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Observation of chiral edge transport in a 
rapidly rotating quantum gas

Ruixiao Yao    , Sungjae Chi    , Biswaroop Mukherjee, Airlia Shaffer    , 
Martin Zwierlein     & Richard J. Fletcher     

The frictionless directional propagation of particles at the boundary of 
topological materials is a striking transport phenomenon. These chiral edge 
modes lie at the heart of the integer and fractional quantum Hall effects, and 
their robustness against noise and disorder reflects the quantization of Hall 
conductivity in these systems. Despite their importance, the controllable 
injection of edge modes, and direct imaging of their propagation, structure 
and dynamics, remains challenging. Here we demonstrate the distillation 
of chiral edge modes in a rapidly rotating bosonic superfluid confined by 
an optical boundary. By tuning the wall sharpness, we reveal the smooth 
crossover between soft wall behaviour in which the propagation speed is 
proportional to wall steepness and the hard wall regime that exhibits chiral 
free particles. From the skipping motion of atoms along the boundary we 
infer the energy gap between the ground and first excited edge bands, and 
reveal its evolution from the bulk Landau level splitting for a soft boundary 
to the hard wall limit. Finally, we demonstrate the robustness of edge 
propagation against disorder by projecting an optical obstacle that is static 
in the rotating frame.

After the discovery of the integer quantum Hall effect1, it was quickly 
realized that the remarkable quantization of electrical conductivity 
could be viewed as due to either states extending through the entire 
bulk2 or the universal contribution of an integer number of edge chan-
nels3. This equivalence is an example of bulk–edge correspondence that 
relates the occurrence, number and nature of edge modes to topologi-
cal invariants in the bulk4–7. It was subsequently discovered that edge 
modes are in fact ubiquitous at the boundary of a much wider class of 
topological materials, making them central to the physics of fractional 
quantum Hall8 and spin Hall9 fluids, topological insulators7, photonic 
platforms10 and exotic superfluids11 and superconductors12.

Despite this theoretical universality, the intricate interplay 
between edge disorder, interparticle interactions and wall geometry 
in real materials can profoundly modify the spatial structure, speed 
and even direction of edge transport13–19. This results in non-universal 
behaviour and obscures the fundamental underlying physics. It is there-
fore crucial to realize clean, tunable platforms in which we can control-
lably explore edge physics, as well as tools for the direct microscopy 

of their structure and dynamics. However, this is challenging in con-
densed matter platforms, as available probes do not resolve down 
to the magnetic length scale20–24, have restricted spatial extent25,26 or 
feature unwanted probe–sample coupling27, and control over wall 
geometry is difficult.

Ultracold quantum gases in artificial magnetic fields28,29 provide 
an enticing arena for exploring edge transport. Gauge fields have been 
generated via spin–orbit coupling29–31, phase imprinting in lattices32–37 
and rotation of the trapped gas38–42. The latter approach uses the anal-
ogy between the Lorentz force on a charged particle in a magnetic field 
and the Coriolis force on a particle of mass m in a frame rotating at 
frequency Ω, yielding rotational analogues of the cyclotron frequency 
ωc = 2Ω and magnetic length ℓB = √ℏ/(mωc). Furthermore, in contrast 
to fermionic electrons that fill all states below the Fermi energy, bosonic 
atoms in the mean-field quantum Hall regime43 all occupy a single 
wavefunction, whose dynamics offers microscopic insight into the 
individual building blocks of quantum Hall systems. Chiral motion 
under a gauge field has been observed in lattices with synthetic 
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The basic idea of our experiment is shown in Fig. 1. We prepared a 
condensate of 8 × 105 atoms of 23Na in a time-orbiting-potential trap41,46 
with a root mean squared radial frequency ω = 2π × 88.6(1) Hz. In the 
reference frame rotating at Ω = ω, atoms experience an artificial mag-
netic field with ωc = 2ω. A sharp boundary is provided by an azimuthally 
symmetric optical wall of radius R = 90 μm, formed by projecting a 
circular mask onto the atoms. Given that R ≫ ℓB, the curved wall may 
be considered as linear from the perspective of atomic dynamics 
described by the Hamiltonian of equation (1), with local coordinates 
(x̂, ŷ) directed along and into the wall, respectively.

The injection and subsequent propagation of a chiral edge mode is 
illustrated in Fig. 1a,b, and corresponding images of the atomic density 
are shown in Fig. 1e,f. First, we drove a radial flow of atoms towards the 
wall via a rotating anisotropy of the underlying harmonic trap, meaning 
that in the rotating frame atoms experience a static scalar saddle poten-
tial Vs = −εmω2r2sin2φ/2. Here ε = 0.125(4) is the strength of the anisot-
ropy and (r, φ) are radial and azimuthal coordinates. Isopotential flow 
in this saddle, in analogy to the E × B drift of electromagnetism, leads 
to a radial motion of atoms along the diagonal. Crucially, the energy 
of an atom in the vicinity of the edge increases with its wavevector k 
along the wall. The azimuthal impulse provided by the saddle therefore 
injects atoms into states with non-zero group velocity, and they begin 
to propagate along the boundary31. The wavevector of an atom evolves 
with its azimuthal position, with the leading edge of the density distri-
bution corresponding to atoms with the highest injected wavevector. 

dimensions formed by an internal state manifold31,35–37,44. However, 
exploring the role of interactions and wall structure is difficult in these 
systems.

Here we realize the distillation of chiral edge modes at the bound-
ary of a quantum gas subject to an artificial magnetic field, as illustrated 
in Fig. 1. The emergence of these modes is readily apparent. For a wall 
potential Vwall(y) that confines atoms to the region y < 0, it is conveni-
ent to work within the Landau gauge and label eigenstates by their 
wavevector k along the boundary, yielding a Hamiltonian:

̂H =
̂p2y

2m
+ 1

2
mω2

c( ̂y − kℓ2B)
2 + Vwall( ̂y). (1)

Cyclotron motion of the atoms is reflected in an effective harmonic 
oscillator along the y direction of angular frequency ωc. For k ≪ 0, states 
are located far from the wall and their dispersion relation is flat, form-
ing discrete Landau levels spaced by ℏωc. However, for k ≫ 0 the posi-
tion and momentum of states decouple. Atoms remain fixed at y ≈ 0 
and acquire an energy ~ℏ2k2/(2m), giving an approximately quadratic 
dispersion relation. As this occurs only for k > 0, the boundary hosts 
chiral free particles with a strictly positive group velocity ℏk/m. This 
simple model underpins the chiral Fermi liquid of electrons at the 
boundaries of integer quantum Hall states3, whereas strongly corre-
lated fractional quantum Hall fluids instead support chiral Luttinger 
liquids45.
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Fig. 1 | Controllable injection of chiral edge modes. a, In the frame rotating at 
Ω, atoms experience an artificial magnetic field, a scalar saddle potential 
(red/blue contours) of strength ε and a sharp confining wall (green). The black 
line shows a classical trajectory, exhibiting radially drifting cyclotron orbits41 
followed by chiral skipping motion along the boundary. b, After atoms have 
propagated by a variable azimuthal angle φ0, we turn off the saddle potential, 
freezing the momentum ℏk of the edge mode wavefront, which subsequently 
propagates at a constant speed. c, The dispersion relation En(k) associated with a 
hard wall for the lowest three bands n = 0, 1, 2 (black lines)(ref. 47). For large k, 
these are approximately captured by the chiral free-particle energy ℏ2k2/(2m) 
(dashed line). The red data points indicate the wavevectors of atoms at the 

wavefront, corresponding to four different values of φ0.The inset shows the 
orientation of the repulsive wall (green), the edge mode wavevector k, and the 
spatial coordinates x  and y. d, The edge mode group velocity as a function of 
k, where the dashed line shows the speed ℏk/m of chiral free particles. The solid 
line shows the speed obtained from the lowest band E0(k). Error bars indicate 1σ. 
e, The measured density distribution after propagation of the edge mode for 
approximately 5 ms (left) and 9 ms (right) in the presence of the saddle. OD, 
optical density; a.u., arbitrary units. f, The measured edge mode density after 
propagation for 15 ms in the presence of the saddle, and then for 5 ms (left) and 
8 ms (right) in its absence.
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Once this wavefront reaches a variable azimuthal angle, φ0, we turned 
off the saddle potential, which freezes the momentum evolution. 
Subsequent propagation of the wavefront occurs at a constant group 
velocity, without detectable dissipation or backscattering.

The speed of an edge mode is determined by its associated disper-
sion relation. In Fig. 1c we show the theoretical dispersion relation En(k) 
for a hard wall47, where n = 0, 1, 2… labels discrete bands that connect to 
Landau levels in the bulk. The lowest band E0(k) approximately matches 
the quadratic dispersion relation ℏ2k2/(2m) of a chiral free particle, 
shown by a dashed line. The red points indicate the injected edge mode 
corresponding to four values of φ0. Here k is inferred by noting that the 
Hamiltonian in the rotating frame is time-independent, thus energy is 
conserved and atoms acquire kinetic energy as they move down the 
saddle potential (Methods). The corresponding measured edge mode 
speed is shown in Fig. 1d, where the solid line indicates the theoretical 
prediction ℏ−1∂kE0(k) without any free parameters. The data are consist-
ent with the propagation of chiral free particles at the boundary of our 
system, the speed of which ℏk/m is shown by the dashed line.

We note that according to the Ehrenfest theorem, the wavepacket 
dynamics observed here correspond closely to the motion of a classical 
particle, shown by a solid black line in Fig. 1a,b. However, in our experi-
ment the spatial structure of the edge mode revealed that the atoms 
predominantly occupy the lowest band within a quantum mechanical 
description, whose size is limited by zero-point motion. To illustrate 
this, in Fig. 2 we show the transverse density profile of both the bulk 
and the edge modes. The bulk condensate density is described well by 
a Thomas–Fermi function with radius RTF ≈ 3.4 ℓB implying a chemical 
potential μ = (1/2)mω2

cR
2
TF
≈ 6ℏωc and hence that approximately six 

Landau levels are admixed into the superfluid wavefunction42. However, 
the edge mode shows a markedly different structure, with a Gaussian 
fit (red line) yielding a full-width at half-maximum (FWHM) of 1.21(2) ℓB. 
This indicates a size limited by the magnetic length, associated with 
the lowest edge band. The dashed orange line in Fig. 2b shows the theo-
retical density profile of a ground band edge mode with the average 
wavevector of atoms within the red region, while the solid orange line 
shows this profile blurred by the known effective resolution of our 
imaging system41. The agreement is excellent without any free param-
eters, indicating that the injected edge mode predominantly occupies 
the lowest band. This is consistent with the chemical potential ~3ℏωc 
of the condensate within the red region, inferred from the atomic 
density, which is smaller than the splitting ~6ℏωc between the ground 
and first excited bands obtained from the theoretical dispersion 

relation shown in Fig. 1c. For comparison, the FWHM of an edge mode 
in the first excited band would be ~1.5 ℓB when measured with our imag-
ing system41.

The data presented in Figs. 1 and 2 are captured well by a theo-
retical model assuming a hard wall. However, the geometry of the 
confining potential plays a crucial role in topological materials14–19. 
To address the effect of wall sharpness on the associated edge mode 
physics we intentionally defocused the objective used to project the 
optical boundary, and monitored the resulting intensity pattern using 
a focused second objective (Methods). We characterized the boundary 
by modelling it as a piecewise potential, Vwall = αℏωcy/ℓB for y > 0 and 
zero when y < 0, where the dimensionless quantity α determines the 
effective steepness.

In Fig. 3a we show the azimuthal position of the edge mode wave-
front as a function of propagation time, for α ≈ 5 and α ≈ 24, along with 
representative images of the atomic density. It is qualitatively apparent 
that the propagation speed along the steeper wall is greater. For these 
measurements the saddle potential is continually present, meaning 
that the edge mode momentum and group velocity vary symmetrically 
about φ = π/4, at which they attain their maximum values. We fitted 
these data with a sigmoid function, determined the peak angular speed 
and inferred the edge mode peak linear speed v. This is shown in Fig. 3b 
as a function of α, which we have corrected for the small outward force 
~1.8 ℏωc/ℓB arising from the saddle at φ = π/4.

The speed shows a pronounced crossover between linear behav-
iour v ∝ α for shallow walls and saturating at a constant value as the 
steepness increases. This crossover may be understood by comparing 
the typical wavevector of an edge mode in our experiment to αℓ−1B . If 
kℓB ≫ α, then atoms are located at y ≫ ℓB and experience an approxi-
mately linear potential ∼ ̂y = ̂Y + η̂. Here ( ̂ξ, η̂) are the spatial coordi-
nates associated with cyclotron motion, which occurs around the 
guiding centre ( ̂X, ̂Y ) (ref. 41). A linear potential therefore does not 
couple cyclotron and guiding centre coordinates regardless of its 
strength, and their dynamics remain independent. The guiding centres 
undergo isopotential drift at a speed αωcℓB (ref. 41), implying an edge 
mode speed proportional to the wall sharpness, while the edge bands 
remain split by the bulk Landau level value ℏωc.

Conversely, if 0 ≲ kℓB ≲ α, then atoms are located at ∣y∣ < ℓB and a 
wavepacket of typical extent ~ℓB explores the force discontinuity at the 
onset of the wall, which mixes cyclotron and guiding centre motion. 
In the limit α → ∞ the wall does not provide any length or energy scale, 
implying a universal edge dispersion relation that depends only on 
kℓB and ωc.

In our experiment, using the free-particle dispersion relation 
ℏ2k2/(2m) we estimated a typical maximum wavevector kmax ∼ 10 ℓ−1B , 
which occurs at φ = π/4 where Vs is minimal. We therefore expected 
isopotential drift behaviour v = αωcℓB for α ≲ kmaxℓB ≈ 10, shown by a 
dotted line, and a hard wall speed v = ℏkmax/m ≈ 10ωcℓB for α ≳ 10, in 
excellent agreement with the experiment.

Classically, this behaviour can be understood as a crossover from 
the E × B drift of cyclotron orbits subjected to a uniform force to skip-
ping motion along a hard boundary. This occurs when the force arising 
from the wall Fwall = αℏωc/ℓB becomes comparable to the Coriolis force 
towards the wall FCoriolis ≈ ℏkmaxωc. The ratio of these quantities is shown 
on the top x axis in Fig. 3b.

For a more quantitative comparison we analytically solved the 
Schrödinger equation in the case of a linear wall and obtained the 
edge mode dispersion relation (Methods). For each wall steepness we 
obtained kmax and the associated group velocity, which is shown by the 
solid black curve in Fig. 3b and captures the data well without any free 
parameters. We also indicate (using blue triangles) the speed obtained 
from a Gross–Pitaevskii simulation of our experiment. In the inset of 
Fig. 3b we show the ground bands of the theoretical dispersion relation 
for different values of α, which do deviate from the hard wall result and 
instead vary linearly E0(k) ≈ αℏωcℓBk when kℓB ≳ α.

4

1.5

O
D

 (a.u.)

1.0

0.5

0

ba

0

O
D

 (a
.u

.)
O

D
 (a

.u
.)

0

2

4–4 0

Distance (ℓB)

4.79 B

1.21 B

40 µm

Fig. 2 | Density profiles of the bulk and edge modes. a, The density distribution 
imaged after 22 ms of edge mode propagation. b, The integrated transverse 
density profiles of the bulk condensate (top; blue box in a) and the injected edge 
mode (bottom; ref box in a). The blue curve shows a Thomas–Fermi function 
with a fitted FWHM ≈ 4.8 ℓB, indicating a Landau level occupation of ~6. The 
dashed orange line shows the theoretical density profile of the lowest-energy 
edge mode47. The solid orange line shows this profile convolved with a Gaussian 
characterizing the known effective resolution of our imaging system without any 
free parameters. For ease of comparison, the normalization was chosen such that 
the peak heights coincide, and the spatial origin of each plot was chosen to lie at 
the peak density.
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Accompanying this crossover from isopotential drift physics to 
hard wall behaviour, we anticipated an associated change in the energy 
gap between different bands in the dispersion relation. To infer this split-
ting, we exploited a small residual excitation of the first excited band in 
our experiment, which resulted in a dipole oscillation of the edge mode 
centre of mass at a frequency Δ(k)/ℏ = (E1(k) − E0(k))/ℏ. We attribute this 
excitation to the short timescale 4ℓB/(εωcR) ≈ 0.1 × 2π/ωc, much less than 
one cyclotron period, over which a wavepacket of approximate extent 
ℓB moving radially along the saddle diagonal at a speed εωcr/4 (ref. 41) 
encounters the edge. The spatial amplitude of the radial oscillations is 
approximately 0.2 μm, or equivalently 0.1ℓB. From theoretical know
ledge of the wavefunctions of different bands (Methods), we estimated 
an approximately 10% admixture of the first excited band.

In Fig. 4a we show the edge mode density as a function of azimuthal 
angle and radial distance relative to R. Similarly to Fig. 3, the saddle 
potential was continually present for these measurements. The cen-
tre of mass exhibited an oscillation that increased in amplitude with 
decreasing α; we attributed this to the greater spatial extent of the 
associated edge mode wavefunctions. We extracted the radial position 
of the edge mode, the azimuthal variation of which was fitted with a 
damped sinusoid of period δφ, shown by white lines. Together with 
the maximal speed of atoms, v, attained at φ = π/4 and presented in 
Fig. 3, we obtained the temporal oscillation frequency ωosc ≈ 2πv/(Rδφ), 
which is shown in Fig. 4b.

For shallow walls, ωosc is consistent with the cyclotron frequency 
(dotted line in Fig. 4b), indicating that the edge bands are split by their 
bulk value. However, ωosc increases for α ≳ kmaxℓB ≈ 10 (indicating that 
the edge mode wavefunction is sampling the wall onset), resulting in 
a quantum mechanical analogue of classical skipping motion, the 
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frequency of which exceeds that of the bulk cyclotron orbits. For com-
parison, the solid black line shows the frequency Δ(k)/ℏ obtained from 
the theoretical dispersion relation and captures the data well. In the 
inset of Fig. 4b we show Δ(k) for walls of varying steepness, illustrating 
its deviation from the bulk Landau level splitting for wavevectors 
0 ≲ kℓB ≲ α.

The chirality of edge modes means that particle propagation 
is robust against boundary imperfections. To demonstrate this, we 
created an obstacle by projecting a Gaussian laser beam with a radius 
of ~10ℓB coincident with the system boundary, which co-rotated with 
our magnetic trap such that the resulting repulsive potential was static 
in the rotating frame. As shown in Fig. 5, the atoms flowed smoothly 
around the obstacle. We also show the result of a Gross–Pitaevskii 
simulation of the same experiment, obtaining the same behaviour.

These observations demonstrate the realization of chiral edge 
modes in a rapidly rotating ultracold gas, revealing their speed, struc-
ture, bandgap, dependence on wall sharpness and robustness against 
disorder. A natural immediate direction of future work concerns the 
influence of disorder length scale and dynamics. Furthermore, this 
approach provides a platform for addressing the role of interac-
tions. One particular advantage of using rotating gases is that the 
interactions between atoms are decoupled from the induced gauge 
potential, in contrast to other methods for which the effective mag-
netic field appears within a dressed-atom picture48. In our bosonic 
system, one anticipates the formation of a chiral Lieb–Liniger gas 
at the boundary49,50. More broadly, edge modes naturally constitute 
one-dimensional channels with a speed that is either proportional to, 
or independent of, the confining force, in contrast to inertial frames in 
which forces yield acceleration. This may enable robust atomic wave-
guides in analogy to electronic interferometers formed by quantum 
Hall edge states51,52.

Note added in proof: During the typesetting of this manuscript, 
we became aware of a related work realizing edge modes in a Floquet 
lattice system53.
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Methods
Imaging set-up
Images of the cloud density are broadened by both optical diffraction 
and atomic diffusion during the imaging pulse. This was previously cali-
brated in ref. 41, and the effective broadening of a point source by our 
system was captured via convolution by a Gaussian function with a e−1/2 
radius of 670 nm. For comparison, this performance was sufficient to 
observe vortices in situ with a contrast of ~60% (ref. 41). These have a 
characteristic size set by the healing length, which is ~300 nm in our 
system. This is smaller than the spatial extent of the edge modes, set by  
the rotational analogue of the magnetic length, ℓB = √ℏ/(mωc) = 1.6μm.

Calibration of the wall steepness
To calibrate the effective wall steepness, we directly imaged the inten-
sity pattern projected onto the atoms using a microscope objective 
with a numerical aperture of 0.5. We then identified the azimuthal posi-
tion where atoms transitted the region of minimum saddle potential, 
and thus where the edge mode speed was maximal, and extracted the 
corresponding radial intensity profile I(r). We fitted the radial inten-
sity profile to an error function, which we then deconvolved with the 
known point spread function of the microscope objective to obtain 
the intensity pattern at the atoms themselves.

This inferred profile was then fitted with a piecewise linear 
function:

I(r) =
⎧⎪
⎨⎪
⎩

0, r < c1
c2(r − c1), c1 < r < c1 + 1/c2
1, r > c1 + 1/c2.

(2)

Here, c1 and c2 are fit parameters. Combined with the known projected 
potential height, V0, we inferred the potential slope α = V0c2ℓB/(ℏωc) 
used in the main text. This protocol ensured that we always obtained 
the wall steepness corresponding to the location of minimum saddle 
potential and maximal edge mode speed even if there was any varia-
tion in steepness with azimuthal position. Two examples of this wall 
steepness extraction are shown in Extended Data Fig. 1.

Dispersion relation associated with a piecewise linear wall 
potential
For the wall defined in the main text, it was convenient to work in the 
Landau gauge and label eigenstates ψk(y) by their momentum k along 
the wall, giving a Hamiltonian:

̂Hk =
̂p2y

2m
+ 1

2
mω2

c ( ̂y − kℓ2B)
2 + αℏωcℓB

̂yϴ( ̂y) (3)

where ϴ( ̂y) is the Heaviside function. Below we drop hats on operators 
for simplicity. We define dimensionless variables ̃y = y/ℓB, ̃k = kℓB and 
energy ̃E( ̃k) = E(k)/ℏωc , yielding a dimensionless Schrödinger 
equation:

[− 1
2
∂2

̃y +
1
2
( ̃y − ̃k)

2
+ α ̃yΘ( ̃y)]ψ ̃k( ̃y) = ̃E( ̃k)ψ ̃k( ̃y) (4)

For either ̃y > 0 or ̃y < 0, this coincides with the Weber equation54, 
whose solutions are linear combinations of hyperbolic cylin-
der functions Dν(z). Normalizability of the wavefunction 
requires that the single-particle eigenstates take the piecewise  
differentiable form: ψ ̃k( ̃y) = A<0D ̃E( ̃k)−1/2(−√2( ̃y − ̃k))  for ̃y < 0, and 

ψ ̃k( ̃y) = A > 0D ̃E( ̃k)+( ̃k−α)
2
/2− ̃k

2
/2−1/2

(√2( ̃y − ̃k + α))  for ̃y > 0. By matching  

both the value and gradient of ψ at ̃y = 0, we obtained the dispersion 
relation. In the case of a hard wall, we used the simpler boundary condi-
tion ψ ̃k( ̃y→ 0−) = 0 without consideration of the region ̃y > 0 (ref. 47).

In the presence of the saddle potential, this dispersion relation is 
slightly modified owing to an additional force towards the wall 

F = εℏωcR sin(2φ)
4ℓ2B

≡ ̃F(φ)ℏωc/ℓB. The Hamiltonian (3) therefore acquires an 

additional term −Fŷ, and the modified dispersion relation ̃E(F)n ( ̃k) is 
related to the case of no saddle potential by ̃E(F)n ( ̃k) = ̃En( ̃k − ̃F) + ̃F ̃k − 1

2
̃F 2
 

(ref. 31).
The wavevector k of an atom in the lowest edge band, propagating 

in the presence of the saddle potential, is determined by the energy 
conservation requirement:

εℏωc
8

( RℓB
)
2

sin(2φ) + ℏωc
2

= E (F)
0
(k), (5)

where ℏωc/2 is the band energy in the bulk where ̃F = 0, corresponding 
to the lowest Landau level energy.

Simulation of the Gross–Pitaevskii equation
We performed further numerical simulations of our experiment via 
time evolution of the Gross–Pitaevskii equation. We began with an 
equilibrated, weakly interacting Bose–Einstein condensate in a static 
anisotropic harmonic trap with same trap frequencies and condensate 
chemical potential as our experiment. The wall potential was modelled 
via the piecewise linear function of equation (2), with c1 = 90 μm and 
variable steepness. We evolved the condensate wavefunction under an 
identical sequence to that performed in the experiment, and extracted 
the speed of the edge modes and the azimuthal period of their radial 
oscillations via identical analysis. A time series of exemplary images is 
shown in Extended Data Fig. 2.

Extraction of wavefront position and speed
To obtain the dynamics of the atomic wavefront, we divided the edge 
into azimuthal bins and plotted the total number of atoms within each 
bin as a function of time. These data were fitted with a sigmoid function 
to extract the time at which the number of atoms increased to 50% of 
the steady-state value. This time was then plotted against the corre-
sponding bin angle to obtain the evolution of the wavefront position 
φ(t); examples are shown in Fig. 3a. The error bars associated with the 
velocities shown in Figs. 1d and 3b are fitting errors from extracting 
the edge mode speed from the data φ(t).

Creation of the optical boundary
The optical boundary was formed by imaging 532 nm light incident on 
a digital micromirror device (DMD) onto the atoms. The pixel diameter 
on the DMD was 7.6 μm, the magnification of the imaging system was 
27.8 and the numerical aperture of the projection objective was 0.5. 
This resulted in an optical point spread function with a full-width at 
half-maximum of 550 nm and one pixel of the DMD corresponded 
to 270 nm at the atoms. Both length scales are much smaller than 
ℓB ≈ 1.6 μm, which set the natural physics length scale. The shape of the 
wall was optimized by maximizing the spin-down time of a rotating con-
densate that contained an Abrikosov lattice of vortices confined within 
the wall potential using a smaller ring of radius 30 μm. Ring centring 
was performed by projecting a small beam formed by turning on a few 
pixels at the centre of the DMD pattern and making a hole at the centre 
of a non-rotating condensate. Once optimized, this spin-down time of 
the cloud was several seconds—much longer than the timescale of any 
of the experiments presented here.

Creation of the optical obstacle
The obstacle was formed by a beam of 532 nm light that first passed 
through a two-axis acousto-optical deflector and was then focused to 
a 20 μm waist at the atoms. The resulting repulsive potential had a peak 
value of 40ℏωc. By modulating the deflection angle along each axis at a 
frequency corresponding to the atomic rotation, we induced the focal 
spot to travel along our circular wall such that in the rotating frame it 
appeared static. The beam was also sampled before the projection objec-
tive to confirm the uniformity of the power during one rotation cycle.
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Data availability
All data files are available from the corresponding author upon request. 
Accompanying data, including data for Figs. 1–5 and Extended Data 
Figs. 1 and 2 are available via Zenodo at https://doi.org/10.5281/
zenodo.12724216 (ref. 55).

Code availability
The simulation and analysis code is available from the corresponding 
author upon reasonable request.
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Extended Data Fig. 1 | Analysis of the boundary potential. (a,d) Images of the 
projected optical boundary. The white boxes indicate the approximate azimuthal 
range explored by the atoms as they pass through the saddle minimum, and 
hence the edge mode speed is maximum. (b,e) The measured radial intensity I(r), 
averaged over the indicated range of azimuthal angles. The green line shows a 

fitted error function. (c,f) The black curve is the inferred intensity profile at the 
atoms, obtained by de-convolution of the green curve in (b,e). The orange line 
is a piecewise linear fit to the black curve, whose slope provides the effective 
steepness of the boundary potential.
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Extended Data Fig. 2 | Evolution of the condensate density obtained from 
a Gross-Pitaevskii simulation. We perform a numerical simulation of the 
condensate evolution based on time-evolution of the Gross-Pitaevskii equation 
under an identical protocol to the experiment. Panels show the condensate 

density (a) before rotation; (b) when Ω = 0.85ω; (c) once Ω = ω, approximately 
corresponding to the time at which the condensate encounters the edge 
potential; (d) after 5ms of edge mode propagation.
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