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The frictionless directional propagation of particles at the boundary of
topological materialsis a striking transport phenomenon. These chiral edge
modes lie at the heart of the integer and fractional quantum Hall effects, and
their robustness against noise and disorder reflects the quantization of Hall
conductivity in these systems. Despite their importance, the controllable
injection of edge modes, and directimaging of their propagation, structure

and dynamics, remains challenging. Here we demonstrate the distillation
of chiral edge modesin arapidly rotating bosonic superfluid confined by
anoptical boundary. By tuning the wall sharpness, we reveal the smooth
crossover between soft wall behaviour in which the propagation speed is
proportional to wall steepness and the hard wall regime that exhibits chiral
free particles. From the skipping motion of atoms along the boundary we
infer the energy gap between the ground and first excited edge bands, and
reveal its evolution from the bulk Landau level splitting for a soft boundary
to the hard wall limit. Finally, we demonstrate the robustness of edge
propagation against disorder by projecting an optical obstacle that is static
intherotating frame.

After the discovery of the integer quantum Hall effect’, it was quickly
realized that the remarkable quantization of electrical conductivity
could be viewed as due to either states extending through the entire
bulk®or the universal contribution of aninteger number of edge chan-
nels®. This equivalence is an example of bulk-edge correspondence that
relates the occurrence, number and nature of edge modes to topologi-
cal invariants in the bulk*”. It was subsequently discovered that edge
modes are in fact ubiquitous at the boundary of amuch wider class of
topological materials, making them central to the physics of fractional
quantum Hall® and spin Hall’ fluids, topological insulators’, photonic
platforms'® and exotic superfluids" and superconductors™.

Despite this theoretical universality, the intricate interplay
between edge disorder, interparticle interactions and wall geometry
in real materials can profoundly modify the spatial structure, speed
and even direction of edge transport” . This results in non-universal
behaviour and obscures the fundamental underlying physics. Itis there-
fore crucial torealize clean, tunable platformsin which we can control-
lably explore edge physics, as well as tools for the direct microscopy

of their structure and dynamics. However, this is challenging in con-
densed matter platforms, as available probes do not resolve down
to the magnetic length scale’®?*, have restricted spatial extent®* or
feature unwanted probe-sample coupling”, and control over wall
geometry is difficult.

Ultracold quantum gases in artificial magnetic fields***° provide
anenticingarena for exploring edge transport. Gauge fields have been
generated via spin-orbit coupling” ', phaseimprintinginlattices® >’
and rotation of the trapped gas®**%. The latter approach uses the anal-
ogy between the Lorentz force onacharged particle ina magnetic field
and the Coriolis force on a particle of mass m in a frame rotating at
frequency Q, yielding rotational analogues of the cyclotron frequency
w.=20Qand magneticlength ¢; = \/#/(mw,). Furthermore, in contrast
tofermionicelectronsthatfill allstates below the Fermienergy, bosonic
atoms in the mean-field quantum Hall regime*’ all occupy a single
wavefunction, whose dynamics offers microscopic insight into the
individual building blocks of quantum Hall systems. Chiral motion
under a gauge field has been observed in lattices with synthetic

MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics and Department of Physics, Massachusetts Institute of Technology,

Cambridge, MA, USA. < e-mail: rfletch@mit.edu

Nature Physics | Volume 20 | November 2024 | 1726-1731

1726


http://www.nature.com/naturephysics
https://doi.org/10.1038/s41567-024-02617-7
http://orcid.org/0000-0003-2728-873X
http://orcid.org/0000-0002-8074-6763
http://orcid.org/0000-0002-9530-3180
http://orcid.org/0000-0001-8120-8548
http://orcid.org/0000-0002-3650-2446
http://crossmark.crossref.org/dialog/?doi=10.1038/s41567-024-02617-7&domain=pdf
mailto:rfletch@mit.edu

https://doi.org/10.1038/s41567-024-02617-7

40 Hm

Fig.1| Controllableinjection of chiral edge modes. a, In the frame rotating at
0, atoms experience an artificial magnetic field, a scalar saddle potential
(red/blue contours) of strength £ and a sharp confining wall (green). The black
line shows a classical trajectory, exhibiting radially drifting cyclotron orbits*
followed by chiral skipping motion along the boundary. b, After atoms have
propagated by a variable azimuthal angle ¢, we turn off the saddle potential,
freezing the momentum #ik of the edge mode wavefront, which subsequently
propagates at a constant speed. ¢, The dispersion relation £, (k) associated with a
hard wall for the lowest three bands n =0, 1,2 (black lines)(ref. 47). For large k,
these are approximately captured by the chiral free-particle energy 7%/ (2m)
(dashed line). Thered data pointsindicate the wavevectors of atoms at the

wavefront, corresponding to four different values of ¢,.The inset shows the
orientation of the repulsive wall (green), the edge mode wavevector k, and the
spatial coordinates x and y.d, The edge mode group velocity as a function of

k, where the dashed line shows the speed fik/m of chiral free particles. The solid
line shows the speed obtained from the lowest band £, (k). Error bars indicate 1o.
e, The measured density distribution after propagation of the edge mode for
approximately 5 ms (left) and 9 ms (right) in the presence of the saddle. OD,
optical density; a.u., arbitrary units. f, The measured edge mode density after
propagation for 15 msin the presence of the saddle, and then for 5 ms (left) and
8 ms (right) inits absence.

dimensions formed by an internal state manifold®-*"**, However,
exploringtherole of interactions and wall structureis difficultinthese
systems.

Here werealize the distillation of chiral edge modes at the bound-
ary of aquantum gas subject to an artificial magnetic field, asillustrated
inFig. 1. The emergence of these modes is readily apparent. For a wall
potential V,,,(y) that confines atoms to the region y <0, it is conveni-
ent to work within the Landau gauge and label eigenstates by their
wavevector k along the boundary, yielding a Hamiltonian:

2
. P 1 N 2 5
H= ﬁ + zmwg(y —k€3)" + Va0 @

Cyclotron motion of the atoms is reflected in an effective harmonic
oscillator alongtheydirection of angular frequency w.. For k < 0, states
arelocated far from the wall and their dispersion relationis flat, form-
ing discrete Landau levels spaced by Aiw.. However, for k > 0 the posi-
tion and momentum of states decouple. Atoms remain fixed aty = 0
and acquire an energy ~A2k*/(2m), giving an approximately quadratic
dispersion relation. As this occurs only for k> 0, the boundary hosts
chiral free particles with a strictly positive group velocity 7ik/m. This
simple model underpins the chiral Fermi liquid of electrons at the
boundaries of integer quantum Hall states®, whereas strongly corre-
lated fractional quantum Hall fluids instead support chiral Luttinger
liquids®.

Thebasicidea of our experimentis showninFig.1. We prepared a
condensate of 8 x 10° atoms of ?Na in a time-orbiting-potential trap**°
with aroot mean squared radial frequency w =21 x 88.6(1) Hz. In the
reference frame rotating at Q = w, atoms experience an artificial mag-
netic field with w, = 2w. A sharp boundary is provided by an azimuthally
symmetric optical wall of radius R =90 pum, formed by projecting a
circular mask onto the atoms. Given that R » ¢;, the curved wall may
be considered as linear from the perspective of atomic dynamics
described by the Hamiltonian of equation (1), with local coordinates
(X,y) directed along and into the wall, respectively.

Theinjectionand subsequent propagation of a chiral edge modeis
illustratedinFig.1a,b, and corresponding images of the atomic density
areshowninFig. e f.First, we drove aradial flow of atoms towards the
wall viaarotating anisotropy of the underlying harmonic trap, meaning
thatinthe rotating frame atoms experience astatic scalar saddle poten-
tial V, = —emw?r’sin2¢/2. Here £ = 0.125(4) is the strength of the anisot-
ropy and (r, @) areradial and azimuthal coordinates. Isopotential flow
inthis saddle, in analogy to the E x B drift of electromagnetism, leads
to a radial motion of atoms along the diagonal. Crucially, the energy
of an atom in the vicinity of the edge increases with its wavevector k
alongthewall. The azimuthalimpulse provided by the saddle therefore
injects atomsinto states with non-zero group velocity, and they begin
to propagate along the boundary®. The wavevector of anatom evolves
withits azimuthal position, with the leading edge of the density distri-
bution corresponding to atoms with the highest injected wavevector.
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Fig.2|Density profiles of the bulk and edge modes. a, The density distribution
imaged after 22 ms of edge mode propagation. b, The integrated transverse
density profiles of the bulk condensate (top; blue box in a) and the injected edge
mode (bottom; refbox in a). The blue curve shows a Thomas-Fermi function
with a fitted FWHM = 4.8 £,, indicating a Landau level occupation of -6. The
dashed orange line shows the theoretical density profile of the lowest-energy
edge mode". The solid orange line shows this profile convolved with a Gaussian
characterizing the known effective resolution of our imaging system without any
free parameters. For ease of comparison, the normalization was chosen such that
the peak heights coincide, and the spatial origin of each plot was chosen to lie at
the peak density.

Once this wavefront reaches a variable azimuthal angle, @, we turned
off the saddle potential, which freezes the momentum evolution.
Subsequent propagation of the wavefront occurs at a constant group
velocity, without detectable dissipation or backscattering.

Thespeed of anedge mode is determined by its associated disper-
sionrelation. InFig. 1c we show the theoretical dispersionrelation £,,(k)
forahardwall”,wheren=0,1,2...labels discrete bands that connect to
Landaulevelsinthe bulk. The lowest band E(k) approximately matches
the quadratic dispersion relation #%k*/(2m) of a chiral free particle,
shownbyadashedline. Thered pointsindicate the injected edge mode
correspondingto four values of ¢,. Here kis inferred by noting that the
Hamiltonianin the rotating frameis time-independent, thus energy is
conserved and atoms acquire kinetic energy as they move down the
saddle potential (Methods). The corresponding measured edge mode
speedisshowninFig.1d, wherethesolid lineindicates the theoretical
prediction "0, E,(k) without any free parameters. The data are consist-
entwith the propagation of chiral free particles at the boundary of our
system, the speed of which fik/m is shown by the dashed line.

We note thataccording to the Ehrenfest theorem, the wavepacket
dynamics observed here correspond closely to the motion of a classical
particle, shownby asolid blacklinein Fig.1a,b. However, in our experi-
ment the spatial structure of the edge mode revealed that the atoms
predominantly occupy the lowest band within aquantum mechanical
description, whose size is limited by zero-point motion. To illustrate
this, in Fig. 2 we show the transverse density profile of both the bulk
and the edge modes. The bulk condensate density is described well by
a Thomas-Fermi function with radius Ry = 3.4 £;implying a chemical
potential u = (1/2)mwZR3, ~ 6 hw.and hence that approximately six
Landau levels are admixedinto the superfluid wavefunction*2. However,
the edge mode shows a markedly different structure, with a Gaussian
fit (red line) yielding a full-width at half-maximum (FWHM) of 1.21(2) £;.
This indicates a size limited by the magnetic length, associated with
thelowest edge band. The dashed orange linein Fig. 2b shows the theo-
retical density profile of a ground band edge mode with the average
wavevector of atoms within the red region, while the solid orangeline
shows this profile blurred by the known effective resolution of our
imaging system*. The agreement is excellent without any free param-
eters, indicating that the injected edge mode predominantly occupies
the lowest band. This is consistent with the chemical potential ~3#w,
of the condensate within the red region, inferred from the atomic
density, whichis smaller than the splitting -6/iw.between the ground
and first excited bands obtained from the theoretical dispersion

relationshownin Fig. 1c. For comparison, the FWHM of an edge mode
inthe first excited band would be ~1.5 £; when measured with our imag-
ing system*.

The data presented in Figs. 1 and 2 are captured well by a theo-
retical model assuming a hard wall. However, the geometry of the
confining potential plays a crucial role in topological materials™ ™.
To address the effect of wall sharpness on the associated edge mode
physics we intentionally defocused the objective used to project the
optical boundary, and monitored the resulting intensity pattern using
afocused second objective (Methods). We characterized the boundary
by modelling it as a piecewise potential, V,,, = afw.y/¢; for y >0 and
zero when y <0, where the dimensionless quantity « determines the
effective steepness.

InFig.3awe show the azimuthal position of the edge mode wave-
frontasafunction of propagation time, for a = 5and a = 24, along with
representative images of the atomic density. Itis qualitatively apparent
that the propagation speed along the steeper wallis greater. For these
measurements the saddle potential is continually present, meaning
that the edge mode momentum and group velocity vary symmetrically
about ¢ = 11/4, at which they attain their maximum values. We fitted
these data with asigmoid function, determined the peak angular speed
andinferred the edge mode peaklinear speed v. Thisis showninFig.3b
asafunction of @, whichwe have corrected for the small outward force
~1.8 hiw /€y arising from the saddle at ¢ = /4.

The speed shows a pronounced crossover between linear behav-
iour v a for shallow walls and saturating at a constant value as the
steepnessincreases. This crossover may be understood by comparing
the typical wavevector of an edge mode in our experiment to a¢z'. If
k€;> a, then atoms are located at y > ¢, and experience an approxi-
mately linear potential ~ y = ¥ + 7. Here (, 7) are the spatial coordi-
nates associated with cyclotron motion, which occurs around the
guiding centre (X, ¥) (ref. 41). A linear potential therefore does not
couple cyclotron and guiding centre coordinates regardless of its
strength, and their dynamics remainindependent. The guiding centres
undergo isopotential drift at a speed aw ¢, (ref. 41), implying an edge
mode speed proportional to the wall sharpness, while the edge bands
remain split by the bulk Landau level value 7.

Conversely, if 0 < k€, < a, then atoms are located at [y| <€zand a
wavepacket of typical extent -¢z explores the force discontinuity at the
onset of the wall, which mixes cyclotron and guiding centre motion.
Inthe limit a > « the wall does not provide any length or energy scale,
implying a universal edge dispersion relation that depends only on
klgand w..

In our experiment, using the free-particle dispersion relation
7*k*/(2m) we estimated a typical maximum wavevector k., ~ 10 €51,
which occurs at ¢ =1/4 where V, is minimal. We therefore expected
isopotential drift behaviour v = aw £, for a < k,,,£s =10, shown by a
dotted line, and a hard wall speed v = fik,,,,/m = 10w £; for a 210, in
excellent agreement with the experiment.

Classically, thisbehaviour canbe understood as acrossover from
the E x Bdrift of cyclotron orbits subjected to a uniform force to skip-
ping motion along a hard boundary. This occurs when the force arising
fromthewall F,, = afiw./€;becomes comparable to the Coriolis force
towards the wall Fi,i1is = fikmax@.. The ratio of these quantitiesis shown
onthe top xaxisinFig. 3b.

For a more quantitative comparison we analytically solved the
Schroédinger equation in the case of a linear wall and obtained the
edgemodedispersionrelation (Methods). For each wall steepness we
obtained k,,, and the associated group velocity, whichis shown by the
solidblack curvein Fig.3b and captures the data well without any free
parameters. We also indicate (using blue triangles) the speed obtained
from a Gross-Pitaevskii simulation of our experiment. In the inset of
Fig.3bwe show the ground bands of the theoretical dispersion relation
for different values of @, which do deviate from the hard wall result and
instead vary linearly £,(k) = afiw -k when k€ 2 a.
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Fig.3 | Variation in edge mode speed with wall steepness. a, Temporal
evolution of the edge mode azimuthal position for two values of wall steepness a
(left) and corresponding images of the atomic densities (right). We fitted these
datawith a sigmoid function (solid line) whose central slope (dashed line)
corresponds to the angular speed at the peak wavevector k... b, Edge mode
speed as a function of wall steepness, which exhibits a crossover between
isopotential drift behaviour v = aw £, (dotted line) in the limit a < k., &5 = 10
(grey region) and a constant value for steeper walls consistent with the chiral
free-particle result 71k, /m ~ 10 w €. The solid black line shows the group
velocity obtained from the theoretical dispersion relation associated with a wall
of finite steepness. The inset shows the dispersion relation itself, where solid
pointsindicate the maximum injected wavevector for each steepness. Error bars
inall plotsindicate 1o.

Accompanying this crossover from isopotential drift physics to
hard wall behaviour, we anticipated an associated changein the energy
gap betweendifferent bandsinthedispersionrelation. Toinfer this split-
ting, we exploited a small residual excitation of the first excited band in
ourexperiment, whichresultedinadipole oscillation of the edge mode
centreof massatafrequency A(k)/f = (E,(k) — Eo(k))/h. We attribute this
excitationto the shorttimescale 4¢,/(sw R) = 0.1 x 21/w., muchless than
one cyclotron period, over whichawavepacket of approximate extent
¢; moving radially along the saddle diagonal at a speed w.r/4 (ref. 41)
encounters the edge. The spatial amplitude of the radial oscillationsis
approximately 0.2 pm, or equivalently 0.1¢;. From theoretical know-
ledge of the wavefunctions of different bands (Methods), we estimated
an approximately 10% admixture of the first excited band.
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Fig. 4 | Frequency of skipping orbits at the boundary. a, Edge mode density
profiles as a function of azimuthal angle and radial distance relative to the wall,
Ay, for various a. The density exhibits a dipole oscillation due to excitation of the
first excited edge band, which s fitted with adamped sinusoid (white line, plotted
for clarity on the right-hand duplicate of each image). b, From the measured
oscillation period and edge mode speed, we infer the temporal oscillation
frequency w,. This is shown by red data points, and exhibits amonotonic
increase with a relative to the Landau level splitting fiw., whichis recovered in the
limit of shallow walls (grey region). Error bars indicate 1o. In the inset we show the
theoretical energy gap A(k) between the ground and first excited edge band,
which deviates fromits bulk value (dotted line) in the range O < k¢; < a. The data
pointsindicate A(kpay), Whichis shown in the main plot by a solid black line
without any free parameters.

InFig.4aweshow the edge mode density as a function of azimuthal
angle and radial distance relative to R. Similarly to Fig. 3, the saddle
potential was continually present for these measurements. The cen-
tre of mass exhibited an oscillation that increased in amplitude with
decreasing a; we attributed this to the greater spatial extent of the
associated edge mode wavefunctions. We extracted the radial position
of the edge mode, the azimuthal variation of which was fitted with a
damped sinusoid of period 8¢, shown by white lines. Together with
the maximal speed of atoms, v, attained at ¢ = t/4 and presented in
Fig.3, we obtained the temporal oscillation frequency . = 21v/(R6¢),
whichis showninFig. 4b.

For shallow walls, w, is consistent with the cyclotron frequency
(dottedlineinFig.4b), indicating that the edge bands are split by their
bulkvalue. However, w increases for a > kpax€p ~ 10 (indicating that
the edge mode wavefunction is sampling the wall onset), resulting in
a quantum mechanical analogue of classical skipping motion, the
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Fig. 5| Robustness of edge modes against disorder. a, We created an obstacle at
the boundary by projecting a repulsive Gaussian beam. The atoms flow smoothly
around the wall deformation without any discernible backscattering. b, A Gross-
Pitaevskii simulation of the same experimental sequence, exhibiting the same
robust propagation.

frequency of which exceeds that of the bulk cyclotron orbits. For com-
parison, thesolid black line shows the frequency A(k)/# obtained from
the theoretical dispersion relation and captures the data well. In the
inset of Fig. 4b we show A(k) for walls of varying steepness, illustrating
its deviation from the bulk Landau level splitting for wavevectors
0skb<a.

The chirality of edge modes means that particle propagation
is robust against boundary imperfections. To demonstrate this, we
created an obstacle by projecting a Gaussian laser beam with a radius
of ~10¢, coincident with the system boundary, which co-rotated with
our magnetic trap such that the resulting repulsive potential was static
in the rotating frame. As shown in Fig. 5, the atoms flowed smoothly
around the obstacle. We also show the result of a Gross-Pitaevskii
simulation of the same experiment, obtaining the same behaviour.

These observations demonstrate the realization of chiral edge
modesinarapidly rotating ultracold gas, revealing their speed, struc-
ture, bandgap, dependence on wall sharpness and robustness against
disorder. A natural immediate direction of future work concerns the
influence of disorder length scale and dynamics. Furthermore, this
approach provides a platform for addressing the role of interac-
tions. One particular advantage of using rotating gases is that the
interactions between atoms are decoupled from the induced gauge
potential, in contrast to other methods for which the effective mag-
netic field appears within a dressed-atom picture*®. In our bosonic
system, one anticipates the formation of a chiral Lieb-Liniger gas
at the boundary**°. More broadly, edge modes naturally constitute
one-dimensional channels with aspeed thatis either proportional to,
orindependent of, the confining force, in contrast toinertial framesin
whichforcesyield acceleration. This may enable robust atomic wave-
guides in analogy to electronic interferometers formed by quantum
Hall edge states™*.

Note added in proof: During the typesetting of this manuscript,
we became aware of a related work realizing edge modesin a Floquet
lattice system™,
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Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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tributions and competing interests; and statements of data and code
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Methods

Imaging set-up

Images of the cloud density are broadened by both optical diffraction
and atomic diffusion during theimaging pulse. This was previously cali-
brated in ref. 41, and the effective broadening of a point source by our
system was captured via convolution by a Gaussian function witha e™?
radius of 670 nm. For comparison, this performance was sufficient to
observe vortices in situ with a contrast of ~60% (ref. 41). These have a
characteristic size set by the healing length, which is ~300 nm in our
system. Thisis smaller than the spatial extent of the edge modes, set by
therotational analogue of the magneticlength, ¢; = \/#/(mw.) = 1.6 pm.

Calibration of the wall steepness
To calibrate the effective wall steepness, we directly imaged the inten-
sity pattern projected onto the atoms using a microscope objective
with anumerical aperture of 0.5. We then identified the azimuthal posi-
tion where atoms transitted the region of minimum saddle potential,
and thus where the edge mode speed was maximal, and extracted the
corresponding radial intensity profile /(r). We fitted the radial inten-
sity profile to an error function, which we then deconvolved with the
known point spread function of the microscope objective to obtain
the intensity pattern at the atoms themselves.

This inferred profile was then fitted with a piecewise linear
function:

0, r<c
In={c(r—c), c<r<c+l/c, 2)
1, r>cp+1/c;.

Here, c,and ¢, are fit parameters. Combined with the known projected
potential height, V,, we inferred the potential slope a = V,c,¢s/(hw.)
used in the main text. This protocol ensured that we always obtained
the wall steepness corresponding to the location of minimum saddle
potential and maximal edge mode speed even if there was any varia-
tion in steepness with azimuthal position. Two examples of this wall
steepness extraction are shown in Extended Data Fig. 1.

Dispersionrelation associated with a piecewise linear wall
potential
For the wall defined in the main text, it was convenient to work in the
Landau gauge and label eigenstates ,(y) by their momentum k along
the wall, giving a Hamiltonian:
pv)
- 1

Py 20 212
Hy = m+§mwc(y—k6’5) +a

e yory) )
B

where ©( y)is the Heaviside function. Below we drop hats on operators
for simplicity. We define dimensionless variables y = y/¢,, k = k¢gand
energy E(k) = E(k)/ho., yielding a dimensionless Schrodinger
equation:

30+ 3R+ ay00) | v = ERY) @

For either y > 0 or y < 0, this coincides with the Weber equation™,
whose solutions are linear combinations of hyperbolic cylin-
der functions D,(z). Normalizability of the wavefunction
requires that the single-particle eigenstates take the piecewise
differentiable form: () =A<ODE-(,;)_1,2(—\/§(J7—IZ)) for y <0, and
B =A, ODE_(E)+(k._a)z/z_k.zlz_m(\/i(y —k+a)) for y>0.By matching
both the value and gradient of ¢ at y = 0, we obtained the dispersion
relation. In the case of ahard wall, we used the simpler boundary condi-
tion ¢(y — 0~) = Owithout consideration of theregion y > 0 (ref. 47).

Inthe presence of the saddle potential, this dispersion relation is
slightly modified owing to an additional force towards the wall

F= W = F(p)hw./¢g. The Hamiltonian (3) therefore acquires an
additional term —Fy, and the modified dispersion relation EE?(IZ) is
related to the case of no saddle potential by EE,F)(IE) =E,(k—F)+ Fk - %Fz
(ref. 31).

Thewavevector kof anatomin the lowest edge band, propagating
in the presence of the saddle potential, is determined by the energy
conservationrequirement:

ehw,
8

R\ . ho,
(5) sin(2g) + 2 = £k, )

where hw /2 isthe band energyin the bulk where F = 0, corresponding
tothelowest Landau level energy.

Simulation of the Gross-Pitaevskii equation

We performed further numerical simulations of our experiment via
time evolution of the Gross-Pitaevskii equation. We began with an
equilibrated, weakly interacting Bose-Einstein condensate in a static
anisotropic harmonictrap withsametrap frequencies and condensate
chemical potential as our experiment. The wall potential was modelled
via the piecewise linear function of equation (2), with ¢;=90 pm and
variable steepness. We evolved the condensate wavefunction under an
identical sequenceto that performedin the experiment, and extracted
the speed of the edge modes and the azimuthal period of their radial
oscillations viaidentical analysis. A time series of exemplary images is
shownin Extended Data Fig. 2.

Extraction of wavefront position and speed

To obtain the dynamics of the atomic wavefront, we divided the edge
into azimuthal bins and plotted the total number of atoms within each
binasafunctionof time. These data were fitted with a sigmoid function
to extract the time at which the number of atoms increased to 50% of
the steady-state value. This time was then plotted against the corre-
sponding bin angle to obtain the evolution of the wavefront position
@(t); examples are showninFig. 3a. The error bars associated with the
velocities shown in Figs. 1d and 3b are fitting errors from extracting
the edge mode speed from the data ¢(¢).

Creation of the optical boundary

The opticalboundary was formed by imaging 532 nmlight incident on
adigital micromirror device (DMD) onto the atoms. The pixel diameter
onthe DMD was 7.6 um, the magnification of the imaging system was
27.8 and the numerical aperture of the projection objective was 0.5.
This resulted in an optical point spread function with a full-width at
half-maximum of 550 nm and one pixel of the DMD corresponded
to 270 nm at the atoms. Both length scales are much smaller than
¢;=1.6 um, which set the natural physics length scale. The shape of the
wall was optimized by maximizing the spin-down time of arotating con-
densate that contained an Abrikosov lattice of vortices confined within
the wall potential using a smaller ring of radius 30 um. Ring centring
was performed by projecting asmall beam formed by turning onafew
pixels at the centre of the DMD pattern and making a hole at the centre
of anon-rotating condensate. Once optimized, this spin-down time of
the cloud was several seconds—much longer than the timescale of any
ofthe experiments presented here.

Creation of the optical obstacle

The obstacle was formed by a beam of 532 nm light that first passed
through a two-axis acousto-optical deflector and was then focused to
a20 umwaist atthe atoms. The resulting repulsive potential had a peak
value of 40fiw.. By modulating the deflection angle along each axisata
frequency correspondingto the atomic rotation, we induced the focal
spot to travel along our circular wall such that in the rotating frame it
appeared static. The beamwas also sampled before the projection objec-
tive to confirm the uniformity of the power during one rotation cycle.
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Data availability

Alldatafiles are available from the corresponding author upon request.
Accompanying data, including data for Figs. 1-5 and Extended Data
Figs. 1 and 2 are available via Zenodo at https://doi.org/10.5281/
zenodo.12724216 (ref. 55).

Code availability
The simulation and analysis code is available from the corresponding
author uponreasonable request.
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Extended Data Fig. 1| Analysis of the boundary potential. (a,d) Images of the
projected optical boundary. The white boxes indicate the approximate azimuthal
range explored by the atoms as they pass through the saddle minimum, and
hence the edge mode speed is maximum. (b,e) The measured radial intensity /(r),
averaged over the indicated range of azimuthal angles. The green line shows a

fitted error function. (c,f) The black curve is the inferred intensity profile at the
atoms, obtained by de-convolution of the green curvein (b,e). The orange line
isa piecewise linear fit to the black curve, whose slope provides the effective
steepness of the boundary potential.
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| d ‘

Extended Data Fig. 2| Evolution of the condensate density obtained from density (a) before rotation; (b) when Q= 0.85w; (¢) once Q= w, approximately
a Gross-Pitaevskii simulation. We perform a numerical simulation of the corresponding to the time at which the condensate encounters the edge
condensate evolution based on time-evolution of the Gross-Pitaevskii equation potential; (d) after 5ms of edge mode propagation.

under anidentical protocol to the experiment. Panels show the condensate
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