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Abstract

The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935
+2154 were first detected by the Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB and the Survey
for Transient Astronomical Radio Emission 2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA
Collaborations’ O3 observing run. Here, we analyze four periods of gravitational wave (GW) data from the GEO600
detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray
bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW
emission from any of the events. Instead, using a short-duration GW search (for bursts �1 s) we derive 50% (90%)

upper limits of 1048 (1049) erg for GWs at 300 Hz and 1049 (1050) erg at 2 kHz, and constrain the GW-to-radio energy
ratio to�1014−1016. We also derive upper limits from a long-duration search for bursts with durations between 1 and
10 s. These represent the strictest upper limits on concurrent GW emission from FRBs.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Soft gamma-ray repeaters (1471); Magnetars
(992); Radio transient sources (2008); X-ray sources (1822); Gravitational wave sources (677)

1. Introduction

Fast radio bursts (FRBs) are a class of extremely energetic radio
transients that are theorized to be associated with neutron stars
(D. Thornton et al. 2013; E. Petroff et al. 2019; E. Platts et al. 2019;

M. Bailes 2022; B. Zhang 2023). To date, thousands of fast radio
bursts (FRBs) have been detected. The majority of these have been
discovered using the Canadian Hydrogen Intensity Mapping
Experiment (CHIME) telescope (M. Amiri et al. 2022) by the
CHIME/FRB Collaboration (CHIME/FRB; CHIME/FRB Colla-
boration et al. 2018).312 Though the origins of FRBs remain
unknown (D. R. Lorimer et al. 2024), their dispersion measure
(DM) as observed by radio telescopes localizes them to
extragalactic (and even cosmological) distances (D. R. Lorimer
et al. 2007; S. Chatterjee et al. 2017; J. M. Cordes &
S. Chatterjee 2019).

309 Deceased, November 2022.
310 Deceased, February 2024.
311 lsc-spokesperson@ligo.org, virgo-spokesperson@ego-gw.it and
kscboard-chair@icrr.u-tokyo.ac.jp

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

312 https://www.chime-frb.ca/voevents
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The notable exceptions to this extragalactic consensus are
the FRBs associated with FRB 20200428A. First detected in
2020 April by CHIME/FRB and the Survey for Transient
Astronomical Radio Emission 2 (STARE2; C. D. Bochenek
et al. 2020a), FRB 20200428A was quickly found to be
associated with the Galactic magnetar SGR 1935+2154,
which was undergoing an unusual period of flaring X-ray
activity at that time (S. D. Barthelmy et al. 2020; C. D. Boc-
henek et al. 2020b; CHIME/FRB Collaboration et al. 2020;
D. M. Palmer 2020). Simultaneous X-ray observations from
Konus–Wind (D. Frederiks et al. 2022), INTEGRAL
(S. Mereghetti et al. 2020), AGILE (M. Tavani et al. 2020),
and Insight-HXMT (C. K. Li et al. 2022) led to the first
coincident observation of both radio emission and X-rays
from an FRB source. FRBs from SGR 1935+2154 were also
observed during three other epochs by CHIME/FRB and
others, on 2020 October 8, 2022 October 14, and 2022
December 1.313 Additionally, X-ray glitches and bursts from
SGR 1935+2154 were observed by NICER and NuSTAR
during the nine hours surrounding the 2022 October 14 FRB
(C.-P. Hu et al. 2024). The connection between these X-ray
bursts and FRBs, even from the same magnetar, is not well
understood—indeed, radio emission with no coincident X-rays
has been detected from SGR 1935+2154 (W. Zhu et al. 2023),
and vice versa (G. Younes et al. 2017).

The compact object nature of these powerful transients
suggests that gravitational waves (GWs) could also be emitted
by the same mechanisms that produce FRBs. The detection of
GWs from an FRB source (or lack thereof) could help to
elucidate the mechanisms behind FRBs (B. Zhang 2023), and
potentially expand the realm of detected GWs beyond those
with compact binary coalescence (CBC) origins.

Previous works by the LIGO, Virgo, and KAGRA
Collaborations (LVK) have searched for GW emission
coincident with FRBs (B. P. Abbott et al. 2016; R. Abbott
et al. 2023), as well as for GWs from magnetar bursts
(B. P. Abbott et al. 2019a, 2019b; A. Macquet et al. 2021a;
R. Abbott et al. 2024) and pulsar glitches (J. Abadie et al. 2011;
D. Keitel et al. 2019; R. Abbott et al. 2022a) using the
Advanced LIGO and Advanced Virgo GW observatories
(F. Acernese et al. 2015; J. Aasi et al. 2015). While no
detections were found in these studies, the searches have
established upper limits on GW energy that may have been
emitted in association with these events. In particular,
R. Abbott et al. (2023) performed a search for GW emission
coincident with FRBs from CHIME/FRB during the O3a
LIGO–Virgo observing run, with searches targeted at GWs
from CBCs, as well as generic GW transients, setting an upper
limit of 1051−1057 erg of GW energy within 70-3560 Hz. In
addition, R. Abbott et al. (2024) placed upper limits on GW
energy (∼1043 erg) coincident with 11 X-ray and soft gamma-
ray magnetar bursts from SGR 1935+2154.

SGR 1935+2154, as the first (and at the time of writing, only)
FRB source to be confidently associated with a specific neutron-star
progenitor, presents a unique opportunity to search for GWs when
the source is localized to a particular compact object. Additionally,
at ∼6.6 kpc (P. Zhou et al. 2020), it is more than two orders of

magnitude nearer to Earth than the next closest FRB, which has
been localized to the nearby galaxy M81, 3.6Mpc away (M. Bha-
rdwaj et al. 2021; F. Kirsten et al. 2022).
The four periods of FRB activity from SGR 1935+2154 fell

between the O3 and O4 observing runs of the LVK, when the
LIGO and Virgo detectors were offline.314 Fortunately,
GEO600 (H. Grote et al. 2004; H. Lueck et al. 2010; C. Affeldt
et al. 2014; K. L. Dooley et al. 2016), a GW detector in
Hannover, Germany that is operated by members of the LIGO
Scientific Collaboration, was observing in Astrowatch mode
(H. Grote & the LIGO Scientific Collaboration 2010) and
collecting GW data during all four periods. The CHIME/FRB
events for three of the four periods occurred when GEO600
was in observing mode, while the fourth FRB occurred within
minutes of when GEO600 was observing (see Section 3).
In this paper, we analyze GEO600 data to search for GW

emission coincident with the four FRBs observed by CHIME/FRB
from SGR 1935+2154. We conduct two searches for unmodeled
GW transients: one targeted at short-duration bursts with

( ) second durations, and another aimed at long-duration bursts
lasting from 1 to 10 s. Due to SGR 1935+2154’s proximity, the
results constitute the most sensitive searches for GWs from FRB
sources to date, despite GEO600’s lower sensitivity compared to
LIGO and Virgo (see Figure 1). We also search for GWs
coincident with the two X-ray glitches and the X-ray burst peak
observed by NICER and NuSTAR in the hours around the FRB on
2022 October 14 (C.-P. Hu et al. 2024). This paper is organized as
follows. In Section 2, we describe the electromagnetic (EM)

observations of FRBs from SGR1935+2154. Section 3 details our
short- and long-duration searches for GWs, with results presented
in Section 4. We discuss the implications of these findings and
conclude in Section 5.

2. Fast Radio Bursts from SGR 1935+2154

The magnetar SGR 1935+2154 was discovered by Swift in
2014 (A. Y. Lien et al. 2014; M. Stamatikos et al. 2014). Since

Figure 1. Amplitude spectral density of GEO600 on 2020 April 28 compared
to those of LIGO Hanford, LIGO Livingston, and Virgo during O3
(B. P. Abbott et al. 2020). While at low frequencies GEO600’s sensitivity is
substantially diminished compared to that of the larger detectors, the gap
narrows at frequencies around 2 kHz, near the expected neutron-star f-mode
frequency.

313 We note that the classification of these radio bursts as FRBs remains
unclear: the SGR 1935+2154 radio bursts are a few orders of magnitude less
luminous than typical extragalactic FRBs, but are still brighter than most giant
radio pulses (U. Giri et al. 2023). C. D. Bochenek et al. (2020a) name them as
FRBs while U. Giri et al. (2023) call them FRB-like. Here, we describe them
as FRBs.

314 https://observing.docs.ligo.org/plan/
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then, it has been highly active, with periods of intense emission
in the X-ray and radio (G. L. Israel et al. 2016; G. Younes et al.
2017).

On 2020 April 27, Swift observed multiple X-ray bursts
from SGR 1935+2154, suggesting that the magnetar had
entered a period of high activity (S. D. Barthelmy et al.
2020). Less than 24 hr later, CHIME/FRB and STARE2
detected an FRB from the location of SGR 1935+2154
(C. D. Bochenek et al. 2020b; CHIME/FRB Collaboration
et al. 2020). Konus–Wind (D. Frederiks et al. 2022),
INTEGRAL (S. Mereghetti et al. 2020), AGILE (M. Tavani
et al. 2020), and Insight-HXMT (C. K. Li et al. 2022) observed
hard X-rays arriving at the same time, serving as the first ever
observation of simultaneous radio and X-ray emission from an
FRB source. Follow-up radio observations during the same
active period by the Five-hundred-meter Aperture Spherical
Radio Telescope (C. F. Zhang et al. 2020) and radio telescopes
from the European VLBI Network (F. Kirsten et al. 2021)
identified additional radio bursts from SGR 1935+2154,
though at lower energies. At higher energies, no gamma-ray
emission has been observed from this source (H. Abdalla et al.
2021; G. Principe et al. 2023).

Since 2020 April, SGR 1935+2154 has had multiple periods
of high activity leading to the emission of FRBs. On 2020
October 8, CHIME/FRB observed three FRBs from SGR 1935
+2154 arriving within a few seconds (D. Good & CHIME/
FRB Collaboration 2020; Z. Pleunis & CHIME/FRB Colla-
boration 2020; U. Giri et al. 2023). CHIME/FRB and the
Green Bank Telescope (GBT) observed FRBs again two years
later on 2022 October 14, with a CHIME/FRB event
surrounded by five GBT FRBs within 1.5 s (F. A. Dong &
CHIME/FRB Collaboration 2022; Y. Maan et al. 2022; U. Giri
et al. 2023). During the days around the FRBs on 2022 October
14, SGR 1935+2154 was undergoing a period of intense X-ray
burst activity. This burst storm began on October 10 (S. Mer-
eghetti et al. 2022; D. M. Palmer 2022) and was monitored by
various telescopes, such as NICER, NuSTAR, and XMM-
Newton (see, e.g., C.-P. Hu et al. 2024; A. Y. Ibrahim et al.
2024), which detected hundreds of milliseconds to seconds-
long bursts of high-energy photons. The X-ray burst rate
peaked during a flare 2.5 hr (±1 minute) before the FRB and
then steadily decreased over the next hours (C.-P. Hu et al.
2024). In addition, the high-cadence monitoring observations
allowed accurate measurements of the spin rate of SGR 1935
+2154 (nominally 0.308 Hz; G. L. Israel et al. 2016). The
evolution of the spin rate showed that SGR 1935+2154
underwent a spin-up glitch about 4.4 hr (±30 minutes) before
the FRB and another spin-up glitch about 4.4 hr (±30 minutes)
after the FRB, while the magnetar’s spin-down rate between
these two glitches was about one hundred times higher than its
normal rate (C.-P. Hu et al. 2024). X-ray bursts were also
detected by GECAM and HEBS (C. W. Wang et al. 2022) and
Konus–Wind (D. Frederiks et al. 2022) arriving within the
expected FRB dispersion time. In addition to the NICER and
NuSTAR observations mentioned above (T. Enoto et al. 2022),
Insight-HXMT (C. K. Li et al. 2022) also observed X-rays from
SGR 1935+2154 during this active period, though at the time
of the FRB all three were occulted by the Earth. Finally, a
fourth FRB was detected by CHIME/FRB on 2022 December
1 (A. B. Pearlman & CHIME/FRB Collaboration 2022; U. Giri
et al. 2023), accompanied by a faint hard X-ray signal detected
by Fermi-GBM (G. Younes et al. 2022).

Most estimates and methods place the distance to SGR 1935
+2154 between 1.5 and 15 kpc (G. Park et al. 2013;
M. Z. Pavlovic et al. 2014; M. P. Surnis et al. 2016; R. Kothes
et al. 2018; S. Ranasinghe et al. 2018; S.-Q. Zhong et al. 2020;
P. Zhou et al. 2020; M. Bailes et al. 2021). We adopt the
determination by P. Zhou et al. (2020) of 6.6± 0.7 kpc, falling
near the mean of the measurements.
These SGR 1935+2154 FRBs are not quite like the rest of

the population of FRBs, as mentioned in Section 1. As shown
in K. Nimmo et al. (2022), they exhibit characteristics very
similar to the extragalactic FRBs, but are a few orders of
magnitude less luminous. Whether the SGR 1935+2154 FRBs
are in the tail of the same population or truly occupy a different
part of the phase space remains an open question. For example,
while the 2020 April FRB from SGR 1935+2154 was several
orders of magnitude less energetic than most FRBs, it was three
orders of magnitude brighter than the next brightest previously
observed radio flare from a magnetar (CHIME/FRB Colla-
boration et al. 2020). Figure 2 shows the radio energy as a
function of distance for the FRBs from SGR 1935+2154,
alongside a sample of 749 FRBs from CHIME/FRB315

(CHIME/FRB Collaboration et al. 2021), the FRBCAT
(E. Petroff et al. 2016), and the 76 m Lovell telescope
(K. M. Rajwade et al. 2020), as collected and described in
G. Principe et al. (2023). This could suggest that the emission
mechanism which produces FRBs from SGR 1935+2154 may
be different from that which results in FRBs from cosmological
distances. Despite this reduced brightness compared to the
typical FRB population, SGR 1935+2154’s proximity as the
only known Galactic FRB source means that it presents the
most promising opportunity to date for multiwavelength and
multimessenger studies of FRB emitters.

Figure 2. Radio energy versus luminosity distance for the SGR 1935+2154
FRBs investigated in this work (dark orange, U. Giri et al. 2023) and for 749
other public FRBs published by CHIME/FRB and others (E. Petroff
et al. 2016; K. M. Rajwade et al. 2020; CHIME/FRB Collaboration
et al. 2021) (blue). The FRB sample and the calculation of distances and
radio energies is described in G. Principe et al. (2023) (with the exception of
the FRBs studied in R. Abbott et al. 2023, for which we use the lower bound
90% distances from that analysis). Note that the radio energies from CHIME/
FRB (derived from fluxes and fluences) should be interpreted as lower limits
(CHIME/FRB Collaboration et al. 2021; B. C. Andersen et al. 2023). We show
the radio energy required to produce a flare as bright as that of the brighest FRB
from SGR 1935+2154, FRB20200428D, as a function of distance.

315 https://www.chime-frb.ca/repeaters
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2.1. Models for Coincident GW-FRB Emission

Magnetars have long been theorized to be progenitors of
FRBs (E. Platts et al. 2019). The detection of FRBs from
SGR 1935+2154, a well-studied magnetar, has now confirmed
this association for at least some FRBs, though the exact
emission mechanism remains unclear (Y. Lyubarsky 2021;
B. Zhang 2023).

Most models which predict GW emission from FRB
progenitors assume a CBC association, such as during or after
the final stages of the CBC inspiral (J.-S. Wang et al. 2016;
S. Yamasaki et al. 2018), long before the CBC merger through
interactions of magnetospheres (B. Zhang 2020), or other
interactions of compact binaries with their environments (see
E. Platts et al. 2019 for a review of FRB theory). Prior studies
such as R. Abbott et al. (2023) have searched for GWs from
these sources using targeted matched-filter analyses, aimed at
CBC sources. Since SGR 1935+2154 is not in a compact
binary (A. A. Chrimes et al. 2022) and has exhibited multiple
periods of FRB activity, we do not expect CBC-like GW
emission from this source. Instead, as a magnetar, we can focus
on only a few possible emission mechanisms for GWs
coincident with FRBs. In particular, because GWs are induced
by time-varying quadrupole moments, we review models
which predict EM magnetar activity associated with such
moments.

Since at least some FRBs originate from magnetars, theories
have drawn connections between them and magnetar giant
flares (S. P. Tendulkar et al. 2016; B. Margalit et al. 2020;
J. Cehula et al. 2024), which are are thought to be powered by
magnetic activity near the surface of a neutron star (C. Thom-
pson & R. C. Duncan 1996; B. M. Gaensler et al. 2005). These
giant flares are rare but so energetic that GW emission may be
detectable due to hydromagnetic coupling of the magnetic
dipole to the mass quadrupole (K. Ioka 2001; A. Corsi &
B. J. Owen 2011). Quasi-periodic oscillations in the X-ray tails
of giant flares may also create GWs through torsional or Alfvén
modes which alter the star’s quadrupole moment (Y. Levin &
M. van Hoven 2011; K. Glampedakis & D. I. Jones 2014;
R. Quitzow-James et al. 2017). While no giant flares from
SGR 1935+2154 were detected during its periods of FRB
activity, the coincident X-ray activity suggests a potential link
in the provenance of the high-energy EM emission.

Crustal f-modes are a possible source of transient GWs from
isolated neutron stars (K. Glampedakis & L. Gualtieri 2018;
W. C. G. Ho et al. 2020). These typically fall at around 2 kHz
(N. Andersson & K. D. Kokkotas 1996), near the frequencies
where GEO600 is most sensitive (see Figure 1).

Moreover, neutron-star glitches, such as those from
SGR 1935+2154 in 2022 October investigated in this work,
may emit GWs potentially observable by current GW detectors
(R. Prix et al. 2011; L. Warszawski & A. Melatos 2012;
A. Melatos et al. 2015). Previous limits were derived for the
Vela pulsar (located at 290 pc; R. Dodson et al. 2003) glitch in
2006, providing limits on the emitted GW energy of the order
of 1045 erg (J. Abadie et al. 2011).

3. Search for Gravitational Waves

Using data from GEO600, we search for generic GW
transients from SGR 1935+2154 around the times of four
FRBs detected by CHIME/FRB. GEO600 is a dual-recycled
Michelson interferometer with folded arms and takes

astrophysical observations in the 40 Hz–6 kHz frequency band
when operating in Astrowatch mode (H. Grote & the LIGO
Scientific Collaboration 2010). Over the past two decades, it
has pioneered several key technologies for GW detectors
(C. Affeldt et al. 2014; J. Lough et al. 2021). GEO600 has
lower sensitivity compared to the Advanced LIGO and
Advanced Virgo detectors (~ -10 Hz22 at 1 kHz, see
Figure 1), but has strengths in uptime. It continued taking
observations during the initial period of the COVID-19
pandemic and subsequent LIGO and Virgo upgrades through-
out 2020–2022, during which CHIME/FRB observed these
FRBs from SGR 1935+2154.
Given the unknown nature of the emission mechanism of the

FRBs, we search for generic transient gravitational-wave
signals present in the GEO600 data using two unmodeled
burst searches: PySTAMP (A. Macquet et al. 2021b), targeted
at long-duration bursts with lengths from 1 to 10 s, and X-

Pipeline (P. J. Sutton et al. 2010; M. Was et al. 2012), for
short-duration bursts lasting less than 1 s. Previous searches for
GWs coincident with FRBs, such as the ones presented in
R. Abbott et al. (2023), also considered a possible CBC origin
for the GW emission; the noncompact binary nature of
SGR 1935+2154 precludes the use of CBC matched-filter
searches. Given that SGR 1935+2154 is a magnetar, we follow
the previous GW magnetar study presented in R. Abbott et al.
(2024) and employ PySTAMP to perform a long-duration
search, which has not previously been used for GW-FRB
analyses. Additionally, prior searches have typically been
restricted to coincidences with FRBs where data from at least
two GW detectors is available. For these FRBs from SGR 1935
+2154, only GEO600 was observing, so we employ a single-
detector search. This limits our ability to veto candidates based
on coherence between detectors and the amount of background
that can be estimated, reducing the search sensitivity, but given
the extraordinary nature of these FRBs, we determined that a
single-detector search in GEO600 data was warranted.
For the 2020 April 28, 2020 October 8, and 2022 October 14

FRBs, we perform a search within an “on-source” time window
starting at 1200 s before the infinite-frequency arrival time (i.e.,
the time accounting for the frequency-dependent delay
introduced by the DM) of the FRB, t0, and ending 120 s after.
This asymmetric window is motivated by the expectation that
any potential GWs are likely generated from the interior of the
magnetar, preceding FRB emission from the magnetosphere or
beyond. On 2020 October 8, three bursts were detected by
CHIME/FRB within 3 s; we use the first time, corresponding
to the FRB with the highest fluence on that day, as our t0. The
FRB on 2022 December 1 occurred during a time when
GEO600 was not taking data, having exited observing mode
approximately six minutes before the FRB, at 22:01:09 UTC.
GEO600 returned to observing mode 23 minutes later, at
22:23:59 UTC. To be consistent with the on-source window for
the other FRBs, we analyze the 800 s period of data beginning
1200 s before the FRB and ending shortly before GEO600
exited observing mode. Due to the large uncertainties in FRB–
GW models (as described above in Section 2.1), we use a wide
extended on-source window of [−1200, 120] s. This allows us
to probe a broad parameter space while keeping the detector
behavior relatively stationary. We also employ a compact [−4,
4] s search window in the short-duration search to probe the
time immediately surrounding the FRB with higher sensitivity.
In addition, we search for emission around the time of three
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X-ray events detected by NuSTAR and NICER on 2022
October 14. These events consisted of a spin-up glitch, a peak
in the X-ray burst emission, and another spin-up glitch. Since
the uncertainty in their times is greater than a minute, we only
perform an extended-window search, targeting a symmetric
[−1000, 1000] s window, subject to data availability. Table 1
summarizes the times and windows for which we perform
searches.

We restrict our search to frequencies from 300 to 4096 Hz,
with the lower cutoff set by the low frequency sensitivity of
GEO600 and the upper cutoff aiming to capture neutron-star
crustal f-modes, which are predicted to fall at approximately
2 kHz (N. Andersson & K. D. Kokkotas 1996).

3.1. Simulated Waveforms to Quantify Sensitivity

We measure the sensitivity of our search by inserting
simulated waveforms (injections) into the off-source data and
quantifying the pipeline’s ability to recover them. For the short-
duration X-Pipeline search, these injections are largely the
same as those used in R. Abbott et al. (2023). The waveforms
include Sine-Gaussians and damped sinusoids and are
summarized in Table 2. We briefly describe each waveform
family below:

1. Sine-Gaussians. The majority of the simulated wave-
forms we use are Sine-Gaussians, which can model
starquakes and certain neutron-star f-modes. They are
described in Equation 1 of B. P. Abbott et al. (2017).
Most of these injections are performed with inclinations
chosen randomly, but we also employ some optimally
inclined (circular polarization only, emitted face-on to the
observer) waveforms near the expected f-modes at
∼2000 Hz to better constrain our sensitivity to these
models. In all the injected waveforms, we use a quality
factor Q= 9 (the approximate number of cycles in the
waveform) following R. Abbott et al. (2021, 2023), with
central frequencies f0 spanning from 300 to 3560 Hz, as
shown in Table 2.

2. Damped sinusoids. We also use damped sinusoids to
characterize any ringdown behavior in the magnetar. The
waveform is described in Equation C12 of R. Abbott
et al. (2024). These are placed at two frequencies, 1590
and 2020 Hz, to represent plausible f-mode signals. For
each frequency, we use two damping timescales to probe
a larger parameter space.

The waveforms used by the long-duration PySTAMP analysis
are also Sine-Gaussians, but with a duration parameter of 10 s.
They are also described in Table 2.

3.2. Long-duration Search with PySTAMP

We use PySTAMP (A. Macquet et al. 2021b) to target GW
signals with durations longer than 1 s around the three FRBs
with coincident GEO600 data. The background distribution and

Table 1

Table of FRB and X-Ray Events for which we Perform GW Searches

Window for Compact Window for Extended Window for
FRB/X-Ray Event Time (UTC) Long-duration Search (s) Short-duration Search (s) Short-duration Search (s)

2020 April 28 14:34:24 [−1200, 120] [−4, 4] [−1200, 120]
2020 October 08 02:23:33 [−1200, 120] [−4, 4] [−1200, 120]
2022 October 14 X-ray glitch 1 15:07:12 L L [−480, −240]*

2022 October 14 X-ray burst peak 16:55:12 L L [−1000, 1000]
2022 October 14 19:21:39 [−687, 120]* [−4, 4] [−600, 120]*

2022 October 14 X-ray glitch 2 23:45:36 L L [−500, 500]*

2022 December 01 22:06:59 L L [−1200, −400]*

Note. The long-duration PySTAMP search is performed with one time window, while the short-duration X-Pipeline search is performed with both a compact
window and an extended window, where data availability and timing uncertainties permit. A dash (L) indicates that no search was performed, while an asterisk (

*
)

denotes search windows that were necessarily truncated due to data availability.

Table 2

Parameters for Waveforms Injected into Off-source Data for Recovery to
Quantify each Search’s Sensitivity

Label Frequency f0 Duration Parameter
(Hz) (ms)

Short-duration Sine-Gaussian Chirplets
SG-D 300 3.3
SG-E 500 0.20
SG-F 1100 0.91
SG-G 1600 0.63
SG-H 1995 0.50
SG-I 2600 0.38
SG-J 3100 0.32
SG-K 3560 0.28
SG-Lc 1600 0.63
SG-Mc 1995 0.50

Short-duration Ringdowns

DS2P-A 1590 100
DS2P-B 1590 200
DS2P-C 2020 100
DS2P-D 2020 200

Long-duration Sine-Gaussian Chirplets

L 520 104

L 1020 104

L 1520 104

L 2020 104

Note. For the generic short-duration transient search X-Pipeline, we follow
the labeling convention in R. Abbott et al. (2023) for each waveform, where
“SG” waveforms are sine-Gaussians and “DS2P” (damped sinusoid 2
polarizations) waveforms represent ringdowns. There are few enough long-
duration waveforms that we did not assign labels to them. The duration
parameter scales the width of the Gaussian envelope for the sine-Gaussian
chirplets, and describes the damping time of the damped sinusoids used as
ringdown waveforms. The c superscript denotes waveforms with circular
polarizations.
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the detection efficiency of the search are characterized using an
off-source window that consists of ∼12 hr of data centered on
the event time, excluding the on-source window described
above. The workflow of the pipeline is as follows. The data are
first down-sampled from 16384 to 8192 Hz, and then high-pass
filtered with a frequency cutoff of 40 Hz to remove potential
spectral leakage from lower frequencies. After these preproces-
sing steps, the resulting time series are split into 1 s Hann-
windowed segments with 50% overlap. The fast Fourier
transform is computed over each segment to build a time-
frequency map (tf-map) with a resolution of 1 s× 1 Hz. For
each frequency bin, the power spectral density (PSD) is
estimated by taking the median of the squared modulus of the
Fourier transform over 1320 s of adjacent data (similar to
Welch’s method but using the median instead of the mean), and
a signal-to-noise ratio (S/N) tf-map is built by dividing the
value of the Fourier transform in each pixel by the square root
of the PSD. To identify candidate GW events, a pattern
recognition algorithm is run over the tf-map. We use the
burstegard algorithm (T. Prestegard 2016), which identifies
clusters of neighboring pixels whose S/N is above a threshold
of 2.5. Clusters consisting of 5 or more pixels are saved as
candidate GW events. Each cluster is then assessed a ranking
statistic Λ that is the sum of the S/N of each of its pixels
divided by the square root of the total number of pixels.

Clusters found in the off-source window form the back-
ground of the search and are used to estimate the false-alarm
rate (FAR) of clusters found in the on-source window as a
function of the ranking statistic Λ. PySTAMP is primarily
intended to work on cross-correlated data from a pair of
independent detectors, which allows for the simulation of an
extended amount of background by shifting the time series of
one detector with respect to the other. Such a method cannot be
applied here in the single-detector GEO600 search. Hence, the
background lifetime is limited to the duration of the off-source
window, so the FAR of each cluster can only be estimated
down to a minimum of ∼1 per 12 hr (2.3× 10−5Hz). See
Section 5 for further discussion of the limited FAR.

Noise from GW detectors typically features narrowband
spectral artifacts that appear as horizontal lines in a time-
frequency representation (or vertical lines in the amplitude
spectral density; see Figure 1). Because the PSD is estimated
for each frequency bin by taking the median over neighboring
time segments, most of these lines are correctly factored into
the PSD and do not generate high S/N pixels. However, we
observe an excess of clusters in the off-source window around
some specific frequencies, likely due to fluctuations of spectral
lines around their central values. We therefore remove clusters
for a narrow range of frequencies corresponding to known
GEO600 spectral lines. In order to reject short, broadband noise
transients (known as glitches), we also remove clusters for
which more than 30% of the total energy is contained within a
single 1 s time segment.

3.3. Short-duration Search with X-Pipeline

We perform a search for short-duration unmodeled GW
transients using X-Pipeline (P. J. Sutton et al. 2010;
M. Was et al. 2012). While typically run as a coherent search
across multiple detector, such as in previous searches for GWs
from FRBs (R. Abbott et al. 2023), gamma-ray bursts
(R. Abbott et al. 2021, 2022b), and magnetars (R. Abbott
et al. 2024), we use X-Pipeline in a single-detector mode

because GEO600 was the only GW detector collecting data at
the time of the FRBs. X-Pipeline splits the PSD-whitened
data into 64 s segments, then applies a Fourier transform to
produce time-frequency maps. The time-frequency pixels with
amplitudes in the highest 1% that neighbor each other are
clustered into candidate detection events. Each event is then
assigned a ranking statistic based on the summed energy
contained in the pixels. To determine the significance of these
candidate events, we compare them against a distribution of
background energies empirically measured in an identical
manner from an “off-source” period. This is chosen to fall
around (but not including) the time of the on-source data and to
be long enough to allow for meaningful significances to be
calculated but not so long that the detector’s behavior is
nonstationary. We employ a 24 hr off-source window, sym-
metric about each event’s time.
When X-Pipeline is run on data from multiple detectors

as is typical, vetoes of problematic event candidates can be
applied by utilizing the presumed coherence of any real GW
event across detectors. This is unfortunately not an option in a
single-detector search such as this, meaning that the search
becomes more vulnerable to background noise. To improve the
sensitivity of our search, we apply frequency-domain vetoes
based on the distribution of time-frequency candidate events in
the off-source window for each FRB search. We veto narrow
frequency bands (∼10 Hz bandwidth) where there is consider-
able excess noise; most of these vetoes corresponded to known
spectral lines from the GEO600 detector.

4. Search Results and Limits on Coincident Emission

In this section, we present the results of the long and short-
duration searches described above (see Table 1 for a summary).
We do not find any candidate GW events in either the long-

duration or short-duration compact-window searches for any of
the FRBs. For the long-duration PySTAMP search, no triggers
survive the cuts described in Section 3.2 for the 2020 April and
2022 October FRBs. Five triggers survive for the 2020 October
FRB, but the loudest trigger has a FAR of ∼1 per 1000 s with a
p-value of 0.76 and is thus not significant. In the short-duration
X-Pipeline case, only the 2020 April, 2020 October, and
2022 October FRBs compact-window searches had enough
background to be considered useful for GW searches, as
described above. The only surviving trigger from these three
searches is from the 2022 October FRB and has a p-value of
0.53, and thus is also not significant.
For the short-duration extended-window searches, long off-

source windows are required to estimate the background, and
the single-detector nature of this search prevents the use of
“time-slides” between multiple detectors to artificially generate
background. These limitations mean that for the extended-
window short-duration searches, there are sometimes as few as
six off-source background trials, limiting any potential
detection’s maximum significance to a p-value of 1/6≈ 0.17
—which is insufficient for any meaningful statement about the
astrophysical nature of any outlier in the data. Thus, instead of
reporting potential GW candidates from the extended-window
searches with inconsequential statements about significance,
we decided to use the searches only to determine the loudest
trigger within the on-source window for a given waveform
model, thereby setting an upper limit on the corresponding GW
energy. This is the “loudest event statistic” (R. Biswas et al.
2009, 2013).
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For all searches and windows (listed in Table 1), we estimate
the root-sum-square signal amplitude of the GW strain hrss (see
Equations (3) and (4) of P. J. Sutton 2013) at 50% and 90%
detection efficiency to set upper limits on the GW energy
emitted. To convert the hrss values for each injection type that
are output by the search pipelines to energy, we use (following
P. J. Sutton 2013)
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with f0 describing the central frequency of each injection andDL set
to the 6.6 kpc distance of SGR 1935+2154 (P. Zhou et al. 2020).
The results of the long-duration search are shown in Table 3. The
50% and 90% limits from the short-duration analysis are shown in
Table 4 and Table 5, respectively. We show in Figure 3 our 90%
upper limits from both the long and short-duration analyses as a
function of frequency, corresponding to the upper limits at which
90% of the injected signals were recovered. To be explicit, the X%

hrss value for a given waveform model (and corresponding GW
energy) is calculated by finding the hrss at which X% of the injected
waveforms are recovered (i.e., found with a significance higher
than the loudest noninjection event in the window).
For some injections in the short-duration search (mostly

those at lower frequencies such as SG-D with f0= 300 Hz),
limits could not be established because noise in the detector
prevented sufficient recovery of the injected signals. Limited
data availability and poor data quality around the time of the
2020 October 8 event meant that no injection reached 90%
recovery, leading to the lack of 90% limits.
The nondetection of GW emission from our analyzed FRBs

implies that the GW-to-radio energy ratio must be less than
EGW/Eradio∼ 8× 1014 at the 90% level, for a time window
from [−4, 4] s at a GW frequency of approximately 300 Hz. At
the ∼2 kHz frequencies close to the neutron-star f-mode,
EGW/Eradio 1.7× 1016 at the 90% level. The GW and radio
energies for our analyzed FRBs are shown in Figure 4,

Table 3

The 50% and 90% Upper Limits on GW Emission Energy in erg from the Long-duration PySTAMP Search

Event 520 Hz 1020 Hz 1520 Hz 2020 Hz

50% 90% 50% 90% 50% 90% 50% 90%

2020 April 28 2.0 × 1050 5.7 × 1050 7.4 × 1050 2.7 × 1051 3.3 × 1051 1.1 × 1052 2.3 × 1052 7.3 × 1052

2020 October 08 1.6 × 1051 1.0 × 1052 4.4 × 1051 2.9 × 1052 1.7 × 1052 1.1 × 1053 1.1 × 1053 6.8 × 1053

2022 October 14 8.6 × 1049 3.0 × 1050 4.3 × 1050 1.4 × 1051 2.4 × 1051 8.1 × 1051 1.5 × 1052 4.6 × 1052

Note. Each frequency corresponds to the central frequency f0 of a Sine-Gaussian waveform with duration parameter equal to 10 s.

Table 4

The 50% Upper Limits on GW Emission Energy in erg from the Short-duration X-Pipeline Search

Event SG-D SG-E SG-F SG-G SG-H SG-I SG-J
Date Window 300 Hz 500 Hz 1100 Hz 1600 Hz 1995 Hz 2600 Hz 3100 Hz

2020 Apr 28 Compact 7.1 × 1048 3.4 × 1048 1.1 × 1049 2.9 × 1049 8.3 × 1049 1.6 × 1050 3.2 × 1050

2020 Apr 28 Extended 2.0 × 1049 9.2 × 1048 3.0 × 1049 7.9 × 1049 2.1 × 1050 4.2 × 1050 8.3 × 1050

2020 Oct 8 Compact 5.8 × 1049 1.7 × 1049 3.6 × 1049 9.1 × 1049 2.3 × 1050 5.4 × 1050 1.1 × 1051

2020 Oct 8 Extended 1.7 × 1051 3.4 × 1050 7.6 × 1050 1.8 × 1051 4.4 × 1051 8.9 × 1051 1.7 × 1052

2022 Oct 14 glitch 1 Extended L 8.2 × 1049 3.3 × 1050 1.0 × 1051 2.6 × 1051 6.5 × 1051 1.4 × 1052

2022 Oct 14 X-ray peak Extended L 3.8 × 1049 1.6 × 1050 5.1 × 1050 1.2 × 1051 3.0 × 1051 6.6 × 1051

2022 Oct 14 Compact L 1.3 × 1048 6.4 × 1048 2.0 × 1049 4.4 × 1049 1.2 × 1050 2.6 × 1050

2022 Oct 14 Extended L 7.1 × 1048 3.3 × 1049 1.0 × 1050 2.3 × 1050 5.7 × 1050 1.2 × 1051

2022 Oct 14 glitch 2 Extended 4.8 × 1050 1.6 × 1050 7.4 × 1050 2.5 × 1051 6.8 × 1051 2.0 × 1052 4.5 × 1052

2022 Dec 1 Extended 9.4 × 1049 3.4 × 1049 9.3 × 1049 2.7 × 1050 7.4 × 1050 1.7 × 1051 3.1 × 1051

Event SG-K SG-L SG-M DS2P-A DS2P-B DS2P-C DS2P-D
Date Window 3560 Hz 1600 Hz 1995 Hz 1590 Hz 1590 Hz 2020 Hz 2020 Hz

2020 Apr 28 Compact 5.8 × 1050 1.0 × 1049 2.4 × 1049 2.5 × 1049 2.9 × 1049 1.6 × 1050 2.3 × 1050

2020 Apr 28 Extended 1.5 × 1051 2.5 × 1049 6.0 × 1049 7.8 × 1049 7.5 × 1049 3.6 × 1050 6.6 × 1050

2020 Oct 8 Compact 2.0 × 1051 2.8 × 1049 7.1 × 1049 8.9 × 1049 8.7 × 1049 3.2 × 1050 3.4 × 1050

2020 Oct 8 Extended 3.5 × 1052 4.7 × 1050 1.0 × 1051 1.8 × 1051 2.0 × 1051 6.7 × 1051 6.7 × 1051

2022 Oct 14 glitch 1 Extended 2.2 × 1052 3.2 × 1050 9.1 × 1050 1.1 × 1051 1.2 × 1051 3.0 × 1051 2.9 × 1051

2022 Oct 14 X-ray peak Extended 1.0 × 1052 1.6 × 1050 4.3 × 1050 5.7 × 1050 5.6 × 1050 1.4 × 1051 1.4 × 1051

2022 Oct 14 Compact 4.3 × 1050 6.3 × 1048 1.6 × 1049 1.7 × 1049 1.7 × 1049 4.1 × 1049 4.7 × 1049

2022 Oct 14 Extended 2.0 × 1051 3.1 × 1049 8.0 × 1049 9.9 × 1049 9.6 × 1049 2.5 × 1050 2.6 × 1050

2022 Oct 14 glitch 2 Extended 1.0 × 1053 8.8 × 1050 2.2 × 1051 2.8 × 1051 2.7 × 1051 8.8 × 1051 8.9 × 1051

2022 Dec 1 Extended 5.9 × 1051 7.9 × 1049 1.9 × 1050 2.4 × 1050 2.5 × 1050 7.9 × 1050 8.1 × 1050

Note. Each injection waveform is defined as in Table 2. Dashes indicate that no limit was obtainable for this set of injections due to insufficient background or poor
data quality.

15

The Astrophysical Journal, 977:255 (27pp), 2024 December 20 Abac et al.



alongside the same quantities for FRBs from O3a analyzed in
R. Abbott et al. (2023).

5. Discussion and Conclusion

The previous best limits on coincident GW emission with
FRBs were set by R. Abbott et al. (2023) using extragalactic
FRBs observed during the O3a LVK observing run, using SG
waveforms and X-Pipeline. Figure 3 shows the 90% upper
limits on the GW energy during our analyzed FRBs from
SGR 1935+2154, we compared previous limits presented as a
range spanning the best and worst 90% limits from R. Abbott
et al. (2023). In the short-duration search at approximately
300 Hz, the best previous 90% upper limit on GW energy was
set at 3.4× 1051 erg; at approximately 2 kHz, the best previous
90% upper limit was 7.9× 1054 erg. We improve on the
300 Hz constraint by about two orders of magnitude, and the
2 kHz constraint by over four orders of magnitude. No previous
long-duration searches around FRB events have been per-
formed, so the long-duration search results presented here
represent the first constraints on such emission. Studies have
predicted that magnetar flares can emit up to 1048−1049 erg in
GW energy near the f-mode for ∼200 ms (K. Ioka 2001;
A. Corsi & B. J. Owen 2011)—a regime that is probed by our
most stringent 50% short-duration constraints at approximately
2 kHz (see SG-H waveform in Table 4). We also slightly
improve the upper limit on EGW/Eradio, as shown in Figure 4.

We note that our results are not the most constraining limits
on GW emission from the magnetar SGR 1935+2154, which
are reported in R. Abbott et al. (2024) in a search for GW
emission around times of magnetar X-ray and gamma-ray
flares. The relationship between these magnetar bursts and
FRBs is poorly understood, but are likely to be caused by

different physical processes, even if the underlying magnetar
behavior may be related (Y. Tsuzuki et al. 2024). Hence, both
GW limits are complementary and can help to better under-
stand the emission mechanisms at play. Considering the X-ray
spin-up glitches, our best limits on the emitted GW energy
(∼1051 erg at 300 Hz) are still far from the X-ray measured
changes in rotational energy (∼1042 erg from C.-P. Hu et al.
2024).
Since µE DLGW

2 in Equation (1), our constraints are heavily
dependent on the distance to SGR 1935+2154. As mentioned
in Section 2, estimates for SGR 1935+2154’s distance vary by
almost an order of magnitude. If its true distance is as close as
the 1.5 kpc measured by M. Bailes et al. (2021), our energy
constraints would improve by a factor of almost 20. On the
other hand, if SGR 1935+2154 is at almost 15 kpc, as
suggested by M. P. Surnis et al. (2016), our constraints would
worsen by a factor of 5.
As a single-detector search, the number of possible back-

ground trials (and thus the assessment of GW candidates via p-
value or FAR) is limited by the time in which the detector
behavior remains similar to that of the on-source window. For
example, the minimum FAR for the long-duration PySTAMP

search was limited to ∼1 per 12 hr. Since we do not recover
any candidates in the on-source windows which appear to
differentiate themselves from the background, we did not have
to assess any candidate’s significance beyond 1 per 12 hr,
meaning that this limitation did not affect our results. However,
future single-detector searches may encounter the problem
where a candidate in the on-source window is unlike anything
found in the background trials, complicating an accurate
assessment of its significance. Some GW CBC searches have
implemented techniques to improve single-detector signifi-
cance estimation (S. Sachdev et al. 2019; G. S. Cabourn Davies

Table 5

Same as Table 4 but with 90% Upper Limits

Event SG-D SG-E SG-F SG-G SG-H SG-I SG-J
Date Window 300 Hz 500 Hz 1100 Hz 1600 Hz 1995 Hz 2600 Hz 3100 Hz

2020 Apr 28 Compact 4.2 × 1049 2.0 × 1049 5.6 × 1049 1.5 × 1050 9.3 × 1050 1.1 × 1051 2.2 × 1051

2020 Apr 28 Extended 8.2 × 1049 4.0 × 1049 1.5 × 1050 4.0 × 1050 1.3 × 1051 2.3 × 1051 5.2 × 1051

2020 Oct 8 Compact - - - - - - -
2020 Oct 8 Extended - - - - - - -
2022 Oct 14 glitch 1 Extended - 5.7 × 1050 1.9 × 1051 6.6 × 1051 - 4.1 × 1052 -
2022 Oct 14 X-ray peak Extended - 1.6 × 1050 6.8 × 1050 2.2 × 1051 4.6 × 1051 1.1 × 1052 2.9 × 1052

2022 Oct 14 Compact - 6.4 × 1048 3.9 × 1049 1.3 × 1050 2.3 × 1050 6.3 × 1050 1.3 × 1051

2022 Oct 14 Extended - 3.0 × 1049 1.3 × 1050 3.9 × 1050 1.0 × 1051 2.2 × 1051 5.1 × 1051

2022 Oct 14 glitch 2 Extended 2.1 × 1051 7.2 × 1050 2.7 × 1051 9.3 × 1051 2.8 × 1052 8.4 × 1052 1.9 × 1053

2022 Dec 1 Extended - - - - - 2.1 × 1054 6.0 × 1052

Event SG-K SG-L SG-M DS2P-A DS2P-B DS2P-C DS2P-D
Date Window 3560 Hz 1600 Hz 1995 Hz 1590 Hz 1590 Hz 2020 Hz 2020 Hz

2020 Apr 28 Compact 3.3 × 1051 2.7 × 1049 1.1 × 1050 2.0 × 1050 1.9 × 1050 1.0 × 1052 -
2020 Apr 28 Extended 9.3 × 1051 7.4 × 1049 2.5 × 1050 4.5 × 1050 4.3 × 1050 - -
2020 Oct 8 Compact - - - - - - -
2020 Oct 8 Extended - - - - - - -
2022 Oct 14 glitch 1 Extended - 7.0 × 1050 1.3 × 1051 6.1 × 1051 8.1 × 1051 1.6 × 1052 1.6 × 1052

2022 Oct 14 X-ray peak Extended 4.3 × 1052 3.3 × 1050 6.1 × 1050 L 2.5 × 1051 5.0 × 1051 6.0 × 1051

2022 Oct 14 Compact 2.1 × 1051 1.6 × 1049 3.8 × 1049 9.5 × 1049 9.6 × 1049 2.0 × 1050 2.6 × 1050

2022 Oct 14 Extended 8.9 × 1051 6.1 × 1049 1.3 × 1050 4.5 × 1050 4.4 × 1050 9.5 × 1050 1.3 × 1051

2022 Oct 14 glitch 2 Extended 3.9 × 1053 1.5 × 1051 4.5 × 1051 1.3 × 1052 1.1 × 1052 3.2 × 1052 4.1 × 1052

2022 Dec 1 Extended - - 8.5 × 1050 - 6.6 × 1051 6.2 × 1052 2.0 × 1053

Note. For some injections (marked by a dash), fewer than 90% of the injections are recovered, preventing the calculation of 90% limits.
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& I. W. Harry 2022); unmodeled searches such as PySTAMP
and X-Pipelinemay also benefit from such enhancements.

At the time of writing, no FRBs have been detected from
SGR 1935+2154 since 2022. The O4 observing run of the

LVK, with participation from the LIGO, Virgo, and KAGRA
detectors will continue until mid-2025. Given the increased
sensitivity of these detectors compared to GEO600,
any SGR 1935+2154 FRB during the remainder of O4

Figure 4. The 90% upper limits on the emitted GW energy from FRBs as a function of the FRBʼs radio energy. In the pink, orange, red, and purple, we show limits
from FRBs emitted by SGR 1935+2154, for both our short- and long-duration searches. We plot limits for the Sine-Gaussian model at 300 Hz (SG-D) and 1995 Hz
(SG-H) for the short-duration search and at 520 and 2020 Hz for the long-duration search. In the blue and green markers, we show the upper limits on GW energy and
the corresponding radio energy for FRBs analyzed in R. Abbott et al. (2023), at 290 and 1995 Hz, for events with radio flux/fluence information from CHIME/FRB
Collaboration et al. (2021) allowing for radio energy reconstruction. The estimated radio energies are calculated as described in G. Principe et al. (2023), scaled to the
lower bound 90% distances as reported in R. Abbott et al. (2023). Note that the radio energies (derived from fluxes and fluences) should be interpreted as lower limits
(CHIME/FRB Collaboration et al. 2021; B. C. Andersen et al. 2023). We also plot dotted lines representing different ratios of EGW to Eradio, showing a slight
improvement in EGW/Eradio compared to R. Abbott et al.’s (2023) results.

Figure 3. The 90% upper limits on the emitted GW energy from SGR 1935+2154 coincident with FRBs, alongside GW energy limits from FRBs during the O3a observing
run as reported in R. Abbott et al. (2023). We plot the short-duration ringdown (orange) and Sine-Gaussian (SG; blue) waveforms from Table 5, and the long-duration SG
waveforms (aquamarine) from Table 3. The previous range of 90% limits from R. Abbott et al. (2023), based on the lower bounds of the 90% credible distance as reported in
their Table A1, are plotted in vertical black lines. These are for a short-duration search; R. Abbott et al. (2023) did not perform a long-duration analysis.
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could provide another opportunity to probe the GW-FRB
connection.
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