Future Generation Computer Systems 161 (2024) 315-328

Contents lists available at ScienceDirect T =
FIGICIS!
Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs =
N
A survey on checkpointing strategies: Should we always checkpoint a la

Young/Daly?

Leonardo Bautista-Gomez?, Anne Benoit >%*, Sheng Di ¢, Thomas Herault ¢, Yves Robert ¢,

Hongyang Sunf

a Barcelona Supercomputing Center, Spain

b Laboratoire LIP, ENS Lyon & Inria, France

¢ Institut Universitaire de France (IUF), France
d Argonne National Laboratory, USA

¢ University of Tennessee Knoxville, USA

f University of Kansas, USA

ARTICLE INFO ABSTRACT

Keywords:
Checkpointing
Optimal period
Young/Daly formula
Resilience

The Young/Daly formula provides an approximation of the optimal checkpointing period for a parallel
application executing on a supercomputing platform. It was originally designed to handle fail-stop errors for
preemptible tightly-coupled applications, but has been extended to other application and resilience frameworks.
We provide some background and survey various scenarios to assess the usefulness and limitations of the

formula, both for preemptible applications and workflow applications represented as a graph of tasks. We
also discuss scenarios with uncertainties, and extend the study to silent errors. We exhibit cases where the
optimal period is of a different order than that dictated by the Young/Daly formula, and finally we explain
how checkpointing can be further combined with replication.

1. Introduction

Checkpointing is the standard technique to protect applications
running on HPC (High-Performance Computing) platforms. Every day,
an HPC platform could experience a few fail-stop errors (or failures;
we use both terms indifferently). After each failure, the application
executing on the faulty processor (and likely on many other processors
for a large parallel application) is interrupted and must be restarted.
Without checkpointing, all the work executed for the application is lost.
With checkpointing, the execution can resume from the last checkpoint,
after some downtime (enroll a spare to replace the faulty processor) and
a recovery (read the checkpoint).

There are too many HPC applications or even application types
that rely on checkpointing to list them all in this survey. However,
in order to give a few illustrative examples, we refer the interested
reader to [1,2] for an in-depth description of some characteristic com-
putational science workloads from the USA Department of Energy
National Laboratories — namely LANL, SNL, LLNL - or academia — in
particular the NERSC. These applications cover a large spectrum of do-
mains, spanning from large-scale scientific simulations to data-intensive
workflows. These are further divided into large-scale Uncertainty Quan-
tification (UQ) and High Throughput Computing (HTC). Most of them

* Corresponding author at: Laboratoire LIP, ENS Lyon & Inria, France.
E-mail address: anne.benoit@ens-lyon.fr (A. Benoit).

https://doi.org/10.1016/j.future.2024.07.022

(11 applications over 16, representing 97% of the overall workload
of these laboratories) rely on some form of checkpointing, either for
fault tolerance and/or for archiving and time-sharing of the platforms.
S3D is an example of a complex simulation software that uses periodic
checkpointing at scale to implement fault tolerance [3].

In a more industrial setup, checkpoints are used in the context of
training deep learning recommendation models by Facebook (see [4])
to tolerate failures but also to improve the prediction accuracy with
continuous learning.

Recently, application-level checkpointing has gained significant
traction by combining the idea with compression to decrease the
checkpoint size while maintaining a high level of accuracy. For in-
stance, [5] goes in details over a set of scientific computational ap-
plications that rely on such a method.

Most High-Performance Computing applications rely on libraries
like SCR [6], FTI [7], or VeloC [8] to implement their application-
level checkpointing. In [9], three scientific applications from the Exas-
cale Computing Project (HACC [10], LatticeQCD [11], EXAALT [12])
are identified as relying on VeloC to implement their checkpointing
capabilities.

Received 18 December 2023; Received in revised form 5 July 2024; Accepted 13 July 2024

Available online 18 July 2024

0167-739X/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:anne.benoit@ens-lyon.fr
https://doi.org/10.1016/j.future.2024.07.022

L. Bautista-Gomez et al.

1}

=

w

<

= OPTIMAL

SPEND LOSE TOO MUCH

TOO LONG COMPUTATION BECAUSE
CHECK- OF FAILURES
POINTING

CHECKPOINT INTERVAL

Fig. 1. Trade-off for the optimal checkpointing period.

There are many varieties of checkpointing techniques and protocols.
But at a fundamental level, they behave similarly when dealing with
failures, and they can be abstracted by the same model. Consider a par-
allel application executing on an HPC platform whose nodes are subject
to fail-stop errors. The fundamental question is how frequently it should
be checkpointed so that its expected execution time is minimized. There
is a well-known trade-off (see Fig. 1): taking too many checkpoints
leads to a high overhead, especially when there are few failures, while
taking too few checkpoints leads to a large re-execution time after
each failure. The optimal checkpointing period is (approximately) given
by the Young/Daly formula as Wy, = 4/2uC [13,14], where u is
the application MTBF (Mean Time Between Failures) and C is the
checkpoint duration (or cost).

This paper provides a survey of the applicability and robustness
of the Young/Daly formula for different application scenarios, and
discusses several checkpointing strategies that go beyond a straight-
forward use of the formula. There are two main frameworks that are
considered in this survey. First, we deal with preemptible applications,
which may be checkpointed at any time. In this context, checkpointing
is a coordinated process and involves all the processors enrolled in the
execution of the application. Then, we focus on task systems, where
applications are composed of a set of atomic tasks, possibly with inter-
dependencies. In this context, checkpoints are task-based and can be
taken only at the end of a task. Only the processors that execute a task
are involved in its checkpoint. The problem is then to decide which
tasks to checkpoint.

This paper builds on a preliminary and much shorter version [15].
We are covering several new topics such as multi-level checkpointing,
checkpointing preemptible applications in practice, checkpoints that
take variable times, silent error detectors, imperfect verifications, cases
where the order of magnitude of the optimal checkpointing period
changes, and the combination of checkpointing with replication.

The paper is organized as follows. We first survey preemptible appli-
cations in Section 2. Then, we deal with task systems in Section 3. We
address questions related to uncertainty in Section 4. Section 5 is de-
voted to silent errors. Section 6 discusses extensions of the Young/Daly
formula, and Section 7 discusses how to combine checkpointing with
replication, in particular when checkpointing alone is not sufficient.
Finally, we conclude with final remarks and some open questions in
Section 8.

2. Preemptible applications

In this section, we deal with parallel applications that can be
checkpointed at any time. In scheduling terminology, the applications
are preemptible.

316

Future Generation Computer Systems 161 (2024) 315-328

2.1. Background

Platform and applications. Consider a large parallel platform with m
identical nodes (or processors; we use both terms indifferently). These
nodes are subject to fail-stop errors, or failures. A failure interrupts the
execution of the application on this node and provokes the loss of the
data located in its memory.

Consider a parallel application running on p < m nodes: when one of
these nodes is struck by a failure, the state of the application is lost, and
execution must restart from scratch unless a fault-tolerance mechanism
has been deployed. The classical technique to deal with failures makes
use of a checkpoint-restart mechanism: the state of the application is
periodically checkpointed, i.e., all participating nodes take a checkpoint
simultaneously. This is the standard coordinated checkpointing proto-
col, which is routinely used on large-scale platforms [16], where each
node writes its share of application data to non-volatile (a.k.a. stable)
storage, leading to a checkpoint of duration C. When a failure occurs,
the platform is unavailable during a downtime D, which is the time to
enroll a spare processor that will replace the faulty processor [14,17].
Then, all application nodes (including the spare) recover from the
last valid checkpoint in a coordinated manner, reading the checkpoint
file from non-volatile storage (recovery of duration R). Finally, the
execution is resumed from that point on, rather than starting again from
scratch. Note that failures can strike during checkpoint and recovery,
but not during downtime (otherwise, there are no differences between
downtime and recovery and we can simply include the downtime in
the recovery time). When a failure hits a processor, that processor is
replaced by a spare. This amounts to starting anew with a fresh pro-
cessor. In the terminology of stochastic processes, the faulty processor
is rejuvenated. However, all the other processors are not rejuvenated:
this would be infeasible due to the multitudinous spares that would be
needed.

Failures. We assume that each node experiences failures, whose inter-
arrival times follow Independent and Identically Distributed (IID) ran-
dom variables obeying an arbitrary probability distribution D. We only
assume that D is continuous and of finite expectation and variance, a
condition satisfied by all standard distributions. We let y;,, denote the
expectation of D, also known as the individual processor MTBF. Even if
each node has an MTBF of several years, large-scale parallel platforms
are composed of so many nodes that they will experience several fail-
ures per day [18,19]. Hence, a parallel application using a significant
fraction of the platform will typically experience a failure every few
hours. More precisely, an application executing with p processors has
an MTBF y = £ ‘;"’ : intuitively, the application is struck by failures at
a rate that is p times higher than that of each enrolled processor. We
come back to this statement in Section 2.3.

Checkpointing strategies. Given a parallel application whose length is
T,.s. (base time without checkpoints nor failures), the optimization
problem is to decide when and how often to take a checkpoint to
minimize the expected execution time of the application. The appli-
cation is divided into N, segments of length W, 1 < i < N, each
followed by a checkpoint of length C. Of course, Zijlcl W, = Tyyee- We
add a final checkpoint at the end of the last segment, e.g., to write
final outputs to non-volatile storage. Symmetrically, we add an initial
recovery when re-executing the first segment of an application (e.g., to
read inputs from non-volatile storage) if it has been struck by a failure
before completing the first checkpoint. Adding a final checkpoint and
an initial recovery brings symmetry and simplifies formulas, but it
is not at all mandatory: see [20] for an extension relaxing either or
both assumptions. The question is then to determine the number N, of
segments and their lengths W;.

L. Bautista-Gomez et al.
2.2. The Young/Daly formula

We start with an intuitive (but simplified) derivation of the Young/
Daly formula for the optimal checkpointing period. Owing to the
addition of the final checkpoint and the initial recovery, all segments of
the application have the same shape. It is thus natural (by symmetry)
to assume that they have the same length W in the optimal solution.
Thus, we assume that checkpoints are taken periodically, after every
W unit of work. We define the waste as the fraction of time during
which the application is not performing useful computations; check-
point, recovery, downtime, and re-execution do not count as useful
computations. Now, after every W unit of work, we spend C seconds
to checkpoint, which corresponds to a first source of waste .S; = WL-i-C
S, is the failure-free waste. The second source of waste S, is due to
failures: each time a failure strikes, which happens every x seconds on
average, we lose D + R for downtime and recovery, and then we have
to re-execute some work, namely the work performed since the last
checkpoint (or from the beginning of the execution if none has been
taken yet). On average again, the failure strikes in the middle of the
segment: sometimes before, sometimes after, hence, on average after
WTW seconds. We obtain .S, = ‘%(D+R+ W; €). S, is the failure-induced
waste. Altogether, both sources of waste approximately add up, so we
have to find W that minimizes S, +.5,. We further simplify the solution
by assuming that W must be an order of magnitude higher than the
fault-tolerance parameters D, C, R. This is a necessary condition for the

waste to remain reasonably low. This leads to S| ~ % and S, ~ %

The total waste S| + .5, ~ % + % is minimum for

Wyp = V2uC. (@)

This is nothing else than the famous Young/Daly formula! Finally,
note that S, = S, for Wy, which corroborates the intuition given
in Fig. 1 that both sources of waste, failure-free and failure-induced,
should be balanced in the optimal solution. See [17] for a more detailed
derivation using the waste argument.

2.3. Accuracy of the derivation

Recall that each node experiences failures whose inter-arrival times
follow IID random variables obeying a probability distribution D. When
D is Expe(4), i.e., an Exponential distribution of rate A, the framework is
well-understood. This is because the inter-arrival times of the failures
that strike an application with p processors are IID random variables
obeying an Exponential distribution Exp(pA). This is due to the memo-
ryless property of the Exponential distribution: when a failure strikes
one processor, that processor is rejuvenated, while the remaining p — 1
processors are not. With an arbitrary distribution D, the time to the
next failure would depend upon the history of these p — 1 processors:
for each of them, the time to their next failure depends upon when their
last failure struck. This is not the case for an Exponential distribution,
owing to its memoryless property: after a failure on any of the p pro-
cessors, the time to the next failure remains the same random variable
Exp(4) for each of them, rejuvenated or not. Therefore, the time to the
next failure for the application obeys an Exr(pAd) distribution, as the
minimum of p Exe(A) distributions. From the resilience point of view,
the application executes on a single processor of fault rate pA. Owing to
this observation, one can formally derive that the optimal checkpoint-
ing strategy is periodic, and compute the optimal checkpointing period.
The derivation is a bit technical and the optimal segment length W,
is obtained using the Lambert W function. But comfortingly, a first-
order approximation of W, is Wy p, the value given by the Young/Daly
formula. See [20,21] for details on the derivation.

Now, any continuous distribution D other than Exponential is not
memoryless, and the optimal checkpointing strategy is unknown in that
case. The bad news is that the most accurate probability distributions
modeling processor failures are LogNormal [22] and Weibull [23-26]

Future Generation Computer Systems 161 (2024) 315-328

instead of Exponential. For instance, LANL failure traces are best fit
by Weibull distributions of different shapes [27]. Weibull distributions
with a shape parameter smaller than one experience infant mortality:
their instantaneous failure rate decreases with time, so that failures
are more frequent at the beginning of the execution than at its end.
For those distributions, it is known that periodic checkpointing is not
optimal. Intuitively, the length of a segment between two consecutive
checkpoints should increase with time, since the instantaneous failure
rate decreases. However, the good news is that the MTBF can still be
defined as the limit:

fim 2T _ Hind
T-oo T P

’

where n(T) is the expected number of failures striking an application
with p processors in the time interval [0,7]. This limit exists for
any regular distribution D. A natural heuristic is to use a periodic
checkpointing strategy, with a segment length given by the Young/Daly
formula and using that latter value for the MTBF. It is unknown how
this approach is close to the optimal but it seems good enough in many
scenarios. See [20,21] for an assessment of this heuristic, and for a
comparison with other checkpointing strategies that aim at maximizing
work or efficiency until the next failure.

2.4. Extensions

We now discuss extensions of the Young/Daly formula in several
frameworks.

2.4.1. Overlapping checkpointing and computation

In Section 2.2, we have shown how to derive the optimal check-
pointing period when the objective is to minimize the expected com-
pletion time of the application. We used a simplified model where no
computation could take place while checkpointing. Modern processors
could run several threads in parallel and compute while executing
1/0 transfers. A first extension to the framework of Section 2.2 is to
extend the model with a linear slowdown factor a € [0, 1], where, say,
a = 0.5 means that computations progress at half the main speed when
checkpointing. The two extreme values are « = 0 when checkpoints
are blocking (no overlap), and a« = 1 when execution can progress with
no penalty while a checkpoint is taken (full overlap). The Young/Daly
formula becomes Wy = 4/2u(l — a)C. Note that a = 0 leads to the
original Young/Daly formula, while « = 1 leads to Wy, = 0, which
means that one should checkpoint all the time if checkpointing is free.
Of course, in practical scenarios, we expect a < 1. See [17] for more
details.

2.4.2. Checkpointing to minimize energy consumption

Another extension to the framework of Section 2.2 is to target a
different optimization objective: instead of minimizing the (expected)
total execution time, one would aim at minimizing the (expected) total
energy consumed to execute the application. This objective is impor-
tant both for economic and environmental reasons. See [27-29] and
the references therein for further details. The optimal period W,,,,,,
to minimize energy consumption is different from the Young/Daly
formula mainly because the power spent when computing is not the
same as the power spent when checkpointing. More precisely, the
power consumption at each time step of the application relies on three
components:

o Pgatic: base power consumed when the platform is switched on.

e Pca: when the platform is computing, we have to consider the
CPU overhead in addition to the static power Pg,c.

* Pyo: similarly, this is the power overhead due to file I/0. This
supplementary power consumption is induced by checkpointing,
or when recovering from a failure.

. . Pstatic+P
A key parameter to compare W,,,,, and Wy p, is the ratio S‘a“c—:p‘/".
. . . /Stati Cal

Unfortunately, there is no compact expression for the optlma[f 1f)en(a)d

W energy » Which is obtained as the root of a second-degree equation [28].

L. Bautista-Gomez et al.

(One level) & il e e
Time
(wolevels) — [afG| fe] Jela| Jef [ele]
Time
(Threelevels) [ala] | o] fela] Jo] lolelé
Time

Fig. 2. Different levels of checkpointing. The vertical red lines mark the beginning and
end of a periodic pattern. The higher the error level, the less frequent the checkpoints
at that level (and the darker their shade of gray).

2.4.3. Multi-level checkpointing

Checkpointing is the de-facto standard resilience method for HPC
platforms at extreme-scale. However, the traditional single-level check-
pointing method suffers from significant overhead, and multi-level
checkpointing protocols (e.g., [6-8]) now represent the state-of-the-art
technique. These protocols allow different levels of checkpoints to be
set, each with a different checkpointing overhead and recovery ability.
Typically, each level corresponds to a specific failure type, and is
associated to a storage device that is resilient to that type. For instance,
a two-level checkpointing system would deal with: (i) transient memory
errors (level 1) by storing key data in main memory; and (ii) node
failures (level 2) by storing key data in non-volatile storage (remote
redundant disks).

The main idea of multi-level checkpointing is that checkpoints are
taken for each level of faults, but at different periods. Intuitively, the
less frequent the faults, the longer the checkpointing period: this is
because the risk of a failure striking is lower when going to higher
levels; hence the expected re-execution time is lower too; one can
safely checkpoint less frequently, thereby reducing failure-free over-
head. Fig. 2 illustrates different levels of checkpointing protocols, from
a single level to three levels. Another extension of the Young/Daly
formula is to derive the optimal period and pattern in the presence of
multi-level checkpoints.

The optimal two-level checkpointing intervals can be derived theo-
retically. In this case, several level-1 checkpoints (with cost C;) could
be taken before taking a level-2 checkpoint (with cost C,, which is
larger than C)). If a level-1 failure occurs, we just need to recover
from the latest level-1 checkpoint, instead of from the last level-2
checkpoint, which is more costly. The optimal period for the outer-level
(i.e., level-2) checkpoints can be approximated as:

2(nCy + Cy)
1
npy oy

(2)

where y; and p, denote the MTBFs of the level-1 and level-2 failures,
respectively [30]. Here, n denotes the optimal number of level-1 check-
points between two consecutive level-2 checkpoints, and its value is
also related to the failure MTBFs and the checkpoint costs of the two
levels. Another optimal two-level checkpointing solution was proposed
in [31], which offers two novel insights: (1) it proves that periodic
patterns are optimal and derives the exact best pattern (instead of an
approximate period); (2) it evaluates the overall wall-clock times based
on the derived optimal checkpointing intervals for nine cases, each with
different checkpoint/restart overheads and failure rates.

Identifying the optimal checkpointing intervals for the situation
with more than two levels of checkpoints has also been studied. First,
the formula in Eq. (2) for two-level checkpointing can be extended to
an arbitrary number of levels, where both the checkpoint cost and the
MTBF typically increase with the levels. Benoit et al. [30] derived a
general approximate formula for this case. Furthermore, Di et al. [32]
proposed a generic mathematical formulation for the problem with
various types of failures, and developed an iterative method to calculate

318

Future Generation Computer Systems 161 (2024) 315-328

the optimal checkpointing intervals for different levels efficiently. They
further extended their iterative method to the situation with uncertain
execution scales [33]. Specifically, an in-depth analysis is provided
on why it is non-trivial to derive the optimal checkpointing intervals
for different checkpointing levels and optimize the number of cores
simultaneously. Then, a fixed-point iterative method that can quickly
obtain an optimized solution is proposed — the first successful attempt
in multi-level checkpointing models with uncertain scales.

2.4.4. Minimizing I/0 due to checkpointing

Finally, another optimization objective is to minimize the expected
volume of I/O operations due to checkpointing and recovery. This
objective is important because I/0O resources are scarce in HPC plat-
forms. Typical HPC applications execute on dedicated computing nodes
but share the /0 bandwidth of the platform with other applications.
Hence, decreasing the volume of I/0 operations by each application
will likely improve the global throughput of the platform. A natural
question is then: given a single application that executes on the plat-
form, can we increase the checkpointing period significantly beyond
the Young/Daly formula without sacrificing too much in performance?
Note that we have a bi-criteria optimization problem here because
we need to trade off performance with I/O pressure. Note also that a
single application running on the platform may be a capability workload
that spans the entire platform. The answer to the question is yes:
Arunagiri et al. [34] studied longer, sub-optimal periods for a single
application, with the intent of reducing I/O pressure. They showed,
both analytically and empirically using four real platforms, that a
decrease in the I/O requirements can be achieved with only a small
increase in waste.

However, space-sharing HPC platforms for the concurrent execution
of multiple parallel applications is the prevalent usage strategy in
today’s HPC centers, and capability workloads that span the entire
platform are much less common [35]. The question becomes how to
avoid contention when several applications try to checkpoint at the
same time: the I/0 bandwidth will be shared among these applications,
their checkpoint time will increase, and the Young/Daly formula that
was computed for each application in isolation is no longer optimal
due to these interferences. We will come back to this question in
Section 4.2.

2.5. Loosely-coupled applications

The Young/Daly formula applies to a parallel application where all
processors progress and cooperate continuously, e.g., by exchanging
messages: the application cannot continue its execution when one
processor is struck by a failure; it has to wait until a spare is up
and running. In other words, the application is assumed to be tightly
coupled and behaves as if it were executed on a single (very powerful)
processor.

What if the application is not tightly-coupled? If the application
includes several tasks that can execute concurrently and independently
on different subsets of resources, how frequently should each task be
checkpointed? We use the word task here, but not in the traditional
meaning where tasks are atomic and can only be checkpointed at
the end of their execution (see Section 3 for such a framework). On
the contrary, we assume that each task is preemptible and can be
checkpointed at any time step. It is then natural to checkpoint each
task using the Young/Daly period. But is this a good strategy, given
that many tasks execute in parallel, and that the failure of one task
will slow down the whole application?

Consider the simple example of a fork-join application that consists
of 302 tasks: an entry task, 300 identical parallel tasks, and an exit
task. Each parallel task runs on p 30 processors for T,, = 10
hours, and is checkpointed in C = 6 minutes. The platform has at
least 9,000 processors so that the 300 parallel tasks can indeed execute
concurrently. Such applications are typical of HPC applications that

L. Bautista-Gomez et al.

explore a wide range of parameters or launch subproblems in parallel.
Assume a short downtime D = 1 minute, and recovery time R
C. Finally, assume that each task has 0.5% chances to fail during

execution; this setting corresponds to an individual MTBF ;,, such
PThase

that 1—e #nd = 0.005, i.e., Hing = 59,850 hours (or 6.8 years). This is
in accordance with MTBFs typically observed on large-scale platforms,
which range from a few years to a few dozens of years [19].

In the following paragraphs, we refer to [36] for the details of
computing the expectations of execution times. Indeed, the details are
complicated, and we need the reader to trust us for all expected values
below. For each task, the Young/Daly period is Wy = 2”"7""C ~ 20
hours, and the expected execution time of a single task E(T)_,,) is
minimized when only a single checkpoint is taken at the end of the
execution. Recall that we always take a checkpoint at the end of the
execution for simplification, thus the optimal solution for each task is
to take no additional checkpoint. Then, one can derive that E(T)_,,) ~
10.4 hours.

However, with 300 tasks executing concurrently, one can compute
that the expectation of the total time required to complete all tasks
is (T, 1qsks) > 14 hours. The key point here is that the expectation
E(Tj;.1asks) Of the total time required to complete all tasks is far larger
than the maximum of the expectations (which in the example all have
the same value E(T_,,)). The intuition is the following: if each parallel
task is expected to be struck by, say, 3 failures, then most tasks will
experience between 0 and 6 failures, but some unlucky task may well
experience 20 failures, and the total time is dictated by the slowest task.
In other words, the expectation E(T,.,,.) of the maximum time over
all tasks is likely to be much larger than the maximum of the expected
time E(T,,,) for each time; since all tasks are identical, the latter
maximum is also E(T)_,s) -

Because the exit task cannot start before the last parallel task is
completed, the expectation of the total execution time of the fork-join
application is E(Ttotal) =]E(Tcm‘ry) +E(Tall-msk&) +E(Texir)! where E(Temry)
and [E(T,,;,) are the expected duration of the entry and exit tasks. Now,
when adding four intermediate checkpoints to each task, we obtain
E(T,)1.1asks) < 12.75 hours. The tasks are then slightly longer (10.5 h
without failure), but the impact of a failure is dramatically reduced if
a checkpoint is taken every two hours. By diminishing E(T,;;_;.s1s)> W€
save 75 minutes (and in fact much more than that because the lower
and upper bounds for E(T,,_,,.s) are loosely computed).

This little example shows that for loosely-coupled applications with
a high degree of parallelism, checkpointing each task a la Young/Daly
is not good enough. The key reason is that the expectation of the
maximum number of failures across parallel tasks is much higher
than the maximum of the expectations of the number of failures for
each task. In our example with identical tasks, the intuition is even
simpler: the expected number of failures is the same for each task taken
independently, but it is very likely that some tasks will experience
many more failures if many tasks execute in parallel. See [36] for a
comprehensive analysis and evaluation.

2.6. Coordinated checkpointing and rollback recovery for preemptible ap-
plications in practice

Achieving exact preemptibility requires the ability to checkpoint
at any point in the execution when the protocol demands it. This
necessitates the application and all libraries in the software stack to
be capable of checkpointing at any time and restarting from that
checkpoint. In practice, parallel applications often depend on external
libraries to implement coordinated checkpointing and rollback recovery
at a high level. The MPI-Agnostic Network-Agnostic Transparent Check-
point (MANA for MPI, [37]) stands out as a state-of-the-art library that
provides this capability for parallel applications relying on the Message
Passing Interface (MPI) for communication.

MANA is a Proxy MPI library. It introduces a split process approach,
dividing the upper-half of the process (MPI application and associated

319

Future Generation Computer Systems 161 (2024) 315-328

libraries) from the lower-half (MPI Proxy library and MPI Native li-
brary, implementing the communication system). When a checkpoint
is required, MANA utilizes DMTCP (Distributed MultiThreaded Check-
Pointing, [38]), a process-checkpointing library for Linux to save the
current state of the upper-half and a synthetic representation of the
MPI library’s state. During a restart, DMTCP restores the upper-half of
all processes, and the Proxy MPI library uses the Native MPI library and
the synthetic representation to restore all MPI objects to their state at
the time of checkpoint. MANA maintains a translation table between
Proxy MPI objects and Native MPI objects for portability, ensuring valid
references to MPI objects even after a restart. In the upper-half of the
process, only references to the Proxy MPI objects can be saved (and
restored). When a restart occurs, MANA updates its translation table
to map those object references to the new Native MPI objects that are
re-created using the Native MPI library.

However, a significant class of parallel applications opts for
checkpoint-restart via application-level checkpointing. In this scenario,
applications utilize well-distributed libraries to implement multi-level
checkpointing, simplifying the serialization operation for their check-
points. Popular libraries for this purpose include FTI [7], SCR [6],
and VeloC [8], which leverage all memory hierarchy resources (local
and remote memory, local and remote storage) to introduce as much
asynchrony in the I/0 system as possible.

Some applications targeting high performance may employ a disk-
less checkpointing approach, where the state is solely serialized in the
memory of other processes within the same application [39-41]. How-
ever, this approach requires surviving processes to continue execution
after a failure, necessitating the use of a fault-tolerant version of the
MPI library implementing the User-Level Failure Mitigation (ULFM)
extension to the MPI Standard [42], available in both Open MPI [43]
and MPICH [44]. Such diskless checkpointing capability has been im-
plemented over ULFM, for example in the Fault-Tolerant Programming
Framework Fenix [45].

These approaches, albeit effective, lack precise preemptibility.
Application-level checkpointing requires programmers to modify the
application to serialize the process state at specific points, considering
the application’s specifics to ensure data consistency between processes.
To serialize its state, an application needs to save the segments of
memory (belonging to the heap and/or stack, depending on the case)
that hold data needed to continue the computation, and the progress
position in the execution. Typically, an application will need to save
its loop counters, and any non-temporary memory that was modified
since the beginning of the execution. Serializing such a state is usually
easier to do at the high levels of the application call stack (when
only the state of progress of a few functions is required) than deep
within the computation (when the state of third party libraries might
be involved). Consequently, these applications can only approximate
the optimal checkpointing frequency by taking a checkpoint as close
as possible to the target checkpoint time. The deviation from the the-
oretical framework depends on the frequency at which the application
reaches a serializable state. Let p, be the (average) period between two
serializable states of a parallel application, and let Wy, = 1/2uC be the
optimal checkpointing period according to the Young/Daly formula.
While the application might not achieve a checkpoint every Wy
seconds, assuming p, < Wy p, it will be able to checkpoint somewhere
in the interval [Wy p — p., Wy p + p.]. If the actual checkpointing period
is 1, the relative efficiency, denoted as R, is given by the formula:

(S148) oy, 2C(V2u+ ViC)+0)

(S +52)W=, B \VuC (3C2+(2;4+41)C+z2)'

The worst efficiency (minimum value for R) is obtained for 7., =
Wyp — p.. For instance, in a system where u 8h, C 20 min,
and p, 20 min, Wyp ~ 2 h, and t,,,, = 1 h 40 min leads to a
relative efficiency of 99%. Thus, utilizing non-preemptible application-
level checkpointing with the Young/Daly heuristic and an opportunity
to checkpoint every 20 min, the efficiency remains very close to the
theoretical optimum achievable via preemptible checkpointing.

L. Bautista-Gomez et al.
3. Task graphs

In this section, we deal with non-preemptible, task-based applica-
tions. The application is structured as a Directed Acyclic Graph (DAG)
of tasks (also called workflow). Each task is atomic and checkpointing
is only possible right after the completion of a task. The task graph
summarizes the dependencies between the tasks. The problem is then
to determine which tasks should be checkpointed. It turns out that
optimal, or even efficient, checkpointing strategies are much more
difficult to derive than for preemptible applications.

3.1. Baseline

In task-based systems, checkpoint and rollback-recovery has been
considered, but the granularity of the task system has motivated a
different approach. Since each task represents an atomic application
in itself, the inputs of tasks (that are usually the outputs of other tasks)
are checkpointed to enable the re-execution of failed tasks.

The de-facto standard approach for workflow-based task systems is
the checkpoint every task approach. This approach is inspired by the
work done in cloud workflow systems, as is typically done in [46] for a
recent example. See [47-51] for a comprehensive survey of techniques.
The outputs of all tasks, which will serve as inputs to other tasks later
in the execution, are saved on non-volatile storage as soon as each task
completes. The non-volatile storage is typically located in a data center
whose disks are accessed by the virtual machines (VMs) that support
the execution of the tasks. This approach guarantees that recovering
from a failure only requires the re-execution of the task(s) that were
executing when the failure stroke; no rollback to previous tasks is
needed since their outputs have been checkpointed previously and can
be retrieved from the disks.

Of course, checkpointing (the output of) every task may induce a
huge overhead, in particular when there are many small tasks and lim-
ited I/0 bandwidth to non-volatile storage. In micro-task systems [52—
55], the duration of a task is typically a few ps to a few hundred of
ms, and there are millions to billions of tasks [56,57]. These systems
make tremendous efforts to avoid creating unnecessary copies of the
data, as high efficiency is only achieved by reusing data already loaded
on the processors. In this context, checkpointing every input data of
every task is redhibitory. The approach then consists in detecting, at
runtime, which parts of the sub-DAG of tasks need to be reinstanti-
ated, in order to restart the execution from the inputs that have been
checkpointed [58,59].

In [58], the heuristic to decide to checkpoint an input data is
parametric: if a data is new (has never been checkpointed), or has been
updated k times locally, a new checkpoint is created. As the algorithms
studied use the owner-compute strategy, this approach leads to a drastic
reduction of the number of checkpoints, but it is neither optimal nor
applicable to arbitrary DAGs of tasks.

In [59], the DAG of tasks is built sequentially: tasks are discovered
one after another, and the runtime system builds the DAG based on
how each task accesses which data. Checkpoints are introduced in this
sequence of discovery, and the runtime system then computes which
data needs to be checkpointed in order to create a restartable cut in the
DAG of tasks. To cite [59]: “adding checkpoints to this programming
model consists in introducing [explicit] checkpoint() calls within the
program. They effectively cut the task graph inferred by the [...] model,
between the tasks inserted before the call, and the tasks inserted after
the call. [...] since this is done identically on every node, all nodes agree
on exactly what will be saved in the checkpoints, without any need for
synchronization at run time." The checkpointing algorithm leverages
the knowledge of redundant data due to the caching approach of the
runtime system, and this is used to reduce the size of the checkpoint.
However, placing the checkpoints at optimal times remains an open
problem.

We outline below a few cases where the optimal solution is known,
before coming back to the general case of a workflow whose task graph
is arbitrary.

320

Future Generation Computer Systems 161 (2024) 315-328

3.2. Linear chains

The simplest case is when the task graph of the workflow is a linear
chain of (parallel) tasks 7}, 7, ..., T,. There is a dependence from T; to
T, for 1 < i < n— 1. The optimal solution consists in determining
which tasks should be checkpointed.

The execution time of 7; is wj, its size is g; processors, its checkpoint
time is C;, and its recovery time is R;. Assuming that failures obey
an Exponential distribution EXP(—), where y;,, is the MTBF of each
individual processor, the expectea execution time E(T}) to execute T;
and to checkpoint it at the end of the execution is well-known; we have:

R; i (w.4+C:
! <e Mind(w/ 0 _ 1> s

where D is the downtime (see [17,20]). The expression for E(T;) can
be extended for a block of consecutive tasks followed by a checkpoint
(simply replace w; by the execution time of the block). This gives
the baseline for a dynamic programming algorithm where one tries
to place the first checkpoint at the end of task 7) for 1 < k < n
and computes recursively the optimal solution for the remaining sub-
chain T} ,,T},».....T,. This is the approach followed by Toueg and
Babaoglu [60].

di

Hind

di
E(T;) = < +D> ¢ ind

3.3. Iterative applications

The next problem after a linear chain is that of a pipelined linear
workflow: we now consider a workflow made of a large number of
iterations, each iteration being the same linear chain of parallel tasks.
A typical example is an application consisting of an outer loop “While
convergence is not met, do”, and where the loop body includes
a sequence of large parallel operations. As in Section 3.2, the objective
is to find which task outputs should be saved on non-volatile storage to
minimize the expected duration of the whole computation. However, if
the workflow consists of, say, ten thousand iterations, each with twenty
tasks, one does not want to apply the dynamic programming algorithm
of Toueg and Babaoglu [60] to a chain of two hundred thousand tasks.

A natural heuristic is to use the Young/Daly formula and checkpoint
at the end of the current task as soon as the total work executed since
the last checkpoint exceeds the quantity \/2;4_C Unfortunately, even
if all tasks may well enroll the same number of processors ¢ and,
hence, have the same MTBF y = "’T”", they are not likely to have the
same checkpoint duration C. One can approximate C by the minimum,
maximum, or average values of the checkpoint duration of all tasks.
This is the heuristic proposed in [61], and its performance is shown
satisfactory for a wide range of application scenarios.

As a side note, when the number of iterations is infinite (or very
large in practice), it is shown in [61] that there exists an optimal
checkpointing strategy that is periodic. It consists of a pattern of task
outputs to checkpoint, where this pattern spans over a set of iterations
of bounded size. This pattern is repeated over and over throughout
the execution: after some initialization phase, the same set of tasks
(which we call the pattern) is checkpointed again and again. [61] also
provides a dynamic programming algorithm, which is polynomial in
the number of operations included in the outer loop to compute the
optimal periodic checkpoint pattern. The complexity of the algorithm
does not depend on the number of iterations of the outer loop. This
pattern may well checkpoint many different tasks, across many differ-
ent iterations. For a workflow with a fixed number of iterations, this
periodic strategy is appealing because the checkpointing strategy can
be described concisely and independently on how many times the outer
loop is executed. However, the cost of computing the optimal pattern
may be high, and the Young/Daly extension described above may be
preferred in some frameworks.

L. Bautista-Gomez et al.
3.4. General workflows

Another special case is that of a workflow whose dependence graph
is arbitrary but whose tasks are parallel tasks that each executes on the
whole platform. In other words, the tasks have to be serialized. The
problem of ordering the tasks and placing checkpoints is proven NP-
complete for simple join graphs in [62], which also introduces several
heuristics.

For general workflows, the news is not good either. Consider the
problem of scheduling an arbitrary workflow. As mentioned in Sec-
tion 3.1, the common strategy used in practice is checkpoint everything,
or CkerArL: all output data of each task is saved onto non-volatile
storage. While this strategy leads to fast restarts in case of failures, its
downside is that it maximizes checkpointing overhead. At the other end
of the spectrum would be a checkpoint nothing strategy, or CkpTNONE,
by which all output data is kept in memory (up to memory capacity
constraints) and no task is checkpointed. This corresponds to “in-
situ” workflow executions, which have been proposed to reduce I/0
overhead [63]. The downside is that, in case of a failure, a large
number of tasks may have to be re-executed, leading to slow restarts.
The objective of an efficient checkpointing strategy is to achieve a
desirable trade-off between these two extremes. But the complexity of
this problem is steep.

The fundamental difficulty lies in the evaluation of a solution.
A solution consists of an ordered list of tasks to execute for each
processor, and for each task whether or not to save its output data
to non-volatile storage after its execution. In a failure-free execution,
the total execution time, or makespan, of a solution is simply the
longest path in the DAG, accounting for serialized task executions at
each processor. With failures, the makespan becomes a random variable
because task execution times are probabilistic, due to failures causing
task re-executions. Consider a first simple case with the CkprALL strategy
and a solution in which each task is assigned to a different processor.
Computing the expected makespan amounts to computing the expected
length of the longest path in the schedule. Unfortunately, computing
the expected length of the longest path in a DAG with probabilistic task
durations is a known difficult problem [64,65]. Even in the simplified
case when task durations are random variables that can take only two
discrete values, the problem is #P-complete [64].

Now, at the other extreme, consider a second simple example with
the CkerNoONE strategy and a solution in which each task is assigned to
a different processor. Even if each task has the unitary cost and can fail
only once, computing the expected makespan is a #P-complete problem
again [69]. These two examples show all the difficulty of the problem,
even when an ordered list of tasks to execute is already assigned to each
processor. Several heuristics to tackle the general problem are proposed
in [70].

4. Dealing with uncertainty

This section briefly addresses two scenarios where it is impossible
to apply the Young/Daly formula directly, even though the target
application is preemptible and tightly coupled as in Section 2. Basically,
in the Wy = 4/2uC formula, this is when either x or C is unknown.

4.1. Unknown MTBF

When the MBTF y;,, of an individual processor is unknown, the
MTBF u = 424 of the application is unknown as well. There is no other
solution than to learn the value of y by trial and error. The initial guess
for u is arbitrary, say from a few hours to several weeks depending upon

1 Recall that #P is the class of counting problems that correspond to NP
decision problems [66-68], and that #P-complete problems are at least as hard
as NP-complete problems.

321

Future Generation Computer Systems 161 (2024) 315-328

the size of the application. Compute Wy accordingly and schedule
the first checkpoint. If a failure strikes before this checkpoint, decrease
the current estimate of y. If no failure strikes before this checkpoint,
keep the current value for y and proceed for a few periods of the
same length. if there is still no failure at this point, it should be safe
to increase the estimate of u. The rates for decreasing/increasing the
current estimate could follow some geometric progression, e.g., the next
estimate is either half or twice the current one.

An interesting heuristic is proposed in [71]. The checkpointing
period is dynamically adjusted so that the aggregate checkpointing
cost always equals the expected rework cost after failure recovery.
The intuition follows the discussion in Section 2.2: in the optimal
solution, both sources of waste (checkpoint and re-execution) should
be balanced.

4.2. Unknown checkpoint time (due to contention)

This section deals with the scenario where the checkpoint cost C
is unknown. In fact, this corresponds to a scenario where several
applications are executing concurrently on the platform (recall space-
sharing from Section 2.4). Each application has precise knowledge of
the volume of data to be saved, but the I/0 bandwidth to non-volatile
storage that is granted is subject to variations over time. The main
reason is contention: consider the simple case where two applications
of the same size (number of processors) checkpoint simultaneously
a file of the same size (volume). Each application will be assigned
half the I/0 bandwidth to checkpoint, therefore the commits will take
twice as long as expected. In other words, the checkpoint time of each
application is doubled, and the Young/Daly period 1/2uC should have
been increased by a factor \/5; the checkpointing strategy is no longer
optimal, and efficiency will decrease.

Several heuristics are described in [72] for this contention problem.
Each application attempts to use its Young/Daly period. The I/0 token
is given to only one application at every time step, and 1/O operations
cannot be interrupted once started. If several applications post concur-
rent requests to checkpoint, one will be selected and the other ones will
continue their execution. The selection is based upon several criteria,
including the time already spent waiting for I/0 and the risk incurred
by all the applications (increased waste) that have not been selected.
See [72] for details.

4.3. Variable checkpoint time

This section deals with the scenario where the checkpoint duration
is a stochastic random variable that obeys some well-known probability
distributions. In this case, the question is when to take a checkpoint
towards the end of the execution, so that the expectation of the work
done is maximized. This assumes that the application is executing for
a fixed duration, namely the length of the reservation that it has been
granted, and the goal is to complete as much work as possible during
this reservation. If the checkpoint is taken too early, some time without
working has been wasted, but we may well lose the whole work if
the checkpoint is taken later and lasts longer than expected, thereby
exceeding the length of the reservation.

This problem has been studied in two flavors [73]. If checkpoints
can be taken at any time, the optimal solution can be derived for a
variety of probability distributions modeling checkpoint durations, in
particular for uniform, exponential, normal, and lognormal distribu-
tions. The gain that can be achieved over the pessimistic approach,
which assumes the longest possible checkpoint time and ensures that
there is enough time to checkpoint (hence not taking any risk but losing
some work if the checkpoint was faster), has also been assessed.

The problem is also interesting when the application is a linear
chain of tasks, and checkpoints can only be taken at the end of a
task. A static strategy has been proposed, where the optimal number
of tasks before a checkpoint is computed before the execution, when

L. Bautista-Gomez et al.

tasks (in addition to checkpoints) have IID stochastic execution times.
The decision might be adapted dynamically, depending on the time
effectively taken by each task, and hence a dynamic strategy has
also been designed. This strategy decides whether to checkpoint or to
continue the execution at the end of each task. Hence, it can be used
even if distributions are not IID. Please refer to [73] for details.

5. Silent errors

In this section, we consider another type of error: while all previous
sections addressed fail-stop errors, we now deal with silent errors, first
in isolation and then in combination with fail-stop errors. It turns out
that the Young/Daly formula can be extended to deal with both types
of errors.

5.1. Background

We start with some background on silent errors, a.k.a. silent data
corruptions (SDCs). While fail-stop errors lead to fatal interruptions
(such as a crash) and cause the loss of the entire memory of the
processor, silent errors only impact a given process and lead to incorrect
results. But a silent error strikes undetected and the processor can
continue its execution; sometimes the silent error can be detected and
corrected, and some other times it degenerates into a fatal fail-stop
error.

Silent errors may be caused, for instance, by arithmetic errors in the
Arithmetic and Logic Unit (ALU), soft errors in the L1 cache which is
usually not well protected, or in the L2 cache which might be protected
by one parity bit, or bit flips in the dynamic random-access memory
(DRAM) due to cosmic radiation, overheat and other sources [6,74-76].

There are several mathematics mechanisms to detect and correct
silent errors, such as parity bits, error correcting codes (ECCs), and
Chip-kill technology. They have been implemented to protect the
DRAM and different cache layers to some extent. However, the closer
the data is to the processing unit, the more frequent the access to that
data and therefore the higher the overhead of these methods. Thus,
processor caches are not protected by ECC in general, but by weaker
mechanisms, like simple parity, exposing a higher risk of undetectable
error in case of multiple simultaneous bit flips. Buses also often are a
weak link in the protecting chain, making all data transfers at higher
risk. In addition, the constant need to reduce component size and
voltage increases the likelihood of silent errors.

Although many silent errors caused by one or multiple bits that
spontaneously flip to the opposite state are caught by the above-
mentioned hardware mechanisms, in reality, some bit flips still manage
to pass undetected [77,78]. In a nutshell, silent errors have become a
major threat due to the increase in problem size [79]: the larger the
problem, the more memory to be used to store the data, the more
frequent the errors, and the higher the probability of overriding ECC
protection, generating multiple errors.

Another major problem with silent errors is detection latency: con-
trarily to a fail-stop error whose detection is immediate, a silent error
is identified only when the corrupted data is activated and/or leads
to an unusual application behavior. However, checkpoint and rollback
recovery assumes instantaneous error detection, and this raises a new
difficulty: if the error stroke before the last checkpoint, and is detected
after that checkpoint, then the checkpoint is corrupted and cannot be
used to restore the application. To solve this problem, one may envision
keeping several checkpoints in memory and restoring the application
from the last valid checkpoint, thereby rolling back to the last correct
state of the application [80]. But even if it was at all possible to
store many checkpoints (which is very demanding in memory), one
would not know how to identify the last valid one. Some verification
mechanism, or detector, must be enforced.

322

Future Generation Computer Systems 161 (2024) 315-328
5.2. Verification mechanisms

Considerable efforts have been directed at designing such verifi-
cation mechanisms to reveal silent errors because error detection is
usually very costly. Hardware mechanisms, such as ECC memory, can
detect and even correct a fraction of errors, but in practice, they
are complemented with software techniques. The only general-purpose
method is to replicate the execution of the target computational kernel
on two sets of processors (i.e., duplication) and to compare the results
of both executions. If they do not coincide, an error has been detected,
and the application must be executed a third time. To avoid a-posteriori
re-execution, triplication (i.e., using three parallel executions of the
same work) can be enforced, which allows for error correction in
addition to error detection, using a simple majority vote. However,
triplication (originally known as triple modular redundancy and vot-
ing [81]) is even more costly than duplication, which already requires
half the resources to execute redundant operations.

Application-specific information can be very useful to enable ad-
hoc solutions, which dramatically decreases the cost of detection. Many
techniques have been advocated. They include memory scrubbing [82]
and Algorithm-Based Fault Tolerance (ABFT) techniques [83-85], such
as coding for the sparse-matrix vector multiplication kernel [85], block-
wise checksum calculation for error-bounded lossy compressor [86],
and coupling a higher-order with a lower-order scheme for PDEs [87].
Self-stabilizing corrections after error detection in the conjugate gradi-
ent method are investigated in [88]. Fault-tolerant iterative solvers for
sparse linear algebra are introduced in [89-91], using extra checks such
as re-computing inner products of vectors that should be orthogonal, or
even re-computing the residual.

Overall speaking, application-specific detectors are very appealing
due to their low cost as compared to replication, but they suffer from
some limitations. Most application-specific detectors can only detect
errors, not correct them. Next, they are used to detect errors of a certain
type, while many types of errors can strike. For instance, with iterative
methods, orthogonality tests will detect arithmetic errors but cannot
do anything if we start with corrupted data in memory. Worse, even
for a given type of error, the detector will likely not detect all the
errors of that type, but only a fraction of them (one says that the
detector recall is strictly smaller than one). In the previous example
with the orthogonality test, the detector may well estimate that a
scalar product is below some threshold while an error has struck one
of the vectors. Finally, ABFT is one of the few methods that enables
error correction in addition to detection; however, while ABFT can in
principle detect and correct an arbitrary number of errors, it is currently
limited in practice to detecting and correcting a single error due to the
numerical instability of state-of-the-art methods that aim at building
linearly independent checksum vectors in floating-point arithmetic.

Another category of SDC detection is based on data-analysis method,
which makes use of the regular smoothness feature of the simulation
data in either temporal or spatial dimension to detect potential outliers
caused by SDC. This type of SDC detector relies on some sort of
machine-learning algorithm that monitors the data produced by the
application and gradually learns the type of variations and data ranges
that the application observes during execution. While different regions
of the global domain can be exposed to different behaviors, the learning
process is local and therefore its detection mechanism is tuned to
that specific region of the domain. There has been multiple machine-
learning techniques proposed to achieve this type of SDC detection.
The initial idea, proposed by Bautista-Gomez et al. [92], relied on a
point-wise time series analysis capable of predicting the next value
for each data point. This already produced promising results and the
methodology was then refined in multiple directions.

For instance, in [93], Di et al. proposed an error feedback con-
trol model that can reduce the prediction errors for different linear
prediction methods in SDC detection. They also developed a spatial-
data-based even-sampling method to minimize the detection overheads.

L. Bautista-Gomez et al.

Ve w el w Ve (Without error)
Time
Fail-stop Error
Ve [r] v[c W [v[e] (With fail-stop error)
Time
Silent Error
(/ Detection
v[c w_ V[_w__ e w V] (With silent error)
Time

Fig. 3. Fail-stop errors versus silent errors. The vertical red lines mark the beginning
and end of a periodic pattern.

Berrocal et al. [94] analyzed the effectiveness of multiple spatial data
prediction methods in detecting SDC errors, such as auto-regression
(AR), autoregressive moving average (ARMA), acceleration-based pre-
dictor (ABP), linear curve fitting (LCF), and quadratic curve fitting
(QCP).

Di et al. [95] further proposed an adaptive impact-driven SDC detec-
tion scheme (called AID) for HPC applications. In this work, the authors
carefully characterized 18 HPC applications/benchmarks and discussed
the runtime data features as well as the impact of SDCs on their
execution results. They proposed an impact-driven detection model that
does not blindly improve the prediction accuracy, but instead detects
only influential SDCs to guarantee user-acceptable execution results.
The AID method features a high runtime adaptability by allowing to
select the best-fit prediction method according to the data changes
for each process at runtime. These machine-learning based strategies
rely mostly on detecting important anomaly variations induced by bit-
flips. However, they cannot detect all types of variations, and small
perturbations are likely to go undetected, although arguably those
small variations might be irrelevant for the end result, in the same way
rounding errors are. Nonetheless, undetected small perturbations could
still produce significant changes in the final result.

Subasi et al. [96-98] explored the capabilities of machine learning
techniques, such as support vector machines (SVM), in detecting SDCs,
which further improves the detection capability, with a slight increase
in execution cost.

An important drawback of these machine-learning based methods is
that similarly to application-specific methods, they can only detect but
not correct the errors.

5.3. Optimal period for silent errors

We study a generic solution that is agnostic of the nature of the
verification mechanism (replication, checksum, error correcting code,
coherence tests, etc.). We assume that we can rely on a fully general-
purpose detector, of cost V. The idea is to perform a verification just
before taking each checkpoint. If the verification succeeds, then one can
safely store the checkpoint. If the verification fails, it means that a silent
error has struck since the last checkpoint, which was duly verified, and
one can safely recover from that checkpoint to resume the execution of
the application.

See Fig. 3 for an illustration and comparison with fail-stop errors. If
a silent error strikes, it is always detected only at the end of the period,
when the verification V reveals the error. On the contrary, a fail-stop
error strikes in the middle of the period on average and is detected
immediately. Note that there is no downtime for silent errors because
the processor can continue its execution after a silent error and does
not need to be replaced. For simplification, we have used D = 0 in
the second row of Fig. 3 (with fail-stop error), but recall there is a
downtime after a fail-stop error in the general case.

Just as for fail-stop errors, we introduce the MTBE of individual
nodes as yf;ff"’ . Here, the MTBE is the Mean Time Between Errors, the

323

Future Generation Computer Systems 161 (2024) 315-328

[v[e| wss v ws] wis [v]e (Without error)

Time

Silent Error
{ Detection

W/3 [\| W/3]\:[R| wys o] wis W] wis V[

e

(With silent error)

Time

Fig. 4. Introducing two intermediate verifications in the period. The vertical red lines
mark the beginning and end of a periodic pattern.

counterpart for silent errors of the MBTF for fail-stop errors. The MTBE

silent

of an application with p processors will be yse" = "’%. Indeed, the
frequency of silent errors is proportional to the number of arithmetic
operations executed, and/or to the volume of the memory footprint of
the application. Hence, the MTBE scales linearly with the size of the
application, just as the MTBF does.

Now, consider a parallel application of MTBE ", At first sight,
one could think that the optimal Young/Daly period for silent errors
will be Wy p = v/2usilen'(V + C) because we have replaced each check-
point of cost C by a verified checkpoint of cost V' + C. However,
because a silent error is always detected only at the end of the period,
when the verification reveals the error, the formula will be different.
With the notations of Section 2.2, the two sources of waste become
S = WI:/CJF o and S, = ﬁ(R + W + V). Altogether, both sources
of waste approximately add up, so we have to find W that minimizes
S| +S,. Simplifying as before, we obtain S| +.5, ~ V—;/C + ﬁ, which
is minimized for

WYD =1 /”xilent(V + C)

Eq. (3) is the Young/Daly formula for silent errors.

3

5.4. Extensions

The Young/Daly formula for silent errors could also be extended in
several ways. The following discusses some extensions in this context.

5.4.1. Dealing with both fail-stop and silent errors

A first natural extension is to deal with both fail-stop and silent
errors. Indeed, both sources of errors are likely to strike simultaneously
when executing a parallel application. In that case, the failure-free
waste S, Y+C_ remains unchanged but the failure-induced waste
S, should be updated to account for both error types:

S, (D+R+%(W+V+C)>

1
- ulail
1

#silent

+ (R+W +7V).

Here, for clarity, we have used u/“! instead of simply u for the MTBF
of the application. Simplifying again, we obtain that the total waste is
minimized for

1 1 “)
Eq. (4) is the Young/Daly formula for fail-stop and silent errors com-
bined. We check that Eq. (4) reduces to Eq. (1) when p*/*" = o and
V =0 (only fail-stop errors) and to Eq. (3) when /%' = oo (only silent
errors). The general case uses the harmonic mean of x/%' and psien
weighted by the average proportion of re-execution time in a period
when struck by an error.

L. Bautista-Gomez et al.

5.4.2. Placing intermediate verifications

The second extension applies when application-specific information
enables to decrease the cost of a verification well below the cost of a
checkpoint, i.e., when ¥V <« C. In that case, it is useful to insert some
intermediate verifications within the period to detect silent errors early
on. Assume that we deal with silent errors only and see Fig. 4 for an
example of a period with two intermediate verifications (and a third
one at the end of the period to verify the checkpoint). The failure-
free waste S, is increased to S; = % R SI;C. However, the
failure-induced waste is reduced to

1 1 W
Msilent <§(R + T + V)

1 2w
+ -(R+ — +2V
3(3)

S, =

+ %(R+W+3V)>

1 d+24+3)W
~ Msilent 9
2W
3Msilenr :

To see this, with equal probability %, the silent error will strike either
third of the pattern, and re-execution will cost either % (first third), or
2TW (second third), or W (last third). This leads to S| + ., minimized

3 2BV+C)

for W = 4/spsen(3V + C) and we get (S| + S))pin = 2 e

for that value. In comparison, without intermediate verification, we
had (S} + Symin = 24/~ -

verifications is better than none as long as V' < % This is very likely to
be the case with an application-specific detector. We refer to [99] for
the analysis of more general patterns including the derivation of the
optimal number of intermediate verifications.

We check that adding two intermediate

5.4.3. Embracing imperfect verifications

The results so far have assumed a perfect verification mechanism,
while most real-world verifications are imperfect. In fact, many light-
weight detectors (e.g., [92,94,100]) rely on data-analytics or machine-
learning approaches to detect silent errors, and as a result, they typi-
cally have a limited recall (ratio of missed errors, or false negatives)
and/or a limited precision (ratio of detected errors that are in fact
not errors, or false positives). Also, if more than one such detectors
are available to use, which one(s) should be favored? It turns out
that imperfect verifications are nevertheless valuable, but their optimal
placements within a pattern would not be equally spaced between
two consecutive checkpoints. Further, choosing which verification (or
combination of verifications) to use is an NP-hard problem, but greedy
heuristics are shown to offer good practical performance by favoring
those detectors with higher accuracy-to-cost ratios; see [101,102] for
details on the analysis for incorporating imperfect verifications.

Finally, all the results regarding silent errors discussed in this sec-
tion could also be applied to a linear chain of tasks by extending the
dynamic programming framework by Toueg and Babaoglu [60] while
including (imperfect) verifications; more details on the design of such
algorithms can be found in [99,103].

6. When the optimal period is not @(u!/2)

The Young/Daly formula and its many variations discussed so far
all derived the optimal checkpoint period to be in the order of O(u!/2).
However, in a few scenarios that apply redundancy to the application
execution (e.g., via replication or faster re-execution), the optimal
period turns out to deviate from this order. Intuitively, the application’s
resiliency to failures increases due to the added redundancy, making
the optimal period longer than the classical result.

324

Future Generation Computer Systems 161 (2024) 315-328

In one such scenario, two platforms cooperate to execute an appli-
cation. Both platforms share the same periodic pattern (with length
W followed by a checkpoint), and they also share the same storage
system for placing the checkpoints. If a failure strikes one platform,
it will recover from the previous checkpoint to re-execute the pattern
(same as the single-platform case). However, if any platform success-
fully completes the pattern, the other platform will “jump ahead" in
its execution by synchronizing through the checkpoint, so that both
platforms can start executing the next pattern simultaneously. The
optimal period W for this scenario turns out to be in the order of
O(u*/?) when the two platforms are homogeneous (i.e., with the same
execution speed). A thorough analysis is also provided in [104] for
heterogeneous platforms.

In a similar scenario that copes with silent errors, an application is
executed synchronously by three platforms that share the same periodic
pattern. To detect/correct silent errors, “majority voting” is used at the
end of a pattern: If at least two platforms agree on the execution results,
then a checkpoint can be safely taken, and all platforms will start
executing the next pattern together. However, if the results returned
by all the three platforms are different from each other, suggesting
that at least two platforms have been struck by silent errors, then
no consensus can be reached, and all platforms will roll back to the
previous checkpoint and re-execute the same pattern again. In this
scenario, the optimal period turns out to be in the order of @(u?/?) as
well. The details are derived in [105], which also shows the optimal
period for the general case where more than three platforms are used
to execute the application.

In another scenario, a different speed is applied when re-executing
a periodic pattern when a (fail-stop) failure occurs. In particular, the
first execution of the pattern uses speed s, and all subsequent re-
executions of the same pattern (due to failures and rolling back to the
last checkpoint) are executed with a faster speed s, > s, assuming that
the platform is equipped with dynamic voltage and frequency scaling
(DVFS) capabilities. This scenario was originally studied in [106] in
the context of minimizing the total energy consumption subject to
an execution time constraint for running an application. A side result
obtained under this scenario for the special case of s, = 2s; shows
that the optimal checkpointing period is again in the order of ©(u%/3),
even for optimizing the execution time alone. This result suggests that a
faster re-execution speed can help reduce the resilience overhead with
a longer checkpointing period.

7. Combining checkpointing with replication

When the checkpointing cost and/or the error rate are very high,
checkpointing might not be enough since the checkpointing period
might become smaller than the time required to take a checkpoint. In
this case, a solution consists in replicating part of the execution, as has
already been discussed in Section 6 in some particular settings.

7.1. Preemptible applications

The use of replication in order to deal with fail-stop errors, in the
case of preemptible applications, enables the application to survive
several errors before being interrupted. The idea is to group processors
by pairs, and have two processors do the same bunch of work. Hence,
this means that the checkpointing period can be significantly longer
than without replication, since the execution is more reliable. The
standard way of using replication in that case consists in using, once
more, the Young/Daly formula, but considering the mean time to in-
terruption, MTTI (rather than the MTBF), which accounts for the effect
of replication. Furthermore, failed processors are never restarted with
the usual assumptions. For example, in the restart strategy introduced
in [107], failed processors are restarted after each checkpoint. With
this strategy, the optimal checkpointing period can be computed, and
it turns out to be much larger than the period dictated by Young/Daly,

L. Bautista-Gomez et al.

hence also decreasing the I/O pressure and decreasing the overhead
induced by replication.

As discussed in Section 6, previous work has also investigated repli-
cation in terms of using a whole platform as backup (see [104]), where
the backup platform may execute at a different speed than the main
platform. The technique has been extended to detect and correct silent
errors in [105], where either the platform is partitioned into several
parts, or where each process is replicated. A detailed analytical study
has been conducted for all scenarios, hence guiding the user in deciding
whether it is beneficial, given the parameters of the application and the
target platform, to combine checkpointing with replication.

7.2. Linear chains of tasks

When the platform is subject to both fail-stop and silent errors,
it might be useful to apply both checkpointing and replication for
some tasks, if either resilience technique is not sufficient by itself. In
particular, for a linear chain of tasks, the goal is to decide, for each
task, whether to checkpoint and/or replicate it to ensure its reliable
execution. In [108], an optimal dynamic programming algorithm of
quadratic complexity is proposed to solve both problems. This algo-
rithm has been validated through extensive simulations that reveal
the conditions in which checkpointing only, replication only, or the
combination of both techniques, lead to improved performance. Hence,
combining both techniques has a promising potential to minimize the
execution time of linear workflows in error-prone environments.

8. Conclusion and open problems

Summary. This survey has dealt with checkpointing policies based
upon the Young/Daly period and has assessed its usefulness and robust-
ness together with its limitations. Originally restricted to preemptible
applications and blocking coordinated checkpointing protocols to cope
with fail-stop errors, the Young/Daly formula has proven very useful
in a much larger applicative spectrum, as shown by the many exten-
sions addressed in this survey. While the accuracy of the formula is
only known for memoryless failures, the robustness and efficiency of
the formula has been experimentally established in a wide variety of
settings. In a nutshell, the Young/Daly formula is a solid tool for tightly-
coupled parallel applications, and the answer to the question in the title
is a plain yes. The main limitations of the formula are related to its use
for workflows because inter-task dependencies dramatically complicate
the problem to decide when and which tasks to checkpoint.

Open problems. We discuss some further extensions and open problems
to conclude the paper.

For preemptible applications (Section 2), we have focused on coor-
dinated checkpointing onto non-volatile storage, but most of the results
hold for other methods that reduce checkpoint overhead, such as in-
memory checkpointing [109-111], two-level checkpointing [31,112]
and multi-level checkpointing [6,7,30,32] (see also Section 2.4.3).

For task-based applications, one could envision an extension of
coordinated checkpointing designed for such systems. Using periodic
coordinated checkpointing to decide which tasks to checkpoint in a
distributed task system consists of finding a period between two check-
point waves, and coordinating all the processes of the application to
checkpoint their state. Applying this heuristic to a task-based system
does not ensure optimal performance because the amount of data to
checkpoint depends on the number and input of the ready tasks and
varies over time, which is outside the assumptions of the periodic
checkpointing approach. However, by continuously adapting the period
to the amount of work executed (either maximal or averaged across all
processors), this strategy may provide an efficient solution in scenarios
where tasks are small and where failures are rare.

For both application models (preemptible and task-based), we have
assumed failure independence. Indeed, the standard model assumes

325

Future Generation Computer Systems 161 (2024) 315-328

IID failure inter-arrival times, or IATs, on each node, with a common
distribution D. As for temporal dependence, it has been observed many
times that when a failure occurs, it may trigger other failures that
will strike different system components [22,113,114]. As an example,
a failing cooling system may cause a series of successive crashes of
different nodes. Also, an outstanding error in the file system will likely
be followed by several others [115,116]. As for spatial dependence, it
is clear that the overheating of some node in a cabinet is quite likely to
be followed by the overheating of neighbor nodes (which comes atop
of a temporal dependence as well). Bautista-Gomez et al. [114] have
studied nine systems, and they report periods of high failure density in
all of them. They call these periods cascade failures. This observation
has led them to revisit the temporal failure independence assumption,
and to design bi-periodic checkpointing algorithms that use different
periods in normal (failure-free) and degraded (with failure cascades)
modes. Tiwari et al. [113] introduce a dynamic strategy called lazy
checkpointing to adjust to changes in the failure rate. Another approach
has been proposed in [117], using quantiles of consecutive IAT pairs.
It is an open problem to derive an efficient checkpointing strategy that
can account for temporal or spatial dependence between failures. For
example, spatial dependence calls for a variant of in-memory check-
pointing where the buddy of a processor (acting replica of a checkpoint)
is chosen far away from that processor, while it is better to select a
physical neighbor to optimize communication overhead if failures are
truly independent. Complicated trade-offs must be achieved.

Finally, some parts of the application are critical (such as execution
code) and must be protected from silent errors at all costs while other
parts (like non-critical data) may be loosely and infrequently verified by
cheap mechanisms; we speak of selective reliability in such a framework.
More generally, trustworthy computing is the problem of guaranteeing,
at least with some high probability, that the final results of a parallel
application are correct. The higher the flop count and the larger the
data footprint, the more challenging to achieve this goal.

CRediT authorship contribution statement

Leonardo Bautista-Gomez: Writing — review & editing, Writing —
original draft, Methodology, Formal analysis, Conceptualization. Anne
Benoit: Writing — review & editing, Writing — original draft, Method-
ology, Formal analysis, Conceptualization. Sheng Di: Writing — review
& editing, Writing — original draft, Methodology, Formal analysis, Con-
ceptualization. Thomas Herault: Writing — review & editing, Writing —
original draft, Methodology, Formal analysis, Conceptualization. Yves
Robert: Writing — review & editing, Writing — original draft, Method-
ology, Formal analysis, Conceptualization. Hongyang Sun: Writing
— review & editing, Writing — original draft, Methodology, Formal
analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data will be made available on request.
Acknowledgments

A preliminary and much shorter version [15] of this paper has
appeared in Proceedings of the 14th International Conference on Con-
temporary Computing, August 2022. Many new topics have been added
to [15] owing to the contributions of authors from several JLESC
institutions. This research was supported in part by the U.S. National
Science Foundation grant #2135309, U.S. Department of Energy, Office

L. Bautista-Gomez et al.

of Science, Advanced Scientific Computing Research (ASCR), under
contract DE-AC02-06CH11357. The authors thank the reviewers for
their comments and suggestions, which greatly helped improve the
final version of the paper. Finally, the authors gratefully acknowledge
the support of their institutions to JLESC, the Joint Laboratory for
Extreme Scale Computing (formerly the Joint Laboratory for Petascale
Computing), which has been a perfect mechanism to foster collaboration
since its creation in 2009.

References

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

LANL, NERSC, SNL, APEX workflows (version 1), Technical report, Sandia
National Laboratories and Los Alamos National Laboratories, 2015, https://
www.nersc.gov/assets/Crossroads--NERSC-9-RFP/apex-workflow-v1.pdf.
LANL, NERSC, SNL, APEX workflows (version 2), Technical report, Sandia
National Laboratories and Los Alamos National Laboratories, 2016, http://www.
nersc.gov/assets/apex-workflows-v2.pdf.

M. Gamell, D.S. Katz, H. Kolla, J. Chen, S. Klasky, M. Parashar, Exploring
automatic, online failure recovery for scientific applications at extreme scales,
in: SC ’14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2014, pp. 895-906.

A. Eisenman, K.K. Matam, S. Ingram, D. Mudigere, R. Krishnamoorthi, K. Nair,
M. Smelyanskiy, M. Annavaram, {Check-n-run}: A checkpointing system for
training deep learning recommendation models, in: 19th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 22, 2022, pp. 929-943.
F. Cappello, S. Di, S. Li, X. Liang, A.M. Gok, D. Tao, C.H. Yoon, X.-C. Wu, Y.
Alexeev, F.T. Chong, Use cases of lossy compression for floating-point data
in scientific data sets, Int. J. High Perform. Comput. Appl. 33 (6) (2019)
1201-1220.

A. Moody, G. Bronevetsky, K. Mohror, B.R. De Supinski, Design, modeling, and
evaluation of a scalable multi-level checkpointing system, in: SC’10: Proceed-
ings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE, 2010, pp. 1-11.

L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama, S. Mat-
suoka, FTI: High performance fault tolerance interface for hybrid systems, in:
Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, 2011, pp. 1-32.

B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror, F. Cappello, Veloc: Towards
high performance adaptive asynchronous checkpointing at large scale, in: 2019
IEEE International Parallel and Distributed Processing Symposium, IPDPS, IEEE,
2019, pp. 911-920.

M.A. Heroux, L.C. McInnes, R. Thakur, J.S. Vetter, X.S. Li, J. Aherns, T. Munson,
K. Mohror, ECP software technology capability assessment report, Technical
report, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 2020.
S. Habib, Cosmology and computers: Haccing the universe, in: 2015 Inter-
national Conference on Parallel Architecture and Compilation, PACT, IEEE
Computer Society, 2015, p. 406.

A.S. Kronfeld, LATTICE QCD, 1992, pp. 421-474, Perspectives in the Standard
Model (TASI-91)-Proceedings of the Theoretical Study Institute in Elementary
Particle Physics. Edited by ELLIS RK ET AL. Published by World Scientific
Publishing Co. Pte. Ltd.

S. Atchley, C. Zimmer, J.R. Lange, D.E. Bernholdt, V.G.M. Vergara, T. Beck, M.J.
Brim, R. Budiardja, S. Chandrasekaran, M. Eisenbach, et al., Frontier: exploring
exascale the system architecture of the first exascale supercomputer, in: SC23:
International Conference for High Performance Computing, Networking, Storage
and Analysis, IEEE, 2023, pp. 1-16.

J.W. Young, A first order approximation to the optimum checkpoint interval,
Comm. ACM 17 (9) (1974) 530-531.

J.T. Daly, A higher order estimate of the optimum checkpoint interval for restart
dumps, FGCS 22 (3) (2006) 303-312.

A. Benoit, Y. Du, T. Herault, L. Marchal, G. Pallez, L. Perotin, Y. Robert, H.
Sun, F. Vivien, Checkpointing a La Young/Daly: An Overview, in: Proceedings
of the 14th International Conference on Contemporary Computing (IC3), 2022,
pp. 701-710.

K.M. Chandy, L. Lamport, Distributed snapshots: Determining global states of
distributed systems, ACM Trans. Comput. Syst. 3 (1) (1985) 63-75.

T. Herault, Y. Robert (Eds.), Fault-tolerance techniques for high-performance
computing, in: Computer Communications and Networks, Springer Verlag,
2015.

K. Ferreira, J. Stearley, J.H.I. Laros, R. Oldfield, K. Pedretti, R. Brightwell, R.
Riesen, P.G. Bridges, D. Arnold, Evaluating the viability of process replication
reliability for exascale systems, in: SC'11, ACM, 2011.

F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, M. Snir, Toward exascale
resilience: 2014 update, Supercomput. Front. Innovat. 1 (1) (2014).

A. Benoit, L. Perotin, Y. Robert, F. Vivien, Checkpointing strategies to protect
parallel jobs from non-memoryless fail-stop errors, Research report RR-9465,
INRIA, 2022, Available at https://hal.inria.fr/hal-03610883.

326

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Future Generation Computer Systems 161 (2024) 315-328

M. Bougeret, H. Casanova, M. Rabie, Y. Robert, F. Vivien, Checkpointing
strategies for parallel jobs, in: Proc. of SC'11, 2011.

E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer, F. Cappello, Modeling
and tolerating heterogeneous failures in large parallel systems, in: Proc. SC'11,
2011.

B. Schroeder, G.A. Gibson, A large-scale study of failures in high-performance
computing systems, in: Proc. of DSN, 2006, pp. 249-258.

B. Schroeder, G.A. Gibson, Understanding failures in petascale computers, J.
Phys. Conf. Ser. 78 (1) (2007).

O. Subasi, G. Kestor, S. Krishnamoorthy, Toward a general theory of optimal
checkpoint placement, in: CLUSTER, IEEE, 2017, pp. 464-474.

O. Subasi, T. Martsinkevich, F. Zyulkyarov, O. Unsal, J. Labarta, F. Cappello,
Unified fault-tolerance framework for hybrid task-parallel message-passing
applications, IJHPCA 32 (5) (2018) 641-657.

N. El-Sayed, B. Schroeder, To checkpoint or not to checkpoint: Understanding
energy-performance-I/O tradeoffs in HPC checkpointing, in: CLUSTER, 2014,
pp. 93-102.

G. Aupy, A. Benoit, T. Hérault, Y. Robert, Optimal checkpointing period: time
vs. energy, in: PMBS 2013, the 4th Int. Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems, LNCS
Springer Verlag, 2013.

E. Gelenbe, P. Boryszko, M. Siavvas, J. Domanska, Optimum checkpoints for
time and energy, in: 28th MASCOTS, IEEE, 2020, pp. 1-8.

A. Benoit, A. Cavelan, V. Le Feévre, Y. Robert, H. Sun, Towards optimal
multi-level checkpointing, IEEE Trans. Comput. 66 (7) (2017) 1212-1226.

S. Di, Y. Robert, F. Vivien, F. Cappello, Toward an optimal online checkpoint
solution under a two-level HPC checkpoint model, IEEE Trans. Parallel Distrib.
Syst. 28 (1) (2017) 244-259.

S. Di, M.S. Bouguerra, L. Bautista-Gomez, F. Cappello, Optimization of multi-
level checkpoint model for large scale HPC applications, in: IPDPS, IEEE,
2014.

S. Di, L. Bautista-Gomez, F. Cappello, Optimization of a multilevel checkpoint
model with uncertain execution scales, in: SC "14: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis, 2014, pp. 907-918.

S. Arunagiri, J.T. Daly, P.J. Teller, Modeling and Analysis of Checkpoint I/0
Operations, in: Analytical and Stochastic Modeling Techniques and Applications:
17th International Conference, Springer, 2010, pp. 387-399.

O. Weidner, M. Atkinson, A. Barker, R. Filgueira Vicente, Rethinking
high performance computing platforms: Challenges, opportunities and rec-
ommendations, in: Proc. Data-Intensive Distributed Computing, DIDC, ACM,
2016.

A. Benoit, L. Perotin, Y. Robert, H. Sun, Checkpointing workflows a la
Young/daly is not good enough, ACM Trans. Parallel Comput. 9 (4) (2022)
1-25.

R. Garg, G. Price, G. Cooperman, MANA for MPI: MPI-agnostic network-
agnostic transparent checkpointing, in: Proceedings of the 28th International
Symposium on High-Performance Parallel and Distributed Computing, HPDC
’19, Association for Computing Machinery, New York, NY, USA, 2019, pp.
49-60.

J. Ansel, K. Arya, G. Cooperman, DMTCP: Transparent checkpointing for cluster
computations and the desktop, in: 2009 IEEE International Symposium on
Parallel & Distributed Processing, IPDPS’09, IEEE, Rome, Italy, 2009, pp. 1-12.
G. Zheng, X. Ni, L.V. Kalé, A scalable double in-memory checkpoint and restart
scheme towards exascale, in: IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops, DSN 2012, IEEE, 2012, pp. 1-6.

J. Dongarra, T. Herault, Y. Robert, Revisiting the double checkpointing
algorithm, in: APDCM 2013, IEEE Computer Society Press, 2013, pp. 706-715.
J.S. Plank, K. Li, M.A. Puening, Diskless checkpointing, IEEE Trans. Parallel
Distrib. Syst. 9 (10) (1998) 972-986.

W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, J.J. Dongarra, An
evaluation of user-level failure mitigation support in MPI, Computing 95 (12)
(2013) 1171-1184.

E. Gabriel, G.E. Fagg, G. Bosilca, T. Angskun, J.J. Dongarra, J.M. Squyres, V.
Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, et al., Open MPI: Goals, concept,
and design of a next generation MPI implementation, in: Recent Advances
in Parallel Virtual Machine and Message Passing Interface: 11th European
PVM/MPI Users’ Group Meeting Budapest, Hungary, September 19-22, 2004.
Proceedings 11, Springer, 2004, pp. 97-104.

W. Gropp, E. Lusk, N. Doss, A. Skjellum, A high-performance, portable imple-
mentation of the MPI message passing interface standard, Parallel Comput. 22
(6) (1996) 789-828, see also http://www-unix.mcs.anl.gov/mpi/mpich/.

M. Gamell, R.F. Van der Wijngaart, K. Teranishi, M. Parashar, Specification of
Fenix MPI Fault Tolerance library, Version 1.0.1, Technical Report SAND2016-
10522, Sandia National Laboratory, 2016, https://www.osti.gov/servlets/purl/
1330192.

X. Xu, R. Mo, F. Dai, W. Lin, S. Wan, W. Dou, Dynamic resource provisioning
with fault tolerance for data-intensive meteorological workflows in cloud, IEEE
Trans. Ind. Inform. 16 (9) (2019) 6172-6181.

https://www.nersc.gov/assets/Crossroads--NERSC-9-RFP/apex-workflow-v1.pdf
https://www.nersc.gov/assets/Crossroads--NERSC-9-RFP/apex-workflow-v1.pdf
https://www.nersc.gov/assets/Crossroads--NERSC-9-RFP/apex-workflow-v1.pdf
http://www.nersc.gov/assets/apex-workflows-v2.pdf
http://www.nersc.gov/assets/apex-workflows-v2.pdf
http://www.nersc.gov/assets/apex-workflows-v2.pdf
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb3
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb3
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb3
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb3
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb3
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb3
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb3
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb4
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb4
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb4
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb4
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb4
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb4
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb4
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb5
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb5
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb5
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb5
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb5
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb5
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb5
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb6
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb6
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb6
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb6
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb6
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb6
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb6
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb7
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb7
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb7
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb7
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb7
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb7
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb7
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb8
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb8
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb8
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb8
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb8
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb8
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb8
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb9
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb9
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb9
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb9
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb9
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb10
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb10
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb10
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb10
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb10
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb11
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb11
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb11
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb11
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb11
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb11
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb11
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb12
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb12
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb12
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb12
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb12
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb12
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb12
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb12
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb12
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb13
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb13
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb13
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb14
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb14
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb14
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb15
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb15
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb15
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb15
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb15
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb15
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb15
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb16
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb16
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb16
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb17
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb17
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb17
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb17
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb17
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb18
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb18
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb18
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb18
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb18
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb19
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb19
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb19
https://hal.inria.fr/hal-03610883
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb21
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb21
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb21
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb22
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb22
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb22
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb22
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb22
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb23
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb23
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb23
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb24
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb24
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb24
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb25
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb25
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb25
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb26
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb26
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb26
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb26
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb26
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb27
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb27
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb27
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb27
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb27
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb28
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb28
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb28
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb28
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb28
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb28
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb28
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb29
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb29
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb29
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb30
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb30
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb30
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb31
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb31
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb31
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb31
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb31
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb32
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb32
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb32
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb32
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb32
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb33
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb33
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb33
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb33
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb33
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb33
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb33
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb34
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb34
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb34
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb34
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb34
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb35
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb35
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb35
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb35
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb35
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb35
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb35
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb36
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb36
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb36
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb36
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb36
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb37
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb37
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb37
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb37
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb37
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb37
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb37
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb37
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb37
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb38
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb38
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb38
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb38
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb38
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb39
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb39
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb39
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb39
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb39
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb40
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb40
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb40
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb41
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb41
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb41
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb42
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb42
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb42
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb42
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb42
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb43
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb43
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb43
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb43
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb43
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb43
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb43
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb43
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb43
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb43
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb43
http://www-unix.mcs.anl.gov/mpi/mpich/
https://www.osti.gov/servlets/purl/1330192
https://www.osti.gov/servlets/purl/1330192
https://www.osti.gov/servlets/purl/1330192
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb46
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb46
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb46
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb46
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb46

L. Bautista-Gomez et al.

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

G. Kandaswamy, A. Mandal, D.A. Reed, Fault tolerance and recovery of
scientific workflows on computational grids, in: 2008 Eighth IEEE International
Symposium on Cluster Computing and the Grid, CCGRID, IEEE, 2008, pp.
777-782.

A. Bala, I. Chana, Fault tolerance-challenges, techniques and implementation in
cloud computing, Int. J. Comput. Sci. Issues (IJCSI) 9 (1) (2012) 288.

S. Prathiba, S. Sowvarnica, Survey of failures and fault tolerance in cloud,
in: 2017 2nd International Conference on Computing and Communications
Technologies, ICCCT, 2017, pp. 169-172.

Y. Ding, G. Yao, K. Hao, Fault-tolerant elastic scheduling algorithm for workflow
in cloud systems, Inform. Sci. 393 (2017) 47-65.

P. Kumari, P. Kaur, A survey of fault tolerance in cloud computing, J. King
Saud Univ. Comput. Inf. Sci. (2018).

G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault, J.J. Dongarra,
PaRSEC: Exploiting heterogeneity to enhance scalability, Comput. Sci. Eng. 15
(6) (2013) 36-45.

C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier, StarPU: a unified platform
for task scheduling on heterogeneous multicore architectures, in: Euro-Par
2009 Parallel Processing: 15th International Euro-Par Conference, Delft, the
Netherlands, August 25-28, 2009. Proceedings 15, Springer, 2009, pp. 863-874.
M. Bauer, S. Treichler, E. Slaughter, A. Aiken, Legion: Expressing locality and
independence with logical regions, in: SC’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis,
IEEE, 2012, pp. 1-11.

A. Fernandez, V. Beltran, X. Martorell, R.M. Badia, E. Ayguadé, J. Labarta,
Task-based programming with OmpSs and its application, in: Euro-Par 2014:
Parallel Processing Workshops: Euro-Par 2014 International Workshops, Porto,
Portugal, August 25-26, 2014, Revised Selected Papers, Part II 20, Springer,
2014, pp. 601-612.

G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault, J.
Kurzak, J. Langou, P. Lemarinier, H. Ltaief, et al., Flexible development of dense
linear algebra algorithms on massively parallel architectures with DPLASMA,
in: 2011 IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, IEEE, 2011, pp. 1432-1441.

E. Agullo, O. Aumage, M. Faverge, N. Furmento, F. Pruvost, M. Sergent, S.P.
Thibault, Achieving high performance on supercomputers with a sequential
task-based programming model, IEEE Trans. Parallel Distrib. Syst. (2017).

C. Cao, T. Hérault, G. Bosilca, J.J. Dongarra, Design for a soft error resilient dy-
namic task-based runtime, in: 2015 IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2015, Hyderabad, India, May 25-29, 2015, IEEE
Computer Society, 2015, pp. 765-774.

R. Lion, S. Thibault, From tasks graphs to asynchronous distributed checkpoint-
ing with local restart, in: 2020 IEEE/ACM 10th Workshop on Fault Tolerance
for HPC At EXtreme Scale, FTXS, IEEE, 2020, pp. 31-40.

S. Toueg, O. Babaoglu, On the optimum checkpoint selection problem, SIAM J.
Comput. 13 (3) (1984).

Y. Du, G. Pallez, L. Marchal, Y. Robert, Optimal checkpointing strategies for
iterative applications, IEEE Trans. Parallel Distrib. Syst. 33 (3) (2022) 507-522.
G. Aupy, A. Benoit, H. Casanova, Y. Robert, Scheduling computational work-
flows on failure-prone platforms, Int. J. Network. Comput. 6 (1) (2016)
2-26.

F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki, H. Abbasi, Enabling
In-situ Execution of Coupled Scientific Workflow on Multi-core Platform, in:
Proc. 26th IEEE Int. Parallel and Distributed Processing Symposium, 2012, pp.
1352-1363.

J.N. Hagstrom, Computational complexity of PERT problems, Networks 18 (2)
(1988) 139-147.

M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, fifth ed., Springer,
2016.

L.G. Valiant, The complexity of enumeration and reliability problems, SIAM J.
Comput. 8 (3) (1979) 410-421.

J.S. Provan, M.O. Ball, The complexity of counting cuts and of computing the
probability that a graph is connected, SIAM J. Comp. 12 (4) (1983) 777-788.
H.L. Bodlaender, T. Wolle, A note on the complexity of network reliability
problems, IEEE Trans. Inform. Theory 47 (2004) 1971-1988.

L. Han, L.-C. Canon, H. Casanova, Y. Robert, F. Vivien, Checkpointing
workflows for fail-stop errors, IEEE Trans. Comput. 67 (8) (2018) 1105-1120.
L. Han, V. Le Féevre, L.-C. Canon, Y. Robert, F. Vivien, A generic approach to
scheduling and checkpointing workflows, in: ICPP’2018, the 47th Int. Conf. on
Parallel Processing, 2018.

P. Sigdel, X. Yuan, N. Tzeng, Realizing best checkpointing control in computing
systems, IEEE TPDS 32 (2) (2021) 315-329.

T. Herault, Y. Robert, A. Bouteiller, D. Arnold, K.B. Ferreira, G. Bosilca,
J. Dongarra, Checkpointing strategies for shared high-performance computing
platforms, Int. J. Network. Comput. 9 (1) (2019) 28-52.

Q. Barbut, A. Benoit, T. Herault, Y. Robert, F. Vivien, When to checkpoint at
the end of a fixed-length reservation? in: Proc. of ACM Conference FTXS'23,
2023.

T. O’Gorman, The effect of cosmic rays on the soft error rate of a DRAM at
ground level, IEEE Trans. Electron Devices 41 (4) (1994) 553-557.

327

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]
[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

Future Generation Computer Systems 161 (2024) 315-328

J.F. Ziegler, H.W. Curtis, H.P. Muhlfeld, C.J. Montrose, B. Chin, IBM exper-
iments in soft fails in computer electronics, IBM J. Res. Dev. 40 (1) (1996)
3-18.

J. Ziegler, M. Nelson, J. Shell, R. Peterson, C. Gelderloos, H. Muhlfeld, C.
Montrose, Cosmic ray soft error rates of 16-mb DRAM memory chips, IEEE
J. Solid-State Circuits 33 (2) (1998) 246-252.

V. Sridharan, N. DeBardeleben, S. Blanchard, K.B. Ferreira, J. Stearley, J. Shalf,
S. Gurumurthi, Memory errors in modern systems: The good, the bad, and the
ugly, in: 20th Int. Conf. on Architectural Support for Programming Languages
and Operating Systems, ASPLOS, ACM, 2015, pp. 297-310.

L. Bautista-Gomez, F. Zyulkyarov, O. Unsal, S. McIntosh-Smith, Unprotected
computing: A large-scale study of DRAM raw error rate on a supercomputer,
in: SC ’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2016, pp. 645-655.

M. Snir, et al., Addressing failures in exascale computing, Int. J. High Perform.
Comput. Appl. 28 (2) (2014) 129-173.

G. Lu, Z. Zheng, A.A. Chien, When is multi-version checkpointing needed? in:
Proc. 3rd Workshop on Fault-Tolerance for HPC At Extreme Scale, FTXS, 2013,
pp. 49-56.

R.E. Lyons, W. Vanderkulk, The use of triple-modular redundancy to improve
computer reliability, IBM J. Res. Dev. 6 (2) (1962) 200-209.

A.A. Hwang, L.A. Stefanovici, B. Schroeder, Cosmic rays don’t strike twice:
understanding the nature of DRAM errors and the implications for system
design, SIGARCH Comput. Archit. News 40 (1) (2012) 111-122.

K.-H. Huang, J.A. Abraham, Algorithm-based fault tolerance for matrix
operations, IEEE Trans. Comput. 33 (6) (1984) 518-528.

G. Bosilca, R. Delmas, J. Dongarra, J. Langou, Algorithm-based fault tolerance
applied to high performance computing, J. Parallel Distrib. Comput. 69 (4)
(2009) 410-416.

M. Shantharam, S. Srinivasmurthy, P. Raghavan, Fault tolerant preconditioned
conjugate gradient for sparse linear system solution, in: ICS, ACM, 2012.

S. Li, S. Di, K. Zhao, X. Liang, Z. Chen, F. Cappello, Resilient error-bounded
lossy compressor for data transfer, in: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, SC
’21, Association for Computing Machinery, New York, NY, USA, 2021.

A.R. Benson, S. Schmit, R. Schreiber, Silent error detection in numerical
time-stepping schemes., Int. J. High Perform. Comput. Appl. (2014).

P. Sao, R. Vuduc, Self-stabilizing iterative solvers, in: ScalA "13, 2013.

Z. Chen, Online-ABFT: An online algorithm based fault tolerance scheme for
soft error detection in iterative methods, in: Proc. PPoPP, 2013, pp. 167-176.
M. Heroux, M. Hoemmen, Fault-tolerant iterative methods via selective
reliability, Research report SAND2011-3915 C, Sandia Nat. Lab., 2011.

G. Bronevetsky, B. de Supinski, Soft error vulnerability of iterative linear
algebra methods, in: ICS, ACM, 2008.

L. Bautista-Gomez, F. Cappello, Detecting and correcting data corruption in sten-
cil applications through multivariate interpolation, in: 2015 IEEE International
Conference on Cluster Computing, 2015, pp. 595-602.

S. Di, E. Berrocal, F. Cappello, An efficient silent data corruption detection
method with error-feedback control and even sampling for HPC applications,
in: 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), IEEE Computer Society, Los Alamitos, CA, USA, 2015, pp.
271-280.

E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, F. Cappello, Lightweight silent
data corruption detection based on runtime data analysis for HPC applications,
in: HPDC, ACM, 2015.

S. Di, F. Cappello, Adaptive impact-driven detection of silent data corruption for
HPC applications, IEEE Trans. Parallel Distrib. Syst. 27 (10) (2016) 2809-2823.
O. Subasi, S. Di, L. Bautista-Gomez, P. Balaprakash, O. Unsal, J. Labarta, A.
Cristal, S. Krishnamoorthy, F. Cappello, Exploring the capabilities of support
vector machines in detecting silent data corruptions, Sustain. Comput. Informat.
Syst. 19 (2018) 277-290.

O. Subasi, S. Di, P. Balaprakash, O. Unsal, J. Labarta, A. Cristal, S. Krishnamoor-
thy, F. Cappello, MACORD: Online adaptive machine learning framework
for silent error detection, in: 2017 IEEE International Conference on Cluster
Computing, CLUSTER, 2017, pp. 717-724.

O. Subasi, S. Di, L. Bautista-Gomez, P. Balaprakash, O. Unsal, J. Labarta, A.
Cristal, F. Cappello, Spatial support vector regression to detect silent errors in
the exascale era, in: 2016 16th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, CCGrid, 2016, pp. 413-424.

A. Benoit, A. Cavelan, Y. Robert, H. Sun, Assessing general-purpose algorithms
to cope with fail-stop and silent errors, ACM Trans. Parallel Comput. 3 (2)
(2016).

L. Bautista Gomez, F. Cappello, Detecting silent data corruption through data
dynamic monitoring for scientific applications, in: PPoPP, ACM, 2014.

A. Cavelan, S.K. Raina, Y. Robert, H. Sun, Assessing the impact of partial
verifications against silent data corruptions, in: Proc. ICPP, 2015.

L. Bautista-Gomez, A. Benoit, A. Cavelan, S. Raina, Y. Robert, H. Sun, Coping
with recall and precision of soft error detectors, J. Parallel Distrib. Comput. 98
(2016) 8-24.

A. Benoit, A. Cavelan, Y. Robert, H. Sun, Multi-level checkpointing and silent
error detection for linear workflows, J. Comput. Sci. 28 (2018) 398-415.

http://refhub.elsevier.com/S0167-739X(24)00377-7/sb47
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb47
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb47
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb47
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb47
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb47
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb47
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb48
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb48
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb48
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb49
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb49
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb49
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb49
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb49
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb50
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb50
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb50
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb51
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb51
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb51
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb52
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb52
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb52
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb52
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb52
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb53
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb53
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb53
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb53
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb53
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb53
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb53
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb54
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb54
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb54
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb54
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb54
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb54
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb54
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb55
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb55
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb55
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb55
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb55
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb55
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb55
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb55
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb55
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb56
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb56
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb56
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb56
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb56
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb56
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb56
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb56
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb56
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb57
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb57
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb57
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb57
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb57
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb58
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb58
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb58
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb58
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb58
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb58
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb58
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb59
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb59
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb59
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb59
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb59
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb60
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb60
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb60
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb61
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb61
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb61
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb62
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb62
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb62
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb62
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb62
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb63
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb63
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb63
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb63
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb63
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb63
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb63
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb64
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb64
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb64
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb65
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb65
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb65
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb66
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb66
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb66
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb67
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb67
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb67
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb68
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb68
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb68
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb69
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb69
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb69
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb70
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb70
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb70
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb70
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb70
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb71
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb71
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb71
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb72
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb72
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb72
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb72
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb72
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb73
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb73
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb73
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb73
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb73
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb74
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb74
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb74
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb75
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb75
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb75
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb75
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb75
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb76
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb76
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb76
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb76
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb76
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb77
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb77
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb77
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb77
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb77
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb77
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb77
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb78
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb78
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb78
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb78
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb78
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb78
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb78
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb79
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb79
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb79
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb80
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb80
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb80
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb80
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb80
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb81
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb81
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb81
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb82
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb82
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb82
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb82
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb82
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb83
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb83
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb83
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb84
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb84
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb84
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb84
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb84
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb85
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb85
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb85
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb86
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb86
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb86
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb86
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb86
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb86
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb86
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb87
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb87
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb87
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb88
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb89
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb89
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb89
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb90
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb90
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb90
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb91
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb91
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb91
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb92
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb92
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb92
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb92
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb92
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb93
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb93
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb93
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb93
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb93
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb93
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb93
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb93
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb93
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb94
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb94
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb94
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb94
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb94
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb95
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb95
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb95
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb96
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb96
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb96
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb96
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb96
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb96
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb96
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb97
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb97
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb97
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb97
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb97
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb97
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb97
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb98
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb98
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb98
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb98
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb98
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb98
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb98
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb99
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb99
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb99
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb99
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb99
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb100
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb100
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb100
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb101
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb101
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb101
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb102
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb102
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb102
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb102
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb102
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb103
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb103
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb103

L. Bautista-Gomez et al.

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

A. Benoit, A. Cavelan, V. Le Févre, Y. Robert, Optimal checkpointing period
with replicated execution on heterogeneous platforms, in: FTXS, 2017, pp. 9-16.
A. Benoit, A. Cavelan, F. Cappello, P. Raghavan, Y. Robert, H. Sun, Coping with
silent and fail-stop errors at scale by combining replication and checkpointing,
J. Parallel Distrib. Comput. 122 (2018) 209-225.

A. Benoit, A. Cavelan, V. Le Fevre, Y. Robert, H. Sun, A different re-execution
speed can help, in: ICPP Workshop, 2016, pp. 250-257.

A. Benoit, T. Herault, V. Le Févre, Y. Robert, Replication is more efficient
than you think, in: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC "19, Association
for Computing Machinery, New York, NY, USA, 2019.

A. Benoit, A. Cavelan, F. Ciorba, V. Le Feévre, Y. Robert, Combining checkpoint-
ing and replication for reliable execution of linear workflows with fail-stop and
silent errors, Int. J. Network. Comput. 9 (1) (2019) 2-27.

G. Zheng, L. Shi, L.V. Kale, FTC-charm++: an in-memory checkpoint-based
fault tolerant runtime for charm++ and MPI, in: Cluster Computing, 2004 IEEE
International Conference on, IEEE Computer Society, 2004, pp. 93-103.

X. Ni, E. Meneses, L.V. Kalé, Hiding checkpoint overhead in HPC applications
with a semi-blocking algorithm, in: Cluster Computing (CLUSTER), 2012 IEEE
International Conference on, IEEE Computer Society, 2012, pp. 364-372.

J. Dongarra, T. Hérault, Y. Robert, Performance and reliability trade-offs for the
double checkpointing algorithm, Int. J. Network. Comput. 4 (1) (2014) 23-41.
L. Silva, J. Silva, Using two-level stable storage for efficient checkpointing, IEE
Proc. Softw. 145 (6) (1998) 198-202.

D. Tiwari, S. Gupta, S.S. Vazhkudai, Lazy checkpointing: Exploiting temporal
locality in failures to mitigate checkpointing overheads on extreme-scale sys-
tems, in: 44th Int. Conf. on Dependable Systems and Networks, IEEE, 2014, pp.
25-36.

L. Bautista-Gomez, A. Gainaru, S. Perarnau, D. Tiwari, S. Gupta, C. Engel-
mann, F. Cappello, M. Snir, Reducing waste in extreme scale systems through
introspective analysis, in: IPDPS, IEEE, 2016, pp. 212-221.

K. Schroiff, P. Gemsjaeger, C. Bolik, Cascading failover of a data management
application for shared disk file systems in loosely coupled node clusters, 2006,
US Patent 6, 990, 606.

S.Y. Ko, I. Hoque, B. Cho, I. Gupta, Making cloud intermediate data fault-
tolerant, in: Proc. 1st ACM Symposium on Cloud Computing, SoCC "10, ACM,
2010.

G. Aupy, Y. Robert, F. Vivien, Assuming failure independence: are we right to
be wrong? in: FTS’2017, 2017.

L. Bautista Gomez (BSC) is a Senior Researcher at the
Barcelona Supercomputing Center where he works on
multiple European projects. He was awarded the 2016
IEEE Computer Society Technical Committee on Scalable
Computing (TCSC) Award for Excellence in Scalable Com-
puting (Early Career Researcher). He developed a scalable
multilevel checkpointing library called Fault Tolerance In-
terface (FTI) to guarantee application resilience at extreme
scale. FTI is currently one of the most popular multilevel
checkpointing libraries and it is the focus of multiple on-
going European research projects. See https://www.bsc.es/
es/bautista-gomez-leonardo for further information.

A. Benoit (Inria) is an Associate Professor in the Computer
Science Laboratory LIP at ENS Lyon, France, and the IEEE
TCPP Chair. She is a senior member of the IEEE, and she
has been elected a Senior Member of Institut Universitaire
de France in 2023. Her research interests include multi-
criteria scheduling algorithms and resilient techniques for
parallel and distributed platforms. See http://graal.ens-lyon.
fr/~abenoit/ for further information.

328

Future Generation Computer Systems 161 (2024) 315-328

S. Di (ANL) is a Computer Scientist in the Mathematics
and Computer Science (MCS) division of Argonne National
Laboratory. His current research interest includes lossy com-
pression for scientific datasets, high performance computing,
scalable computing, and fault tolerance. He is a senior
member of IEEE, institute fellow of NAISE, also the scientist
at Large through the Consortium for Advanced Science and
Engineering (CASE) at the University of Chicago. He is the
DOE 2021 Early Career Research Program Award Winner,
and also the recipient of 2018 IEEE-Chicago Distinguished
Mentoring Award and 2019 IEEE-Chicago Distinguished
R&D Award. See https://www.mcs.anl.gov/~shdi for further
information.

T. Herault (UTK) is a Research Assistant Professor at the In-
novative Computing Laboratory at University of Tennessee,
Knoxville. He is an expert in distributed algorithms and
architectures. He was one of the main developers of the
MPICH-V MPI implementation for volatile resources. He is
one of the main architects of the User Level Fault Miti-
gation (ULFM) MPI extension and of the Paralle] Runtime
Scheduling and Execution Controller (PaRSEC) middleware.
See https://icl.utk.edu/~herault/ for further information.

Y. Robert (Inria) is a Full Professor at ENS Lyon, a
Fellow of the IEEE and a former Senior Member of Institut
Universitaire de France. He received the 2014 IEEE TCSC
Award for Excellence in Scalable Computing, the 2016 IEEE
TCPP Outstanding Service Award, and the 2020 IEEE CS
Charles Babbage Award. He holds a Visiting Scientist posi-
tion at the Innovative Computing Laboratory, University of
Tennessee Knoxville, since 2011. His main research interests
are scheduling techniques, parallel algorithms and resilient
approaches for large-scale platforms. See http://graal.ens-
lyon.fr/~yrobert/ for further information.

H. Sun (KU) is an Assistant Professor in the Department
of Electrical Engineering and Computer Science (EECS) at
the University of Kansas, USA. His research interests are
in the broad area of high-performance computing (HPC),
cloud/edge computing, and computational data science,
with a particular focus on enhancing the performance,
reliability, resilience, and energy/thermal efficiency of
large-scale computing systems and applications. See https:
//www.ittc.ku.edu/~sun/ for further information.

http://refhub.elsevier.com/S0167-739X(24)00377-7/sb104
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb104
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb104
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb105
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb105
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb105
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb105
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb105
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb106
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb106
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb106
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb107
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb107
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb107
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb107
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb107
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb107
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb107
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb108
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb108
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb108
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb108
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb108
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb109
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb109
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb109
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb109
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb109
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb110
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb110
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb110
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb110
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb110
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb111
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb111
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb111
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb112
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb112
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb112
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb113
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb113
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb113
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb113
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb113
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb113
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb113
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb114
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb114
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb114
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb114
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb114
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb115
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb115
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb115
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb115
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb115
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb116
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb116
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb116
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb116
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb116
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb117
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb117
http://refhub.elsevier.com/S0167-739X(24)00377-7/sb117
https://www.bsc.es/es/bautista-gomez-leonardo
https://www.bsc.es/es/bautista-gomez-leonardo
http://graal.ens-lyon.fr/~abenoit/
http://graal.ens-lyon.fr/~abenoit/
https://www.mcs.anl.gov/~shdi
https://icl.utk.edu/~herault/
http://graal.ens-lyon.fr/~yrobert/
http://graal.ens-lyon.fr/~yrobert/
https://www.ittc.ku.edu/~sun/
https://www.ittc.ku.edu/~sun/

	A survey on checkpointing strategies: Should we always checkpoint à la Young/Daly?
	Introduction
	Preemptible Applications
	Background
	The Young/Daly Formula
	Accuracy of the Derivation
	Extensions
	Overlapping Checkpointing and Computation
	Checkpointing to Minimize Energy Consumption
	Multi-level Checkpointing
	Minimizing I/O due to Checkpointing

	Loosely-Coupled Applications
	Coordinated Checkpointing and Rollback Recovery for Preemptible Applications in Practice
	Task Graphs
	Baseline
	Linear Chains
	Iterative Applications
	General Workflows

	Dealing with Uncertainty
	Unknown MTBF
	Unknown Checkpoint Time (Due to Contention)
	Variable Checkpoint Time

	Silent Errors
	Background
	Verification mechanisms
	Optimal Period for Silent Errors
	Extensions
	Dealing with Both Fail-stop and Silent Errors
	Placing Intermediate Verifications
	Embracing Imperfect Verifications

	When the Optimal Period is not Θ(µ1/2)
	Combining Checkpointing with Replication
	Preemptible Applications
	Linear Chains of Tasks

	Conclusion and Open Problems

	CRediT authorship contribution statement

	Declaration of competing interest
	Data availability
	Acknowledgments
	References

