to fit in 
another group are resorted and then maximum likelihood 
estimates are recalculated. This step is repeated to identify 
the maximum likelihood partition.

Results

Influence of Trust in Automation on Response to 
Automa-tion Errors
Figure 2 shows the relationship between each pair of vari-
ables for all drivers (brake pedal press time, gas pedal press 
time, and response time to error). The distributions of these 
var-iables are shown along the diagonal and the Pearson cor-
rela-tions are shown on the top right. During debrief inter-
views, one of the drivers reported noticing an automation 
error; however, this driver did not respond by pressing the 
brake pedal within the intersection bounds. As a result, this 
data point was ex-cluded from the analysis as it was not pos-
sible to determine the response time without the pedal press 
input. Thus, 23 data points—one for each driver—were used 

Table 1. Variables differentiating the automation’s conservative, moderate, and aggressive driving style behavior at stop-controlled 
intersections.

Conservative Moderate Aggressive

Distance to stop line at Vmin (ft) 30.2 23.2 15.5
Mean deceleration(ft/s2) –2.14 –2.33 –2.56
Mean acceleration (ft/s2) 2.00 2.49 4.28
Duration of stop (s) 2.05 1.51 0.18
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Figure 3. Response time to automation errors versus trust 
indicated by brake pedal interaction for each cluster identified via 
mixture modeling.

to examine the associ-ation between pedal press-based trust 
and the responses to the automation error.

Given the bimodal distribution of the data, mixture mod-
els were estimated for two clusters. The first model used the 
brake pedal-based trust as the covariate and the second used 
the ac-celerator pedal-based trust as the covariate. Table 2 
summarizes the mixture model fit. For model 1, Cluster 1 
had a ratio of 0.53 which indicates that 15 points had a non-
zero likelihood of be-ing in that cluster, and of those 15 
points, 53% (i.e., cluster size = 8) were best fit by that clus-
ter. Cluster 2 had a ratio of 0.68 which indicates that 22 
points had a non-zero likelihood of being in that cluster, and 
of those 68% (i.e., cluster size = 15) were best fit by that 
cluster. For model 2, Cluster 1 had a ratio of 0.45 i.e., 11 
points had a non-zero likelihood of being in that cluster, and 
of those 11 points, 45% (i.e., cluster size = 5) were best fit 
by that cluster. Cluster 2 had a ratio of 0.78 i.e., 23 points had 
a non-zero likelihood of being in that cluster, and of those 
78% (i.e., cluster size = 18) were best fit by that cluster.

Following cluster identification, each cluster was qualita-
tively assessed for features that distinguished them. The 
most distinguishing feature of each cluster was whether the 
drivers were early or late responders. Cluster 1 consists of 
mostly late responders (five late responders and three early 
responders) and Cluster 2 consists of only early responders 
(fifteen early re-sponders). Mixture models were fit to the 
data of each cluster. For model 1 (response time ~ brake 
pedal press time, see Figure 3), Cluster 1 and Cluster 2 fitted 
a linear model to predict the response time with the brake 
pedal presses. For Cluster 1, which consists mostly of the 
drivers who responded to the automation error after the stop 

line, the model’s explanatory power is sub-stantial (R2 = 
0.92). The model’s intercept, corresponding to the brake 
pedal press = 0, is at 18.59 (95% CI [17.22, 19.96], t(6) = 
26.54, p < .001). Within this model, the effect of the brake 
pedal press is statistically significant and negative (β = 
-0.91, 95% CI [-1.12, -0.70], t(6) = -8.54, p <.001; Std. β = 
-0.96, 95% CI [-1.18, -0.74]) indicating that drivers who 
spent less time engag-ing with the brake pedal took longer to 
respond to the automa-tion error. For Cluster 2, which con-
sists of drivers who re-sponded to automation error before 
the stop line, the model’s explanatory power is very weak (R2 
= .00001). The model’s in-tercept, corresponding to brake 
pedal press = 0, is at 10.17 (95% CI [8.90, 11.44], t(13) = 
15.65, p < .001). Within this model, the effect of the brake 
pedal press is not statistically significant (β = .0009, 95% CI 
[-0.14, 0.14], t(13) = 0.01, p = 0.989; Std. β = 0.003, 95% 
CI [-0.54, 0.55]).

For model 2 (response time ~ accelerator pedal press time, 
see Figure 4), Cluster 1 and Cluster 2 fitted a linear model to 
predict the response time with the gas pedal presses. In Cluster 
1, which consists of the drivers who responded to the 

Table 2. Mixture model summary for k = 2 clusters for models 
examining the effect of pedal press-based trust on response to 
automation error.

Model 1: Response time ~ Brake pedal press time

Cluster ID Prior Prob. Cluster Size Post Prob. Ratio

1 0.29  8 15 0.53
2 0.70 15 22 0.68

Model 2: Response time ~ Accelerator pedal press time
1 0.21  5 11 0.45
2 0.78 18 23 0.78

Figure 2. Scatterplot (bottom left) and Pearson correlation (top 
right) of the pairs of brake pedal press time, accelerator pedal 
press time, and response time. The distribution of each variable is 
shown along the diagonal.
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automa-tion error before the stop line, the model’s explanatory 
power is very weak (R2 = .004). The model’s intercept, cor-
responding to the gas pedal press = 0, is at 18.78 (95% CI 
[16.51, 21.05], t(3) = 16.22, p < .001). Within this model, 
the effect of the gas pedal press is not statistically significant 
(β = -0.005, 95% CI [-0.10, 0.09], t(3) = -0.11, p = 0.910; 
Std. β = -0.06, 95% CI [-1.19, 1.06]). For Cluster 2, which 
consists of all drivers who re-sponded to the automation error 
before the stop line, the model’s explanatory power is very 
weak (R2 = .0007). The model’s intercept, corresponding to 
gas pedal press = 0, is at 9.99 (95% CI [8.50, 11.48], t(16) = 
13.16, p < .001). With this model, the effect of the accelerator 
pedal press is not statisti-cally significant (β = 0.005, 95% CI 
[-0.08, 0.10], t(16) = 0.11, p = 0.911; Std. β = 0.03, 95% CI 
[-0.46, 0.52]).

The two clusters identified from model 1 (response time ~ 
brake pedal press time) and model 2 (response time ~ accelera-
tor pedal press time) show that cluster 1 from both models 
con-sisted primarily of late responders (see responses before 
and af-ter the stop line in Figure 3 and Figure 4). Model 1 – 
cluster 1 indicates that the effect of the brake pedal pressing 
time was negatively associated with response time. This indi-
cates that drivers who spent more time pressing the brake 
pedal in prior drives were quicker to respond to the automa-
tion error whereas those that spent less time pressing the 
brake pedal were slower to respond to the automation error. 
Note that we assume that more pedal pressing indicates low 
trust in the automation and less pedal pressing indicates 
higher trust in the automation. Thus, it follows that late 
responders are those that have higher subjective trust ratings 
in reliable automation and early re-sponders are those that 
have lower trust in reliable automation. We verify this 
assumption by comparing the mean subjective trust in reliable 
automation across the early and late responders. One driver 
was removed as an outlier from the group of early responders. 

A Welch Two Sample t-test testing the difference of the mean 
subjective trust in reliable automation for the early and late 
responders (MEarly responders = 1.68, MLate responders = 
2.42) shows that the effect is negative, statistically signifi-
cant, and large (difference = -0.74, 95% CI [-1.31, -0.16], 
t(10.91) = -2.80, p = 0.017; Cohen's d = -1.70, 95% CI 
[-3.05, -0.29]). This supports the assumption that drivers who 
responded late to the automation error had more trust in the 
automation.

Discussion
The goal of this research was to examine the effect of trust 
on drivers’ responses to automation errors. Mixture models 
identified two clusters based on the drivers’ engagement 
with reliable automation via brake and gas pedal presses 
and re-sponse to automation errors. Generalized regression 
models were applied to each cluster that was identified via 
mixture modeling. In the models that examined the effect 
of brake pe-dal-based trust on drivers’ response to the 
automation error, one cluster that comprised early respond-
ers to automation errors showed no significant effect of 
trust on response time (see Fig-ure 3 Cluster 2). In the 
other cluster (see Figure 3 Cluster 1) which consisted pri-
marily of late responders, more brake pedal presses were 
associated with quicker responses to automation errors. 
Both models that examined the effect of gas pedal-based 
trust showed no significant effect of trust on the response 
time to automation error. Results also indicated that late 
responders had higher subjective trust ratings. Thus, the 
assumption that the late responders are generally high 
trusters was verified.

This study reinforces previous findings that automation 
monitoring alone does not indicate appropriate reliance and 
ex-tended experience with seemingly perfect automation can 
result in overtrust and automation-induced complacency 
(Parasuraman et al., 1993; Wickens et al., 2015). We also 
demonstrate how trust dynamics vary across drivers. 
Specifically, while all participants experienced the same 
automation, their responses to the automation differed (Li 
et al., 2023). Mixture models helped reveal that one group of 
drivers became complacent fail-ing to respond to automation 
errors promptly. Consistent with this pattern, subjective rat-
ings of trust of these drivers show that these drivers trusted 
the reliable automation more. These results are consistent 
with studies that have found differences in trust dynamics 
across people that lead to bimodal distributions (Bhat et al., 
2022; Liu et al., 2021). A focus on strategies to calibrate trust 
in drivers with high trust in automation could prove useful in 
managing their reliance on automation. For instance, drivers 
with high levels of trust may benefit from strategies that in-
crease engagement with automation, such as collaborative 
driv-ing and feedback from the vehicle.

In addition to developing more collaborative driving 
de-signs, this study also shows that long-term continuous 
engage-ment with automation through pedal presses or other 

Figure 4. Response time to automation errors versus trust 
indicated by gas pe-dal interaction for each cluster identified via 
mixture modeling.
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behavioral indicators could be used to estimate and predict 
driver response to automation errors. Such state monitoring 
goes beyond as-sessing drivers’ momentary readiness to take 
control based on whether their eyes are on the road and hands 
are on the wheel. This research suggests that driver states 
over longer time hori-zons may be related to when and how 
often they intervene.

Limitations of the study relate to how simulation and ex-
perimental settings translate to vehicles on the road. 
Simulation may encourage different behaviors due to reduced 
risk com-pared to on-road driving. In addition, because this 
study does not include a production system, with specific 
vehicle perfor-mance and driver feedback designs, the results 
should be aug-mented data from drivers in actual vehicles.

Conclusions
Automation-induced complacency and overreliance can 
undermine drivers’ responses to unexpected errors. We 
showed a bimodal distribution of trust can emerge when peo-
ple use re-liable automation, and no engagement is encour-
aged by the ve-hicle. Strategies to support driver engagement 
in vulnerable groups of drivers may help reduce the effects of 
automation-induced complacency. Future work will focus on 
comparing strategies to support driver engagement and trust 
calibration.
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