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Abstract— Positive systems, which are systems whose states are
always non-negative, can have both positive linear and positive
nonlinear approximations that are valid dynamical models in a
prescribed domain. When a linearization of a nonlinear system
in a domain near an operating point is equivalent to another
linear system representation, a reference-tracking controller
for that linear system should also achieve reference-tracking
control of the nonlinear system in that domain. Here, we show
that only if a linearized positive nonlinear system (PNS) is a
positive system (i.e., the PNS is cooperative) will a reference-
tracking controller for an equivalent positive linear system
realization achieve similar results on the nonlinear system. For an
example noncooperative PNS of human blood coagulation, where
a published reference-tracking controller assumed a positive
linear plant, we develop feedforward and feedback controllers
that augment the prior controller to overcome noncooperativity
and similarly control the positive nonlinear model.

Index Terms— Compartmental and positive systems, biomolec-
ular systems, healthcare and medical systems.

I. INTRODUCTION

POSITIVE systems are prevalent in economics [1], thermo-
dynamics [2], communication networks [3], and physiol-

ogy [4], where naturally-occurring non-negative states capture
physical quantities such as spending, absolute temperature,
information, and biochemical concentration, respectively.
Positivity is an innate feature in these systems: given non-
negative initial conditions and input signals, the states
remain in the positive orthant for all time without additional
constraints. Positive linear systems (PLSs) are well studied [5],
and controllability and reachability results have long existed
[6]–[8] for conditions that are more restrictive [9] than those
for classical linear systems. The stability and observability
of PLSs have also been described [10]–[13].

Unfortunately, positive nonlinear systems (PNSs) are not
as well studied as PLSs, in part because it often suffices
to linearize the PNS near an operating point or equilibrium
and to then apply established theory. PLS theory has been
generalized to the nonlinear case [14]–[16]. However, these
results are often applicable only to a class of PNSs known
as cooperative PNSs, which are systems whose linearization
is also a positive system.

Received 16 September 2024; revised 25 November 2024; accepted
16 December 2024. Date of publication 26 December 2024; date of
current version 15 January 2025. This work was supported in part by
NSF under Grant CMMI 2339335, and in part by DARPA under agreement
HR00112490445. (Corresponding author: Amor A. Menezes)

The authors are with the Department of Mechanical and Aerospace
Engineering, University of Florida, 527 Gale Lemerand Drive, Gainesville, FL
32611-6250, USA. g.liu1@ufl.edu, amormenezes@ufl.edu

Digital Object Identifier 10.1109/LCSYS.2024.3522944

The class of noncooperative PNSs (NPNSs) — PNSs whose
linearization is not a positive system — is an important
one. NPNSs arise when linearizing around a non-zero
equilibrium. Recent results exist on NPNS controllability
[17], observability [18], stability [19], stabilizability [20], and
reachability [21]. However, the general NPNS control problem
remains open. Models of biochemical networks are frequently
NPNSs, and thus techniques to regulate these systems are
desired for satisfactory biological control.

Biological system models are innately asymptotically stable
due to inherent protein concentration degradation (negative)
terms in their dynamics. This fact can be leveraged during
reference-tracking control by trading-off positive inputs with
natural degradation and accepting some oscillatory behavior
during tracking, particularly if there are system delays [22].
But not all NPNS states are reachable. A recent cancer
chemotherapy study [23] showed that developing a controller
for a linearized NPNS to reach the origin of the state space
in finite, or even infinite, time was impossible due to system
properties [23], and only control to other equilibria was
possible in some cases. Hence, detailed system dynamics
knowledge is necessary for control design, which is a tall
order for biological systems due to incomplete understanding,
multiple state interactions, and stochasticity. The resultant
feedback control can switch between different linearizations
at various equilibria, and harness or avoid different basins of
attraction.

In [22], we designed a reference-tracking controller for
a biological PLS with input nonlinearities, and in [24], we
updated the model dynamics to be a biological PNS. At
the typical equilibrium, a transfer function of the linearized
dynamics of [24] has the same transfer function as the plant
in [22]. The motivation to develop the nonlinear model in
[24] was to use states that were experimentally measurable.
Typically, when a linearization of a nonlinear system in a
domain near an operating point is equivalent to another linear
system representation, a reference-tracking controller for that
linear system should also achieve reference-tracking control of
the nonlinear system in that domain. We applied the controller
from [22] to the dynamics in [24], C1 in Fig. 1. Surprisingly,
Fig. 2, where nonlinear model states are in blue, the published
controller only manipulated the state that received the input
(top row), and two states did not move from their initial
conditions (middle two rows); thus, the closed-loop system did
not achieve reference-tracking of the output state (bottom row).
When we applied the published controller to the linearized
dynamics of [24], red trajectories in Fig. 2, we found that an
intermediate state (second row) goes negative despite output
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Fig. 1. Paper overview. (a) Our overarching control problem is to design a
reference-tracking controller for a highly-complex, poorly characterized,
single output, positive system. (b) We assume that there exists a PLS
approximation of the unknown system for which a satisfactory reference-
tracking controller C1 has already been designed. (c) We also assume that
there exists a PNS approximation of the unknown system for which we
would like to design a satisfactory reference-tracking controller C2. (d) Even
if a linearization of the PNS in part (c) near an operating point yields a
linear system that is equivalent to the PLS in part (b), direct application of
controller C1 to the PNS as controller C2 cannot always satisfactorily track
a reference, and we show here that unsatisfactory results occur when the
PNS linearization is not positive. Specifically, unsatisfactory results occur for
the class of NPNSs. (e) For this class of systems, we present two forms of
controller C3 that overcomes noncooperativity. When C3 is augmented with
C1, both controllers together constitute the satisfactory reference-tracking
controller C2.

reference-tracking (bottom row). Such negativity cannot occur
with the nonlinear model, which turns out to be a NPNS.

This paper recovers the control performance of [22] for
the NPNS in [24]. Our intellectual contributions include:

• Insights into positivity loss during the linearization of
several biochemical network NPNSs.

• Hybrid phenomenological and mechanistic modeling
through non-minimal realizations, so that biological
states are meaningful and controller design is simplified.
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Fig. 2. The reference-tracking controller from [22], C1, applied to a PNS
from [24] (blue) is unsuccessful (bottom row). Controller application to the
system linearization (red) is successful, but a state is driven negative (second
row).

• Feedforward and feedback controllers that overcome
noncooperativity (Theorem 1) when controlling NPNSs.

The remainder of this paper is as follows. Section II details
biochemical NPNSs and their control challenges. Section III
develops control laws to address these challenges. Section IV
assesses controller performance on the example biochemical
NPNS of [24]. Section V presents concluding remarks.

II. NONCOOPERATIVE POSITIVE NONLINEAR SYSTEMS

A. Notation and Preliminaries

Let R denote the set of real numbers; let Rn and Rn×m

denote the n-dimensional and n×m-dimensional real spaces,
respectively; and let Rn

+ denote the n-dimensional real space
of vectors with non-negative components. For state x ∈ Rn,
input u ∈ Rm, and output y ∈ Rp, we have that

ẋ(t) = Ax(t)+Bu(t), (1)
y(t) =Cx(t),

is a continuous linear time-invariant system, where time t ∈
R+, we are given that x(0) = x0 is an initial condition, the
plant is A ∈ Rn×n, and matrices B and C have appropriate
dimensions: B ∈ Rn×m, C ∈ Rp×n. More generally,

ẋ(t) = f (x(t),u(t)), (2)
y(t) = h(x(t)),

is a continuous nonlinear system, where f : Rn ×Rm → Rn

and h : Rn → Rp are continuously differentiable. Suppose
that (2) has an equilibrium e = (xe,ue) where ẋ(t) = 0. Then
the linearization of (2) at e in the form of (1) has plant
A as the Jacobian matrix of f with respect to the states,
A = ∂ ( f (x,u))

∂x |e, B as the Jacobian matrix of f with respect to
the input, B = ∂ ( f (x,u))

∂u |e, and C as the Jacobian matrix of h
with respect to the states, C = ∂ (h(x))

∂x |e.
Systems (1) and (2) are positive if, for any initial condition

x0 ∈ Rn
+, the state vector x(t) ∈ Rn

+,∀t ≥ t0. The necessary
and sufficient condition of positivity for system (1) is that A



is a Metzler matrix, {A ∈ Rn×n : ai j ≥ 0,∀(i, j), i ̸= j} with
Bu ∈ Rn

+,∀t ≥ t0. For system (2), the positivity condition
requires that, for any state x(t) ∈ Rn

+, if a component xi = 0,
then fi(x,u)≥ 0 [23], [25]. This condition ensures that if a
state variable xi reaches 0, then it will either remain at 0 or
increase, thereby preserving non-negativity.

A continuously differentiable vector field f : Rn → Rn is
cooperative if its Jacobian matrix, ∂ f

∂x (a),∀a ∈ Rn
+\{0}, is a

Metzler matrix [26]. Thus, linearizing a NPNS does not yield
a PLS, since the linearized plant is not a Metzler matrix.
B. Examples of Biomolecular NPNSs

Dynamical system representations of biomolecular net-
works modeled using chemical kinetics are frequently NPNSs.
Biologically, their state variables are non-negative concentra-
tions, but mathematically, given nonnegative initial conditions,
their nonlinear dynamics satisfy the positivity condition. How-
ever, the constant production terms or non-origin equilibria
in the dynamics prevent the linearized plant matrix A from
being a Metzler matrix. In addition to the previous cancer
chemotherapy example [23], two more examples are in Table I.
The first is the genetic toggle switch in Escherichia coli [27],
a foundational synthetic biology result, which has: two states
x1 and x2; parameters α1, α2, β , and γ ; and three non-origin
equilibria, any one of which can be denoted as (x1e, x2e).
The second example is the human regulation of cortisol via
the hypothalamic pituitary adrenal (HPA) axis in response to
a stress input [28]. This model’s zero-input dynamics have:
states x1, x2, x3, and x4; parameters ki1, kcd , ki2, kad , k, kcr,
and krd ; and one to three non-origin equilibria depending
on the parameter values, any one of which can be denoted
as (x1e, x2e, x3e, x4e). In both examples, the linearized plant
matrix A is not a Metzler matrix due to off-diagonal negative
terms (red signs in Table I).
C. Biomolecular Problem Motivation

A fourth NPNS that motivates this paper is a model of
the coagulation cascade, a network of biochemical reactions
triggered by the release of tissue factor (TF) to produce
thrombin, a protein that drives clotting. Developing controllers
for the coagulation cascade is crucial to treat severe bleeding
after trauma, which is a leading cause of death among
individuals aged 1 to 44 in the United States [29]. Proteins
that are involved in the coagulation cascade are known as
coagulation factors, and effective treatment for trauma patients
requires the transfusion of specific coagulation factors [30].
Because current treatment protocols rely on the administration
of units of uncharacterized fresh frozen plasma (FFP), where

TABLE I
SAMPLE BIOMOLECULAR NPNSS

Model Description Nonlinear Model Signs of Jacobian at Equilibrium

Genetic toggle
switch in E. coli

ẋ1 =
α1

1+xβ

2

− x1

ẋ2 =
α2

1+xγ

1
− x2

[
− −
− −

]

Cortisol level
within the HPA axis

ẋ1 =
ki1

ki1+x4
− kcdx1,

ẋ2 =
ki2x1

ki2+x3x4
− kadx2,

ẋ3 =
(x3x4)

2

k+(x3x4)
2 + kcr − krdx3,

ẋ4 = x2 − x4

− 0 0 −
+ − − −
0 0 − +
0 + 0 −



the precise concentrations of each coagulation factor in a unit
are unknown, severely injured patients that require massive
transfusions still have 30% mortality [31]. To personalize
treatment, newly-developed controllers must recommend the
concentration of one or more coagulation factors to administer
to a patient according to their condition [22], [24].

This fourth NPNS is a phenomenological model that uses
experimental data to fit a mathematical function to describe
the underlying biological process [24], [30], [32]:

Y (s)
U(s)

=
Kn

s3 +K2s2 +K1s+K0
e−Kds, (3)

a third-order transfer function, where U(s) is the input TF
concentration time-history in the frequency domain, Y (s)
is the output time-history of thrombin concentration in the
frequency domain, and Kd , Kn, K2, K1, and K0 are parameters.
A three-dimensional state-space model for (3) is (4) [22]:ẋ1

ẋ2
ẋ3

=

−d1 1 0
0 −d2 1
0 0 −d3

x1
x2
x3

+

0
0
1

g(u(t − τ)), (4)

where g(u) : R+ → R+ is a non-negative saturation of u:

g(u) =
β

2
+

β

2
tanh

(ks

2
(u(t)−η)

)
, (5)

having β ,ks, and η as positive constants, and η ≥ β . A full-
state feedback controller (6), denoted as C1 in Fig. 1, tracks
desired trajectories of thrombin:

u(t) =
(

sgn
( sgn(e1(t))+1

2

))(
k(en(t)− en(t0))+ν(t)

)
,

(6)
where sgn(x) is the signum function, e1 (t) and en (t) are error
signals [22], en(t0) ∈ R is an initial error signal, k ∈ R+ is
a designed positive constant, and ν(t) is the solution to an
ordinary differential equation [22].

System (4) is a PLS where state x1 is TF concentration;
state x2 is the concentration of protein complex prothrombi-
nase; state x3 is the generated thrombin concentration; and τ

is an unknown input delay. However, this model is limited by
x2 in practice because no experimental measurement exists
for protein complexes. Consequently, an alternate nonlinear
realization of (3) was proposed [22] that uses states of single
protein concentrations:

ẋ1 =−kd1x1 −βx1x2 +g(u(t − τ)),

ẋ2 = kp2 − kd2x2 −βx1x2,

ẋ3 = γx1x2 − kd3x3, (7)
ẋ4 = kn4x3 − kd4x4.

In (7), states x1 and x4 are TF and thrombin concentrations,
respectively, and states x2 and x3 are the concentrations of
factor VII and factor Xa, respectively. The parameters kdi ∈R+

for i ∈ {1,2,3,4} are the degradation rates of each protein;
kp2 ∈ R+ is the production rate of factor VII; β ∈ R+ is the
sequestration rate of TF and factor VII to form the TF-VII
complex; γ ∈ R+ is the activation rate of factor X; kn4 ∈ R+

is the rate of thrombin generation; and u(t −τ) is the control
input u with an unknown delay τ . Given non-negative initial



conditions and control input, all states remain in the positive
orthant over time, making (7) a PNS.

The linearized plant of (7) at equilibrium [0,x20,0,0] is

Al =


−kd1 −βx20 0 0 0

−βx20 −kd2 0 0
γx20 0 −kd3 0

0 0 kn4 −kd4

 . (8)

Since β and x20 are positive constants, the off-diagonal term
−βx20 < 0, meaning Al is not Metzler, and thus linearizing (7)
does not lead to a PLS. Fig. 2 shows that applying C1 to (8)
ensures that output thrombin concentration tracks the desired
trajectory, but state x2 becomes negative. Additionally, C1
fails to control (7), Fig. 2; instead of going negative, state x2
converges to 0. Thus, x3 and x4 also go to zero. Biologically,
this is plausible because factor VII is essential for producing
factor Xa, which, in turn, generates thrombin. If factor VII
were depleted, the entire coagulation cascade would halt.
Thus, an additional controller, C3, has to be developed to
prevent factor VII from depletion.

III. CONTROLLER DESIGN

The control goal is to design controller C3, Fig. 1 (e),
to overcome noncooperativity. C3 will enable the positive
nonlinear and linear systems to behave similarly, and will
augment C1. Therefore, another input u2 actuated by C3 must
restore the positivity of the linearization (8) and ensure that
the behaviors of the PNS (7) and its linearization are aligned.
We rename u in the first state equation of (7) as u1, and we
choose to add u2 to the second state equation of (7) to obtain
a multi-input, single-output NPNS, which linearizes at the
equilibrium to

ẋ = Alx+Blu, (9)

where Bl ≜

[
1 0 0 0
0 1 0 0

]T

and u ≜ [g(u1(t − τ),u2]
T . The

superscript T is the transpose operator.

A. Feedforward Controller to Overcome Noncooperativity

We make two standard biological control assumptions that
are always true in practice:

Assumption 1: All clotting proteins that are not included
in our model are present in sufficient concentrations.

Assumption 2: Sequestration, modeled as a negative prod-
uct of two states, dominates other decay processes.

Assumption 1 ensures that (coagulation) factors external
to our focus have no bearing on (clotting) outcome. Assump-
tion 2 harnesses the observation that biochemical kinetic
parameters like β and γ are large, and so in (7), states x1,
x2, and x3 quickly reach steady state due to the product x1x2
in their dynamical equations.

Using Assumptions 1 and 2, a feedforward C3 aims to keep
state x2 in the vicinity of x20, meaning at steady state (ss),
x2ss = x20, x4ss = xr, ẋ1ss = ẋ2ss = ẋ3ss = ẋ4ss = 0. Substituting
these into (9) and solving for u2, we obtain the feedforward
control u2 f f :

u2 f f (t) = kd2x20 +
βkd3kd4

γkn4
xr(t). (10)

This feedforward control law mitigates, but does not fully
eliminate, noncooperativity. As we will show later in Fig. 5,
x2(t) may take negative values without finely-tuned C1 gains.

B. Feedback Controller to Overcome Noncooperativity

We make an assumption to define an error signal as e(t)≜
x20 −x2(t), which we can feedback for control in Theorem 1.

Assumption 3: State x2(t) can be instantly measured.
Theorem 1: Using Assumptions 1 and 3, a feedback C3

u2 f b to overcome noncooperativity of (9) is

u2 f b(t) =
(

sgn
(
sgn(e)+1

))
βx20

∫ t

t0
g(u1(σ − τ))dσ , (11)

guaranteeing the positivity of state x2(t) for all t ≥ t0. That
is, whenever x2 = 0, (11) guarantees that ẋ2 ≥ 0,∀t ≥ t0.

Proof: We prove this claim directly. Recall that the
positivity condition for a nonlinear system is that, for any state
x(t)∈Rn

+, ẋi ≥ 0 whenever xi = 0. First, for system (9), ẋ1 =
−kd1x1 −βx1x20 +g(u1(t − τ)). Given that ∀t ≥ t0,g(u1(t −
τ)) ∈ R+, when x1 = 0, ẋ1 = 0−0+g(u1(t − τ)) ≥ 0. This
implies that x1 satisfies the positivity condition. Hence, if the
initial condition x10 ≥ 0, then x1 ≥ 0,∀t ≥ t0.

Next, since kd1, β , and x20 are nonnegative real numbers
and x1 ∈ R+,∀t ≥ t0, we have −kd1x1 ≤ 0 and −βx1x20 ≤ 0.
Thus, ẋ1 ≤ g(u1(t−τ)). Integrating both sides gives x1−x10 ≤∫ t

t0 g(u1(t − τ))dσ . As x10 = 0, we have

x1 ≤
∫ t

t0
g(u1(t − τ))dσ . (12)

In system (9), ẋ2 = −kd2x2 −βx1x20 + u2. The positivity
condition requires that, when x2 = 0, ẋ2 ≥ 0 =⇒ ẋ2 = 0−
βx1x20 +u2 ≥ 0, or after rearranging,

u2 ≥ βx1x20. (13)

This means that if u2 satisfies (13), then x2 ∈ R+,∀t ≥ t0,
provided that x20 > 0. Let u2 take the form of (11). When
x2 = 0 =⇒ e = x20 > 0, so sgn(sgn(e)+1)) = 1. Thus,

u2 = u2 f b = βx20

∫ t

t0
g(u1(t − τ))dσ . (14)

Substituting the inequality (12) into (14), u2 = u2 f b =

βx20
∫ t

t0 g(u1(t − τ)) ≥ βx1x20. Thus, inequality (13) is sat-
isfied. Therefore, (11) guarantees the positivity of state x2.

IV. CONTROLLER APPLICATION

We show controller efficacy in regulating blood coagulation
for a trauma patient with abnormal clotting. The model param-
eters are: kd1 = 0.1298, kd2 = 0.0488, kd3 = 0.2596, kd4 =
0.2595, kp2 = 4.8763×10−10, kn4 = 2.4820, β = 1.2978×
107, γ = 2.4830×108. These parameters are obtained from a
severely injured trauma patient. The initial concentrations (M)
for all proteins are x0 = [0,10× 10−9,0,500× 10−9]T . The
simulation goal is to regulate elevated thrombin (factor IIa),
as seen in some trauma patients [32], to a normal range, and
to track a sinusoid inside the range to showcase robustness:
xr =

(
130+50× sin(0.17t)

)
×10−9 M.



The feedforward and feedback versions of controller C3
restore the tracking performance of controller C1, Figs. 3 and
4, respectively, confirming C3 efficacy. The blue solid lines
are the state responses of the NPNS, while the red dashed
lines are the state responses of the linearized system. The
black solid lines are the desired trajectories.

Fig. 3. State responses of systems (7) (blue solid curves) and (9) (red
dashed curves) with u1 (6) augmented by the feedforward C3, u2 f f .

Fig. 4. State responses of systems (7) (blue solid curves) and (9) (red
dashed curves) with u1 (6) augmented by the feedback C3, u2 f b .

For factor VII, the feedback version of C3 maintains state
x2 near its equilibrium value, x20, enabling the NPNS to
behave similar to its linearization. Hence, in Fig. 4, the
linearized system responses (red dashed) overlap with those
of the nonlinear system (blue solid). In contrast, factor VII
in Fig. 3 deviates from x20, resulting in a slightly different
behavior between the linearized and NPNS state responses. In
fact, if controller C1 gains are not finely tuned, it is possible
for state x2 to go negative, Fig. 5.

Our augmented control laws are robust in that even when
operating points for linearization are far from equilibrium,
thrombin tracking is still satisfactory. We use the notion of
the gap metric [33], [34] to quantify the difference between
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Fig. 5. The feedforward C3, u2 f f , cannot guarantee factor VII positivity.

the linearized PNS approximation at any operating point and
the baseline linear system (3). The gap metric can take values
between 0 and 1, with 0 representing systems that are exactly
the same and 1 representing systems that are completely
different. Linearizing when x2 = 0 leads to a gap metric of
1. Fig. 6 confirms satisfactory tracking in this extreme case.
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Fig. 6. Output response for a gap metric 1 linearization at x2 = 0.

V. DISCUSSION AND CONCLUDING REMARKS

We augmented our previous controller C1 for system (7)
with an additional controller, C3, to rectify tracking perfor-
mance. C3 has two forms: feedforward (u2 f f ) and feedback
(u2 f b). Augmenting C1 with either C3 form effectively
restores C1 tracking performance, enabling personalized
protein concentration manipulation and clotting treatment.

Although our feedforward C3 controller has no guarantees
of positivity for the linearized system (Fig. 5), a potential
challenge with using feedback control in a clinical setting is
our assumption that protein concentrations can be measured
instantly, which if untrue may introduce a time delay in the
feedback signal. Then again, biological systems are quite
slow, so the feedback controller with small measurement
delay may not be a problem. In any case, the feedforward C3
controller is easier to apply since it does not depend on state
measurements, eliminating any concerns about time delays.

The signum function in u2 f b introduces a discontinuity into
the system, but this is a typical input for biological systems.
In practice, therapies can only be added to a system, not
removed. When the concentration of a state exceeds a target
level, the only way to reduce concentration is to stop therapy
delivery so that natural degradation reduces concentration.

In the proof of Theorem 1, it is initially plausible that C3
can take a simpler form, u2 = βx1x20, which would perfectly
cancel out the problematic term, −βx1x20, in the matrix Al
of (9). However, this is not achievable in practice since state
x1, TF concentration, requires time to measure. Thus, u2 is
based on a delayed measurement, and so u2 = βx1(t−τd)x20,
where τd is the measurement delay. This prevents perfect
cancelation.

We observe that C1 works well for PLSs, regardless
of whether the system is a minimal realization or not.
However, this is not the case for the nonlinear model
unless we keep state x2 near its equilibrium point, even
though its linearization satisfies the full-rank controllability
matrix condition — a condition, if met, implies the local
controllability of the nonlinear model. A possible explanation



is that the transfer function of the linear system is always third-
order for any non-negative state vector x(t), but the transfer
function of the linearized nonlinear system is only third-
order when x2 = x20. While using a non-minimal realization
may seem like an overcomplication, it offers the advantage
of hybridizing phenomenological and mechanistic modeling
approaches. The internal states of a small phenomenological
model may not have physical meaning, but using a non-
minimal realization adds a few meaningful states, such as
protein concentrations, while preserving a simple underlying
transfer function. Developing controllers for such a non-
minimal realization opens up the possibility of providing
recommended dosages for other critical coagulation factors,
such as factor VIII. The trade-off, however, is a NPNS that
loses observability at the equilibrium point.

Our central contributions are why a new controller must
be appended to our prior controller [22] and what form this
new controller should take given realistic dynamics [24],
so that an implementation is realizable in practice. This
lens gives insight into NPNS control theory. Future work
includes generalizing our control strategies and exploring
their applicability to other NPNS; comparing the performance
of our developed controllers with other control laws such as
backstepping; implementing adaptive control and/or neural
networks to compensate for the system uncertainties that are
typical of biochemical models; and validating our control
laws experimentally.

CODE AVAILABILITY

MATLAB code is available at:
https://github.com/SYBORGS-Lab/Control-of-a-NPNS
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