Journal of Parallel and Distributed Computing 184 (2024) 104792

Contents lists available at ScienceDirect

PARALLEL AND
DISTRIBUTED
COMPUTING

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

Check for

Multi-resource scheduling of moldable workflows ™ e

Lucas Perotin ?, Sandhya Kandaswamy °, Hongyang Sun **, Padma Raghavan *

@ Ecole Normale Superieure de Lyon, France
b University of Kansas, USA
¢ Vanderbilt University, USA

ARTICLE INFO ABSTRACT

Keywords:

Makespan scheduling
Multi-resources scheduling
Moldable jobs

Workflows

Approximation ratio

Resource scheduling plays a vital role in High-Performance Computing (HPC) systems. Most scheduling research
in HPC has focused on only a single type of resource (e.g., computing cores or 1/O resource). With the
advancement in hardware architectures and the increase in data-intensive HPC applications, there is a need to
simultaneously consider a diverse set of resources (e.g., computing cores, cache, memory, I/0, and network
resources) in the design of runtime schedulers for improving the overall application performance. In this
paper, we study multi-resource scheduling to minimize the makespan of computational workflows comprised
of moldable parallel jobs. Moldable jobs allow the scheduler to flexibly select a variable set of resources before
execution, thus can adapt to the available system resources (as compared to rigid jobs) while staying easy
to design and implement (as compared to malleable jobs). We propose a Multi-Resource Scheduling Algorithm
(MRSA), which combines a novel resource allocation strategy and an extended list scheduling scheme to schedule
the jobs. We prove that, on a system with d types of schedulable resources, MRSA achieves an approximation ratio
of 1.619d +2.545 \/E+ 1forany d > 1, and a ratio ofd+3{/ﬁ+ O({/E) when d is large (i.e., d >22). We also present
improved approximation results for workflows comprised of jobs with special precedence constraints (e.g., series-
parallel graphs, trees, and independent jobs). Further, we prove a lower bound of d on the approximation ratio of
any list-based scheduling algorithm with local priority considerations. Finally, we conduct a comprehensive set
of simulations to evaluate the performance of the algorithm using synthetic workflows of different structures and
moldable jobs following different speedup models. The results show that MRSA fares better than the theoretical
bound predicts, and that it consistently outperforms two baseline heuristics under a variety of parameter settings,
illustrating its robust practical performance.

1. Introduction HPC applications, there is a need to simultaneously consider multiple

types of resources (e.g., computing, cache, memory, I/0, and network

Complex scientific workflows running in today’s High-Performance
Computing (HPC) systems are typically modeled as Directed Acyclic
Graphs (DAGs), whose nodes represent the jobs of the workflows and
whose edges represent the precedence constraints (or dependencies)
among the jobs. Effective workflow scheduling plays a vital role in
improving the performance of scientific applications. While HPC sys-
tems often rely on dynamic runtime schedulers, such as KAAPI [24],
StarPU [2] or PaRSEC [7], to ensure the efficient execution of compu-
tational workflows, most existing schedulers focus only on a single type
of resource (e.g., computing resource or 1/0 resource). With the ad-
vancement in hardware architectures and the increase in data-intensive

resources) in the design of runtime schedulers. Indeed, modern HPC sys-
tems are equipped with more levels of memory/storage (e.g., NVRAMs,
SSDs, burst buffers [44]), all of which could potentially be partitioned
among the system’s concurrently running jobs. Advancements in ar-
chitectural and software features (e.g., high-bandwidth memory [60],
cache partitioning [69], bandwidth reservation [8]) can also be lever-
aged to facilitate the efficient scheduling of these multiple types of
resources for enhancing the overall application and/or system perfor-
mance.

In this paper, we study multi-resource scheduling for computational
workflows comprised of moldable parallel jobs with DAG-based prece-

* A preliminary version [50] of this paper has appeared in the Proceedings of the 50th International Conference on Parallel Processing (ICPP), 2021.

* Corresponding author.
E-mail address: hongyang.sun@ku.edu (H. Sun).

https://doi.org/10.1016/j.jpdc.2023.104792

Received 4 January 2023; Received in revised form 3 July 2023; Accepted 16 October 2023

Available online 24 October 2023
0743-7315/© 2023 Elsevier Inc. All rights reserved.

L. Perotin, S. Kandaswamy, H. Sun et al.

dence constraints. The goal is to simultaneously explore the availability
of multiple types of resources by designing effective scheduling so-
lutions that minimize the overall completion time, or makespan, of a
workflow. We focus on parallel jobs that are moldable [21], which al-
lows the scheduler to select a variable set of resources for a job, but
once the job has started its execution, the resource allocations cannot
be changed. In contrast to rigid jobs, whose resource allocations are
all static and hence fixed, moldable jobs can easily adapt to the differ-
ent amounts of available resources, while in contrast to malleable jobs,
whose resource allocations can be dynamically varied during runtime,
moldable jobs are much easier to design and implement.

As the considered multi-resource scheduling problem contains the
single-resource scheduling problem as a special case, it is known to
be strongly NP-complete [16]. Thus, we focus on designing good ap-
proximation algorithms. In contrast to the single-resource problem,
the multi-resource problem needs to consider the combined effect of
multiple types of resources on the execution of the jobs, thus posing
additional challenges to the scheduling problem. By adopting a two-
phase approach [63] that is widely used for scheduling moldable jobs,
we design a Multi-Resource Scheduling Algorithm (MRSA), which first
computes an approximate resource allocation for all jobs on different
resource types and then applies an extended list scheduling scheme to
schedule the jobs. As list scheduling is easy to implement, the proposed
algorithm can be readily applied to practical systems.

On the theoretical side, we prove, under reasonable assumptions on
the job execution times and speedup functions, the following results for
a system consisting of d types of schedulable resources:

* MRSA achieves an approximation ratio of 1.619d + 2.545\/3 +1 for
any d > 1, and a ratio ofd+3{/d_2+0(i/d_) for large d (i.e., d > 22);

» MRSA has improved approximations for some special graphs (e.g.,
series-parallel graphs, trees and independent jobs) with ratios of
1.619d + 1 for any d > 1 and d +0(+/d) for any d > 4;

» We prove a lower bound of d on the approximation ratio of any
list-based scheduling algorithm with local priority considerations.

To the best of our knowledge, these are the first approximation
results for scheduling moldable workflows with multiple resource re-
quirements. They also improve upon the 2d-approximation previously
shown in [61] for scheduling independent moldable jobs. The results
demonstrate that MRSA achieves the optimal asymptotic approxima-
tion up to the dominating factor (i.e., d) among the generic class of
local list-based scheduling schemes, thus matching the same asymptotic
performance for scheduling rigid [23] and malleable [29] jobs.

On the practical side, we conduct a comprehensive set of simulations
using synthetic workflows generated by DAGGEN [62], which is a task
graph generator capable of generating DAGs of different structures. We
also generate moldable jobs that exhibit different runtime characteris-
tics on multiple resource types by extending common speedup profiles
that follow Amdahl’s law [1] and power law [51] models. Our simula-
tion results show that:

+ MRSA fares better than the worst-case theoretical bound predicts;

» MRSA consistently outperforms two baseline multi-resource sche-
duling heuristics;

» MRSA performs comparably with some other approximation algo-
rithms under the special case of a single resource type.

These simulation results nicely complement the theoretical analysis
of MRSA, and they also illustrate MRSA’s robust practical performance
under a variety of parameter settings.

The rest of this paper is organized as follows. Section 2 reviews
some related work on moldable and multi-resource scheduling. Sec-
tion 3 formally introduces the scheduling model and shows a lower
bound on the optimal makespan. Section 4 presents the multi-resource
scheduling algorithm MRSA and analyzes its approximation ratios for

Journal of Parallel and Distributed Computing 184 (2024) 104792

general workflows. Section 5 proves improved approximation results
for some special workflows, including series-parallel graphs, trees and
independent jobs. Section 6 shows a lower bound on the performance
of any local list-based scheduling algorithm. Section 7 presents a com-
prehensive set of simulation results for evaluating the performance of
the proposed algorithm, and finally, Section 8 concludes the paper and
briefly discusses future work.

2. Related work

This section reviews some related work on single-resource moldable
job scheduling as well as multi-resource job scheduling to minimize the
makespan. We will also review some multi-resource scheduling work
under alternative job models and objectives.

2.1. Single-resource moldable job scheduling

Scheduling moldable jobs to minimize the makespan is a strong NP-
complete problem on P > 5 processors [16], and it has been extensively
studied in the literature. Most prior work, however, has only focused on
a single type of resource while assuming different speedup models for
the jobs. The following reviews some related work from the perspectives
of both approximation algorithms and heuristic algorithms.

2.1.1. Approximation algorithms

For independent moldable jobs with arbitrary speedups, Turek et
al. [63] presented a 2-approximation list-based algorithm and a 3-
approximation algorithm based on building shelves. Ludwig and Ti-
wari [45] later improved the 2-approximation result with lower com-
putational complexity. For monotonic jobs, whose execution time #(p)
is non-decreasing in the number p of allocated processors and whose
work function w(p) = p - t(p) is non-decreasing in p, Mounié et al. [47]
presented a (1.5 + ¢)-approximation algorithm using dual approxima-
tion. Jansen and Land [34] showed a faster algorithm that achieves the
same (1.5 +¢)-approximation as well as a PTAS when the execution time
functions of the jobs admit compact encodings.

For scheduling moldable jobs that have precedence constraints, Lep-
ére et al. [42] presented a 5.236-approximation algorithm when jobs are
assumed to be monotonic. Jansen and Zhang [36] improved the approx-
imation ratio to around 4.73 for the same model, and recently, Chen [9]
further improved it to around 3.42 using an iterative approximation
method. Additionally, better approximation results have been obtained
for jobs with special dependency graphs (e.g., series-parallel graphs and
trees [42,41]) or special speedup models (e.g., concave speedup [35,10]
and roofline speedup [65,22]).

2.1.2. Heuristic algorithms

A series of related work has also proposed heuristic algorithms for
scheduling moldable jobs with precedence constraints under the dis-
tributed computing model where additional communication cost is in-
curred between two dependent jobs. Ramaswamy et al. [55] presented
a Two Step Allocation and Scheduling (TSAS) algorithm that uses con-
vex programming to allocate resources and list scheduling to schedule
the jobs. Radulescu and van Gemund [54] took the same approach but
proposed a low-cost heuristic, called Critical-Path and Allocation (CPA),
that incrementally allocates the resources to the jobs. Bansal et al. [3]
refined the CPA algorithm and proposed Modified CPA (MCPA) by lim-
iting the total resource allocation for those jobs on the critical path but
in the same layer of the graph. Hunold [32] further refined the MCPA
algorithm by proposing MCPA2 that has been shown to work better for
irregular workflows.

While the algorithms above use the two-level approach that sepa-
rates the resource allocation and job scheduling decisions, Radulescu et
al. [53] presented a one-step algorithm, called Critical Path Reduction
(CPR), that iteratively improves the result of the list schedule by in-
crementally adding resource allocations to certain jobs. The algorithm

L. Perotin, S. Kandaswamy, H. Sun et al.

is shown to produce better schedules than some two-level algorithms
at the expense of higher complexity. Huang et al. [31] also proposed
a one-step algorithm, called Iterative Allocation Expanding and Shrink-
ing (IAES), that allows the allocated resources of a job to shrink (as well
as expand) based on the actual critical path in the schedule rather than
the static one in the graph.

Most of these algorithms are heuristic algorithms without perfor-
mance guarantees, except for TSAS [55], which was shown to have an
approximation ratio of 11.66.

2.2. Multi-resource job scheduling

The literature also contains some approximation algorithms on
multi-resource scheduling to minimize makespan under different par-
allel job models, as well as works on multi-resource scheduling for
alternative job models and objective functions.

2.2.1. Approximation algorithms to minimize makespan

Garey and Graham [23] considered scheduling »n sequential jobs
on m identical machines with 4 additional types of resources. Fur-
ther, each job has a fixed resource requirement from each resource
type, making it essentially a rigid job scheduling model. They pre-
sented a list-scheduling algorithm and proved three results: (1) an m-
approximation for jobs with precedence constraints and when there is
only one type of resource, i.e., d = 1; (2) a (d + 1)-approximation for in-
dependent jobs and when the number of machines is not a constraining
factor, i.e., m>n; (3) a (d +2 - %)-approximation for independent
jobs with any m > 2. For the case of d = 1, Demirci et al. [14] pre-
sented an improved O(logn)-approximation for jobs with precedence
constraints, and Niemeier and Wiese [48] presented an improved (2+¢)-
approximation for independent jobs.

He et al. [29,28] considered parallel jobs that are represented as
DAGs consisting of unit-size tasks, each of which requests a single type
of resource from a total of d resource types. Further, the amount of re-
sources allocated to a job can be dynamically changed during runtime,
making it essentially a malleable job scheduling model. They showed
that list scheduling achieves (d + 1)-approximation under this model.
Shmoys et al. [58] considered a similar model while further restricting
the tasks of each job to be processed sequentially. They called it the
DAG-shop scheduling model, and presented a polylog approximation re-
sult in number of machines and job length.

Sun et al. [61] considered independent moldable jobs on d types
of resources. They presented a 2d-approximation list-based algorithm
and a (2d + 1)-approximation shelf-based algorithm, thus generalizing
the single-resource results in [63]. They also presented a technique to
transform any c-approximation algorithm for a single resource type to
a cd-approximation algorithm for d types of resources. This work is
the closest to ours, while we consider moldable jobs with precedence
constraints. When jobs are independent, our main approximation result
also improves the one in [61] for a large number of resource types.

2.2.2. Multi-resource scheduling for alternative job models and objectives

Beaumont et al. [5] and Eyraud-Dubois and Kumar [17] consid-
ered scheduling sequential jobs on two alternative types of resources
(CPU and GPU) to minimize the makespan. In their model, each job can
be chosen to execute on either resource type with different processing
rates. They analyzed an approximation algorithm, called HeteroPrio,
for both independent jobs and jobs with precedence constraints. The
approximation ratios depend on the relative amount of resources in the
two resource types. A recent survey on this two-resource scheduling
model can also be found in [4].

Ghodsi et al. [25] focused on the objective of resource allocation
fairness in a multi-user and multi-resource setting. In their seminal pa-
per, they proposed a Dominant Resource Fairness (DRF) algorithm that
aims at maximizing the minimum dominant share across all users. Their
work has subsequently been extended by many papers (e.g., [40,67,

Journal of Parallel and Distributed Computing 184 (2024) 104792

39,66,27,37,38]) that proposed improved or alternative algorithms by
building on top of DRF for various multi-resource scheduling contexts.

Grandl et al. [26] considered scheduling malleable jobs under four
specific resource types (CPU, memory, disk and network). They de-
signed a heuristic algorithm, called Tetris, that schedules jobs by consid-
ering the correlation between the job’s peak resource demands and the
machine’s resource availabilities, with the goal of minimizing resource
fragmentation. NoroozOliaee et al. [49] studied a similar problem but
for two resources (CPU and memory). They showed that a simple
scheduling heuristic that uses Best Fit and Shortest Job First delivers
good performance in terms of resource utilization and job queueing de-
lays. Recently, Xu et al. [68] proposed DollyMP, a scheduling algorithm
that considers two resource types (CPU and memory) and aims to min-
imize the total flow time of a set of dynamically arriving DAG-based
jobs with stochastic execution times.

Sheikhalishahi et al. [57] used multi-dimensional bin-packing to
schedule multiple resources in HPC and cloud environments. Their
multi-resource scheduling algorithm is shown to outperform standard
backfilling policies in terms of job slowdowns and wait times. Zhou et
al. [71] applied a similar approach and presented P-Aware, a multi-
resource scheduling strategy to map heterogeneous application jobs to
server nodes in cloud data centers. Psychas and Ghaderi [52] showed
that classical bin packing algorithms are not optimal in terms of
throughput. They proposed a Randomized Multi-resource Scheduling
(RMS) algorithm with provably optimal throughput.

Fan et al. [19] presented a scheduling algorithm, called BBSched,
that targets two resources (CPU and burst buffer) for HPC. They pro-
posed to use genetic algorithm to solve a formulated multi-objective
optimization problem, which delivers fast scheduling decisions with
improved resource utilization and average job wait time compared to
existing HPC schedulers. They also extended their approach to dealing
with multiple resource types, including memory and network resources
[18], and provided a scheduling framework for the problem [20].

Recently, multi-resource scheduling has also been studied in the
context of machine learning (ML) and deep learning (DL). On the
one hand, some papers (e.g., [64,46,70]) have considered multiple
resources when scheduling ML/DL jobs on computing clusters and re-
ported improved job completion times. On the other hand, several
efforts (e.g., [11,30,43]) have applied machine learning (in particular
deep reinforcement learning) to the training of multi-resource sched-
ulers, and they have led to better system and application performance
compared to traditional schedulers.

3. Models

In this section, we formally present the multi-resource scheduling
model and objective. We also derive a lower bound on the optimal
makespan.

3.1. Scheduling model

We consider the problem of scheduling a set of » moldable jobs on
d distinct types of resources (e.g., processor, memory, cache). Each re-
source type i has a total amount P® of available resource. The jobs
are moldable, i.e., they can be executed using different amounts of re-
sources from each resource type, but the resource allocation cannot
be changed once a job has started executing. For each job j, where
1 < j < n, its execution time #;(p;) depends on the resource allocation
p;= (py), p(.z), . p;d)), which specifies the amount of resource p(.i) allo-
cated to the job for each resource type i, where 1 <i < d. We make the
following reasonable assumptions on the resource allocation and execu-
tion time of the jobs.

Assumption 1 (Integral resources). All resource allocations pj.i) ’s for the

jobs and the total amount of resources P(!)’s for all resource types are
non-negative integers.

L. Perotin, S. Kandaswamy, H. Sun et al.

This is a natural assumption for discrete resources, such as pro-
cessors. Other resource types, such as memory or cache, are typically
allocated in discrete chunks as well (e.g., memory blocks, cache lines)
in practical systems.

Assumption 2 (Known execution times). For each job j, its execution
time function #,(p;) is known for every possible resource allocation p;.

In practice, the execution times of a job or an application could be
obtained through one or more of the following approaches: application
modeling or profiling, performance prediction or interpolation from his-
toric data. Here, we assume these execution times are known while not
concerning about how they are practically obtained.

Assumption 3 (Monotonic jobs). Given two resource allocations p /- and
g; for a job j, we say that p; is at most ¢;, denoted by p; < g;, if p;i) <
¢ for all 1 <i<d. The execution times of the job under these two
allocations satisfy:

1;(q) <1;(p;) < (ig};_l_)_(d qﬁ')/pﬁ')) “15(g;) -

This generalizes the monotonic job assumption under a single re-
source type [42,47], which has been observed for many real-world
applications. In particular, the first inequality specifies that the execu-
tion time of a job is non-increasing in the amount of resource allocated
to the job,! and the second inequality restricts the job to have non-
superlinear speedup with respect to any resource type.? Note that we do
not make any assumptions on a job ,’s relative execution times under
two resource allocations p; and g; that are non-comparable, i.e., p; % q;
and g; £ p;.

Additionally, a set of precedence constraints is specified for the jobs,
which form a directed acyclic graph (DAG), G =(V, E). Eachnode j € V
in the graph represents a job and a directed edge (j; — j,) € E requires
that job j, cannot start executing until the completion of job j,. In this
case, j, is called an immediate predecessor of j,, and j, is called an
immediate successor of j;.

3.2. Objective function

The objective is to find a schedule to minimize the maximum com-
pletion time, or the makespan. Specifically, a schedule is defined by the
following two decisions:

* Resource allocation decision: p = (p,ps,P,);
* Starting time decision: s = (51,55, ..., Sy,)-

Given a pair of scheduling decisions p and s, the completion time of
ajob j is defined as c; = s; +1;(p;), and the makespan of the jobs is given
by T =max;c;. A schedule must be valid by respecting the following
constraints:

 For each resource type i, the amount of resource utilized by all
running jobs at any time does not exceed the total amount P®) of
available resource;

« If two jobs j; and j, have a precedence constraint, i.e., j; — j,, then
the starting time of j, is no earlier than the completion time of j,,

Le,s;, ¢

! This assumption, however, is not restrictive, as we can discard any alloca-
tion that uses more resource than another allocation but results in a higher job
execution time.

2 Some parallel applications can achieve superlinear speedups with a com-
bined effect of increased allocations in two or more resource types (e.g., the
cache effect [56] when increasing both processor and cache allocations). We do
not consider such superlinear speedup model in this paper.

Journal of Parallel and Distributed Computing 184 (2024) 104792

The above multi-resource scheduling problem is NP-complete, as
it contains the single-resource scheduling problem [36,42] as a spe-
cial case. Thus, we aim at designing approximation algorithms with
bounded performance guarantees. An algorithm is an r-approximation if
its makespan for any set of jobs satisfies <r, where T,,, denotes

OPT
the optimal makespan for the same set of jobs.

3.3. Lower bound on optimal makespan

We now derive a lower bound on the optimal makespan. To that
end, we define the following concepts.

Definition 1. For each job j with resource allocation p;:
(i) . N
-1 (p j). work on resource type i;

(/)
. @ _ (Pj)
aj (p/)_ J20)

* a;(p Jj:% Z,d | EI)(p ;): average area over all resource types.

. w(')(pj) p;

: area (or normalized work) on resource type i;

Definition 2. For a set of jobs with resource allocation p=(p,, p;, ..., p,):

wO @)= Z]) w(')(p ;): total work on resource type i;
AD(p)= W:()i()p) =X a;.')(p ,): total area on resource type i;

A(p) = % >4, AD(p)=3"_ a;(p)): average total area over all re-
source types;

Ccp.NH=Y jer i@ total execution time of all the jobs along a
particular path f in the graph?;

C(p)=max ; C(p, f): critical-path length, i.e., total execution time of
the jobs along a critical (longest) path in the graph;

L(p) = max(A(p), C(p)): maximum of average total area A(p) and
critical-path length C(p).

We further define L, = min, L(p) to be the minimum value of L(p)
among all possible resource allocations, and let p* denote a resource
allocation such that L(p*) = L,;,. The following lemma shows that L
serves as a lower bound on the optimal makespan.

min

Lemma 1. Tgpp > L.
Proof. We first show that, given any resource allocation p, the
makespan produced by any schedule must satisfy 7' > L(p) = max(A(p),
C(p)). The bound T > C(p) is trivial, since the jobs along the critical
path must be executed sequentially, so the makespan is at least C(p).
To derive the bound T > A(p), we observe that the average total area
A(p) in any valid schedule with makespan T must satisfy:

&8 wip)

22—

i=1 j=1

1 ;
P Zw”(p,)

U=

A(p) =

U=

< @PV.Ty=T.

U=

IIM& "M“‘

L
P

The inequality };_, w;.[)(p ;) < PO T is because PV - T is the maximum
amount of work that can be allocated to the jobs within time 7" on any
resource type i with total amount of resource P®).

Suppose the optimal schedule uses a resource allocation p,;. Then,
its makespan must satisfy:

3 A path is a sequence of jobs with linear precedence, i.e., f = Un(ty = Jzy =
“* = j.))» Where the first job j,, does not have any predecessor in the graph
and the last job j,,, does not have any successor.

L. Perotin, S. Kandaswamy, H. Sun et al.

Topr 2 max (A(pOPT)’ C(pOPT))
= L(popr)
> L(Pp*) = Ly, -

The last inequality is because L(p*) is the minimum L(p) among all
possible resource allocations including pypr. [

4. Multi-Resource Scheduling Algorithm (MRSA) and
approximation results for general DAGs

In this section, we present the Multi-Resource Scheduling Algorithm
(MRSA) and analyze its approximation ratio for general DAGs. The al-
gorithm adopts the two-phase approach that has been widely used for
scheduling moldable jobs on a single type of resource [63,42,36,55,54].

4.1. Phase 1: resource allocation

The first phase concerns finding a resource allocation decision p =
(py, Py, .-, pp) for all the jobs.

Discrete time-cost tradeoff (DTCT) problem. We first consider a relevant
discrete time-cost tradeoff problem [13], which has been studied in the
literature of operations research and project management.

Definition 3 (Discrete time-cost tradeoff (DTCT)). Suppose a project con-
sists of n tasks with precedence constraints. Each task j can be executed
using several different alternatives and each alternative i takes time 7 ;
and has cost ¢, ;. Further, for any two alternatives i, and i,, if i; is faster
than i,, then i; is more costly than i,, i.e.,

Tigy Stiiy = iy 2 €y - (€Y

Given a project realization o that specifies which alternative is cho-
sen for each task, the total project duration D(s) is defined as the sum
of times of the tasks along the critical path, and the total cost B(c) is
defined as the sum of costs of all tasks. The objective is to find a real-
ization ¢* that minimizes the total project duration D(¢*) or the total
cost B(c*).

The above DTCT problem is obviously bicriteria, and a tradeoff ex-
ists between the total project duration and the total cost. Two problem
variants have been commonly studied, both of which are shown to be
NP-complete [12]:

* Budget Problem: Given a total cost budget B, minimize the project
duration D(c) subject to B(c) < B;

* Deadline Problem: Given a project deadline D, minimize the total
cost B(c) subject to D(c) < D.

For both problems, Skutella [59] presented a polynomial-time ap-
proximation algorithm, which, given any feasible budget-deadline pair
(B, D) and any p € (0, 1), finds a realization ¢ for the project that satis-
fies*:

D

D(c) < —,
p

B(O’)Si.
I-p

4 In essence, Skutella’s approximation algorithm first transforms each task
of the project into a set of virtual tasks, and then constructs a relaxed Linear
Program (LP) for the transformed problem. The relaxed LP either minimizes
D(o) subject B(c) < B or minimizes B(c) subject D(c) < D. In either case, the
result can be obtained by rounding the optimal fractional solution to the relaxed
LP based on the parameter p.

Journal of Parallel and Distributed Computing 184 (2024) 104792

Allocating resources to jobs. We can now transform our resource alloca-
tion problem to the DTCT problem and solve it using the approximation
result in [59]. To that end, a task j is created for each job j in the graph,
with the set of alternatives for the task corresponding to the set of re-
source allocations for the job. The execution time 7;; of task j with
alternative i is then defined as the execution time 7;(p;) of job j with
the corresponding resource allocation p;, and the cost c;; is defined as
the average area a;(p)).

Let S denote the set of all O = H,il P® possible resource alloca-
tions for a job. To ensure that Condition (1) in Definition 3 is satisfied,
we discard, for each job j, the subset D , CS of dominated allocations,
which is defined as:

Dj:{pj | 3q;,1;(q;) <1;(p)) and a;(g;) < aj([)j)} 5 2

and only use the remaining set of non-dominated allocations, denoted by
.A/'j = S\D;,, to create the alternatives of the task. Thus, a realization ¢
for the project corresponds to a resource allocation decision p for the
jobs. The total project duration D(c) then corresponds to the critical-
path length C(p) of the DAG, and the total cost B(¢) corresponds to the
average total area A(p) of the jobs.

A resource allocation decision p = (p;,p,,...,p,) is said to be non-
dominated if the allocation for every job is non-dominated, i.e., p; € .A/'/
for all j =1,...,n. The following lemma shows that the makespan lower
bound L,;, can be achieved by a non-dominated resource allocation.

Lemma 2. There exists a non-dominated resource allocation p* = (pT s p;, e
pt) that achieves L(p*) = Ly,

Proof. Suppose a resource allocation q* = (qf,q;‘,) achieves
L(q*) = Ly, and it contains a dominated allocation ¢ € D; for a job
Jj. Then, by replacing a; with a non-dominated allocation q;* € W that
dominates g7, i.e., tj(q;.*) <1;(¢}) and aj(q;.*) < a;(q)), we get a new
resource allocation ¢'* = (ql*’...’qul’qj{*’ ;‘“,...,q:), which satisfies
A(Q) < A(q*) and C(q'*) < C(q*). This implies L(q'*) < L(q*) = L.
Repeating the process above for every job with a dominated alloca-
tion results in an overall non-dominated allocation p* that achieves
L(p*)=Lpi,- O

We can now find a resource allocation p’ for the jobs (or equiva-
lently a realization ¢’ in the corresponding DTCT problem), with the
following property.

Lemma 3. For any p € (0, 1), a resource allocation p’ = (p/l, p;, ey p;) can
be found in polynomial time that satisfies:
T,
cpH<s ==, 3
P
T,
Ap) < ==)

1-

<

Proof. The result can be obtained by adapting the algorithm in [59],
which minimizes the project duration (or total cost) subject to a known
budget B (or deadline D) for the DTCT problem. Without knowing the
value of the constraint a priori, we can still achieve the same approx-
imations by adopting the technique used in [36] for the problem with
a single resource type. Specifically, the relaxed LP originally formu-
lated in [59] can be modified and applied to our problem as follows:
minimize the lower bound L(p) instead, subject to two additional con-
straints C(p) < L(p) and A(p) < L(p). Then, by rounding the optimal
fractional solution p* to this modified LP, we can get a resource allo-
cation p’ that satisfies: C(p’) < %‘3*) < %’3*) and A(p’) < Af%? < LI(TI’;).
Since the optimal fractional solution p* must result in an objective not
greater than the one achieved by any (non-dominated) integral solu-
tion p*, and based on Lemma 2, we have L(p*) < L(p*) = L,,;,. The
result then directly follows by applying the makespan lower bound in
Lemma 1. []

L. Perotin, S. Kandaswamy, H. Sun et al.

Adjusting resource allocation. Lastly, we adjust the resource allocation
p’ (obtained through Lemma 3 above) to get the final resource alloca-
tion p for the jobs. The aim is to limit the maximum resource utilization
of any job under any resource type, thus facilitating more efficient list
scheduling (described in Section 4.2). As with the case for a single type
of resource [42,36], we choose a parameter u € (0,0.5), and obtain the
final resource allocation for each job j on each resource type i as fol-
lows:

o_ J POl i g0 > [uPO]
P =N 0 - ®)
Py otherwise
where p’ @ is the corresponding resource allocation in p’.

A]Ob J is adjusted if its final resource allocation p; is reduced from
the initial allocation p} in any resource type; otherwise, the job is unad-
justed. The following lemma shows the properties of any adjusted job.

Lemma 4. For any adjusted job j, its execution time satisfies:

s (P;)
1;(p) < ——. (6)
U
Further, if the total amount of resource type i satisfies P() > l, the job’s
area on resource type i satisfies:

d'(pp<d-a,() .)

/()

Proof. For any adjusted job j, let x;i) ~ denote its resource reduc-

tion factor on any resource type i, and let k=argmax,_; 4 x5.i> denote
the resource type with the largest reduction factor.

Since the job’s final resource allocation p; is at most its initial al-
location p’., ie, p; < p’. and according to the adjustment procedure in

® . _P®
= Tupmy =
we can prove the time bound

Equation (5), we have x; Thus, based on Assumption 3,

i (p)
1) < (n}axdx(”) 1;(p])—x(k) t;(p)) < ——

To prove the area bound, we distinguish three cases.

Case (1): For resource type k with the largest reduction factor, we
7 (k)

(YN N R (5 WP (S WP N (5 PO
have w; (pj) = D; 1;(p;) < ® (xj ’j(Pl-)) =p; tj(l’j) =w; (P/-)'
J
Thus, the area of the job on resource type k satisfies:

k k 14
WP W@ & w) .
< _
G P(k) = 2 I2G) a;(p)) -

(k) —
a; (Pj)—

Case (2): For any resource type i # k with pi.i) < | uPD| < P9, and

since pik) = [uP®] > uP®, we have:

® ~
Pt uPD - 1(p))

Gy
4G P)= 0 <" pn
7 (k) ’
p; ()
k J
<uex 0l =
P;
k), 1 k), 1
W (p,-):wj)
=H T pm G
d w(f)(/)
J J /
/] 1% d aj(pj).

Case (3): For any resource type i # k with p;.[) =[uPD] < uP® +1,
by following the same derivation steps as in Case (2), we can get:

k), 1
: w;(p})
0] 1 i
4; (”1)5<1+ pm) Pk

Journal of Parallel and Distributed Computing 184 (2024) 104792

Algorithm 1: Resource Allocation (Phase 1).

Input: For each job j, execution time ¢ () and average area a (p)
under all possible resource allocations; values of parameters p
and pu.

Output: Resource allocation decision p=(p,, p,, ...

begin

(Step 1): For each job j, discard the subset D; C S of dominated
resource allocations as defined in Equation (2);

(Step 2): Transform the resource allocation problem to the DTCT
problem and adapt the algorithm in [59] to obtain an initial
allocation decision p’ that satisfies Equations (3) and (4);

(Step 3): For each job j and each resource type i, adjust the initial
allocation in p’ based on Equation (5) to obtain a final resource
allocation decision p that satisfies Equations (6) and (7).

,p,) for all jobs.

end

k k
wf@) we)
=—
10 PO P
d (&) (i) / k) r
Z w; (p) w;(p;) w7 (p)
= 1% F20) PO p)
d (A ’ 7 (k)
_y w; (P} . 1) | p; 0
= P©® PO | yP® J
.) S®)
Since pr(k) < P® and p/(t) > [uP9] > yP(i), we have ;)(k) _ p;(') < i —

uP®_ which is at most 0 when P > . In this case, we have:

d (f)

) (p)
(i) I
a;’(p)< E —_
! =1 P@

=d-a;(p)).
This completes the proof of the lemma. []

Algorithm 1 summarizes all the three steps involved in this first
phase of the algorithm.

4.2. Phase 2: job scheduling

The second phase schedules the jobs by making a starting time
decision s = (s}, s,, ..., s,), given the resource allocation decision p de-
termined by the first phase.

List scheduling strategy. Jobs are scheduled through a list scheduling
strategy, as shown in Algorithm 2, which extends the classical list
scheduling for a single type of resource to multiple resource types.

A job is said to be ready if all of its immediate predecessors in the
precedence graph have been completed or if the job has no immedi-
ate predecessor. The algorithm starts by inserting all ready jobs into a
queue Q in any order. Then, at time O or whenever a running job &
completes and hence releases resources, the algorithm inserts, into the
queue Q, any new job k' that becomes ready due to the completion of
job k. It then goes through the list of all ready jobs in Q and schedules
each job j that can be executed at the current time if its resource alloca-
tion p; can be met by the amount of available resources in all resource

types.

Properties of list scheduling. We now analyze some properties of list
scheduling, which will be used later in the derivation of MRSA’s approx-
imation ratio. The analysis follows the same framework as in [42,36]
for single-resource scheduling.

We start by defining some notations. Let T denote the makespan of a
list schedule. We note that the algorithm only allocates and de-allocates
resources upon job completions. Hence, the entire schedule’s duration
[0,T] can be partitioned into a set T = {I,,I,,...} of non-overlapping
intervals, where jobs only start (or complete) at the beginning (or end)
of an interval, and the amount of utilized resource for any resource

L. Perotin, S. Kandaswamy, H. Sun et al.

Algorithm 2: List Scheduling (Phase 2).
Input: Resource allocation decision p=(p;, p,, ...
their precedence constraints.
Output: A list schedule for the jobs with starting time decision

,p,) for all jobs, and

S=(51,5,...,5,).
begin
insert all ready jobs into a queue Q;
PO pO vi;

avail
when at time 0 or a job k completes execution do
curr_time < getCurrentTime();
(i) (i) (i) \/:.
Pavail < Paum'l +pk ’Vl’
for each job k' that becomes ready do
insert job k' into queue Q;
end
for each job j € Q do
if P > p vi then
avail Jj
s; < curr_time and execute job j now;
0) (0] (i) \:.
Povair < Pavair = Pj -V

remove job j from queue Q;
end

end
end

end

type does not change during an interval. For any resource type i, let
Pu(;l.)l(l) denote the total amount of utilized resources from all jobs that
are running during interval I € T. We further classify the set of intervals

into the following three categories.

+ I,: set of intervals during which the amount of utilized resources is
at most [uP?"] — 1 for all resource type i, i.e., ; = {I | Vi,P‘ff‘.)l(I) <
[uPD] -1}

T,: set of intervals during which there exists a resource type k that
utilizes at least [uP®] amount of resources, but the amount of
utilized resources is at most [(1 — u)P®] — 1 for all resource type
i,ie, I,={I|3k PY1)> [pP®] and Vi, P (1)< [(1 - p)PP] -
1}.

I5: set of intervals during which there exists a resource type k that
utilizes at least [(1 —)P®] amount of resources, i.e., T, = {I |
3k, PN > [(1 - PP}

util

Let |I] denote the duration of an interval I, and let T} =), e, |11,
Ty =Yer, | and T3 = 3,7 1] be the total durations of the three
categories of intervals, respectively. Since I, 7, and 75 are obviously
disjoint and partition 7, we have:

T=T +T,+T;. (8

Furthermore, for each job j and each interval I, we define §; ; to
be the fraction of the job executed during that interval. For instance, if
one third of job j is executed in interval I and two thirds of the job
are executed in interval I’, we have f; ; = 1/3 and f§,; » =2/3. Note
that the fraction is defined in terms of either the execution time or the
area (work) of the job, which are equivalent here since the resource
allocation of the job has been fixed. Thus, for each job j, we have
YierBir =1

The following lemma bounds the durations of the first two categories
of intervals in terms of the execution time along the critical path of the
initial resource allocation p’.

Lemma 5 (Critical-path bound). For any choice of u € (0,0.5), we have:

Ty +uT, <CP") .

Proof. For any interval I € I, U I,, the amount of utilized resource
for any resource type i is at most [(1 — u)P®] — 1, so the amount of

Journal of Parallel and Distributed Computing 184 (2024) 104792

available resource is at least PO + 1 — [(1 — u)PD] > [uP®D]. According
to the resource allocation algorithm, any job is allocated at most [uP®]
amount of resource for resource type i. Thus, there is sufficient resource
available to execute any additional job (if one is ready) during any
interval I € I, U1,. This implies that there is no ready job in the queue
0, since otherwise the list scheduling algorithm would have scheduled
the job.

In list scheduling, it is known that there exists a path f in the graph
such that whenever there is no ready job in the queue, some job along
that path is running [22,42,36]. Thus, during any interval I € 7, U 1,,
some job along path f is running, and we let j(I) € f denote such a job.

Now, consider the initial resource allocation p’. During any inter-
val I € 1,, the amount of utilized resource for any resource type i is
at most [uP®] — 1, so job j(I) must be unadjusted. Thus, we have
tiin @) = tj(,)(p;(l)). However, during any interval I € T,, job j(I)
could be adjusted, and thus, according to Lemma 4 (Inequality (6)),
we have u - 1;1)(p;1) < tj(,)(p;(,)). We can then derive:

T, + uT,

= 2 @) Bina +# 2 @) - B
1€l 1€1,

/ /

< D @) Bia+ X, @) B
I€l, I€l,

<Y (@) Y b)
jef 1€T,0T,

<Y uehH=Cce.H=cE). O

Jef

The following lemma bounds the durations of the last two categories
of intervals in terms of the average total area of the initial resource
allocation p’.

Lemma 6 (Area bound). For any choice of i € (0,0.5), if P™" = min, P®) >
”lz, we have:

uT+ (1= wTs <d - A(p') .

Proof. For any interval I € T,, there exists a resource type i such that
the amount of utilized resource is at least [uP®] based on the defi-
nition of 7,. Therefore, the total work done on resource type i from
all jobs during this interval satisfies: _, 4; ; - wi,i)(pj) || [uPD] >

(i)
; w; (p;) i
1] uP®. Thus, we have: p- |1 < ¥_ f; -~ = X B -0 (p) <

d Z;;l Biy-a j(pj.). The last inequality is due to Lemma 4 (Inequality
7)), if PO > ”lz Note that Inequality (7) was proven for any ad-
justed job but it obviously holds for unadjusted jobs as well. Thus, if
P™in = min,_, ,PY> ﬂlz, we can derive:

Ul =p z [1]

I€l,
<d Y X i)

I€l, j=1

n

=dz (aj(p:.)~ Z ﬁj,1> . (C)]

j=1 Iel,

For any interval I € I, there exists a resource type i such that the
amount of utilized resource is at least [(1 — y)P?]. Using the same
argument, we can derive:

=Ty <d Y () X b)) - (10)
j=1 i=a

L. Perotin, S. Kandaswamy, H. Sun et al.

Thus, combining Inequalities (9) and (10), we can get:

W+ (=T <d Y (@) Y, B)
j=1

T€T,uI;

<d Y a(p)=d-A@P). O

j=1
4.3. Approximation results

We now derive the approximation ratio of MRSA, which combines
the resource allocation phase (Algorithm 1) and the list scheduling
phase (Algorithm 2). The following theorem shows the result for any
number d of resource types.

Theorem 1. For any d > 1 and if P™" > 7, the makespan of MRSA satisfies:

<pd +2y/pd + 1 <1.619d +2.545Vd + 1,

OPT

where ¢ = H‘/—
0.382 and p* =

is the golden ratio. The result is achieved at u* =1 —

ﬁl—'

\/_ ISy 272\/E+1 ’

We point out that P™" > 7 represents a reasonable condition on the
total amount of most discrete resource types (e.g., processors, memory
blocks, cache lines).

Proof. Based on the analysis of the list scheduling algorithm, by sub-
stituting 7 from Lemma 5 and T; from Lemma 6 into T =T, + T, + T3,
and if P™" > ”iz, we get:

T<CE)+ A(p)+<l—ﬂ—ﬁ>T2.

Applying the bounds for C(p’) and A(p’) in Lemma 3 from the re-
ESVE
2

1- i, which makes the last term above at most zero, we can derive:

source allocation algorithm, and when (1 — u)> < u, i.e., u >

1 d A
T<|=-+——"—)Topr = fa(ut;p) - Topr -
<p (1= _,,)> o ort
Clearly, f;(u,p) is an increasing function of u. Thus, to minimize
the function, we can set u* =1 — é In this case, we require P™" >

~ 6.854 and we define f,(p) 2 f,(u*,p) = % + %. By setting f/(p) =

=0 and by checking that f/(p) > 0 for all p, we get p* =

2 (1
\/@H that minimizes f,(p). Thus, the approximation ratio is given by

Fau* . p*)=d +21/¢pd + 1.

Remarks. When there is only one type of resource (i.e., d = 1), The-
orem 1 gives an approximation ratio of 5.164, which improves upon
the ratio of 5.236 by Lepére et al. [42]. In fact, Jansen and Zhang [36]
proved an even better ratio of 4.73 by deriving a tighter critical-path
bound than the one shown in Lemma 5. Unfortunately, their analysis
cannot be generalized to work for the case with more than one type of
resources.

While Theorem 1 proves the approximation ratio of the algorithm
for any d, the following theorem shows an improved result for large d.

Theorem 2. For any d > 22 and if P™" > d%/3, the makespan of MRSA
satisfies:

<d+3Va2+oa),

-

OPT

Vi
= iz

which is achieved at u* ~ and p* =

&

Journal of Parallel and Distributed Computing 184 (2024) 104792

Proof. Following the proof of Theorem 1 but by substituting T, and T
into Equation (8), and if p™in > ﬁ, we get:

1= 2u)Tl.
ul—p)

Applying the bounds for C(p’) and A(p’) in Lemma 3, and when 1 —

1-
T ou(d - /4)

(p)+ A(p)+<

u(lzf,) <0, ie., u< = \/— =1- E which makes the last term above at

most zero, we can derlve.

1-2u d
= <”(1 —p + (1= —p)) opT = gd(ﬂ P Topry -

—1=2u _1_
. Let X, = =% 1 = and Y,=—.Wecan then write: g;(u, p) =
7‘ + ﬁ . By deriving g, (u, p) with respect to p and setting the derivative

VA A
VT,
X,.Y, >0, clearly p*(u) € (0,1), thus is a valid choice. By substituting

p*(u) back into g,(u, p) and simplifying, we can get:

ga(up* (W) = (1/ X, + /dYM)2 2e,(w*.
We will now minimize g, (u) = 4 /% - ﬁ +4/ %. By deriving g, (u)

with respect to x and factoring, we can get:

to zero, we can get the best choice for p to be p*(u) =

hy(u)=Qd +4)u* —(d + 8> + 81> —4u+1,

ra) = 2u(1 = V(T = 1) =20 (uV/du(1 = 200) + 24> = 2u + 1)) .

As 2p? —2pu+ 1= p% + (1 — u)?> > 0 for any u € (0,0.5), r (x) is always
positive. Thus, the sign of g(’i (u) is the opposite of the sign of h,(u).
In the following, we will show that, if d <21, h,(u) is always positive

for any u € (0, ‘/—], and thus the optimal choice is y* = ‘/_ , which
gives the same result as in Theorem 1. Otherwise, if d > 22 there is

a unique optimal choice y* € (0, Eh \/—), which satisfies h,(u*) = 0. For

convenience, we define u* = %
First, we can compute, for any u € (0, 4], that:

and uf =§</4 .

R (1) =4Qd +)’ = 3(d + 8)p* + 164 — 4
=dpP8u—3)+42u - D(p* + 1 - p)*) <0.
We can also compute, for any u € [u®, u*], that:

h;’(y) =12Q2d +4)u® - 6(d + 8)u + 16

-3

2

212(2d+4)~(%>2—6(d+8)-(3)+16

~1.083d +4.416 >0

Thus, we can conclude the following:

* In (0, 48], hy(p) is a strictly decreasing function of u;
« In [u®, 4], h,(w) is a strictly convex function of u, and Rl (w) is a
strictly increasing function of u.

We can verify that, when d <21, the value of y* as suggested in The-
orem 1 remains the optimal choice that minimizes g,(u), and it yields
the same approximation result of Theorem 1.

We now focus on the case with d > 22. For any fixed u in (0, u%1,
we can easily show that A,(u) is a decreasing function of d (by deriving
hy(u) with respect to d). Thus, we have h,(u?) < hy,(u®) ~ —0.008 < 0.
Further, we have 7,(0) =1 > 0. Since h,(u) is a strictly decreasing func-
tion of u in (0, u®], we know that 7,(y) = 0 admits a unique solution u*

L. Perotin, S. Kandaswamy, H. Sun et al.

in this interval. Moreover, since h,(u) is a convex function in (4B, utl,
we have, for any y € [u®, u4], that:

ha(p) < hop () < max (hyy(u®), hyy (u™))
~ max(—0.008,-0.01) <0 .

This shows that h () > 0 in (0, 4*) and h,(u) <0 in (u*, uA]. Since
hy(p) and g;(ﬂ) have opposite signs, we get that g,(u) is a strictly de-
creasing function of x in (0,u*) and a strictly increasing function in
(u*, u). Thus, the optimal x to minimize g,(u) is given by u*.

As p* is the solution to a fourth-degree equation (i.e., h,(u) = 0), its
closed form, although exists, is too complicated to express. However,
observing that when d increases and if u is small enough, the dominat-
ing negative term of h,(u) is dyu® and the dominating positive term is
1. We can then get an estimate of y* ~ %, which gives the following

approximation ratio:
d¥/d +2d 1—%\/;+ Va2 -23/d

fd-1
—d+3Va2+0(Vd) .

This completes the proof of the theorem. []

gau) ~

Remarks. Theorem 2 holds for a relatively large number of resource
types (i.e., d > 22), which is unlikely to be practical in today’s resource
management systems. However, the theoretical result offers the first ap-
proximation ratio whose dominating factor (i.e., d) matches the lower
bound for local list-based scheduling (see Theorem 6). Thus, the re-
sult is asymptotically tight for this class of multi-resource moldable job
scheduling algorithms.

5. Improved approximation results of MRSA for some special
graphs

In the preceding section, we have derived the approximation ratios
of MRSA for general graphs. In this section, we will show improved
approximation results for some special graphs, namely, series-parallel
graphs or trees, and independent jobs without any precedence con-
straints.

5.1. Results for SP graphs or trees

We first consider jobs whose precedence constraints form a series-
parallel graph or a tree. A directed acyclic graph is a Series-Parallel (SP)
graph [6] if it has only two nodes (i.e., a source and a sink) connected
by an edge, or can be constructed (recursively) by a series composition
or a parallel composition of two SP graphs.® Trees are simply special
cases of general SP graphs.

In this case, we rely on an FPTAS (Fully Polynomial-Time Approx-
imation Scheme) proposed in [42] to find a near-optimal resource al-
location. The algorithm was proposed in the context of single-resource
scheduling, but can be readily adapted to work for multiple types of
resources (while first discarding the subset of dominated resource allo-
cations as shown in Step 1 of Algorithm 1).° The following lemma shows
the result. More details about the algorithm can be found in [42].

5 Given two SP graphs G, and G,, the parallel composition is the union of the
two graphs while merging their sources to create the new source and merging
their sinks to create the new sink, and the series composition merges the sink of
G, with the source of G, and uses the source of G, as the new source and the
sink of G, as the new sink.

© In essence, the FPTAS first decomposes an SP graph into atomic parts, then
uses dynamic programming to decide if an allocation p’ that satisfies L(p’) < X
can be found for a positive integer X, and finally performs a binary search on
X.

Journal of Parallel and Distributed Computing 184 (2024) 104792

Lemma 7. For any set of jobs whose precedence constraints form an SP
graph or a tree, and for any e > 0, there exists an FPTAS (with running time
polynomial in 1/e), which computes a resource allocation p’ that satisfies:

L(p") = max(A(P"), C("))

<+e) Ly, <(1+e€) Tppr .

We can now use the above FPTAS to replace Step 2 in resource allo-
cation (Algorithm 1) and combine it with list scheduling (Algorithm 2).
The following theorem shows the approximation ratio for any number
d of resource types.

Theorem 3. For any d > 1 and if P™" > 7, the makespan of MRSA for SP
graphs or trees satisfies:

<(+e)-(pd+ 1)< +e)-(1.619d +1) ,

OPT

is the golden ratio. The result is achieved at u* =1 —

~
~

where ¢ =
0.382.

1
¢

Proof. Following the proof of Theorem 1 by substituting 7| from
Lemma 5 and T from Lemma 6 into T =T + T, + T, and if P™" > “lz,
we get:

T<C@p)+ %A(p’)+<l—y—ﬁ>7}.

Then, by applying the bounds in Lemma 7, and when (1 — u)> < u,
ie, u> %g =1- é, we can derive:

T§(1+€)'<1+ >TopTéfd(/4)'T0PT'

_d
1 =w

Clearly, f,(u) is an increasing function of y. Thus, the minimum
value is obtained by setting y* =1 - % In this case, the approximation

ratio is given by f,(u*) = (1 +¢) - (¢d + 1), with the condition P™" >
~6.854. [

The approximation ratio can be further improved for d > 4 resource
types, as shown in the following theorem.

Theorem 4. For any d >4 and if P™™ > d + 2v/d — 1, the makespan of
MRSA for SP graphs or trees satisfies:

g(1+e)~(d+2\/ﬁ),

OPT
which is achieved at y* =

1
Va-1+1"

Proof. Following the proof of Theorem 1 but by substituting T, and T
into T =T, + T, + T3, and if P™" > “Lz, we get:

<122
u(l—p)

Applying the bounds in Lemma 7, and when 1 -
3-4/5
2

’ d ’ _ 1-2u
@) 1—;4A(p)+<1 n(l—u))T"

1-2u .
< .e. <
e S 0,ie, u<

, we can derive:

1-2
T5(1+e)-<—”+L>TOPT
u(l=—p) 1—p

1, d-1 A
=(1+€)'<—+—>T =84 - Topy -

PR R d oPT
0 ld__ﬂl)z =0 and by checking that g/ (1) > 0,

3-V5
2

, which is at most == for d > 4. Thus, with the con-

. 1
By setting g/,(u) = et

we get y* =

1
Vd—-1+1

L. Perotin, S. Kandaswamy, H. Sun et al.

dition p™in > (Ml)z =d +24/d—1 and d > 4, we get the approximation
ratio:
g =4 | V=T —=—

B Vd—-1+1

=(1+e)~(d+2\/ﬁ) . O

5.2. Results for independent jobs

We finally consider a set of independent jobs without any prece-
dence constraints. For this case, Sun et al. [61] presented a 2d-
approximation algorithm for any d > 1, while we show improved results
for d > 3. Here, we rely on an optimal multi-resource allocation algo-
rithm proposed in [61] as Step 2 of our Algorithm 1. The algorithm
computes the resource allocation in polynomial time as shown in the
lemma below. More details of the algorithm can be found in [61].

Lemma 8. For any set of independent jobs, a resource allocation p’ can be
computed in polynomial time that satisfies:

L(p") = max(A(p"), C(p")) = Lypin < Topr »

where C(p’) = max j=lnlj (p;) denotes the maximum execution time of any
job under allocation p’, which becomes the critical path when there is no
precedence constraint.

For a set of independent jobs, while the area bound (Lemma 6) re-
mains unchanged, in the following we provide a modified critical-path
bound.

Lemma 9 (Modified critical-path bound). For any choice of u € (0,0.5), we
have:

cIf T, =0 uT, <CP');
cIf1,#6, T, +T, < C(p).

Proof. Recall that there are three categories of intervals 7,, I, and ;.
Based on the proof of Lemma 5, during any interval I € I, UT,, there is
no ready job in the queue. Since all jobs are independent, it means that
all jobs have been scheduled. This implies that all intervals in 7, happen
before all intervals in Z,, since there is no new job arrival and jobs only
complete. Further, all intervals in 7 happen before all intervals in I,
using the same argument. Now, consider a job j that completes the last
in the schedule. We know that j must have started during I; or at the
beginning of 7,. We consider two cases.

Case (1): I, = . In this case, job j is executed during all intervals
in 7, and it could be adjusted. Thus, according to Lemma 4 (Inequality
(6)), we have uT, < - 1;(p)) <t;(p}) <max;_;_,1;(p})=C(@").

Case (2): I, # @. In this case, job j is executed during all intervals in
T, and all intervals in 7, so it must be unadjusted (since it is executed
during I,). Thus, we have T + T, <t;(p)) = 1;(¢p)) < max;_;_,1;,(¢)) =
ce). O

The following theorem summarizes the best approximation ratios
that could be obtained for independent jobs with different number d of
resource types.

Theorem 5. The makespan of multi-resource scheduling for any set of in-
dependent jobs satisfies T /T,y < r, where:

2d,
1.619d +1,

d+2vd -1,

ifd=1,2, and P™" > |
ifd =3, and P™n > 7
ifd>4, and P™ >d +2+/d - 1

r=

10

Journal of Parallel and Distributed Computing 184 (2024) 104792

Proof. When d = 1,2, we can just apply the multi-resource scheduling
algorithm in [61] to get 2d-approximation. Otherwise, we consider both
cases as stated in Lemma 9.

Case (1): Z; = 0. In this case, the makespan is given by T =T, + T3.
Substituting uT, < C(p’) from Lemma 9 and uT, + (1 — p)T3 < d - A(p’)
from Lemma 6 into 7', we get:

d
l—u

1-2u
Tou(l—p)
1-2u d
< +—) T
(M(l—ﬂ) 1—/4) ort

= &d (/4) : TopT .

c@p)+ Ap)

(by Lemma 8)

Case (2): I, # 0. In this case, the makespan is given by T =T, + T, +
Ts. Substituting T; + T, < C(p’) from Lemma 9 and uT, + (1 — p)T3 <
d - A(p’) from Lemma 6 into T, we get:

U
l—u

r<ce)+— ‘_1 SA®) - 7T

< (1 + 1L> “Topr (by Lemma 8)
—u
& Sa) - Topr -

Based on the two cases above, the overall approximation ratio is thus
given by max(f,(u),g,(1)), with the condition P™" > Ml—z Thus, when
d =3, by following the proof of Theorem 3 and setting y* ~ 0.382, the
ratio is f,;(u*) < 1.619d + 1. When d > 4, we can follow the proof of
Theorem 4 by setting u* = \/d_—11+1' In this case, the ratio is g,(u*) =

d+2yd-1. [

6. Lower bound for local list-based scheduling

In this section, we prove a lower bound on the approximation ra-
tio of any deterministic algorithm that, in the second phase, uses local
list-based scheduling to schedule the jobs. This means that the algo-
rithm will only consider the local characteristics of the jobs, such as
their execution times or areas, when prioritizing them in the list/queue
and will not take any global characteristics, such as the jobs’ relative
positions in the precedence graph, into consideration. The following
theorem shows this lower bound, which holds regardless of the resource
allocation scheme for the first phase.

Theorem 6. Any deterministic list scheduling algorithm with local job pri-
ority considerations is no better than d-approximation for the multi-resource
scheduling problem.

Proof. The lower bound is constructed by using a set of jobs whose
precedence constraints form a tree. Each job takes unit-time to com-
plete, and only requires a unit resource allocation from a single resource
type. For each resource type i, there is a total amount P) =2 of avail-
able resource. Fig. 1 illustrates our lower bound instance with n=2Md
jobs, where M is an integer multiple of 3. The nodes represent the jobs,
the arrows represent the precedence constraints, and the color of a node
represents the single resource type the corresponding job requires. The
jobs form a grid, and the job in the j-th row and k-th column is denoted
by (j, k). They satisfy the following properties:

+ The number of jobs in each row of the grid is defined as follows.
Forall j €[1,2(d—1)], we have k € [1, M]. For all j € [2d —1,2d + 1],
we have k €1, 2TM].

« For all j >1 and k > 1, job (j,k) requires resource type i =
min([é] ,d). For all j > 2, job (j, 1) requires resource type i = [%] -1,
while jobs (1,1) and (1,2) require resource type i = 1.

+ The jobs have the following dependencies. For all j > 1 and &k > 1,
we have (j,k) = (j,k+1). For j € [1,d — 1], we have (2j,1) - (2j +
1,1) and (2j,1) = (2j +2,1). Finally, we have (2d,1) —» (2d + 1,1).

L. Perotin, S. Kandaswamy, H. Sun et al.

M

- 0-0-0~ - -®
*-0-0-0~ - -®
!

-0~~~ - -®
-0~ 0~ - -®
!

OO O-®~ - =® |,
- 0-0-0~ -®
!

|

O~ O-0-0~ - =@
OO~~~ - -®

!
R
¢~ -~®

OO~ ®

2M/3

Fig. 1. Lower bound instance with an approximation ratio of d for any deter-
ministic list-based scheduling algorithm with local job priority considerations.

The optimal schedule can be obtained by prioritizing the job de-
pendencies going downward, thus enabling more resource types to be
utilized concurrently. This results in a makespan of T,y =M +d — 1.
Any deterministic list scheduling algorithm with only local priority con-
siderations cannot distinguish jobs that require the same resource type.
Hence, in the worst-case, it could only utilize one type of resource at
any time by prioritizing horizontal job dependencies. This results in a
makespan of T = M(d—1)+ % =Md+ % Choosing M > 3(d? —d), the
worst-case approximation ratio is given by:

1

d+§ d+§
>

el gyl
3d

M 1
T _ Md+? _
Topr M+d-1 14

This completes the proof of the theorem. []

Remarks. Theorem 6 implies that MRSA, when handling a large num-
ber of resource types as shown in Theorem 2, essentially achieves a
tight approximation ratio up to the dominating factor (i.e., d) among
the generic class of local list-based scheduling algorithms.

7. Simulation results

This section presents the results obtained by using simulations for
evaluating the performance of MRSA and comparing it against two
heuristic algorithms. For reproducibility purpose, the simulation code
is publicly available at: https://gitlab.inria.fr/luperoti/mrsa.

7.1. Simulation setup

Workflow generation. In our simulations, we focus on evaluating the al-
gorithms under general graphs/workflows (not special graphs such as
trees or SP graphs). For that purpose, we use DAGGEN [62], a synthetic
task graph generator capable of generating DAGs of different struc-
tures. DAGGEN has been previously used for evaluating single-resource
scheduling algorithms for moldable jobs [33,15]. The graphs generated
by DAGGEN have their jobs organized in layers, and important param-
eters that influence the structure of the graphs are described below.

11

Journal of Parallel and Distributed Computing 184 (2024) 104792

Fig. 2. A graph consisting of 100 jobs generated by DAGGEN with fat = 0.5,
density = 0.5, regular = 0.5, and jump = 1.

* fat: controls the width of the DAG, i.e., the maximum number of
jobs that can be executed concurrently;

* density: determines the number of dependencies between jobs of
two consecutive layers of the DAG;

« regular: specifies the regularity of the distribution of jobs between
different layers of the DAG;

+ jump: controls the maximum number of layers that can be spanned
by the edges of the DAG.

The range of possible values for fat, density, and regular is between
0 and 1, and jump can take any integer at least 1. In our default simula-
tion setting, we will choose fat = 0.5, density = 0.5, regular = 0.5, and
jump = 1. In Section 7.4, we will also vary these parameters to evalu-
ate their impacts on the performance of the algorithms. Fig. 2 shows a
graph consisting of 100 jobs generated by DAGGEN under this setting.

Job speedup models. We extend some common speedup models to de-
fine how resources of different types interact and contribute to the
overall speedup of a moldable job. In particular, we adopt the follow-
ing execution time functions for the jobs proposed in [61] that extend
the classical Amdahl’s law [1] and power law [51] speedup models.

d i .
* Amdahl-Sum: t(p) = W (so +20 ﬁ),
+ Amdahl-Max: t(p) = W (SO +max;_; 4 /%);

)

Si
)

« Power-Sum: t(p)=W <ZL] W

» Power-Max: t(p) =W (max,:l“d

In all the models above, W denotes the total amount of work to
be completed by the job, and s; denotes the fraction of work for the
resource type i. For the two Amdahl models, s, denotes the sequential
fraction that is not affected by the resource allocations. For the two
power models, «; denotes the efficiency factor for the utilization of the
resource type i. We note that all of these speedup models above satisfy
the monotonic job assumption stated in Section 3.1.

In our simulations, the sequential fraction s, is uniformly gener-
ated in (0,0.2], and the fraction s; for each resource type i is uniformly

L. Perotin, S. Kandaswamy, H. Sun et al.

Journal of Parallel and Distributed Computing 184 (2024) 104792

°
°

°
i

®

°
B

°
°
B

Makespan of MRSA (power-of-2 allocations)

Makespan of MRSA (power-of-2 allocations)

°
>
°
-

07 o8 09 10 I 12
Makespan of MRSA (all allocations)

o
>
o
=

o 08 10 12
Makespan of MRSA (all allocations)

(a) Amdahl-Sum (b) Amdahl-Max

Makespan of MRSA (power-of-2 allocations)

Makespan of MRSA (power-of-2 allocations)

10 05 06 07 08 09 10 11 12
Makespan of MRSA (all allocations)

(d) Power-Max

12 4 16 18 20
Makespan of MRSA (all allocations)

(c) Power-Sum

Fig. 3. Scatter plots showing the makespans of MRSA for 50 workflows with n =30 jobs, d = 3 resource types, and P = 64 for each resource type under the four
speedup models. Each point represents a workflow, the x-axis represents the makespan when considering all possible resource allocations, and the y-axis represents

the corresponding makespan when using only power-of-2 allocations.

generated in (0, 1] and then normalized such that ZLI s;=1-=sy. The
efficiency factor a; is uniformly generated in [0.3,1). Finally, the total
work W is uniformly generated in (0, 1]. These follow the same param-
eter choices as in [61]. In Section 7.5, we will also vary the ranges for
the sequential fraction s, and the efficiency factor «; to evaluate their
impacts on the performance of the evaluated algorithms.

Comparing algorithms. To the best of our knowledge, we are not aware
of any previously proposed multi-resource scheduling algorithms for
moldable workflows. Hence, we compare our algorithm MRSA against
two baseline heuristics, which are described below.”

» minTime: allocates resources to minimize the execution time of each
job;

» minArea: allocates resources to minimize the average area of each
job.

Both minTime and minArea also use list scheduling to schedule the
jobs (in Phase 2). Thus, they only differ from MRSA in how resources
are allocated (in Phase 1). For all the evaluated algorithms, we use the
LPT (Longest Processing Time) priority rule to order the jobs in the
list schedule, which is known to work well for reducing the makespan.
Thus, if the waiting queue contains more than one job, these jobs will be
ordered by non-increasing order of execution time given their resource
allocations.

While minTime and minArea could compute the resource allocations
for a job relatively efficiently,® MRSA would take O(ITZ, P?)) time by
examining all possible resource allocations. Although this remains poly-
nomial in the input size, when the total amount of available resources
in the system is large, the complexity of MRSA can be quite high, mak-
ing simulations feasible only for small problem instances. Thus, to speed
up the simulations, we consider only the power-of-2 choices (i.e., 1, 2,
4, 8, ...) when computing MRSA'’s resource allocation for each resource
type. This leads to a factor of 2 increase in the approximation ratio of
the algorithm in the worst case,’ but it drastically reduces the complex-
ity of the algorithm to O(TI” Ig P?), thus allowing to simulate larger
problem instances in a reasonable amount of time.

7 In Section 7.7, we also compare MRSA with a few other approximation
algorithms that are designed for scheduling a single type of resource.

8 Given the monotonic job assumption, minTime could allocate all the avail-
able resources to a job for minimizing its execution time, while minArea would
typically allocate a small amount of resource to a job for minimizing its area.

° For any job with resource allocation p, = (p;.“ Lo, p;.d)), the allocation ob-
tained by rounding all the p;.[) ’s to the closest higher power-of-2 results in a
smaller time and an area at most twice as high. Therefore, the best trade-
off achievable using only power-of-2 choices is at most twice as high as
L(p*) = L,,;,,» and the rest of the analysis still holds with this extra factor of
2.

12

The scatter plots in Fig. 3 show the makespans of MRSA for 50
workflows with n = 30 jobs, d =3 resource types, and PY) = 64 for
each resource type under the four speedup models. In the plots, each
point represents a workflow, the x-axis represents the makespan when
MRSA considers all resource allocations, and the y-axis represents the
corresponding makespan when MRSA uses only power-of-2 allocations.
When running the simulations on a laptop, it took more than 10 hours
for each speedup model by considering all allocations, while it took only
a few seconds by considering power-of-2 allocations. In terms of the
makespan, from the figure, we can see a generally strong and positive
correlation between the two allocation schemes for the Amdhal-Sum
and Power-Sum models. In the case of Amdahl-Max and Power-Max
models, the makespans obtained when using power-of-2 allocations are
even better than those obtained when using all allocations for most
workflows. This is possibly because power-of-2 allocations potentially
allow the ready jobs to be better packed/scheduled in the second phase
of the algorithm. Given these results and to enable faster simulations,
we will use power-of-2 allocations for MRSA in all the experiments.

7.2. Performance comparison of algorithms

We first evaluate and compare the performance of the three al-
gorithms (MRSA, minTime and minArea) for workflows that contain
n =100 jobs using d =3 types of resources. Each resource type i has up
to P = 1024 amount of available resources, and we consider the follow-
ing two scenarios.

 Uniform P: the total amount of available resources across all re-
source types is the same. In this experiment, we set P() =256 for
all 1<i<d.

* Non-uniform P: the total amount of available resources may differ
among different resource types. Specifically, for each resource type
i, the value of P is randomly selected from (32,64, 128,256,512,
1024}.

Other parameters (e.g., for generating graphs and job execution
times) are set as their default values/ranges as described in Section 7.1.
In the simulations, we randomly generate 50 workflows and obtain, for
each workflow, the makespans of the three algorithms. We then normal-
ize the obtained makespans by the lower bound (as shown in Lemma 1)
for that workflow and report the statistics on the normalized makespans
across the 50 workflows.

The boxplots in Fig. 4 show the simulation results for the three al-
gorithms in the uniform P scenario under the four speedup models. We
can see that MRSA outperforms the other two heuristics significantly
in all cases. In terms of the makespan distribution, even MRSA’s worst
makespan for the 50 workflows is better than the best makespan ob-
tained by the other two heuristics. When comparing the median/mean
makespan across the 50 workflows, MRSA is almost six times faster than
at least one of the two heuristics.

L. Perotin, S. Kandaswamy, H. Sun et al.

Journal of Parallel and Distributed Computing 184 (2024) 104792

18 ° 12 o _— 25 °

16 T 30 T
c 14 = c 10 5 c — c 20 .
& & & 25 &
- - || 8 - -
815 . 8 & 8 | 8
< e 2 T 2 4 2
S s 8 L [S] il
= > ‘ = 20 =15 3
510 E= - = b= = °
& 5 & I & &
® g i T 6 T =
£ £ £15 €10 T
S S S S :
Z 6 =z =z =z .

4
4 10 Lo
. === 5 ::;
5 == 5 === 5 —— =
MRSA minTime minArea MRSA minTime minArea MRSA minTime minArea MRSA minTime minArea

(a) Amdahl-Sum (b) Amdahl-Max

(c¢) Power-Sum (d) Power-Max

Fig. 4. Boxplots showing the normalized makespans of the three algorithms for 50 workflows with n =100 jobs, d = 3 resource types, and uniform P (=256) under

the four speedup models.

12

=
o

©

i

Normalized Makespan
o

Normalized Makespan

s
o

IS
S

~

o

w
o

w

=)
N
o

N
o

-

7

N
o

Normalized Makespan
Normalized Makespan

-

«
-
o

[
o

—_

——

w

MRSA minTime MRSA

(a) Amdahl-Sum

minTime minArea

(b) Amdahl-Max

minArea

MRSA MRSA minTime minArea

(d) Power-Max

minTime minArea

(¢) Power-Sum

Fig. 5. Boxplots showing the normalized makespans of the three algorithms for 50 workflows with » = 100 jobs, d = 3 resource types, and non-uniform P (up to

1024) under the four speedup models.

—o— MRSA
a— minTime.

—o— MRSA
4 minTime

-
N

— minArea —+— minArea

=
© o

Normalized Makespan
o

Normalized Makespan

ES

4 g e

-

-— — e .+ .

ol % o MRSA 25{ o MRSA
- mintime

— minArea

35

2
5
2
H
N
o
/
/
/
/
/
/
/

30

-
o

=
o

15

Normalized Makespan
Normalized Makespan

10

10 50 100 150

number of jobs n

200 10 50 100 150 200

number of jobs n

(a) Amdahl-Sum (b) Amdahl-Max

Fig. 6. Impact of the number of jobs n on the performance

Fig. 5 shows the corresponding results in the non-uniform P sce-
nario. The results are quite similar to those in the uniform scenario, and
MRSA again significantly outperforms the other two heuristics in terms
of the makespan distribution, as well as the mean and median values.
In contrast to the uniform P scenario, MRSA’s makespans now exhibit
a slightly more skewed distribution and a larger range of variation, due
to the non-uniformity in the amount of available resources of different
types. But in both scenarios, we can observe that MRSA’s performance
is much better than the theoretical analysis predicts, which under this
setting has an approximation ratio of 10.26 according to Theorem 1,
while the normalized makespan of MRSA is at most 7 in our simulation.

Due to the similarity of results in both scenarios, we will use the
uniform scenario for all subsequent experiments, which evaluate the
impacts of different parameters from the default setting considered in
this section.

7.3. Impact of system parameters

This section presents the simulation results that focus on evaluating
the impacts of different system parameters on the performance of the

13

50 100

number of jobs n

150 200 100

number of jobs n

150

(c) Power-Sum (d) Power-Max

of the three algorithms under the four speedup models.

algorithms. In particular, we consider three parameters: the number of
jobs in a workflow (n), the amount of available resources (P), and the
number of resource types (d). In the experiments, only the evaluated
parameter is varied and all other parameters are set at their default
values as in Section 7.2. We again generate 50 workflows and compute
the normalized makespans of the three algorithms for each workflow.
The results are reported by averaging the normalized makespans across
the 50 workflows for each algorithm.

Impact of number of jobs n. Fig. 6 shows the results when the number of
jobs n is varied between 10 and 200. It is evident that MRSA consistently
performs well in all cases. As n increases, its normalized makespan stays
almost constant for the two Amdahl models and only increases slightly
for the two power models. In contrast, we can observe a steady in-
crease in the normalized makespan of minTime and a significant drop
for minArea. This is because as the jobs do not have perfectly linear
speedup, minTime becomes less efficient by allocating all the resources
to each job. On the other hand, minArea allocates a small amount of
resources to each job, which enables more jobs to be executed concur-
rently and more efficiently when there are more jobs in a workflow.

L. Perotin, S. Kandaswamy, H. Sun et al.

WX 10 —e— MRSA —e— MRSA X
14 = 50 minTime 2 4~ minTime z’/
= 30 /
7 9 — minArea — minArea 7
c 12 c c c A
g g8 g 40 // g 25 .,
a a . a a
RN g4, g p g 4
2 2 —e— MRSA 2 55 H 220 e
B 5 6 +— minTime - 2 - ~
g 8 g —— minArea g g 5
s s 5 s v 5 15
E s E N E 20 e E
2 » ® 2 4 N 2 P 210
41 —a— MRSA N e .
4+~ minTime \\ 3 - 10 " * 5 5 =
o 7 minarea e——— 5 —,—— e 5 £ 5

Journal of Parallel and Distributed Computing 184 (2024) 104792

32 64 128 256 512

Amount of available resource P

1024 64 128 256 512

Amount of available resource P

1024

(a) Amdahl-Sum (b) Amdahl-Max

64 128 256 512
Amount of available resource P

1024 64 128 256 512

Amount of available resource P

(¢) Power-Sum (d) Power-Max

Fig. 7. Impact of the amount of available resources P on the performance of the three algorithms under the four speedup models.

30

16] »—_ o MRSA 16] o MRSA — 25 o MRSA
T .+ minTime \ & minTime N s ~ & minTime
14 z —— minArea 14 —— minArea 5 R il —— minArea
o [—
= = H S 20 Sk
8 12 8 12 8 = ==
g g] g E—
= = 220 =
s 10 i = 107, s —e— MRSA = 15
- ‘ - ey + minTime -
8 8 &g 215 — minArea 8
© © = ©
g 6 § 6 e g g 10
2 2 = 10 2 *
4 4 . SE——— .
5 "/’////.”’ 3 =
2 2
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Number of resource types d Number of resource types d Number of resource types d Number of resource types d
(a) Amdahl-Sum (b) Amdahl-Max (¢) Power-Sum (d) Power-Max
Fig. 8. Impact of the number of resource types d on the performance of the three algorithms under the four speedup models.
—o— MRSA A 501 o mrsa 404 —e— MRSA 25
40 minTime minTime o minTime s
—c minarea — minarea a5 L — minarea S
35 40 20 B
c c c c M
5 5 g 30 5 y
230 @ @ @ p
k3 k3 30 k3 25 k3 &
22 = = ER L Pk
T 20 3 £ 3 20] ¥
& 8oy & & N
S W S S S o
Z 10 ‘ 10 Z 10 = « e
« e 2 5 e e wrsa
5 » e 5 e —— " - minTime
—a—d——o -—o—o— —e—* h+ « = —%— minArea
0
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

fat parameter fat parameter

(a) Amdahl-Sum (b) Amdahl-Max

fat parameter fat parameter

(¢) Power-Sum (d) Power-Max

Fig. 9. Impact of the fat parameter in DAGGEN on the performance of the three algorithms under the four speedup models.

Impact of amount of available resources P. Fig. 7 shows the impact of
the amount of available resources P (uniform across all resource types)
when it is varied as a power-of-2 between 32 and 1024. We can see
that the normalized makespan of MRSA decreases as the amount of re-
sources increases, demonstrating its ability to leverage the availability
of more system resources to improve performance. The only exception
is for the Power-Sum model, where the normalized makespan of MRSA
appears unaffected by P. For minTime, the performance trend is similar
to that of MRSA but it remains worse than MRSA by a significant mar-
gin. For minArea, we see a general increase in normalized makespan as
P increases. This is because not all resources will be utilized in this case
due to minArea’s conservative resource allocation strategy.

Impact of number of resource types d. Fig. 8 shows the performance of
the algorithms when the number of resource types d is varied from 1
to 5. Although the approximation ratio of MRSA as suggested by The-
orem 1 grows linearly with d, its practical performance as shown in
the figure appears not much affected by the number of resource types,
except for the Power-Sum model, where the normalized makespan grad-
ually increases with d. The performance trend for minTime is similar to
that for MRSA, and the impact on minArea varies for different speedup
models, but MRSA remains the best performer in all cases.

14

7.4. Impact of graph structure

This section evaluates the impact of workflow/graph structure on
the performance of the scheduling algorithms. As described in Sec-
tion 7.1, four parameters (i.e., fat, density, regular and jump) affect
the structure of the graphs generated by DAGGEN. To evaluate their
impacts, we vary fat, density, and regular from O to 1 at an increment
of 0.1, and vary jump from 1 to 5 at an increment of 1. Again, all other
parameters are set at their default values, and the average normalized
makespans across 50 workflows are reported for all algorithms.

Impact of fat parameter. The fat parameter controls the width of a
graph. Fig. 9 shows that, as the graph becomes wider, the normalized
makespan of MRSA experiences only a mild increase, whereas minTime
has a sharper increase in normalized makespan. While minTime allo-
cates all the resources to each job and thus executes them sequentially,
given a fixed number of jobs, its makespan is likely not affected but
the makespan lower bound will decrease due to increased graph width
(hence decreased graph depth and critical-path length). This results in
an increase in minTime’s normalized makespan. On the other hand,
we see a decrease in the normalized makespan for minArea. This is be-
cause a larger graph width allows more jobs to be executed concurrently

L. Perotin, S. Kandaswamy, H. Sun et al.

Journal of Parallel and Distributed Computing 184 (2024) 104792

16 — —e— MRSA N — e 22.5 .
T e 14 N &~ minTime, = S = S — W
14 " i e —< minArea 25 20.0 e
g 15 . g 5 § 175 -
Q aQ o Q
g 2 b @
L £ 10 £ 20 £ 150
S 10{ o wrsa = X = o MRSA z o MRSA
+— minTil - +— minTime .
E a5 minsres g Bl e e » 2 g - — minarea gl A
E € g g 100 e
s 6 S S S .
Z z Z 0] » Z 75 = -
4 4 .
e) 70 s .
R e e DD P DY gl . -
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
density parameter density parameter density parameter density parameter
(a) Amdahl-Sum (b) Amdahl-Max (c) Power-Sum (d) Power-Max
Fig. 10. Impact of the density parameter in DAGGEN on the performance of the three algorithms under the four speedup models.
e . e 200 PR e e e
14 10 - ” g, e e
9 ¥ 25 18
22 g5 2 E 16
§ T T 8
- = N = = BT e X L
R e P RN T 7 =] = 2 =
- +— minTime - +— minTime - +— minTime o 12 4 minTime
@ 8] —— minrea e 6 —— minArea 9 —— minArea 9 —— minArea
s s 5 15 s 10
E s E 5 E £ ; i
5 5 5 5 s *
z Z 4 z 10 z
4 3 . - “ . . °
5 *=—w 5 o+ oo oo+ . 4] T T e——e———e . .
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
regular parameter regular parameter regular parameter regular parameter
(a) Amdahl-Sum (b) Amdahl-Max (c) Power-Sum (d) Power-Max
Fig. 11. Impact of the regular parameter in DAGGEN on the performance of the three algorithms under the four speedup models.
16 o L N 16| —— MRsa N — 200 p——
= e & o minTime 5 =
—+— minArea ——
14 14 TR ik
c c « c c
212 212 2 s
$ $ 8 20 $ 15.0
k] k] k] k]
210 o~ MRSA 210 2 o~ MRSA 2 —o— MRSA
5 o minTime 5 . 5 o minTime 3 12:51|a minTime
_g 8 —<— minArea _g 8 _g 15 —<— minArea _g —+— minArea
© © e —— = © ® 10.0 ot
E E E E
s 6 s 6 s s .
75 ’ . 7.5
4 4 . 3 e
. 5.0 e
i = ——————————N, 2 e e
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

jump parameter jump parameter

(a) Amdahl-Sum (b) Amdahl-Max

jump parameter jump parameter

(¢) Power-Sum (d) Power-Max

Fig. 12. Impact of the jump parameter in DAGGEN on the performance of the three algorithms under the four speedup models.

by minArea, which only allocates a small amount of resources to each
job.

Impact of density parameter. The density parameter controls the num-
ber of dependencies between jobs of two consecutive layers of a graph.
Fig. 10 shows that density barely affects the performance of MRSA,
and as it increases, the normalized makespans of both minTime and
minArea tend to decrease. This is probably due to the increase in the
critical path and hence the makespan lower bound that has resulted
from increased connectivity between layers of the graph.

Impact of regular parameter. The regular parameter controls the distri-
bution of jobs between different layers of a graph. Fig. 11 shows that
this parameter has little impact on the performance of all three algo-
rithms.

Impact of jump parameter. The jump parameter controls the maximum
number of layers that can be spanned by the edges of a graph. Fig. 12
shows that MRSA is again not affected by this parameter, except for the
Power-Max model where its normalized makespan has a slight increase.
The performance of minArea is also not affected much by jump, except
for the Power-Sum model where its normalized makespan decreases. A
larger jump potentially reduces the critical-path length of a graph and

15

hence the makespan lower bound. This causes a uniform increase in the
normalized makespan for minTime, as can be seen in the figure.

7.5. Impact of job speedup functions

In this section, we evaluate the impact of the jobs’ speedup functions
on the performance of the algorithms. In particular, we focus on two
parameters, namely, the sequential fraction s, (in the Amdahl models)
and the efficiency factor «; (in the power models). Both parameters
control the degree of parallelism for a job: while a larger s, makes the
job less parallelizable, a larger «; makes the job more parallelizable. In
this set of simulations, we choose three different ranges (small, medium
and large) for setting these two parameters.

For the sequential fraction s, in the two Amdahl models, its ranges
are set as follows.

+ small: s, is uniformly generated in (0,0.1];
+ medium: s, is uniformly generated in (0.2,0.3];
« large: s, is uniformly generated in (0.4,0.5].

For the efficiency factor «; in the two power models, its ranges are
set as follows.

L. Perotin, S. Kandaswamy, H. Sun et al.

= MRSA ® minTime = minArea

-II .II al

small so medium so large so

= MRSA ® minTime ® minArea

.II b L

small so medium so large so

i~}

25

=3

8

Normalized Makespan
Normalized Makespan

6
4
2
0

(a) Amdahl-Sum (b) Amdahl-Max

Fig. 13. Impact of the sequential fraction
algorithms.

—
*(2.423)
il 0.2 0.3 0.4
I

(a) Amdahl-Sum

0.9

2672 2.448

08 2632

2.412

2592
b7 2.376
2552
06 2340
2512
«0.5 2304
2472
0.4 2268
2432

0.3

MCEED)

2.392 2232

0.2 2.352 2.196

2,160

0.

2.312

0.3
u

(b) Amdahl-Max

0.4

Journal of Parallel and Distributed Computing 184 (2024) 104792

= MRSA ® minTime ® minArea = MRSA = minTime = minArea

= B --I -_I

small o; medium o large o

Normalized Makespan
Normalized Makespan

small o; medium o large o

(c) Power-Sum (d) Power-Max

sy (in the two Amdahl models) and the efficiency factor «; (in the two power models) on the performance of the three

"(6.253) *(a.247)

0.2 0.3

u

(d) Power-Max

0.2 0.3 0.4

u

0.4

(¢) Power-Sum

Fig. 14. Impact of parameters x and p on the performance of MRSA under the four speedup models. The red dot (+) indicates the combination of x and p that
gives the best simulated average normalized makespan (in parentheses), while the white plus sign (+) indicates the combination as suggested by Theorem 1 (with

simulated average normalized makespan in parentheses).

+ small: «; is uniformly generated in (0.2,0.4];
+ medium: «; is uniformly generated in (0.5,0.7];
« large: ¢; is uniformly generated in (0.8, 1].

Fig. 13 shows that MRSA is not much affected by different ranges of
these two parameters in all speedup models and it consistently performs
well, illustrating its ability to adapt to variations in the speedup func-
tions of the jobs. For the two Amdahl models (as shown in Fig. 13(a,b)),
we can see an increasing trend in the normalized makespan of minTime
as s, increases and a decreasing trend in the normalized makespan of
minArea. This is because when the jobs become less parallelizable (with
an increased sequential fraction s,), the minTime algorithm that allo-
cates all resources to a job becomes less efficient, and it calls for a more
conservative resource allocation strategy, which is what minArea does.
The same can be observed and explained for the two power models (as
shown in Fig. 13(c,d)). In particular, as «; increases, which makes the
jobs more parallelizable, minTime becomes more efficient in resource
allocation, thus its normalized makespan decreases. On the other hand,
the normalized makespan of minArea increases due to its inability to
adapt to changes in job characteristics and to utilize all the available
resources in the system. Note that when ¢; is large (i.e., close to 1), the
jobs become almost fully parallelizable, thus allocating all resources to
a job (as is done by minTime) is close to being optimal, which is why
minTime fares even better than MRSA in this case.

7.6. Impact of MRSA parameters

Two parameters p and p are used in MRSA and they are involved
in the derivation of the algorithm’s approximation ratio. According to
Theorem 1, their values are optimized at x* ~ 0.382 and p* ~ 0.312 when
there are three types of resources (i.e., d = 3). In this experiment, we
aim to evaluate the impact of these two parameters on the practical
performance of the algorithm.

Fig. 14 shows the normalized makespan of MRSA (averaged over 50
workflows) under the four speedup models when y is varied from 0.1 to
0.5 and p is varied from 0.1 to 0.9, both with an increment of 0.01 each
time. The red dot (e) in each plot indicates the combination of y and p

16

that gives the best average normalized makespan (in parentheses) under
the respective speedup model in our simulation, while the white plus
sign (+) indicates the combination as suggested by Theorem 1 with av-
erage normalized makespan obtained in simulation in parentheses. We
can see that the simulation results are not exactly in line with the theo-
retical analysis. For the two Amdahl models, the best y is between 0.15
and 0.2, and the best p is close to 0.9. However, the difference in av-
erage normalized makespan is relatively small (i.e., within 0.2 in both
cases). For the two power models, the best u is around 0.3, and the
best p is between 0.6 and 0.7. In these two cases, there is a larger dif-
ference in average normalized makespan (i.e., 2.67 in Power-Sum and
0.68 in Power-Max). Such a discrepancy is possibly due to the follow-
ing reasons: (1) the approximation ratio derived in Theorem 1 is not
tight, hence the suggested u* and p* are not optimal; (2) the theoretical
analysis assumes the worst-case scenario, thus may not reflect the prac-
tical performance as reported by the simulation'?; and (3) the analysis
is based on a generic job execution model and does not consider specific
speedup functions. The insights gained in this experiment can be poten-
tially explored in future work to improve the approximation results of
the algorithm (e.g., by further tuning the choices of parameters x and
p, and by taking into account specific speedup models of the jobs).

7.7. Results for a single resource type

In this section, we evaluate the performance of MRSA when there
is only a single type of resource, i.e., d = 1. For this special case, the
two parameters of MRSA are set as y* ~ 0.382 and p* ~ 0.44 according
to Theorem 1, and it has an approximation ratio of 5.164.

We note that MRSA is not specifically designed and optimized for
a single resource type, and there exist better approximation algorithms

10 Indeed, the worst-case scenario considers that, at any time, only one of the d

resource types is used, resulting in a very low efficiency in term of the area. This
leads to a conservative decision with a small p that trades low areas with high
critical-path length. In the practical simulations, however, several resources are
used most of the time, which is why a larger p gives better results.

L. Perotin, S. Kandaswamy, H. Sun et al.

2.1 £ B MRSA
o
o i 8 ==
-2 =4
219 BB TSAS/CPA
Q
© 18
=
o 17 0000
= o ©
5
i 3 o +é+ +¢+* ++++
1.4
° Qo000 ° ° o
1.3
32 64 128 256 512 1024
Amount of available resource P
(a) Amdahl

Fig. 15. Performance comparison of the four approximation algorithms

for this case. This section provides a performance comparison of MRSA
with a few other approximation algorithms that similarly use the two-
phase scheduling framework for this scheduling problem. In particular,
the compared algorithms all use list scheduling in the second phase
to schedule the jobs but they deploy different strategies to allocate
resources in the first phase by strategically balancing the area and
critical-path length of the graph. The following describes the compared
algorithms and their resource allocation strategies.

+ LTW: This algorithm was proposed by Lepére, Trystram, and Woeg-
inger [42]. It works similarly as MRSA by setting u ~ 0.382 but
p=0.5. It was shown to have an approximation ratio of 5.236.

JZ: This algorithm was proposed by Jansen and Zhang [36]. It
also follows the same general strategy as MRSA and LTW, but sets
u~0.2709 and p ~ 0.431, achieving a better approximation ratio of
4.73.

TSAS/CPA: TSAS was proposed in [55], and it finds a resource
allocation using convex programming that balances the area and
critical-path length (i.e., minimizes the maximum of the two),
while setting u ~ 0.58579. It was shown to have an approximation
ratio of 11.66. CPA [54] works similarly as TSAS but finds an allo-
cation using a greedy heuristic that has much lower computational
complexity.

The simulation of this section follows the same setup as in the pre-
vious sections (but with d = 1), while varying the total amount P of
the only resource type between 32 and 1024. Thanks to the smaller
search space with d = 1, we consider all possible allocations (instead of
only power-of-2 allocations as done in previous sections), thus offering
a more precise evaluation of these algorithms.

Fig. 15 shows the comparison results for the four algorithms un-
der the Amdahl and power models. Note that, when d = 1, the “Sum”
and “Max” variations collapse into the same model. We can see that
the four algorithms have very similar performance under the Amdahl
model for all values of P. For the power model, LTW and TSAS/CPA
perform slightly better than the other two algorithms for small P, but
all of them again have similar performance when P become larger. Un-
der both models, the normalized makespans of all algorithms never
exceed 2.6 and the average values decrease as P increases, showing
these algorithms’ ability to effectively utilize the available resources to
achieve good performance. Overall, the results suggest that MRSA along
with the compared approximation algorithms perform comparably for
scheduling moldable workflows under a single resource type.

8. Conclusion and future work

In this paper, we have studied the problem of scheduling moldable
workflows with multiple types of resources with the objective of mini-
mizing the makespan. We have proposed a multi-resource scheduling al-
gorithm, MRSA, that adopts a two-phase approach by combining an ap-

17

Journal of Parallel and Distributed Computing 184 (2024) 104792

2.6

2.4
[=4
©
o
X
0
= 2.0 6°%
hel
[
N o o
21.8 6o ©
5 B MRSA o) 12
2161 @ ow s

-)z
141 mmm TsAs/CPA
32 64 128 256 512 1024
Amount of available resource P
(b) Power

for the single resource case (d = 1) under the two speedup models.

Table 1
Summary of approximation results.

Precedence Approximation Ratio
General «1.619d +2.545v/d + 1 for d > |
Graphs «d +3V/d? +0(/d) for d > 22
SP Graphs e (1+€)(1.619d + 1) ford > 1
or Trees -(1+Q(d+2\/ﬁ)ford24
Independent e2d ford>1[61]
Jobs «1.619d +1ford =3

ed+2V/d—1ford>4

proximate resource allocation and an extended list scheduling scheme.
Theoretically, we have proven approximation ratios of the algorithm for
general workflows, as well as improved ratios for some special graphs
including SP graphs or trees and independent jobs. Table 1 summa-
rizes all the approximation results. We have also proven a lower bound
on the approximation ratio of any local list-based scheduling scheme.
Empirically, we have evaluated the performance of MRSA by conduct-
ing simulations using synthetic workflows generated by DAGGEN and
moldable jobs following different speedup models. The results show
that the practical performance of MRSA is better than the approxima-
tion ratio predicts, and that it outperforms two other heuristic algo-
rithms under a variety of parameter settings, including different system
parameters, graph structures, job speedup models, etc. It also performs
comparably with a few other approximation algorithms designed for
the special case of a single resource type.

The future work for this research could include both theoretical and
empirical extensions. On the theoretical front, we will seek to find bet-
ter scheduling algorithms by proving improved approximation ratios,
while possibly taking specific job speedup functions into account. We
point out that the lower bound shown in Theorem 6 does not rule out
the possibility of a global list scheduling algorithm that considers the
structure of the precedence graph when determining the priorities for
the jobs (e.g., by prioritizing the jobs on the critical path). On the prac-
tical side, while our evaluations in this paper are based on simulations
using synthetic jobs, it will be insightful to validate the performance of
our algorithm by evaluating it using real-world moldable workflows on
real systems that have multi-resource scheduling capabilities.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

We have shared in the paper the link to code which is publicly avail-
able

L. Perotin, S. Kandaswamy, H. Sun et al.
Acknowledgment

This research is supported in part by the US National Science Foun-
dation (NSF) grant 2135310.

References

[1] G.M. Amdahl, Validity of the single processor approach to achieving large scale
computing capabilities, in: AFIPS’67, 1967, pp. 483-485.

[2] C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier StarPU, A unified platform for
task scheduling on heterogeneous multicore architectures, Concurr. Comput., Pract.
Exper. 23 (2) (2011) 187-198.

[3] S. Bansal, P. Kumar, K. Singh, An improved two-step algorithm for task and data par-
allel scheduling in distributed memory machines, Parallel Comput. 32 (10) (2006)
759-774.

[4] O. Beaumont, L.-C. Canon, L. Eyraud-Dubois, G. Lucarelli, L. Marchal, C.
Mommessin, B. Simon, D. Trystram, Scheduling on two types of resources: a sur-
vey, ACM Comput. Surv. 53 (3) (2020).

[5] O. Beaumont, L. Eyraud-Dubois, S. Kumar, Fast approximation algorithms for task-
based runtime systems, Concurr. Comput., Pract. Exper. 30 (17) (2018) e4502.

[6] H.L. Bodlaender, B. de Fluiter, Parallel algorithms for series parallel graphs, in: ESA,
1996, pp. 277-289.

[7] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, J.J. Dongarra PaRSEC,
Exploiting heterogeneity to enhance scalability, Comput. Sci. Eng. 15 (6) (2013)
36-45.

[8] M. Caccamo, R. Pellizzoni, L. Sha, G. Yao, H. Yun Memguard, Memory bandwidth
reservation system for efficient performance isolation in multi-core platforms, in:
RTAS, 2013, pp. 55-64.

[9] C. Chen, An improved approximation for scheduling malleable tasks with prece-
dence constraints via iterative method, IEEE Trans. Parallel Distrib. Syst. 29 (9)
(2018) 1937-1946.

[10] C.-Y. Chen, C.-P. Chu, A 3.42-approximation algorithm for scheduling malleable
tasks under precedence constraints, IEEE Trans. Parallel Distrib. Syst. 24 (8) (2013)
1479-1488.

[11] W. Chen, Y. Xu, X. Wu, Deep reinforcement learning for multi-resource multi-
machine job scheduling, CoRR, arXiv:1711.07440 [abs], 2017.

[12] P. De, E.J. Dunne, J.B. Ghosh, C.E. Wells, Complexity of the discrete time-cost trade-
off problem for project networks, Oper. Res. 45 (2) (1997) 302-306.

[13] P. De, E. James Dunne, J.B. Ghosh, C.E. Wells, The discrete time-cost tradeoff prob-
lem revisited, Eur. J. Oper. Res. 81 (2) (1995) 225-238.

[14] G. Demirci, H. Hoffmann, D.H.K. Kim, Approximation algorithms for scheduling
with resource and precedence constraints, in: STACS, 2018.

[15] G. Demirci, I. Marincic, H. Hoffmann, A divide and conquer algorithm for dag
scheduling under power constraints, in: SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis, 2018, pp. 466-477.

[16] J. Du, J.Y.-T. Leung, Complexity of scheduling parallel task systems, SIAM J. Dis-
crete Math. 2 (4) (1989) 473-487.

[17] L. Eyraud-Dubois, S. Kumar, Analysis of a list scheduling algorithm for task graphs
on two types of resources, in: IPDPS, 2020.

[18] Y. Fan, Z. Lan, Exploiting multi-resource scheduling for HPC, in: SC Poster, 2019.

[19] Y. Fan, Z. Lan, P. Rich, W.E. Allcock, M.E. Papka, B. Austin, D. Paul, Scheduling
beyond CPUs for HPC, in: HPDC, 2019.

[20] Y. Fan, P. Rich, W. Allcock, M. Papka, Z. Lan. Rome, A multiresource job scheduling
framework for exascale HPC system, in: IPDPS Poster, 2018.

[21] D.G. Feitelson, Job scheduling in multiprogrammed parallel systems (extended ver-
sion), IBM Res. Rep. RC19790 (87657) (1997).

[22] A. Feldmann, M.-Y. Kao, J. Sgall, S.-H. Teng, Optimal on-line scheduling of parallel
jobs with dependencies, J. Comb. Optim. 1 (4) (1998) 393-411.

[23] M.R. Garey, R.L. Graham, Bounds for multiprocessor scheduling with resource con-
straints, SIAM J. Comput. 4 (2) (1975) 187-200.

[24] T. Gautier, X. Besseron, L. Pigeon KAAPI, A thread scheduling runtime system for
data flow computations on cluster of multi-processors, in: PASCO, 2007, pp. 15-23.

[25] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, I. Stoica, Dominant
resource fairness: fair allocation of multiple resource types, in: Proceedings of the
8th USENIX Conference on Networked Systems Design and Implementation, 2011,
pp. 323-336.

[26] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, A. Akella, Multi-resource pack-
ing for cluster schedulers, SIGCOMM Comput. Commun. Rev. 44 (4) (Aug. 2014)
455-466.

[27] H. Hamzeh, S. Meacham, K. Khan, K. Phalp, A. Stefanidis Mrfs, A multi-resource fair
scheduling algorithm in heterogeneous cloud computing, in: COMPSAC, 2020.

[28] Y. He, J. Liu, H. Sun, Scheduling functionally heterogeneous systems with utilization
balancing, in: IPDPS, 2011, pp. 1187-1198.

[29] Y. He, H. Sun, W.-J. Hsu, Adaptive scheduling of parallel jobs on functionally het-
erogeneous resources, in: ICPP, 2007, p. 43.

[30] Y. Hu, C. de Laat, Z. Zhao, Learning workflow scheduling on multi-resource clusters,
in: 2019 IEEE International Conference on Networking, Architecture and Storage
(NAS), 2019.

18

Journal of Parallel and Distributed Computing 184 (2024) 104792

[31] K.-C. Huang, W.-Y. Wu, F.-J. Wang, H.-C. Liu, C.-H. Hung, An iterative expanding
and shrinking process for processor allocation in mixed-parallel workflow schedul-
ing, SpringerPlus 5 (1138) (2016).

[32] S. Hunold, Low-cost tuning of two-step algorithms for scheduling mixed-parallel
applications onto homogeneous clusters, in: CCGrid, 2010.

[33] S. Hunold, Scheduling moldable tasks with precedence constraints and arbi-
trary speedup functions on multiprocessors, in: R. Wyrzykowski, J. Dongarra, K.
Karczewski, J. Wasniewski (Eds.), Parallel Processing and Applied Mathematics,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 13-25.

[34] K. Jansen, F. Land, Scheduling monotone moldable jobs in linear time, in: IPDPS,
2018, pp. 172-181.

[35] K. Jansen, H. Zhang, Scheduling malleable tasks with precedence constraints, in:
SPAA, 2005, pp. 86-95.

[36] K. Jansen, H. Zhang, An approximation algorithm for scheduling malleable tasks un-
der general precedence constraints, ACM Trans. Algorithms 2 (3) (2006) 416-434.

[37] S. Jiang, J. Wu, Multi-resource allocation in cloud data centers: a trade-off on fair-
ness and efficiency, Concurr. Comput., Pract. Exper. 33 (6) (2021) e6061.

[38] C. Joe-Wong, S. Sen, T. Lan, M. Chiang, Multi-resource allocation: fairness-efficiency
tradeoffs in a unifying framework, in: IEEE INFOCOM, 2012.

[39] J. Khamse-Ashari, I. Lambadaris, G. Kesidis, B. Urgaonkar, Y. Zhao, Per-server
dominant-share fairness (PS-DSF): a multi-resource fair allocation mechanism for
heterogeneous servers, in: ICC, 2017.

[40] D. Klusacek, H. Rudova, Multi-resource aware fairsharing for heterogeneous sys-
tems, in: W. Cirne, N. Desai (Eds.), JSSPP, 2015.

[41] R. Lepére, G. Mounié, D. Trystram, An approximation algorithm for scheduling trees
of malleable tasks, Eur. J. Oper. Res. 142 (2) (2002) 242-249.

[42] R. Lepére, D. Trystram, G.J. Woeginger, Approximation algorithms for scheduling
malleable tasks under precedence constraints, Int. J. Found. Comput. Sci. 13 (4)
(2002) 613-627.

[43] B.Li, Y. Fan, M. Dearing, Z. Lan, P. Rich, W. Allcock, M. Papka Mrsch, Multi-resource
scheduling for HPC, in: IEEE CLUSTER, 2022, pp. 47-57.

[44] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, C. Maltzahn,
On the role of burst buffers in leadership-class storage systems, in: MSST, 2012,
pp. 1-11.

[45] W. Ludwig, P. Tiwari, Scheduling malleable and nonmalleable parallel tasks, in:
SODA, 1994, pp. 167-176.

[46] J. Mohan, A. Phanishayee, J. Kulkarni, V. Chidambaram, Looking beyond GPUs for
DNN scheduling on multi-tenant clusters, in: USENIX OSDI, 2022.

[47] G. Mounié, C. Rapine, D. Trystram, A 3/2-approximation algorithm for scheduling
independent monotonic malleable tasks, SIAM J. Comput. 37 (2) (2007) 401-412.

[48] M. Niemeier, A. Wiese, Scheduling with an orthogonal resource constraint, in:
WAOA, 2012, pp. 242-256.

[49] M. NoroozOliaee, B. Hamdaoui, M. Guizani, M.B. Ghorbel, Online multi-resource
scheduling for minimum task completion time in cloud servers, in: INFOCOM Work-
shops, 2014.

[50] L. Perotin, H. Sun, P. Raghavan, Multi-resource list scheduling of moldable parallel
jobs under precedence constraints, in: ICPP, 2021.

[51] G.N.S. Prasanna, B.R. Musicus, Generalized multiprocessor scheduling and appli-
cations to matrix computations, IEEE Trans. Parallel Distrib. Syst. 7 (6) (1996)
650-664.

[52] K. Psychas, J. Ghaderi, Randomized algorithms for scheduling multi-resource jobs
in the cloud, IEEE/ACM Trans. Netw. 26 (5) (2018) 2202-2215.

[53] A. Radulescu, C. Nicolescu, A. van Gemund, P. Jonker, Cpr: mixed task and data
parallel scheduling for distributed systems, in: IPDPS, 2001.

[54] A. Radulescu, A. van Gemund, A low-cost approach towards mixed task and data
parallel scheduling, in: ICPP, 2001.

[55] S. Ramaswamy, S. Sapatnekar, P. Banerjee, A framework for exploiting task and
data parallelism on distributed memory multicomputers, IEEE Trans. Parallel Dis-
trib. Syst. 8 (11) (1997) 1098-1116.

[56] S. Ristov, R. Prodan, M. Gusev, K. Skala, Superlinear speedup in HPC systems: why
and when?, in: Federated Conference on Computer Science and Information Systems
(FedCsIS), 2016, pp. 889-898.

[57]1 M. Sheikhalishahi, R.M. Wallace, L. Grandinetti, J.L. Vazquez-Poletti, F. Guerriero, A
multi-dimensional job scheduling, Future Gener. Comput. Syst. 54 (2016) 123-131.

[58] D.B. Shmoys, C. Stein, J. Wein, Improved approximation algorithms for shop
scheduling problems 23 (3) (1994) 617-632.

[59] M. Skutella, Approximation algorithms for the discrete time-cost tradeoff problem,
Math. Oper. Res. 23 (4) (1998) 909-929.

[60] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani, S. Hutsell,
R. Agarwal, Y.-C. Liu, Knights Landing: second-generation Intel Xeon Phi product,
IEEE MICRO 36 (2) (2016) 34-46.

[61] H. Sun, R. Elghazi, A. Gainaru, G. Aupy, P. Raghavan, Scheduling parallel tasks
under multiple resources: list scheduling vs. pack scheduling, in: IPDPS, 2018,
pp- 194-203.

[62] F. Suter DAGGEN, A synthetic task graph generator, https://github.com/frs69wq/
daggen.

[63] J. Turek, J.L. Wolf, P.S. Yu, Approximate algorithms scheduling parallelizable tasks,
in: SPAA, 1992.

[64] H. Wang, Z. Liu, H. Shen, Job scheduling for large-scale machine learning clusters,
in: CONEXT, 2020.

L. Perotin, S. Kandaswamy, H. Sun et al.

[65] Q. Wang, K.H. Cheng, A heuristic of scheduling parallel tasks and its analysis, SIAM
J. Comput. 21 (2) (1992) 281-294.

[66] W. Wang, B. Li, B. Liang, J. Li, Towards multi-resource fair allocation with place-
ment constraints, in: ACM SIGMETRICS, 2016, pp. 415-416.

[67] W. Wang, B. Liang, B. Li, Multi-resource fair allocation in heterogeneous cloud com-
puting systems, IEEE Trans. Parallel Distrib. Syst. 26 (10) (2015) 2822-2835.

[68] H. Xu, Y. Liu, W.C. Lau, Multi resource scheduling with task cloning in heteroge-
neous clusters, in: ICPP, 2022.

[69] M. Xu, L.T.X. Phan, X. Phan, H. Choi, I. Lee vCAT, Dynamic cache management
using CAT virtualization, in: RTAS, 2017.

[70] Y. Zhao, Y. Liu, Y. Peng, Y. Zhu, X. Liu, X. Jin, Multi-resource interleaving for deep
learning training, in: ACM SIGCOMM, 2022, pp. 428-440.

[71]1 H. Zhou, Q. Li, W. Tong, S. Kausar, H. Zhu, P-aware: a proportional multi-resource
scheduling strategy in cloud data center, Clust. Comput. 19 (2016) 1089-1103.

Lucas Perotin is a PhD student in the Parallel Comput-
ing Laboratory (LIP) at Ecole Normale Supérieure de Lyon (ENS
Lyon), France. He graduated with a master’s degree in Computer
Science also from ENS Lyon in 2020. He is mainly interested in
scheduling and resilience algorithms for high-performance com-
puting.

Sandhya Kandaswamy is a master’s student in the Depart-
ment of Electrical Engineering and Computer Science (EECS) at
the University of Kansas, USA. Her research interests are in data
science, machine learning, and high-performance computing.

19

Journal of Parallel and Distributed Computing 184 (2024) 104792

Hongyang Sun is an Assistant Professor in the Department
of Electrical Engineering and Computer Science of the Univer-
sity of Kansas, USA. He obtained his Ph.D. in Computer Sci-
ence from Nanyang Technological University in Singapore, has
worked as a Postdoctoral Researcher at ENS Lyon, INRIA (Rhone-
Alpes), and IRIT (Toulouse) in France, and held a research fac-
ulty position at Vanderbilt University, USA. His research inter-
ests include scheduling and resilience algorithm as well as ma-
r \ chine learning techniques to solve important problems in high-

performance computing and cloud/edge computing. See https://
www.ittc.ku.edu/~sun/ for further information.

Padma Raghavan is Vanderbilt’s inaugural Vice Provost for
Research and a Professor of Computer Science and Computer En-
gineering. She joined Vanderbilt in February 2016 from Penn
State, where she was the founding Director of the university’s
Institute for CyberScience. She also served as the Associate Vice
President for Research and Strategic Initiatives and as a Distin-
guished Professor of Computer Science and Engineering at Penn
State. She specializes in computational data science and high-
performance computing. Her research has been recognized by
the NSF CAREER Award (1995), the Maria Goeppert-Mayer Dis-
tinguished Scholar Award (2002, University of Chicago and the Argonne National Labo-
ratory), and selection as a Fellow of the Institute of Electrical and Electronic Engineers
(IEEE, 2013). See https://engineering.vanderbilt.edu/bio/padma-raghavan/ for further
information.

	Multi-resource scheduling of moldable workflows
	1 Introduction
	2 Related work
	2.1 Single-resource moldable job scheduling
	2.1.1 Approximation algorithms
	2.1.2 Heuristic algorithms

	2.2 Multi-resource job scheduling
	2.2.1 Approximation algorithms to minimize makespan
	2.2.2 Multi-resource scheduling for alternative job models and objectives

	3 Models
	3.1 Scheduling model
	3.2 Objective function
	3.3 Lower bound on optimal makespan

	4 Multi-Resource Scheduling Algorithm (MRSA) and approximation results for general DAGs
	4.1 Phase 1: resource allocation
	4.2 Phase 2: job scheduling
	4.3 Approximation results

	5 Improved approximation results of MRSA for some special graphs
	5.1 Results for SP graphs or trees
	5.2 Results for independent jobs

	6 Lower bound for local list-based scheduling

	7 Simulation results
	7.1 Simulation setup
	7.2 Performance comparison of algorithms
	7.3 Impact of system parameters
	7.4 Impact of graph structure
	7.5 Impact of job speedup functions
	7.6 Impact of MRSA parameters
	7.7 Results for a single resource type

	8 Conclusion and future work
	Declaration of competing interest
	Data availability
	Acknowledgment
	References

