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Abstract

Extended exposure to reliable automation may lead to overreliance as evidenced by poor responses to auto-mation errors.
Individual differences in trust may also influence responses. We investigated how these factors affect response to automation
errors in a driving simulator study comprised of stop-controlled and uncon-trolled intersections. Drivers experienced reliable
vehicle automation during six drives where they indicated if they felt the automation was going too slow or too fast by
pressing the accelerator or brake pedal. Engage-ment via pedal presses did not affect the automation but offered an objective
measure of trust in automation. In the final drive, an error occurred where the vehicle failed to stop at a stop-controlled
intersection. Drivers’ response to the error was inferred from brake presses. Mixture models showed bimodal response
times and revealed that drivers with high trust were less likely to respond to automation errors than drivers with low trust.
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Introduction

In partially automated vehicles, drivers are expected to moni-
tor the surrounding environment, resume manual control
when the vehicle reaches operational design domain (ODD)
limits, and remain vigilant to automation errors (SAE, 2021).
However, vigilance requires mental effort (Bainbridge, 1983;
Warm et al., 2008), and sustained visual attention while moni-
toring the roadway can be compromised by several factors (J.
Lee et al., 2019). For example, driving for an extended period
using automated systems in a monotonous environment can
di-minish the useful field of view (Roge et al., 2002). People
be-come less vigilant when experiencing constantly reliable
auto-mation (Parasuraman et al., 1993). Also, drivers can
decide to engage in non-driving relevant tasks that can under-
mine the perception of crucial information and a decrease in
situation awareness (Casner & Schooler, 2015). Such effects
are not lim-ited to vehicle automation and have also been
documented in many studies that have explored responses to
automation errors between constantly reliable and variably
reliable automation. These studies show error detection was
worse in groups with constantly reliable automation com-
pared to groups that experi-ence automation with variable
reliability (Molloy & Parasuraman, 1996; Parasuraman et al.,
1993). Overall, experience with highly reliable automation
undermines automation error detec-tion and response, which
ultimately reduces driving safety (Greenlee et al., 2022).

Understanding the factors that contribute to overreliance
can help mitigate it. One such factor is trust in automation.
Trust has been identified as a factor that influences automa-
tion use (J. D. Lee & See, 2004). More specifically, overtrust
in automated systems can lead to misuse. Overtrust is defined
as “poor cali-bration in which trust exceeds the systems
capabilities” and misuse is defined as an “overreliance on
automation” (J. D. Lee & See, 2004; Parasuraman & Riley,
1997). In previous studies, this effect of trust on automated
system reliance has been demonstrated by promoting trust in
some drivers and low-ering trust in others (Korber et al.,
2018). Results show that in a safety-critical situation, the
trust-promoted group took longer to respond than the trust-
lowered group. In this present study, we extend this research
by exposing drivers to reliable driving automation followed
by an automation error, where the vehicle fails to stop at a
stop-controlled intersection. The effect of trust on drivers’
responses to automation errors is examined. Exist-ing studies
generally examine trust variation using subjective trust rat-
ings or introduce trust variation as a between-subject variable
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(Kohn et al., 2021). This research uses objective trust mea-
sures and implements mixture models to account for trust-
related variability in responses to the automation error.

Methods

Participants

Twenty-four people (16 female, 8 male; aged between 25 and
55, M = 29, SD = 5) participated in the study. Participants
were drivers from the Madison, WI area. Inclusion criteria
in-cluded possession of a valid driver’s license for at least 2
years. The study lasted approximately 2 hours per participant
and driv-ers were compensated US $30/hr. This study was
approved by the Education and Social/Behavioral Science
Institutional Re-view Board at the University of Wisconsin
— Madison.

Apparatus

A fixed-based simulator (NADS Minisim™) was used for
the study. The driving scenario was a four-lane suburban
street. This was visible via three 43 x 25.4-inch monitors
with the cen-ter monitor placed 4.5 feet from the driver, pro-
ducing a 1350 field of view.

Experimental Design and Independent Variables

A 4 (intersection type) x 3 (automation style) within-sub-ject
design was implemented. A replicated Latin square design
was used to counterbalance the conditions.

Intersection type. There are four intersection types: two inter-
sections with stop signs and two without stop signs. These
were differentiated by the presence of cross-path traffic
which drivers could see but did not interact with.

Automation style. Drivers experienced three automated driv-
ing styles: conservative, moderate, and aggressive. All au-
tomation styles detect and brake at stop-controlled
intersections and were capable of longitudinal and lateral
control of the ve-hicle. Figure 1 shows how the speed pro-
files distinguish the three automated driving styles. Pilot
study data from the manual driving scenarios guided the
development of the automated driving style. The aggressive,
moderate, and conservative styles were determined using the
15th, 50th, and 85th percentile of driv-ers’ manual driving
data such as mean deceleration, mean ac-celeration, distance
to the stop line when the speed first goes below 1 mph during
the approach to stop-controlled intersec-tions and stop dura-
tion at stop-controlled intersections (Domeyer et al., 2019;
Kamaraj et al., 2023; J. D. Lee et al., 2021). Table 1 shows
the values that differentiate each driving style. Note that,
during the error event the automation did not detect a stop
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Figure |. Speed vs distance to stop line for the conservative,
moderate, and aggressive driving styles. Styles are differentiated
by the difference in the initiation of braking and stopping distance
from the stop line.

sign and failed to brake but maintained longitudi-nal and lat-
eral control.

Dependent Variables

Dependent measures examined here include subjective and
objective trust in automation and response to automation
errors. Subjective trust is assessed via questionnaires while
objective trust is inferred from the driver’s pedal inputs while
monitoring the automation. Prior research suggests that
pedal inputs can measure trust (J. D. Lee et al., 2021). This
research uses objec-tive trust in automation to predict driv-
ers’ responses to automa-tion errors. Subjective ratings of
trust in automation (Muir & Moray, 1996) were used for
post-hoc descriptive data analysis.

Trust in automation. Trust in the automation was assessed
subjectively via surveys at the end of each automated drive.
In addition, drivers were asked to press the brake pedal if
they felt the automation was driving too fast and to press the
gas pedal if they felt the automation was going too slow. The
time drivers press the accelerator and brake pedals is used as
an objective trust measure. More time pressing the pedals
indicates lower trust in automation and vice versa. The time
spent pressing the pedals was estimated using all non-zero
values of pedal presses.

Response to automation error. The error event in this study
was a failure of the automation to stop at a stop-controlled
intersection. During this event, drivers were expected to
press the brake pedal. Note that the most conservative driv-
ing style begins decelerating 963 ft before the stop line. We
use this point as the stimulus onset, i.e., the first observable
evidence of an automation error. Brake pedal presses
recorded after this point indicate response onset, and indicate
the time taken to respond to the automation error (Engstrom
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Table 1. Variables differentiating the automation’s conservative, moderate, and aggressive driving style behavior at stop-controlled

intersections.

Conservative Moderate Aggressive
Distance to stop line at Vmin (ft) 30.2 232 15.5
Mean deceleration(ft/s2) -2.14 -2.33 —2.56
Mean acceleration (ft/s2) 2.00 2.49 4.28
Duration of stop (s) 2.05 1.51 0.18

et al., 2022). The response time is the difference between the
response and stimulus onset. Fast responders braked closer
to the 963 ft mark and slow re-sponders braked closer to the
stop line. Drivers who responded after the stop line were
labeled late responders and drivers who responded to the
automation error before the stop line were la-beled early
responders. For drivers who did not respond to the error
event (n = 2), the average response time of the late re-
sponders was used in place of the non-response data point.

Procedure

Once drivers arrived at the study site, inclusion criteria (valid
driver’s license, age, driving experience) were verified.
Drivers were briefed about the study's purpose as well as
poten-tial risks and benefits before obtaining informed con-
sent. They then completed pre-study questionnaires and drove
practice drives to acquaint them with the simulator. Data col-
lection commenced with two manual drives to further allow
familiarity with the simulator, three automated drives where
the automa-tion performed reliably (each automation style
experienced twice consecutively), and a final drive automated
drive where the automation fails at a stop-controlled intersec-
tion. Wellness questionnaires were administered after each
drive to monitor for simulator sickness. The driving style for
the final error event was assigned such that drivers were
equally distributed across the three styles (i.e., eight drivers
experienced the error in the conservative, eight in the moder-
ate, and eight in the aggressive driving style). During auto-
mated driving, drivers were informed that the vehicle is a
fully self-driving car that will center itself on the lane and
brake and stop at intersections. They were asked to imagine
that they were test driving different automated vehi-cles. The
gas and brake pedal were inactive during automated driving.
Drivers were asked to monitor the vehicle automation and
press the brake pedal if they thought the automation was
going too fast and the accelerator pedal if they thought the
au-tomation was going too slow. After all the drives were
com-pleted, drivers were interviewed about their experience
with the automation, debriefed, and paid for their time.

Data Processing and Analysis

The tidyverse R package was used for data wrangling and
visualization. Preliminary analysis of the data revealed pos-
sible heterogeneity of the response time to the automation

error, vio-lating the assumption of a single underlying distri-
bution for the data. To address this, regression mixture mod-
els were used to analyze the data, implemented via the

flexmix R package (Grun & Leisch, 2007; Tan & Mueller,

2016).

Mixture models. Behavior data such as those obtained from
driving behavior often exhibit heterogeneity (Park et al.,
2010). For instance, if we assume that driver behavior may
vary based on factors such as age or gender. When fitting
regression mod-els to these data, the models are likely to
vary across these dif-ferent groups of data. At times, the fac-
tors influencing the het-erogeneity in the data are unidenti-
fied or unobservable. For ex-ample, risk-seeking vs.
risk-averse driving behavior may influ-ence the response to
certain stimuli but may not be observed. In such cases, mix-
ture models help model the probability of sub-groups belong-
ing to unobserved groups in the data. This study applied
regression mixture models to identify sub-groups in the data.
These models assume that sub-groups are defined by dif-
ferent regression models. The method implemented here
uses the Expectation-Maximization (EM) algorithm to find
the max-imum likelihood estimates for each subgroup. First,
members of the group are randomly assigned to each sub-
group and max-imum likelihood estimates are found for each
subgroup. Group members that are more likely to fit in
another group are resorted and then maximum likelihood
estimates are recalculated. This step is repeated to identify
the maximum likelihood partition.

Results

Influence of Trust in Automation on Response to
Automa-tion Errors

Figure 2 shows the relationship between each pair of vari-
ables for all drivers (brake pedal press time, gas pedal press
time, and response time to error). The distributions of these
var-iables are shown along the diagonal and the Pearson cor-
rela-tions are shown on the top right. During debrief inter-
views, one of the drivers reported noticing an automation
error; however, this driver did not respond by pressing the
brake pedal within the intersection bounds. As a result, this
data point was ex-cluded from the analysis as it was not pos-
sible to determine the response time without the pedal press
input. Thus, 23 data points—one for each driver—were used
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Figure 2. Scatterplot (bottom left) and Pearson correlation (top
right) of the pairs of brake pedal press time, accelerator pedal
press time, and response time. The distribution of each variable is
shown along the diagonal.

to examine the associ-ation between pedal press-based trust
and the responses to the automation error.

Given the bimodal distribution of the data, mixture mod-
els were estimated for two clusters. The first model used the
brake pedal-based trust as the covariate and the second used
the ac-celerator pedal-based trust as the covariate. Table 2
summarizes the mixture model fit. For model 1, Cluster 1
had a ratio of 0.53 which indicates that 15 points had a non-
zero likelihood of be-ing in that cluster, and of those 15
points, 53% (i.e., cluster size = 8) were best fit by that clus-
ter. Cluster 2 had a ratio of 0.68 which indicates that 22
points had a non-zero likelihood of being in that cluster, and
of those 68% (i.e., cluster size = 15) were best fit by that
cluster. For model 2, Cluster 1 had a ratio of 0.45 i.c., 11
points had a non-zero likelihood of being in that cluster, and
of those 11 points, 45% (i.e., cluster size = 5) were best fit
by that cluster. Cluster 2 had a ratio of 0.78 i.e., 23 points had
a non-zero likelihood of being in that cluster, and of those
78% (i.e., cluster size = 18) were best fit by that cluster.

Following cluster identification, each cluster was qualita-
tively assessed for features that distinguished them. The
most distinguishing feature of each cluster was whether the
drivers were early or late responders. Cluster 1 consists of
mostly late responders (five late responders and three early
responders) and Cluster 2 consists of only early responders
(fifteen early re-sponders). Mixture models were fit to the
data of each cluster. For model 1 (response time ~ brake
pedal press time, see Figure 3), Cluster 1 and Cluster 2 fitted
a linear model to predict the response time with the brake
pedal presses. For Cluster 1, which consists mostly of the
drivers who responded to the automation error after the stop

Table 2. Mixture model summary for k = 2 clusters for models
examining the effect of pedal press-based trust on response to
automation error.

Model |: Response time ~ Brake pedal press time

Cluster ID Prior Prob. Cluster Size Post Prob.  Ratio

| 0.29 8 I5 0.53

2 0.70 15 22 0.68
Model 2: Response time ~ Accelerator pedal press time

| 0.21 5 I 0.45

2 0.78 18 23 0.78

® Cluster 1 - Late responders
204 Cluster 2 - Early responders

* Response after stop line
O Response before stop line

104

Response time to automation error (s)

5]

0 10
Time spent pressing brake pedal with reliable automation (s)

Figure 3. Response time to automation errors versus trust
indicated by brake pedal interaction for each cluster identified via
mixture modeling.

line, the model’s explanatory power is sub-stantial (R*> =
0.92). The model’s intercept, corresponding to the brake
pedal press = 0, is at 18.59 (95% CI [17.22, 19.96], #6) =
26.54, p < .001). Within this model, the effect of the brake
pedal press is statistically significant and negative (f =
-0.91, 95% CI [-1.12,-0.70], #6) = -8.54, p <.001; Std. B =
-0.96, 95% CI [-1.18, -0.74]) indicating that drivers who
spent less time engag-ing with the brake pedal took longer to
respond to the automa-tion error. For Cluster 2, which con-
sists of drivers who re-sponded to automation error before
the stop line, the model’s explanatory power is very weak (R?
= .00001). The model’s in-tercept, corresponding to brake
pedal press = 0, is at 10.17 (95% CI [8.90, 11.44], «(13) =
15.65, p < .001). Within this model, the effect of the brake
pedal press is not statistically significant (B = .0009, 95% CI
[-0.14, 0.14], «(13) = 0.01, p = 0.989; Std. B = 0.003, 95%
CI [-0.54, 0.55]).

For model 2 (response time ~ accelerator pedal press time,
see Figure 4), Cluster 1 and Cluster 2 fitted a linear model to
predict the response time with the gas pedal presses. In Cluster
1, which consists of the drivers who responded to the
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Figure 4. Response time to automation errors versus trust
indicated by gas pe-dal interaction for each cluster identified via
mixture modeling.

automa-tion error before the stop line, the model’s explanatory
power is very weak (R?> = .004). The model’s intercept, cor-
responding to the gas pedal press = 0, is at 18.78 (95% CI
[16.51, 21.05], #3) = 16.22, p < .001). Within this model,
the effect of the gas pedal press is not statistically significant
(B = -0.005, 95% CI [-0.10, 0.09], #3) = -0.11, p = 0.910;
Std. B = -0.06, 95% CI [-1.19, 1.06]). For Cluster 2, which
consists of all drivers who re-sponded to the automation error
before the stop line, the model’s explanatory power is very
weak (R? = .0007). The model’s intercept, corresponding to
gas pedal press = 0, is at 9.99 (95% CI [8.50, 11.48], #(16) =
13.16, p < .001). With this model, the effect of the accelerator
pedal press is not statisti-cally significant (B = 0.005, 95% CI
[-0.08, 0.10], #16) = 0.11, p = 0.911; Std. B = 0.03, 95% CI
[-0.46, 0.52]).

The two clusters identified from model 1 (response time ~
brake pedal press time) and model 2 (response time ~ accelera-
tor pedal press time) show that cluster 1 from both models
con-sisted primarily of late responders (see responses before
and af-ter the stop line in Figure 3 and Figure 4). Model 1 —
cluster 1 indicates that the effect of the brake pedal pressing
time was negatively associated with response time. This indi-
cates that drivers who spent more time pressing the brake
pedal in prior drives were quicker to respond to the automa-
tion error whereas those that spent less time pressing the
brake pedal were slower to respond to the automation error.
Note that we assume that more pedal pressing indicates low
trust in the automation and less pedal pressing indicates
higher trust in the automation. Thus, it follows that late
responders are those that have higher subjective trust ratings
in reliable automation and early re-sponders are those that
have lower trust in reliable automation. We verify this
assumption by comparing the mean subjective trust in reliable
automation across the early and late responders. One driver
was removed as an outlier from the group of early responders.

A Welch Two Sample #-test testing the difference of the mean
subjective trust in reliable automation for the early and late
responders (MEarly responders = 1.68, MLate responders =
2.42) shows that the effect is negative, statistically signifi-
cant, and large (difference = -0.74, 95% CI [-1.31, -0.16],
#(10.91) = -2.80, p = 0.017; Cohen's d = -1.70, 95% CI
[-3.05, -0.29]). This supports the assumption that drivers who
responded late to the automation error had more trust in the
automation.

Discussion

The goal of this research was to examine the effect of trust
on drivers’ responses to automation errors. Mixture models
identified two clusters based on the drivers’ engagement
with reliable automation via brake and gas pedal presses
and re-sponse to automation errors. Generalized regression
models were applied to each cluster that was identified via
mixture modeling. In the models that examined the effect
of brake pe-dal-based trust on drivers’ response to the
automation error, one cluster that comprised early respond-
ers to automation errors showed no significant effect of
trust on response time (see Fig-ure 3 Cluster 2). In the
other cluster (see Figure 3 Cluster 1) which consisted pri-
marily of late responders, more brake pedal presses were
associated with quicker responses to automation errors.
Both models that examined the effect of gas pedal-based
trust showed no significant effect of trust on the response
time to automation error. Results also indicated that late
responders had higher subjective trust ratings. Thus, the
assumption that the late responders are generally high
trusters was verified.

This study reinforces previous findings that automation
monitoring alone does not indicate appropriate reliance and
ex-tended experience with seemingly perfect automation can
result in overtrust and automation-induced complacency
(Parasuraman et al., 1993; Wickens et al., 2015). We also
demonstrate how trust dynamics vary across drivers.
Specifically, while all participants experienced the same
automation, their responses to the automation differed (Li
et al., 2023). Mixture models helped reveal that one group of
drivers became complacent fail-ing to respond to automation
errors promptly. Consistent with this pattern, subjective rat-
ings of trust of these drivers show that these drivers trusted
the reliable automation more. These results are consistent
with studies that have found differences in trust dynamics
across people that lead to bimodal distributions (Bhat et al.,
2022; Liu et al., 2021). A focus on strategies to calibrate trust
in drivers with high trust in automation could prove useful in
managing their reliance on automation. For instance, drivers
with high levels of trust may benefit from strategies that in-
crease engagement with automation, such as collaborative
driv-ing and feedback from the vehicle.

In addition to developing more collaborative driving
de-signs, this study also shows that long-term continuous
engage-ment with automation through pedal presses or other
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behavioral indicators could be used to estimate and predict
driver response to automation errors. Such state monitoring
goes beyond as-sessing drivers’ momentary readiness to take
control based on whether their eyes are on the road and hands
are on the wheel. This research suggests that driver states
over longer time hori-zons may be related to when and how
often they intervene.

Limitations of the study relate to how simulation and ex-
perimental settings translate to vehicles on the road.
Simulation may encourage different behaviors due to reduced
risk com-pared to on-road driving. In addition, because this
study does not include a production system, with specific
vehicle perfor-mance and driver feedback designs, the results
should be aug-mented data from drivers in actual vehicles.

Conclusions

Automation-induced complacency and overreliance can
undermine drivers’ responses to unexpected errors. We
showed a bimodal distribution of trust can emerge when peo-
ple use re-liable automation, and no engagement is encour-
aged by the ve-hicle. Strategies to support driver engagement
in vulnerable groups of drivers may help reduce the effects of
automation-induced complacency. Future work will focus on
comparing strategies to support driver engagement and trust
calibration.

Acknowledgments

This study was funded by Toyota Collaborative Safety Re-search
Center (CSRC) and a grant from the National Science Foundation
(Award number 1739869). We thank the members of the University
of Wisconsin-Madison, Cognitive Systems Laboratory for their
insightful discussions and comments.

ORCID iD

Amudha V. Kamaraj https://orcid.org/0000-0002-8602-1448

References

Bainbridge, L. (1983). Ironies of automation. In Analysis, design and
evalua-tion of man—machine systems (pp. 129-135). Elsevier.

Bhat, S., Lyons, J. B., Shi, C., & Yang, X. J. (2022). Clustering
trust dynamics in a human-robot sequential decision-making
task. IEEE Robotics and Automation Letters, 7(4), 8815-8822.

Casner, S. M., & Schooler, J. W. (2015). Vigilance impossible:
Diligence, dis-traction, and daydreaming all lead to failures in
a practical moni-toring task. Consciousness and Cognition, 35,
33-41.

Domeyer, J., Alsaid, A., Liu, S.-Y., & Lee, J. D. (2019). Passenger
emotional response type and timing during automated vehicle
intersection ne-gotiation. Proceedings of the Human Factors
and Ergonomics So-ciety Annual Meeting, 63, Article 1.

Engstrom, J., Liu, S.-Y., Dinparastdjadid, A., & Simoiu, C. (2022).
Modeling road user response timing in naturalistic settings: A
surprise-based framework (arXiv:2208.08651). arXiv. https://
doi.org/10.48550/arXiv.2208.08651

Greenlee, E. T., DeLucia, P. R., & Newton, D. C. (2022). Driver
vigilance decrement is more severe during automated driving
than manual driving. Human Factors, 00187208221103922.

Grun, B., & Leisch, F. (2007). FlexMix: An R package for finite
mixture mod-elling.

Kamaraj, A. V., Lee, J., Domeyer, J. E., Liu, S.-Y., & Lee, J. D.
(2023). Com-paring subjective similarity of automated driving
styles to objec-tive distance-based similarity. Human Factors,
00187208221142126.

Kohn, S. C., de Visser, E. J., Wiese, E., Lee, Y.-C., & Shaw, T. H.
(2021). Measurement of trust in automation: A narrative review
and refer-ence guide. Frontiers in Psychology, 12, 604977.

Korber, M., Baseler, E., & Bengler, K. (2018). Introduction mat-
ters: Manipu-lating trust in automation and reliance in auto-
mated driving. Ap-plied Ergonomics, 66, 18-31.

Lee, J. D., Liu, S.-Y., Domeyer, J., & DinparastDjadid, A. (2021).
Assessing drivers’ trust of automated vehicle driving styles
with a two-part mixed model of intervention tendency and
magnitude. Human Factors, 63(2), 197-209.

Lee, J. D., & See, K. A. (2004). Trust in automation: Designing for
appropri-ate reliance. Human Factors, 46(1), 50-80.

Lee, J., Venkatraman, V., Campbell, J. L., & Richard, C. M. (2019).
Work-load and Attention Management in Automated Vehicles.
Human Performance in Automated and Autonomous Systems,
213-230. https://doi.org/10.1201/9780429458330-11

Li, M., Nogjovich, S. I., Cross, E. V., & Lee, J. D. (2023).
Explaining trust di-vergence: Bifurcation in a dynamic system.
Proceedings of the Hu-man Factors and Ergonomics Society
Annual Meeting, 67.

Liu, J., Akash, K., Misu, T., & Wu, X. (2021). Clustering human
trust dynam-ics for customized real-time prediction. 2021 leee
International In-telligent Transportation Systems Conference
(ITSC), 1705-1712.

Molloy, R., & Parasuraman, R. (1996). Monitoring an automated
system for a single failure: Vigilance and task complexity
effects. Human Fac-tors, 38(2), 311-322.

Muir, B. M., & Moray, N. (1996). Trust in automation. Part II.
Experimental studies of trust and human intervention in a pro-
cess control simula-tion. Ergonomics, 39(3), 429-460.

Parasuraman, R., Molloy, R., & Singh, I. L. (1993). Performance
conse-quences of automation-induced’complacency’. The
International Journal of Aviation Psychology, 3(1), 1-23.

Parasuraman, R., & Riley, V. (1997). Humans and automation: Use,
misuse, disuse, abuse. Human Factors, 39(2), 230-253.

Park, B.-J., Zhang, Y., & Lord, D. (2010). Bayesian mixture mod-
eling ap-proach to account for heterogeneity in speed data.
Transportation Research Part B: Methodological, 44(5),
662-673.

Roge, J., Kielbasa, L., & Muzet, A. (2002). Deformation of the
useful visual field with state of vigilance, task priority, and
central task com-plexity. Perceptual and Motor Skills, 95(1),
118-130.

SAE. (2021). SAE J3016.: Taxonomy and Definitions for Terms
Related to On-Road Motor Vehicle Automated Driving
Systems. SAE J3016.

Tan, Y.-Y. S., & Mueller, S. T. (2016). Adapting cultural mixture
modeling for continuous measures of knowledge and memory
fluency. Be-havior Research Methods, 48, 843-856.

Warm, J. S., Parasuraman, R., & Matthews, G. (2008). Vigilance
requires hard mental work and is stressful. Human Factors,
50(3), 433-441.

Wickens, C. D., Clegg, B. A., Vieane, A. Z., & Sebok, A. L. (2015).
Compla-cency and automation bias in the use of imperfect
automation. Hu-man Factors, 57(5), 728-739.


https://orcid.org/0000-0002-8602-1448
https://doi.org/10.48550/arXiv.2208.08651
https://doi.org/10.48550/arXiv.2208.08651
https://doi.org/10.1201/9780429458330-11

