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Resource scheduling plays a vital role in High-Performance Computing (HPC) systems. Most scheduling research 
in HPC has focused on only a single type of resource (e.g., computing cores or I/O resource). With the 
advancement in hardware architectures and the increase in data-intensive HPC applications, there is a need to 
simultaneously consider a diverse set of resources (e.g., computing cores, cache, memory, I/O, and network 
resources) in the design of runtime schedulers for improving the overall application performance. In this 
paper, we study multi-resource scheduling to minimize the makespan of computational workflows comprised 
of moldable parallel jobs. Moldable jobs allow the scheduler to flexibly select a variable set of resources before 
execution, thus can adapt to the available system resources (as compared to rigid jobs) while staying easy 
to design and implement (as compared to malleable jobs). We propose a Multi-Resource Scheduling Algorithm 
(MRSA), which combines a novel resource allocation strategy and an extended list scheduling scheme to schedule 
the jobs. We prove that, on a system with ý types of schedulable resources, MRSA achieves an approximation ratio 
of 1.619ý+2.545

√
ý+1 for any ý ≥ 1, and a ratio of ý+3

3
√
ý2+ÿ(

3
√
ý)when ý is large (i.e., ý ≥ 22). We also present 

improved approximation results for workflows comprised of jobs with special precedence constraints (e.g., series-
parallel graphs, trees, and independent jobs). Further, we prove a lower bound of ý on the approximation ratio of 
any list-based scheduling algorithm with local priority considerations. Finally, we conduct a comprehensive set 
of simulations to evaluate the performance of the algorithm using synthetic workflows of different structures and 
moldable jobs following different speedup models. The results show that MRSA fares better than the theoretical 
bound predicts, and that it consistently outperforms two baseline heuristics under a variety of parameter settings, 
illustrating its robust practical performance.

1. Introduction

Complex scientific workflows running in today’s High-Performance 
Computing (HPC) systems are typically modeled as Directed Acyclic 
Graphs (DAGs), whose nodes represent the jobs of the workflows and 
whose edges represent the precedence constraints (or dependencies) 
among the jobs. Effective workflow scheduling plays a vital role in 
improving the performance of scientific applications. While HPC sys-
tems often rely on dynamic runtime schedulers, such as KAAPI [24], 
StarPU [2] or PaRSEC [7], to ensure the efficient execution of compu-
tational workflows, most existing schedulers focus only on a single type 
of resource (e.g., computing resource or I/O resource). With the ad-
vancement in hardware architectures and the increase in data-intensive 
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HPC applications, there is a need to simultaneously consider multiple 
types of resources (e.g., computing, cache, memory, I/O, and network 
resources) in the design of runtime schedulers. Indeed, modern HPC sys-
tems are equipped with more levels of memory/storage (e.g., NVRAMs, 
SSDs, burst buffers [44]), all of which could potentially be partitioned 
among the system’s concurrently running jobs. Advancements in ar-
chitectural and software features (e.g., high-bandwidth memory [60], 
cache partitioning [69], bandwidth reservation [8]) can also be lever-
aged to facilitate the efficient scheduling of these multiple types of 
resources for enhancing the overall application and/or system perfor-
mance.

In this paper, we study multi-resource scheduling for computational 
workflows comprised of moldable parallel jobs with DAG-based prece-
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dence constraints. The goal is to simultaneously explore the availability 
of multiple types of resources by designing effective scheduling so-
lutions that minimize the overall completion time, or makespan, of a 
workflow. We focus on parallel jobs that are moldable [21], which al-
lows the scheduler to select a variable set of resources for a job, but 
once the job has started its execution, the resource allocations cannot 
be changed. In contrast to rigid jobs, whose resource allocations are 
all static and hence fixed, moldable jobs can easily adapt to the differ-
ent amounts of available resources, while in contrast to malleable jobs, 
whose resource allocations can be dynamically varied during runtime, 
moldable jobs are much easier to design and implement.

As the considered multi-resource scheduling problem contains the 
single-resource scheduling problem as a special case, it is known to 
be strongly NP-complete [16]. Thus, we focus on designing good ap-
proximation algorithms. In contrast to the single-resource problem, 
the multi-resource problem needs to consider the combined effect of 
multiple types of resources on the execution of the jobs, thus posing 
additional challenges to the scheduling problem. By adopting a two-
phase approach [63] that is widely used for scheduling moldable jobs, 
we design a Multi-Resource Scheduling Algorithm (MRSA), which first 
computes an approximate resource allocation for all jobs on different 
resource types and then applies an extended list scheduling scheme to 
schedule the jobs. As list scheduling is easy to implement, the proposed 
algorithm can be readily applied to practical systems.

On the theoretical side, we prove, under reasonable assumptions on 
the job execution times and speedup functions, the following results for 
a system consisting of ý types of schedulable resources:

• MRSA achieves an approximation ratio of 1.619ý + 2.545
√
ý + 1 for 

any ý ≥ 1, and a ratio of ý+3
3
√
ý2+ÿ(

3
√
ý) for large ý (i.e., ý ≥ 22);

• MRSA has improved approximations for some special graphs (e.g., 
series-parallel graphs, trees and independent jobs) with ratios of 
1.619ý + 1 for any ý ≥ 1 and ý +ÿ(

√
ý) for any ý ≥ 4;

• We prove a lower bound of ý on the approximation ratio of any 
list-based scheduling algorithm with local priority considerations.

To the best of our knowledge, these are the first approximation 
results for scheduling moldable workflows with multiple resource re-
quirements. They also improve upon the 2ý-approximation previously 
shown in [61] for scheduling independent moldable jobs. The results 
demonstrate that MRSA achieves the optimal asymptotic approxima-
tion up to the dominating factor (i.e., ý) among the generic class of 
local list-based scheduling schemes, thus matching the same asymptotic 
performance for scheduling rigid [23] and malleable [29] jobs.

On the practical side, we conduct a comprehensive set of simulations 
using synthetic workflows generated by DAGGEN [62], which is a task 
graph generator capable of generating DAGs of different structures. We 
also generate moldable jobs that exhibit different runtime characteris-
tics on multiple resource types by extending common speedup profiles 
that follow Amdahl’s law [1] and power law [51] models. Our simula-
tion results show that:

• MRSA fares better than the worst-case theoretical bound predicts;
• MRSA consistently outperforms two baseline multi-resource sche-
duling heuristics;

• MRSA performs comparably with some other approximation algo-
rithms under the special case of a single resource type.

These simulation results nicely complement the theoretical analysis 
of MRSA, and they also illustrate MRSA’s robust practical performance 
under a variety of parameter settings.

The rest of this paper is organized as follows. Section 2 reviews 
some related work on moldable and multi-resource scheduling. Sec-
tion 3 formally introduces the scheduling model and shows a lower 
bound on the optimal makespan. Section 4 presents the multi-resource 
scheduling algorithm MRSA and analyzes its approximation ratios for 

general workflows. Section 5 proves improved approximation results 
for some special workflows, including series-parallel graphs, trees and 
independent jobs. Section 6 shows a lower bound on the performance 
of any local list-based scheduling algorithm. Section 7 presents a com-
prehensive set of simulation results for evaluating the performance of 
the proposed algorithm, and finally, Section 8 concludes the paper and 
briefly discusses future work.

2. Related work

This section reviews some related work on single-resource moldable 
job scheduling as well as multi-resource job scheduling to minimize the 
makespan. We will also review some multi-resource scheduling work 
under alternative job models and objectives.

2.1. Single-resource moldable job scheduling

Scheduling moldable jobs to minimize the makespan is a strong NP-
complete problem on ÿ ≥ 5 processors [16], and it has been extensively 
studied in the literature. Most prior work, however, has only focused on 
a single type of resource while assuming different speedup models for 
the jobs. The following reviews some related work from the perspectives 
of both approximation algorithms and heuristic algorithms.

2.1.1. Approximation algorithms
For independent moldable jobs with arbitrary speedups, Turek et 

al. [63] presented a 2-approximation list-based algorithm and a 3-
approximation algorithm based on building shelves. Ludwig and Ti-
wari [45] later improved the 2-approximation result with lower com-
putational complexity. For monotonic jobs, whose execution time ý(ý)
is non-decreasing in the number ý of allocated processors and whose 
work function ý(ý) = ý ⋅ ý(ý) is non-decreasing in ý, Mounié et al. [47]
presented a (1.5 + ÿ)-approximation algorithm using dual approxima-
tion. Jansen and Land [34] showed a faster algorithm that achieves the 
same (1.5 +ÿ)-approximation as well as a PTAS when the execution time 
functions of the jobs admit compact encodings.

For scheduling moldable jobs that have precedence constraints, Lep-
ère et al. [42] presented a 5.236-approximation algorithm when jobs are 
assumed to be monotonic. Jansen and Zhang [36] improved the approx-
imation ratio to around 4.73 for the same model, and recently, Chen [9]
further improved it to around 3.42 using an iterative approximation 
method. Additionally, better approximation results have been obtained 
for jobs with special dependency graphs (e.g., series-parallel graphs and 
trees [42,41]) or special speedup models (e.g., concave speedup [35,10]
and roofline speedup [65,22]).

2.1.2. Heuristic algorithms
A series of related work has also proposed heuristic algorithms for 

scheduling moldable jobs with precedence constraints under the dis-
tributed computing model where additional communication cost is in-
curred between two dependent jobs. Ramaswamy et al. [55] presented 
a Two Step Allocation and Scheduling (TSAS) algorithm that uses con-
vex programming to allocate resources and list scheduling to schedule 
the jobs. Radulescu and van Gemund [54] took the same approach but 
proposed a low-cost heuristic, called Critical-Path and Allocation (CPA), 
that incrementally allocates the resources to the jobs. Bansal et al. [3]
refined the CPA algorithm and proposed Modified CPA (MCPA) by lim-
iting the total resource allocation for those jobs on the critical path but 
in the same layer of the graph. Hunold [32] further refined the MCPA 
algorithm by proposing MCPA2 that has been shown to work better for 
irregular workflows.

While the algorithms above use the two-level approach that sepa-
rates the resource allocation and job scheduling decisions, Radulescu et 
al. [53] presented a one-step algorithm, called Critical Path Reduction 
(CPR), that iteratively improves the result of the list schedule by in-
crementally adding resource allocations to certain jobs. The algorithm 
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is shown to produce better schedules than some two-level algorithms 
at the expense of higher complexity. Huang et al. [31] also proposed 
a one-step algorithm, called Iterative Allocation Expanding and Shrink-
ing (IAES), that allows the allocated resources of a job to shrink (as well 
as expand) based on the actual critical path in the schedule rather than 
the static one in the graph.

Most of these algorithms are heuristic algorithms without perfor-
mance guarantees, except for TSAS [55], which was shown to have an 
approximation ratio of 11.66.

2.2. Multi-resource job scheduling

The literature also contains some approximation algorithms on 
multi-resource scheduling to minimize makespan under different par-
allel job models, as well as works on multi-resource scheduling for 
alternative job models and objective functions.

2.2.1. Approximation algorithms to minimize makespan
Garey and Graham [23] considered scheduling ÿ sequential jobs 

on ÿ identical machines with ý additional types of resources. Fur-
ther, each job has a fixed resource requirement from each resource 
type, making it essentially a rigid job scheduling model. They pre-
sented a list-scheduling algorithm and proved three results: (1) an ÿ-
approximation for jobs with precedence constraints and when there is 
only one type of resource, i.e., ý = 1; (2) a (ý + 1)-approximation for in-
dependent jobs and when the number of machines is not a constraining 
factor, i.e., ÿ ≥ ÿ; (3) a (ý + 2 − 2ý+1

ÿ
)-approximation for independent 

jobs with any ÿ ≥ 2. For the case of ý = 1, Demirci et al. [14] pre-
sented an improved ÿ(logÿ)-approximation for jobs with precedence 
constraints, and Niemeier and Wiese [48] presented an improved (2 +ÿ)-
approximation for independent jobs.

He et al. [29,28] considered parallel jobs that are represented as 
DAGs consisting of unit-size tasks, each of which requests a single type 
of resource from a total of ý resource types. Further, the amount of re-
sources allocated to a job can be dynamically changed during runtime, 
making it essentially a malleable job scheduling model. They showed 
that list scheduling achieves (ý + 1)-approximation under this model. 
Shmoys et al. [58] considered a similar model while further restricting 
the tasks of each job to be processed sequentially. They called it the 
DAG-shop scheduling model, and presented a polylog approximation re-
sult in number of machines and job length.

Sun et al. [61] considered independent moldable jobs on ý types 
of resources. They presented a 2ý-approximation list-based algorithm 
and a (2ý + 1)-approximation shelf-based algorithm, thus generalizing 
the single-resource results in [63]. They also presented a technique to 
transform any ý-approximation algorithm for a single resource type to 
a ýý-approximation algorithm for ý types of resources. This work is 
the closest to ours, while we consider moldable jobs with precedence 
constraints. When jobs are independent, our main approximation result 
also improves the one in [61] for a large number of resource types.

2.2.2. Multi-resource scheduling for alternative job models and objectives
Beaumont et al. [5] and Eyraud-Dubois and Kumar [17] consid-

ered scheduling sequential jobs on two alternative types of resources 
(CPU and GPU) to minimize the makespan. In their model, each job can 
be chosen to execute on either resource type with different processing 
rates. They analyzed an approximation algorithm, called HeteroPrio, 
for both independent jobs and jobs with precedence constraints. The 
approximation ratios depend on the relative amount of resources in the 
two resource types. A recent survey on this two-resource scheduling 
model can also be found in [4].

Ghodsi et al. [25] focused on the objective of resource allocation 
fairness in a multi-user and multi-resource setting. In their seminal pa-
per, they proposed a Dominant Resource Fairness (DRF) algorithm that 
aims at maximizing the minimum dominant share across all users. Their 
work has subsequently been extended by many papers (e.g., [40,67,

39,66,27,37,38]) that proposed improved or alternative algorithms by 
building on top of DRF for various multi-resource scheduling contexts.

Grandl et al. [26] considered scheduling malleable jobs under four 
specific resource types (CPU, memory, disk and network). They de-
signed a heuristic algorithm, called Tetris, that schedules jobs by consid-
ering the correlation between the job’s peak resource demands and the 
machine’s resource availabilities, with the goal of minimizing resource 
fragmentation. NoroozOliaee et al. [49] studied a similar problem but 
for two resources (CPU and memory). They showed that a simple 
scheduling heuristic that uses Best Fit and Shortest Job First delivers 
good performance in terms of resource utilization and job queueing de-
lays. Recently, Xu et al. [68] proposed DollyMP, a scheduling algorithm 
that considers two resource types (CPU and memory) and aims to min-
imize the total flow time of a set of dynamically arriving DAG-based 
jobs with stochastic execution times.

Sheikhalishahi et al. [57] used multi-dimensional bin-packing to 
schedule multiple resources in HPC and cloud environments. Their 
multi-resource scheduling algorithm is shown to outperform standard 
backfilling policies in terms of job slowdowns and wait times. Zhou et 
al. [71] applied a similar approach and presented P-Aware, a multi-
resource scheduling strategy to map heterogeneous application jobs to 
server nodes in cloud data centers. Psychas and Ghaderi [52] showed 
that classical bin packing algorithms are not optimal in terms of 
throughput. They proposed a Randomized Multi-resource Scheduling 
(RMS) algorithm with provably optimal throughput.

Fan et al. [19] presented a scheduling algorithm, called BBSched, 
that targets two resources (CPU and burst buffer) for HPC. They pro-
posed to use genetic algorithm to solve a formulated multi-objective 
optimization problem, which delivers fast scheduling decisions with 
improved resource utilization and average job wait time compared to 
existing HPC schedulers. They also extended their approach to dealing 
with multiple resource types, including memory and network resources 
[18], and provided a scheduling framework for the problem [20].

Recently, multi-resource scheduling has also been studied in the 
context of machine learning (ML) and deep learning (DL). On the 
one hand, some papers (e.g., [64,46,70]) have considered multiple 
resources when scheduling ML/DL jobs on computing clusters and re-
ported improved job completion times. On the other hand, several 
efforts (e.g., [11,30,43]) have applied machine learning (in particular 
deep reinforcement learning) to the training of multi-resource sched-
ulers, and they have led to better system and application performance 
compared to traditional schedulers.

3. Models

In this section, we formally present the multi-resource scheduling 
model and objective. We also derive a lower bound on the optimal 
makespan.

3.1. Scheduling model

We consider the problem of scheduling a set of ÿ moldable jobs on 
ý distinct types of resources (e.g., processor, memory, cache). Each re-
source type ÿ has a total amount ÿ (ÿ) of available resource. The jobs 
are moldable, i.e., they can be executed using different amounts of re-
sources from each resource type, but the resource allocation cannot 
be changed once a job has started executing. For each job ÿ, where 
1 ≤ ÿ ≤ ÿ, its execution time ýÿ (ýÿ ) depends on the resource allocation
ýÿ = (ý

(1)
ÿ
, ý(2)

ÿ
, ⋯ , ý(ý)

ÿ
), which specifies the amount of resource ý(ÿ)

ÿ
allo-

cated to the job for each resource type ÿ, where 1 ≤ ÿ ≤ ý. We make the 
following reasonable assumptions on the resource allocation and execu-
tion time of the jobs.

Assumption 1 (Integral resources). All resource allocations ý(ÿ)
ÿ
’s for the 

jobs and the total amount of resources ÿ (ÿ)’s for all resource types are 
non-negative integers.
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This is a natural assumption for discrete resources, such as pro-
cessors. Other resource types, such as memory or cache, are typically 
allocated in discrete chunks as well (e.g., memory blocks, cache lines) 
in practical systems.

Assumption 2 (Known execution times). For each job ÿ, its execution 
time function ýÿ (ýÿ ) is known for every possible resource allocation ýÿ .

In practice, the execution times of a job or an application could be 
obtained through one or more of the following approaches: application 
modeling or profiling, performance prediction or interpolation from his-
toric data. Here, we assume these execution times are known while not 
concerning about how they are practically obtained.

Assumption 3 (Monotonic jobs). Given two resource allocations ýÿ and 
ÿÿ for a job ÿ, we say that ýÿ is at most ÿÿ , denoted by ýÿ ⪯ ÿÿ , if ý

(ÿ)
ÿ

≤

ÿ
(ÿ)
ÿ
for all 1 ≤ ÿ ≤ ý. The execution times of the job under these two 

allocations satisfy:

ýÿ (ÿÿ ) ≤ ýÿ (ýÿ ) ≤
(

max
ÿ=1…ý

ÿ
(ÿ)
ÿ
∕ý

(ÿ)
ÿ

)
⋅ ýÿ (ÿÿ ) .

This generalizes the monotonic job assumption under a single re-
source type [42,47], which has been observed for many real-world 
applications. In particular, the first inequality specifies that the execu-
tion time of a job is non-increasing in the amount of resource allocated 
to the job,1 and the second inequality restricts the job to have non-
superlinear speedup with respect to any resource type.2 Note that we do 
not make any assumptions on a job ÿ’s relative execution times under 
two resource allocations ýÿ and ÿÿ that are non-comparable, i.e., ýÿ  ÿÿ
and ÿÿ  ýÿ .

Additionally, a set of precedence constraints is specified for the jobs, 
which form a directed acyclic graph (DAG), ÿ = (ý , ý). Each node ÿ ∈ ý

in the graph represents a job and a directed edge (ÿ1 → ÿ2) ∈ý requires 
that job ÿ2 cannot start executing until the completion of job ÿ1. In this 
case, ÿ1 is called an immediate predecessor of ÿ2, and ÿ2 is called an 
immediate successor of ÿ1.

3.2. Objective function

The objective is to find a schedule to minimize the maximum com-
pletion time, or the makespan. Specifically, a schedule is defined by the 
following two decisions:

• Resource allocation decision: ý = (ý1, ý2, … , ýÿ);
• Starting time decision: ý = (ý1, ý2, … , ýÿ).

Given a pair of scheduling decisions ý and ý, the completion time of 
a job ÿ is defined as ýÿ = ýÿ + ýÿ (ýÿ ), and the makespan of the jobs is given 
by ÿ = maxÿ ýÿ . A schedule must be valid by respecting the following 
constraints:

• For each resource type ÿ, the amount of resource utilized by all 
running jobs at any time does not exceed the total amount ÿ (ÿ) of 
available resource;

• If two jobs ÿ1 and ÿ2 have a precedence constraint, i.e., ÿ1 → ÿ2, then 
the starting time of ÿ2 is no earlier than the completion time of ÿ1, 
i.e., ýÿ2 ≥ ýÿ1

.

1 This assumption, however, is not restrictive, as we can discard any alloca-
tion that uses more resource than another allocation but results in a higher job 
execution time.
2 Some parallel applications can achieve superlinear speedups with a com-
bined effect of increased allocations in two or more resource types (e.g., the 
cache effect [56] when increasing both processor and cache allocations). We do 
not consider such superlinear speedup model in this paper.

The above multi-resource scheduling problem is NP-complete, as 
it contains the single-resource scheduling problem [36,42] as a spe-
cial case. Thus, we aim at designing approximation algorithms with 
bounded performance guarantees. An algorithm is an ÿ-approximation if 
its makespan for any set of jobs satisfies ÿ

ÿOPT
≤ ÿ, where ÿOPT denotes 

the optimal makespan for the same set of jobs.

3.3. Lower bound on optimal makespan

We now derive a lower bound on the optimal makespan. To that 
end, we define the following concepts.

Definition 1. For each job ÿ with resource allocation ýÿ :

• ý
(ÿ)
ÿ
(ýÿ ) =ý

(ÿ)
ÿ
⋅ ýÿ (ýÿ ): work on resource type ÿ;

• ÿ
(ÿ)
ÿ
(ýÿ ) =

ý
(ÿ)
ÿ
(ýÿ )

ÿ (ÿ) : area (or normalized work) on resource type ÿ;

• ÿÿ (ýÿ ) =
1

ý

∑ý

ÿ=1 ÿ
(ÿ)
ÿ
(ýÿ ): average area over all resource types.

Definition 2. For a set of jobs with resource allocation ý =(ý1, ý1, … , ýÿ):

• ÿ (ÿ)(ý) =
∑ÿ

ÿ=1ý
(ÿ)
ÿ
(ýÿ ): total work on resource type ÿ;

• ý(ÿ)(ý) = ÿ (ÿ)(ý)

ÿ (ÿ) =
∑ÿ

ÿ=1 ÿ
(ÿ)
ÿ
(ýÿ ): total area on resource type ÿ;

• ý(ý) = 1

ý

∑ý

ÿ=1ý
(ÿ)(ý) =

∑ÿ

ÿ=1 ÿÿ (ýÿ ): average total area over all re-
source types;

• ÿ(ý, ÿ ) =
∑

ÿ∈ÿ ýÿ (ýÿ ): total execution time of all the jobs along a 
particular path ÿ in the graph3;

• ÿ(ý) =maxÿ ÿ(ý, ÿ ): critical-path length, i.e., total execution time of 
the jobs along a critical (longest) path in the graph;

• ÿ(ý) = max(ý(ý), ÿ(ý)): maximum of average total area ý(ý) and 
critical-path length ÿ(ý).

We further define ÿmin =minýÿ(ý) to be the minimum value of ÿ(ý)
among all possible resource allocations, and let ý∗ denote a resource 
allocation such that ÿ(ý∗) =ÿmin. The following lemma shows that ÿmin

serves as a lower bound on the optimal makespan.

Lemma 1. ÿOPT ≥ÿmin.

Proof. We first show that, given any resource allocation ý, the 
makespan produced by any schedule must satisfy ÿ ≥ ÿ(ý) = max(ý(ý),

ÿ(ý)). The bound ÿ ≥ ÿ(ý) is trivial, since the jobs along the critical 
path must be executed sequentially, so the makespan is at least ÿ(ý). 
To derive the bound ÿ ≥ ý(ý), we observe that the average total area 
ý(ý) in any valid schedule with makespan ÿ must satisfy:

ý(ý) =
1

ý

ý∑
ÿ=1

ÿ∑
ÿ=1

ý
(ÿ)
ÿ
(ýÿ )

ÿ (ÿ)

=
1

ý

ý∑
ÿ=1

1

ÿ (ÿ)

ÿ∑
ÿ=1

ý
(ÿ)
ÿ
(ýÿ )

≤
1

ý

ý∑
ÿ=1

1

ÿ (ÿ)
⋅ (ÿ (ÿ) ⋅ ÿ ) = ÿ .

The inequality 
∑ÿ

ÿ=1ý
(ÿ)
ÿ
(ýÿ ) ≤ ÿ (ÿ) ⋅ ÿ is because ÿ (ÿ) ⋅ ÿ is the maximum 

amount of work that can be allocated to the jobs within time ÿ on any 
resource type ÿ with total amount of resource ÿ (ÿ).

Suppose the optimal schedule uses a resource allocation ýOPT. Then, 
its makespan must satisfy:

3 A path is a sequence of jobs with linear precedence, i.e., ÿ = (ÿÿ(1) → ÿÿ(2) →

⋯ → ÿÿ(ÿ)), where the first job ÿÿ(1) does not have any predecessor in the graph 
and the last job ÿÿ(ÿ) does not have any successor.



Journal of Parallel and Distributed Computing 184 (2024) 104792

5

L. Perotin, S. Kandaswamy, H. Sun et al.

ÿOPT ≥max
(
ý(ýOPT), ÿ(ýOPT)

)

=ÿ(ýOPT)

≥ÿ(ý∗) =ÿmin .

The last inequality is because ÿ(ý∗) is the minimum ÿ(ý) among all 
possible resource allocations including ýOPT . □

4. Multi-Resource Scheduling Algorithm (MRSA) and 
approximation results for general DAGs

In this section, we present the Multi-Resource Scheduling Algorithm 
(MRSA) and analyze its approximation ratio for general DAGs. The al-
gorithm adopts the two-phase approach that has been widely used for 
scheduling moldable jobs on a single type of resource [63,42,36,55,54].

4.1. Phase 1: resource allocation

The first phase concerns finding a resource allocation decision ý =
(ý1, ý2, … , ýÿ) for all the jobs.

Discrete time-cost tradeoff (DTCT) problem. We first consider a relevant 
discrete time-cost tradeoff problem [13], which has been studied in the 
literature of operations research and project management.

Definition 3 (Discrete time-cost tradeoff (DTCT)). Suppose a project con-
sists of ÿ tasks with precedence constraints. Each task ÿ can be executed 
using several different alternatives and each alternative ÿ takes time ýÿ,ÿ
and has cost ýÿ,ÿ. Further, for any two alternatives ÿ1 and ÿ2, if ÿ1 is faster 
than ÿ2, then ÿ1 is more costly than ÿ2, i.e.,

ýÿ,ÿ1
≤ ýÿ,ÿ2

⇒ ýÿ,ÿ1
≥ ýÿ,ÿ2

. (1)

Given a project realization ÿ that specifies which alternative is cho-
sen for each task, the total project duration ÿ(ÿ) is defined as the sum 
of times of the tasks along the critical path, and the total cost ý(ÿ) is 
defined as the sum of costs of all tasks. The objective is to find a real-
ization ÿ∗ that minimizes the total project duration ÿ(ÿ∗) or the total 
cost ý(ÿ∗).

The above DTCT problem is obviously bicriteria, and a tradeoff ex-
ists between the total project duration and the total cost. Two problem 
variants have been commonly studied, both of which are shown to be 
NP-complete [12]:

• Budget Problem: Given a total cost budget ý, minimize the project 
duration ÿ(ÿ) subject to ý(ÿ) ≤ ý;

• Deadline Problem: Given a project deadline ÿ, minimize the total 
cost ý(ÿ) subject to ÿ(ÿ) ≤ÿ.

For both problems, Skutella [59] presented a polynomial-time ap-
proximation algorithm, which, given any feasible budget-deadline pair 
(ý, ÿ) and any ÿ ∈ (0, 1), finds a realization ÿ for the project that satis-
fies4:

ÿ(ÿ) ≤
ÿ

ÿ
,

ý(ÿ) ≤
ý

1 − ÿ
.

4 In essence, Skutella’s approximation algorithm first transforms each task 
of the project into a set of virtual tasks, and then constructs a relaxed Linear 
Program (LP) for the transformed problem. The relaxed LP either minimizes 
ÿ(ÿ) subject ý(ÿ) ≤ ý or minimizes ý(ÿ) subject ÿ(ÿ) ≤ ÿ. In either case, the 
result can be obtained by rounding the optimal fractional solution to the relaxed 
LP based on the parameter ÿ.

Allocating resources to jobs. We can now transform our resource alloca-
tion problem to the DTCT problem and solve it using the approximation 
result in [59]. To that end, a task ÿ is created for each job ÿ in the graph, 
with the set of alternatives for the task corresponding to the set of re-
source allocations for the job. The execution time ýÿ,ÿ of task ÿ with 
alternative ÿ is then defined as the execution time ýÿ (ýÿ ) of job ÿ with 
the corresponding resource allocation ýÿ , and the cost ýÿ,ÿ is defined as 
the average area ÿÿ (ýÿ ).

Let  denote the set of all ý =
∏ý

ÿ=1 ÿ
(ÿ) possible resource alloca-

tions for a job. To ensure that Condition (1) in Definition 3 is satisfied, 
we discard, for each job ÿ, the subset ÿ ⊂  of dominated allocations, 
which is defined as:

ÿ={ýÿ ∣ ∃ÿÿ , ýÿ (ÿÿ ) < ýÿ (ýÿ ) and ÿÿ (ÿÿ ) ≤ ÿÿ (ýÿ )} , (2)

and only use the remaining set of non-dominated allocations, denoted by 
ÿ = ∖ÿ , to create the alternatives of the task. Thus, a realization ÿ
for the project corresponds to a resource allocation decision ý for the 
jobs. The total project duration ÿ(ÿ) then corresponds to the critical-
path length ÿ(ý) of the DAG, and the total cost ý(ÿ) corresponds to the 
average total area ý(ý) of the jobs.

A resource allocation decision ý = (ý1, ý2, … , ýÿ) is said to be non-
dominated if the allocation for every job is non-dominated, i.e., ýÿ ∈ÿ

for all ÿ = 1, … , ÿ. The following lemma shows that the makespan lower 
bound ÿmin can be achieved by a non-dominated resource allocation.

Lemma 2. There exists a non-dominated resource allocation ý∗ = (ý∗
1
, ý∗

2
, … ,

ý∗
ÿ
) that achieves ÿ(ý∗) =ÿmin.

Proof. Suppose a resource allocation ÿ
∗ = (ÿ∗

1
, ÿ∗

2
, … , ÿ∗

ÿ
) achieves 

ÿ(ÿ∗) = ÿmin, and it contains a dominated allocation ÿ∗ÿ ∈ ÿ for a job 
ÿ. Then, by replacing ÿ∗

ÿ
with a non-dominated allocation ÿ′ ∗

ÿ
∈ÿ that 

dominates ÿ∗
ÿ
, i.e., ýÿ (ÿ′ ∗ÿ ) ≤ ýÿ (ÿ

∗
ÿ
) and ÿÿ (ÿ′ ∗ÿ ) ≤ ÿÿ (ÿ

∗
ÿ
), we get a new 

resource allocation ÿ′∗ = (ÿ∗
1
, … , ÿ∗

ÿ−1
, ÿ′ ∗

ÿ
, ÿ∗

ÿ+1
, … , ÿ∗

ÿ
), which satisfies 

ý(ÿ′
∗
) ≤ ý(ÿ∗) and ÿ(ÿ′∗) ≤ ÿ(ÿ∗). This implies ÿ(ÿ′∗) ≤ ÿ(ÿ∗) = ÿmin. 

Repeating the process above for every job with a dominated alloca-
tion results in an overall non-dominated allocation ý∗ that achieves 
ÿ(ý∗) =ÿmin. □

We can now find a resource allocation ý′ for the jobs (or equiva-
lently a realization ÿ′ in the corresponding DTCT problem), with the 
following property.

Lemma 3. For any ÿ ∈ (0, 1), a resource allocation ý′ = (ý′
1
, ý′

2
, … , ý′

ÿ
) can 

be found in polynomial time that satisfies:

ÿ(ý′) ≤
ÿOPT

ÿ
, (3)

ý(ý′) ≤
ÿOPT

1 − ÿ
. (4)

Proof. The result can be obtained by adapting the algorithm in [59], 
which minimizes the project duration (or total cost) subject to a known 
budget ý (or deadline ÿ) for the DTCT problem. Without knowing the 
value of the constraint a priori, we can still achieve the same approx-
imations by adopting the technique used in [36] for the problem with 
a single resource type. Specifically, the relaxed LP originally formu-
lated in [59] can be modified and applied to our problem as follows: 
minimize the lower bound ÿ(ý) instead, subject to two additional con-
straints ÿ(ý) ≤ ÿ(ý) and ý(ý) ≤ ÿ(ý). Then, by rounding the optimal 
fractional solution ý̄∗ to this modified LP, we can get a resource allo-
cation ý′ that satisfies: ÿ(ý′) ≤ ÿ(ý̄∗)

ÿ
≤ ÿ(ý̄∗)

ÿ
and ý(ý′) ≤ ý(ý̄∗)

1−ÿ
≤ ÿ(ý̄∗)

1−ÿ
. 

Since the optimal fractional solution ý̄∗ must result in an objective not 
greater than the one achieved by any (non-dominated) integral solu-
tion ý∗, and based on Lemma 2, we have ÿ(ý̄∗) ≤ ÿ(ý∗) = ÿmin. The 
result then directly follows by applying the makespan lower bound in 
Lemma 1. □
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Adjusting resource allocation. Lastly, we adjust the resource allocation 
ý
′ (obtained through Lemma 3 above) to get the final resource alloca-
tion ý for the jobs. The aim is to limit the maximum resource utilization 
of any job under any resource type, thus facilitating more efficient list 
scheduling (described in Section 4.2). As with the case for a single type 
of resource [42,36], we choose a parameter ÿ ∈ (0, 0.5), and obtain the 
final resource allocation for each job ÿ on each resource type ÿ as fol-
lows:

ý
(ÿ)
ÿ

=

{
+ÿÿ (ÿ),, if ý′(ÿ)

ÿ
> +ÿÿ (ÿ),

ý′
(ÿ)
ÿ
, otherwise

(5)

where ý′(ÿ)
ÿ
is the corresponding resource allocation in ý′.

A job ÿ is adjusted if its final resource allocation ýÿ is reduced from 
the initial allocation ý′

ÿ
in any resource type; otherwise, the job is unad-

justed. The following lemma shows the properties of any adjusted job.

Lemma 4. For any adjusted job ÿ, its execution time satisfies:

ýÿ (ýÿ ) ≤
ýÿ (ý

′
ÿ
)

ÿ
. (6)

Further, if the total amount of resource type ÿ satisfies ÿ (ÿ) ≥ 1

ÿ2
, the job’s 

area on resource type ÿ satisfies:

ÿ
(ÿ)
ÿ
(ýÿ ) ≤ ý ⋅ ÿÿ (ý

′
ÿ
) . (7)

Proof. For any adjusted job ÿ, let ý(ÿ)
ÿ

=
ý
′ (ÿ)
ÿ

ý
(ÿ)
ÿ

denote its resource reduc-

tion factor on any resource type ÿ, and let ý = argmaxÿ=1…ý ý
(ÿ)
ÿ
denote 

the resource type with the largest reduction factor.
Since the job’s final resource allocation ýÿ is at most its initial al-

location ý′
ÿ
, i.e., ýÿ ⪯ ý′

ÿ
, and according to the adjustment procedure in 

Equation (5), we have ý(ý)
ÿ

≤ ÿ (ý)

+ÿÿ (ý), ≤ 1

ÿ
. Thus, based on Assumption 3, 

we can prove the time bound:

ýÿ (ýÿ ) ≤
(
max
ÿ=1…ý

ý
(ÿ)
ÿ

)
⋅ ýÿ (ý

′
ÿ
) = ý

(ý)
ÿ

⋅ ýÿ (ý
′
ÿ
) ≤

ýÿ (ý
′
ÿ
)

ÿ
.

To prove the area bound, we distinguish three cases.
Case (1): For resource type ý with the largest reduction factor, we 

have ý(ý)
ÿ
(ýÿ ) = ý

(ý)
ÿ

⋅ ýÿ (ýÿ ) ≤
ý
′ (ý)
ÿ

ý
(ý)
ÿ

⋅ (ý
(ý)
ÿ

⋅ ýÿ (ý
′
ÿ
)) = ý

′ (ý)
ÿ

⋅ ýÿ (ý
′
ÿ
) = ý

(ý)
ÿ
(ý′

ÿ
). 

Thus, the area of the job on resource type ý satisfies:

ÿ
(ý)
ÿ
(ýÿ ) =

ý
(ý)
ÿ
(ýÿ )

ÿ (ý)
≤

ý
(ý)
ÿ
(ý′

ÿ
)

ÿ (ý)
≤

ý∑
ý=1

ý
(ý)
ÿ

(ý′
ÿ
)

ÿ (ý)
= ý ⋅ ÿÿ (ý

′
ÿ
) .

Case (2): For any resource type ÿ ≠ ý with ý(ÿ)
ÿ

≤ -ÿÿ (ÿ). ≤ ÿÿ (ÿ), and 

since ý(ý)
ÿ

= +ÿÿ (ý), ≥ ÿÿ (ý), we have:

ÿ
(ÿ)
ÿ
(ýÿ ) =

ý
(ÿ)
ÿ
⋅ ýÿ (ýÿ )

ÿ (ÿ)
≤

ÿÿ (ÿ) ⋅ ýÿ (ýÿ )

ÿ (ÿ)

≤ ÿ ⋅ ý
(ý)
ÿ

⋅ ýÿ (ý
′
ÿ
) = ÿ ⋅

ý
′ (ý)
ÿ

⋅ ýÿ (ý
′
ÿ
)

ý
(ý)
ÿ

≤ ÿ ⋅
ý

(ý)
ÿ
(ý′

ÿ
)

ÿÿ (ý)
=

ý
(ý)
ÿ
(ý′

ÿ
)

ÿ (ý)

≤

ý∑
ý=1

ý
(ý)
ÿ

(ý′
ÿ
)

ÿ (ý)
= ý ⋅ ÿÿ (ý

′
ÿ
) .

Case (3): For any resource type ÿ ≠ ý with ý(ÿ)
ÿ

= +ÿÿ (ÿ), ≤ ÿÿ (ÿ) + 1, 
by following the same derivation steps as in Case (2), we can get:

ÿ
(ÿ)
ÿ
(ýÿ ) ≤

(
1 +

1

ÿÿ (ÿ)

) ý
(ý)
ÿ
(ý′

ÿ
)

ÿ (ý)

Algorithm 1: Resource Allocation (Phase 1).
Input: For each job ÿ, execution time ýÿ (ýÿ ) and average area ÿÿ (ýÿ )

under all possible resource allocations; values of parameters ÿ
and ÿ.

Output: Resource allocation decision ý =(ý1 , ý2, … , ýÿ) for all jobs.
begin

(Step 1): For each job ÿ, discard the subset ÿ ⊂  of dominated 
resource allocations as defined in Equation (2);
(Step 2): Transform the resource allocation problem to the DTCT 
problem and adapt the algorithm in [59] to obtain an initial 
allocation decision ý′ that satisfies Equations (3) and (4);
(Step 3): For each job ÿ and each resource type ÿ, adjust the initial 
allocation in ý′ based on Equation (5) to obtain a final resource 
allocation decision ý that satisfies Equations (6) and (7).

end

=
ý

(ý)
ÿ
(ý′

ÿ
)

ÿ (ý)
+

ý
(ý)
ÿ
(ý′

ÿ
)

ÿÿ (ÿ)ÿ (ý)

≤

ý∑
ý=1

ý
(ý)
ÿ

(ý′
ÿ
)

ÿ (ý)
−

ý
(ÿ)
ÿ
(ý′

ÿ
)

ÿ (ÿ)
+

ý
(ý)
ÿ
(ý′

ÿ
)

ÿÿ (ÿ)ÿ (ý)

=

ý∑
ý=1

ý
(ý)
ÿ

(ý′
ÿ
)

ÿ (ý)
+

ýÿ (ý
′
ÿ
)

ÿ (ÿ)

»
¼¼½
ý
′ (ý)
ÿ

ÿÿ (ý)
− ý

′ (ÿ)
ÿ

¾
¿¿À
.

Since ý′ (ý)
ÿ

≤ ÿ (ý) and ý′ (ÿ)
ÿ

≥ +ÿÿ (ÿ), ≥ ÿÿ (ÿ), we have 
ý
′ (ý)
ÿ

ÿÿ (ý) − ý
′ (ÿ)
ÿ

≤ 1

ÿ
−

ÿÿ (ÿ), which is at most 0 when ÿ (ÿ) ≥ 1

ÿ2
. In this case, we have:

ÿ
(ÿ)
ÿ
(ýÿ ) ≤

ý∑
ý=1

ý
(ý)
ÿ

(ý′
ÿ
)

ÿ (ý)
= ý ⋅ ÿÿ (ý

′
ÿ
) .

This completes the proof of the lemma. □

Algorithm 1 summarizes all the three steps involved in this first 
phase of the algorithm.

4.2. Phase 2: job scheduling

The second phase schedules the jobs by making a starting time 
decision ý = (ý1, ý2, … , ýÿ), given the resource allocation decision ý de-
termined by the first phase.

List scheduling strategy. Jobs are scheduled through a list scheduling 
strategy, as shown in Algorithm 2, which extends the classical list 
scheduling for a single type of resource to multiple resource types.

A job is said to be ready if all of its immediate predecessors in the 
precedence graph have been completed or if the job has no immedi-
ate predecessor. The algorithm starts by inserting all ready jobs into a 
queue  in any order. Then, at time 0 or whenever a running job ý
completes and hence releases resources, the algorithm inserts, into the 
queue , any new job ý′ that becomes ready due to the completion of 
job ý. It then goes through the list of all ready jobs in  and schedules 
each job ÿ that can be executed at the current time if its resource alloca-
tion ýÿ can be met by the amount of available resources in all resource 
types.

Properties of list scheduling. We now analyze some properties of list 
scheduling, which will be used later in the derivation of MRSA’s approx-
imation ratio. The analysis follows the same framework as in [42,36]
for single-resource scheduling.

We start by defining some notations. Let ÿ denote the makespan of a 
list schedule. We note that the algorithm only allocates and de-allocates 
resources upon job completions. Hence, the entire schedule’s duration 
[0, ÿ ] can be partitioned into a set  = {ý1, ý2, … } of non-overlapping 
intervals, where jobs only start (or complete) at the beginning (or end) 
of an interval, and the amount of utilized resource for any resource 
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Algorithm 2: List Scheduling (Phase 2).
Input: Resource allocation decision ý =(ý1 , ý2, … , ýÿ) for all jobs, and 

their precedence constraints.
Output: A list schedule for the jobs with starting time decision 

ý =(ý1, ý2, … , ýÿ).
begin

insert all ready jobs into a queue ;
ÿ

(ÿ)

ÿÿÿÿý
← ÿ (ÿ), ∀ÿ;

when at time 0 or a job ý completes execution do
ýÿÿÿ_ýÿÿÿ ← ýÿýÿÿÿÿÿÿýÿ ÿÿÿ();

ÿ
(ÿ)

ÿÿÿÿý
← ÿ

(ÿ)

ÿÿÿÿý
+ ý

(ÿ)

ý
, ∀ÿ;

for each job ý′ that becomes ready do
insert job ý′ into queue ;

end
for each job ÿ ∈ do

if ÿ (ÿ)

ÿÿÿÿý
≥ ý

(ÿ)
ÿ
, ∀ÿ then

ýÿ ← ýÿÿÿ_ýÿÿÿ and execute job ÿ now;
ÿ

(ÿ)

ÿÿÿÿý
← ÿ

(ÿ)

ÿÿÿÿý
− ý

(ÿ)
ÿ
, ∀ÿ;

remove job ÿ from queue ;
end

end

end

end

type does not change during an interval. For any resource type ÿ, let 
ÿ
(ÿ)

ÿýÿý
(ý) denote the total amount of utilized resources from all jobs that 

are running during interval ý ∈ . We further classify the set of intervals 
into the following three categories.

• 1: set of intervals during which the amount of utilized resources is 
at most +ÿÿ (ÿ), − 1 for all resource type ÿ, i.e., 1 = {ý ∣ ∀ÿ, ÿ (ÿ)

ÿýÿý
(ý) ≤

+ÿÿ (ÿ), − 1}.
• 2: set of intervals during which there exists a resource type ý that 
utilizes at least +ÿÿ (ý), amount of resources, but the amount of 
utilized resources is at most +(1 − ÿ)ÿ (ÿ), − 1 for all resource type 
ÿ, i.e., 2 = {ý ∣ ∃ý, ÿ (ý)

ÿýÿý
(ý) ≥ +ÿÿ (ý), and ∀ÿ, ÿ (ÿ)

ÿýÿý
(ý) ≤ +(1 − ÿ)ÿ (ÿ), −

1}.
• 3: set of intervals during which there exists a resource type ý that 
utilizes at least +(1 − ÿ)ÿ (ý), amount of resources, i.e., 3 = {ý ∣

∃ý, ÿ (ý)

ÿýÿý
(ý) ≥ +(1 − ÿ)ÿ (ý),}.

Let |ý| denote the duration of an interval ý , and let ÿ1 =∑
ý∈1

|ý|, 
ÿ2 =

∑
ý∈2

|ý| and ÿ3 = ∑
ý∈3

|ý| be the total durations of the three 
categories of intervals, respectively. Since 1, 2 and 3 are obviously 
disjoint and partition , we have:

ÿ = ÿ1 + ÿ2 + ÿ3 . (8)

Furthermore, for each job ÿ and each interval ý , we define ÿÿ,ý to 
be the fraction of the job executed during that interval. For instance, if 
one third of job ÿ is executed in interval ý and two thirds of the job 
are executed in interval ý ′, we have ÿÿ,ý = 1∕3 and ÿÿ,ý ′ = 2∕3. Note 
that the fraction is defined in terms of either the execution time or the 
area (work) of the job, which are equivalent here since the resource 
allocation of the job has been fixed. Thus, for each job ÿ, we have ∑

ý∈ ÿÿ,ý = 1.
The following lemma bounds the durations of the first two categories 

of intervals in terms of the execution time along the critical path of the 
initial resource allocation ý′.

Lemma 5 (Critical-path bound). For any choice of ÿ ∈ (0, 0.5), we have:

ÿ1 + ÿÿ2 ≤ ÿ(ý′) .

Proof. For any interval ý ∈ 1 ∪ 2, the amount of utilized resource 
for any resource type ÿ is at most +(1 − ÿ)ÿ (ÿ), − 1, so the amount of 

available resource is at least ÿ (ÿ) + 1 − +(1 − ÿ)ÿ (ÿ), ≥ +ÿÿ (ÿ),. According 
to the resource allocation algorithm, any job is allocated at most +ÿÿ (ÿ),
amount of resource for resource type ÿ. Thus, there is sufficient resource 
available to execute any additional job (if one is ready) during any 
interval ý ∈ 1 ∪ 2. This implies that there is no ready job in the queue 
, since otherwise the list scheduling algorithm would have scheduled 
the job.

In list scheduling, it is known that there exists a path ÿ in the graph 
such that whenever there is no ready job in the queue, some job along 
that path is running [22,42,36]. Thus, during any interval ý ∈ 1 ∪ 2, 
some job along path ÿ is running, and we let ÿ(ý) ∈ ÿ denote such a job.

Now, consider the initial resource allocation ý′. During any inter-
val ý ∈ 1, the amount of utilized resource for any resource type ÿ is 
at most +ÿÿ (ÿ), − 1, so job ÿ(ý) must be unadjusted. Thus, we have 
ýÿ(ý)(ýÿ(ý)) = ýÿ(ý)(ý

′
ÿ(ý)

). However, during any interval ý ∈ 2, job ÿ(ý)
could be adjusted, and thus, according to Lemma 4 (Inequality (6)), 
we have ÿ ⋅ ýÿ(ý)(ýÿ(ý)) ≤ ýÿ(ý)(ý

′
ÿ(ý)

). We can then derive:

ÿ1 + ÿÿ2

=
∑
ý∈1

ýÿ(ý)(ýÿ(ý)) ⋅ ÿÿ(ý),ý + ÿ
∑
ý∈2

ýÿ(ý)(ýÿ(ý)) ⋅ ÿÿ(ý),ý

≤
∑
ý∈1

ýÿ(ý)(ý
′
ÿ(ý)

) ⋅ ÿÿ(ý),ý +
∑
ý∈2

ýÿ(ý)(ý
′
ÿ(ý)

) ⋅ ÿÿ(ý),ý

≤
∑
ÿ∈ÿ

(
ýÿ (ý

′
ÿ
) ⋅

∑
ý∈1∪2

ÿÿ,ý

)

≤
∑
ÿ∈ÿ

ýÿ (ý
′
ÿ
) = ÿ(ý′, ÿ ) ≤ ÿ(ý′) . □

The following lemma bounds the durations of the last two categories 
of intervals in terms of the average total area of the initial resource 
allocation ý′.

Lemma 6 (Area bound). For any choice of ÿ ∈ (0, 0.5), if ÿmin =minÿ ÿ
(ÿ) ≥

1

ÿ2
, we have:

ÿÿ2 + (1 − ÿ)ÿ3 ≤ ý ⋅ý(ý′) .

Proof. For any interval ý ∈ 2, there exists a resource type ÿ such that 
the amount of utilized resource is at least +ÿÿ (ÿ), based on the defi-
nition of 2. Therefore, the total work done on resource type ÿ from 
all jobs during this interval satisfies: 

∑ÿ

ÿ=1 ÿÿ,ý ⋅ý
(ÿ)
ÿ
(ýÿ ) ≥ |ý| ⋅ +ÿÿ (ÿ), ≥

|ý| ⋅ÿÿ (ÿ). Thus, we have: ÿ ⋅ |ý| ≤∑ÿ

ÿ=1 ÿÿ,ý ⋅
ý
(ÿ)
ÿ
(ýÿ )

ÿ (ÿ) =
∑ÿ

ÿ=1 ÿÿ,ý ⋅ ÿ
(ÿ)
ÿ
(ýÿ ) ≤

ý
∑ÿ

ÿ=1 ÿÿ,ý ⋅ ÿÿ (ý
′
ÿ
). The last inequality is due to Lemma 4 (Inequality 

(7)), if ÿ (ÿ) ≥ 1

ÿ2
. Note that Inequality (7) was proven for any ad-

justed job but it obviously holds for unadjusted jobs as well. Thus, if 
ÿmin =minÿ=1…ý ÿ

(ÿ) ≥ 1

ÿ2
, we can derive:

ÿÿ2 = ÿ
∑
ý∈2

|ý|

≤ ý
∑
ý∈2

ÿ∑
ÿ=1

ÿÿ,ý ⋅ ÿÿ (ý
′
ÿ
)

= ý

ÿ∑
ÿ=1

(
ÿÿ (ý

′
ÿ
) ⋅

∑
ý∈2

ÿÿ,ý

)
. (9)

For any interval ý ∈ 3, there exists a resource type ÿ such that the 
amount of utilized resource is at least +(1 − ÿ)ÿ (ÿ),. Using the same 
argument, we can derive:

(1 − ÿ)ÿ3 ≤ ý

ÿ∑
ÿ=1

(
ÿÿ (ý

′
ÿ
) ⋅

∑
ý∈3

ÿÿ,ý

)
. (10)
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Thus, combining Inequalities (9) and (10), we can get:

ÿÿ2 + (1 − ÿ)ÿ3 ≤ ý

ÿ∑
ÿ=1

(
ÿÿ (ý

′
ÿ
) ⋅

∑
ý∈2∪3

ÿÿ,ý

)

≤ ý

ÿ∑
ÿ=1

ÿÿ (ý
′
ÿ
) = ý ⋅ý(ý′) . □

4.3. Approximation results

We now derive the approximation ratio of MRSA, which combines 
the resource allocation phase (Algorithm 1) and the list scheduling 
phase (Algorithm 2). The following theorem shows the result for any 
number ý of resource types.

Theorem 1. For any ý ≥ 1 and if ÿmin ≥ 7, the makespan of MRSA satisfies:

ÿ

ÿOPT
≤ ÿý + 2

√
ÿý + 1 ≤ 1.619ý + 2.545

√
ý + 1 ,

where ÿ = 1+
√
5

2
is the golden ratio. The result is achieved at ÿ∗ = 1 − 1

ÿ
≈

0.382 and ÿ∗ = 1√
ÿý+1

≈
1

1.272
√
ý+1

.

We point out that ÿmin ≥ 7 represents a reasonable condition on the 
total amount of most discrete resource types (e.g., processors, memory 
blocks, cache lines).

Proof. Based on the analysis of the list scheduling algorithm, by sub-
stituting ÿ1 from Lemma 5 and ÿ3 from Lemma 6 into ÿ = ÿ1 + ÿ2 + ÿ3, 
and if ÿmin ≥ 1

ÿ2
, we get:

ÿ ≤ ÿ(ý′) +
ý

1 − ÿ
ý(ý′) +

(
1 − ÿ −

ÿ

1 − ÿ

)
ÿ2 .

Applying the bounds for ÿ(ý′) and ý(ý′) in Lemma 3 from the re-

source allocation algorithm, and when (1 − ÿ)2 ≤ ÿ, i.e., ÿ ≥ 3−
√
5

2
=

1 − 1

ÿ
, which makes the last term above at most zero, we can derive:

ÿ ≤

(
1

ÿ
+

ý

(1 − ÿ)(1 − ÿ)

)
ÿOPT ≜ ÿý (ÿ, ÿ) ⋅ ÿOPT .

Clearly, ÿý (ÿ, ÿ) is an increasing function of ÿ. Thus, to minimize 
the function, we can set ÿ∗ = 1 − 1

ÿ
. In this case, we require ÿmin ≥

1

(ÿ∗)2
≈ 6.854 and we define ÿý (ÿ) ≜ ÿý (ÿ

∗, ÿ) = 1

ÿ
+

ÿý

1−ÿ
. By setting ÿ ′

ý
(ÿ) =

−
1

ÿ2
+

ÿý

(1−ÿ)2
= 0 and by checking that ÿ ′′

ý
(ÿ) > 0 for all ÿ, we get ÿ∗ =

1√
ÿý+1

that minimizes ÿý (ÿ). Thus, the approximation ratio is given by 

ÿý (ÿ
∗, ÿ∗) = ÿý + 2

√
ÿý + 1. □

Remarks. When there is only one type of resource (i.e., ý = 1), The-
orem 1 gives an approximation ratio of 5.164, which improves upon 
the ratio of 5.236 by Lepère et al. [42]. In fact, Jansen and Zhang [36]
proved an even better ratio of 4.73 by deriving a tighter critical-path 
bound than the one shown in Lemma 5. Unfortunately, their analysis 
cannot be generalized to work for the case with more than one type of 
resources.

While Theorem 1 proves the approximation ratio of the algorithm 
for any ý, the following theorem shows an improved result for large ý.

Theorem 2. For any ý ≥ 22 and if ÿmin ≥ ý2∕3, the makespan of MRSA 
satisfies:

ÿ

ÿOPT
≤ ý + 3

3
√
ý2 +ÿ(

3
√
ý) ,

which is achieved at ÿ∗ ≈
1
3
√
ý
and ÿ∗ =

√
1−2ÿ∗√

1−2ÿ∗+
√
ýÿ∗

.

Proof. Following the proof of Theorem 1 but by substituting ÿ2 and ÿ3
into Equation (8), and if ÿmin ≥ 1

ÿ2
, we get:

ÿ ≤
1 − 2ÿ

ÿ(1 − ÿ)
ÿ(ý′) +

ý

1 − ÿ
ý(ý′) +

(
1 −

1 − 2ÿ

ÿ(1 − ÿ)

)
ÿ1 .

Applying the bounds for ÿ(ý′) and ý(ý′) in Lemma 3, and when 1 −
1−2ÿ

ÿ(1−ÿ)
≤ 0, i.e., ÿ ≤ 3−

√
5

2
= 1 − 1

ÿ
, which makes the last term above at 

most zero, we can derive:

ÿ ≤

(
1 − 2ÿ

ÿ(1 − ÿ)ÿ
+

ý

(1 − ÿ)(1 − ÿ)

)
ÿOPT ≜ ýý (ÿ, ÿ) ⋅ ÿOPT .

Let ÿÿ =
1−2ÿ

ÿ(1−ÿ)
=

1

ÿ
−

1

1−ÿ
and ýÿ =

1

1−ÿ
. We can then write: ýý (ÿ, ÿ) =

ÿÿ

ÿ
+

ýýÿ

1−ÿ
. By deriving ýý (ÿ, ÿ) with respect to ÿ and setting the derivative 

to zero, we can get the best choice for ÿ to be ÿ∗(ÿ) =
√
ÿÿ√

ÿÿ+
√
ýýÿ

. As 

ÿÿ , ýÿ > 0, clearly ÿ∗(ÿ) ∈ (0, 1), thus is a valid choice. By substituting 
ÿ∗(ÿ) back into ýý (ÿ, ÿ) and simplifying, we can get:

ýý (ÿ, ÿ
∗(ÿ)) =

(√
ÿÿ +

√
ýýÿ

)2
≜ ýý (ÿ)

2 .

We will now minimize ýý (ÿ) =
√

1

ÿ
−

1

1−ÿ
+
√

ý

1−ÿ
. By deriving ýý (ÿ)

with respect to ÿ and factoring, we can get:

ý′
ý
(ÿ) = −

ℎý (ÿ)

ÿý (ÿ)
,

where

ℎý (ÿ) = (2ý + 4)ÿ4 − (ý + 8)ÿ3 + 8ÿ2 − 4ÿ + 1 ,

ÿý (ÿ) = 2ÿ(1 − ÿ)
√
ÿ(1 − ÿ)(1 − 2ÿ)

(
ÿ
√
ýÿ(1 − 2ÿ) + (2ÿ2 − 2ÿ + 1)

)
.

As 2ÿ2 − 2ÿ + 1 = ÿ2 + (1 − ÿ)2 > 0 for any ÿ ∈ (0, 0.5), ÿý (ÿ) is always 
positive. Thus, the sign of ý′

ý
(ÿ) is the opposite of the sign of ℎý (ÿ).

In the following, we will show that, if ý ≤ 21, ℎý (ÿ) is always positive 

for any ÿ ∈ (0, 3−
√
5

2
], and thus the optimal choice is ÿ∗ =

3−
√
5

2
, which 

gives the same result as in Theorem 1. Otherwise, if ý ≥ 22, there is 

a unique optimal choice ÿ∗ ∈ (0, 3−
√
5

2
), which satisfies ℎý (ÿ∗) = 0. For 

convenience, we define ÿý =
3−

√
5

2
and ÿý =

3

8
< ÿý.

First, we can compute, for any ÿ ∈ (0, ÿý], that:

ℎ′
ý
(ÿ) = 4(2ý + 4)ÿ3 − 3(ý + 8)ÿ2 + 16ÿ − 4

= ýÿ2(8ÿ − 3) + 4(2ÿ − 1)
(
ÿ2 + (1 − ÿ)2

)
< 0 .

We can also compute, for any ÿ ∈ [ÿý , ÿý], that:

ℎ′′
ý
(ÿ) = 12(2ý + 4)ÿ2 − 6(ý + 8)ÿ + 16

≥ 12(2ý + 4) ⋅
(
3

8

)2

− 6(ý + 8) ⋅
(3 −

√
5

2

)
+ 16

≈ 1.083ý + 4.416 > 0

Thus, we can conclude the following:

• In (0, ÿý], ℎý (ÿ) is a strictly decreasing function of ÿ;
• In [ÿý , ÿý], ℎý (ÿ) is a strictly convex function of ÿ, and ℎ′ý (ÿ) is a 
strictly increasing function of ÿ.

We can verify that, when ý ≤ 21, the value of ÿ∗ as suggested in The-
orem 1 remains the optimal choice that minimizes ýý (ÿ), and it yields 
the same approximation result of Theorem 1.

We now focus on the case with ý ≥ 22. For any fixed ÿ in (0, ÿý], 
we can easily show that ℎý (ÿ) is a decreasing function of ý (by deriving 
ℎý (ÿ) with respect to ý). Thus, we have ℎý (ÿý) ≤ ℎ22(ÿ

ý) ≈ −0.008 < 0. 
Further, we have ℎý (0) = 1 > 0. Since ℎý (ÿ) is a strictly decreasing func-
tion of ÿ in (0, ÿý], we know that ℎý (ÿ) = 0 admits a unique solution ÿ∗
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in this interval. Moreover, since ℎý (ÿ) is a convex function in [ÿý , ÿý], 
we have, for any ÿ ∈ [ÿý , ÿý], that:

ℎý (ÿ) ≤ ℎ22(ÿ) ≤max
(
ℎ22(ÿ

ý), ℎ22(ÿ
ý)
)

≈max(−0.008,−0.01) < 0 .

This shows that ℎý (ÿ) > 0 in (0, ÿ∗) and ℎý (ÿ) < 0 in (ÿ∗, ÿý]. Since 
ℎý (ÿ) and ý′ý (ÿ) have opposite signs, we get that ýý (ÿ) is a strictly de-
creasing function of ÿ in (0, ÿ∗) and a strictly increasing function in 
(ÿ∗, ÿý]. Thus, the optimal ÿ to minimize ýý (ÿ) is given by ÿ∗.

As ÿ∗ is the solution to a fourth-degree equation (i.e., ℎý (ÿ) = 0), its 
closed form, although exists, is too complicated to express. However, 
observing that when ý increases and if ÿ is small enough, the dominat-
ing negative term of ℎý (ÿ) is ýÿ3 and the dominating positive term is 
1. We can then get an estimate of ÿ∗ ≈

1
3
√
ý
, which gives the following 

approximation ratio:

ýý (ÿ
∗)2 ≈

ý
3
√
ý + 2ý

√
1 −

2
3
√
ý
+

3
√
ý2 − 2

3
√
ý

3
√
ý − 1

= ý + 3
3
√
ý2 +ÿ(

3
√
ý) .

This completes the proof of the theorem. □

Remarks. Theorem 2 holds for a relatively large number of resource 
types (i.e., ý ≥ 22), which is unlikely to be practical in today’s resource 
management systems. However, the theoretical result offers the first ap-
proximation ratio whose dominating factor (i.e., ý) matches the lower 
bound for local list-based scheduling (see Theorem 6). Thus, the re-
sult is asymptotically tight for this class of multi-resource moldable job 
scheduling algorithms.

5. Improved approximation results of MRSA for some special 
graphs

In the preceding section, we have derived the approximation ratios 
of MRSA for general graphs. In this section, we will show improved 
approximation results for some special graphs, namely, series-parallel 
graphs or trees, and independent jobs without any precedence con-
straints.

5.1. Results for SP graphs or trees

We first consider jobs whose precedence constraints form a series-
parallel graph or a tree. A directed acyclic graph is a Series-Parallel (SP) 
graph [6] if it has only two nodes (i.e., a source and a sink) connected 
by an edge, or can be constructed (recursively) by a series composition 
or a parallel composition of two SP graphs.5 Trees are simply special 
cases of general SP graphs.

In this case, we rely on an FPTAS (Fully Polynomial-Time Approx-
imation Scheme) proposed in [42] to find a near-optimal resource al-
location. The algorithm was proposed in the context of single-resource 
scheduling, but can be readily adapted to work for multiple types of 
resources (while first discarding the subset of dominated resource allo-
cations as shown in Step 1 of Algorithm 1).6 The following lemma shows 
the result. More details about the algorithm can be found in [42].

5 Given two SP graphs ÿ1 and ÿ2 , the parallel composition is the union of the 
two graphs while merging their sources to create the new source and merging 
their sinks to create the new sink, and the series composition merges the sink of 
ÿ1 with the source of ÿ2 and uses the source of ÿ1 as the new source and the 
sink of ÿ2 as the new sink.
6 In essence, the FPTAS first decomposes an SP graph into atomic parts, then 
uses dynamic programming to decide if an allocation ý′ that satisfies ÿ(ý′) ≤ÿ

can be found for a positive integer ÿ, and finally performs a binary search on 
ÿ.

Lemma 7. For any set of jobs whose precedence constraints form an SP 
graph or a tree, and for any ÿ ≥ 0, there exists an FPTAS (with running time 
polynomial in 1∕ÿ), which computes a resource allocation ý′ that satisfies:

ÿ(ý′) = max(ý(ý′), ÿ(ý′))

≤ (1 + ÿ) ⋅ÿmin ≤ (1 + ÿ) ⋅ ÿOPT .

We can now use the above FPTAS to replace Step 2 in resource allo-
cation (Algorithm 1) and combine it with list scheduling (Algorithm 2). 
The following theorem shows the approximation ratio for any number 
ý of resource types.

Theorem 3. For any ý ≥ 1 and if ÿmin ≥ 7, the makespan of MRSA for SP 
graphs or trees satisfies:

ÿ

ÿOPT
≤ (1 + ÿ) ⋅ (ÿý + 1) ≤ (1 + ÿ) ⋅ (1.619ý + 1) ,

where ÿ = 1+
√
5

2
is the golden ratio. The result is achieved at ÿ∗ = 1 − 1

ÿ
≈

0.382.

Proof. Following the proof of Theorem 1 by substituting ÿ1 from 
Lemma 5 and ÿ3 from Lemma 6 into ÿ = ÿ1 + ÿ2 + ÿ3, and if ÿmin ≥ 1

ÿ2
, 

we get:

ÿ ≤ ÿ(ý′) +
ý

1 − ÿ
ý(ý′) +

(
1 − ÿ −

ÿ

1 − ÿ

)
ÿ2 .

Then, by applying the bounds in Lemma 7, and when (1 − ÿ)2 ≤ ÿ, 

i.e., ÿ ≥ 3−
√
5

2
= 1 − 1

ÿ
, we can derive:

ÿ ≤ (1 + ÿ) ⋅

(
1 +

ý

(1 − ÿ)

)
ÿOPT ≜ ÿý (ÿ) ⋅ ÿOPT .

Clearly, ÿý (ÿ) is an increasing function of ÿ. Thus, the minimum 
value is obtained by setting ÿ∗ = 1 − 1

ÿ
. In this case, the approximation 

ratio is given by ÿý (ÿ∗) = (1 + ÿ) ⋅ (ÿý + 1), with the condition ÿmin ≥
1

(ÿ∗)2
≈ 6.854. □

The approximation ratio can be further improved for ý ≥ 4 resource 
types, as shown in the following theorem.

Theorem 4. For any ý ≥ 4 and if ÿmin ≥ ý + 2
√
ý − 1, the makespan of 

MRSA for SP graphs or trees satisfies:

ÿ

ÿOPT
≤ (1 + ÿ) ⋅

(
ý + 2

√
ý − 1

)
,

which is achieved at ÿ∗ =
1√

ý−1+1
.

Proof. Following the proof of Theorem 1 but by substituting ÿ2 and ÿ3
into ÿ = ÿ1 + ÿ2 + ÿ3, and if ÿmin ≥ 1

ÿ2
, we get:

ÿ ≤
1 − 2ÿ

ÿ(1 − ÿ)
ÿ(ý′) +

ý

1 − ÿ
ý(ý′) +

(
1 −

1 − 2ÿ

ÿ(1 − ÿ)

)
ÿ1 .

Applying the bounds in Lemma 7, and when 1 − 1−2ÿ

ÿ(1−ÿ)
≤ 0, i.e., ÿ ≤

3−
√
5

2
, we can derive:

ÿ ≤ (1 + ÿ) ⋅

(
1 − 2ÿ

ÿ(1 − ÿ)
+

ý

1 − ÿ

)
ÿOPT

= (1 + ÿ) ⋅

(
1

ÿ
+

ý − 1

1 − ÿ

)
ÿOPT ≜ ýý (ÿ) ⋅ ÿOPT .

By setting ý′
ý
(ÿ) = −

1

ÿ2
+

ý−1

(1−ÿ)2
= 0 and by checking that ý′′

ý
(ÿ) > 0, 

we get ÿ∗ =
1√

ý−1+1
, which is at most 3−

√
5

2
for ý ≥ 4. Thus, with the con-
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dition ÿmin ≥ 1

(ÿ∗)2
= ý + 2

√
ý − 1 and ý ≥ 4, we get the approximation 

ratio:

ýý (ÿ
∗) = (1 + ÿ) ⋅

»
¼¼½
√
ý − 1 + 1 +

ý − 1

1 −
1√

ý−1+1

¾
¿¿À

= (1 + ÿ) ⋅
(
ý + 2

√
ý − 1

)
. □

5.2. Results for independent jobs

We finally consider a set of independent jobs without any prece-
dence constraints. For this case, Sun et al. [61] presented a 2ý-
approximation algorithm for any ý ≥ 1, while we show improved results 
for ý ≥ 3. Here, we rely on an optimal multi-resource allocation algo-
rithm proposed in [61] as Step 2 of our Algorithm 1. The algorithm 
computes the resource allocation in polynomial time as shown in the 
lemma below. More details of the algorithm can be found in [61].

Lemma 8. For any set of independent jobs, a resource allocation ý′ can be 
computed in polynomial time that satisfies:

ÿ(ý′) = max(ý(ý′), ÿ(ý′)) =ÿmin ≤ ÿOPT ,

where ÿ(ý′) =maxÿ=1…ÿ ýÿ (ý
′
ÿ
) denotes the maximum execution time of any 

job under allocation ý′, which becomes the critical path when there is no 
precedence constraint.

For a set of independent jobs, while the area bound (Lemma 6) re-
mains unchanged, in the following we provide a modified critical-path 
bound.

Lemma 9 (Modified critical-path bound). For any choice of ÿ ∈ (0, 0.5), we 
have:

• If 1 = ∅, ÿÿ2 ≤ ÿ(ý′);
• If 1 ≠ ∅, ÿ1 + ÿ2 ≤ ÿ(ý′).

Proof. Recall that there are three categories of intervals 1, 2 and 3. 
Based on the proof of Lemma 5, during any interval ý ∈ 1 ∪2, there is 
no ready job in the queue. Since all jobs are independent, it means that 
all jobs have been scheduled. This implies that all intervals in 2 happen 
before all intervals in 1, since there is no new job arrival and jobs only 
complete. Further, all intervals in 3 happen before all intervals in 2
using the same argument. Now, consider a job ÿ that completes the last 
in the schedule. We know that ÿ must have started during 3 or at the 
beginning of 2. We consider two cases.

Case (1): 1 = ∅. In this case, job ÿ is executed during all intervals 
in 2 and it could be adjusted. Thus, according to Lemma 4 (Inequality 
(6)), we have ÿÿ2 ≤ ÿ ⋅ ýÿ (ýÿ ) ≤ ýÿ (ý

′
ÿ
) ≤maxÿ=1…ÿ ýÿ (ý

′
ÿ
) = ÿ(ý′).

Case (2): 1 ≠ ∅. In this case, job ÿ is executed during all intervals in 
2 and all intervals in 1, so it must be unadjusted (since it is executed 
during 1). Thus, we have ÿ1 + ÿ2 ≤ ýÿ (ýÿ ) = ýÿ (ý

′
ÿ
) ≤ maxÿ=1…ÿ ýÿ (ý

′
ÿ
) =

ÿ(ý′). □

The following theorem summarizes the best approximation ratios 
that could be obtained for independent jobs with different number ý of 
resource types.

Theorem 5. The makespan of multi-resource scheduling for any set of in-
dependent jobs satisfies ÿ ∕ÿOPT ≤ ÿ, where:

ÿ =

⎧⎪«⎪¬

2ý, if ý = 1,2, and ÿmin ≥ 1

1.619ý + 1, if ý = 3, and ÿmin ≥ 7

ý + 2
√
ý − 1, if ý ≥ 4, and ÿmin ≥ ý + 2

√
ý − 1

Proof. When ý = 1, 2, we can just apply the multi-resource scheduling 
algorithm in [61] to get 2ý-approximation. Otherwise, we consider both 
cases as stated in Lemma 9.

Case (1): 1 = ∅. In this case, the makespan is given by ÿ = ÿ2 + ÿ3. 
Substituting ÿÿ2 ≤ ÿ(ý′) from Lemma 9 and ÿÿ2 + (1 − ÿ)ÿ3 ≤ ý ⋅ ý(ý′)

from Lemma 6 into ÿ , we get:

ÿ ≤
1 − 2ÿ

ÿ(1 − ÿ)
ÿ(ý′) +

ý

1 − ÿ
ý(ý′)

≤
( 1 − 2ÿ

ÿ(1 − ÿ)
+

ý

1 − ÿ

)
⋅ ÿOPT (by Lemma 8)

≜ ýý (ÿ) ⋅ ÿOPT .

Case (2): 1 ≠ ∅. In this case, the makespan is given by ÿ = ÿ1 + ÿ2 +

ÿ3. Substituting ÿ1 + ÿ2 ≤ ÿ(ý′) from Lemma 9 and ÿÿ2 + (1 − ÿ)ÿ3 ≤

ý ⋅ý(ý′) from Lemma 6 into ÿ , we get:

ÿ ≤ ÿ(ý′) +
ý

1 − ÿ
ý(ý′) −

ÿ

1 − ÿ
ÿ2

≤
(
1 +

ý

1 − ÿ

)
⋅ ÿOPT (by Lemma 8)

≜ ÿý (ÿ) ⋅ ÿOPT .

Based on the two cases above, the overall approximation ratio is thus 
given by max(ÿý (ÿ), ýý (ÿ)), with the condition ÿmin ≥ 1

ÿ2
. Thus, when 

ý = 3, by following the proof of Theorem 3 and setting ÿ∗ ≈ 0.382, the 
ratio is ÿý (ÿ∗) ≤ 1.619ý + 1. When ý ≥ 4, we can follow the proof of 
Theorem 4 by setting ÿ∗ =

1√
ý−1+1

. In this case, the ratio is ýý (ÿ∗) =

ý + 2
√
ý − 1. □

6. Lower bound for local list-based scheduling

In this section, we prove a lower bound on the approximation ra-
tio of any deterministic algorithm that, in the second phase, uses local 
list-based scheduling to schedule the jobs. This means that the algo-
rithm will only consider the local characteristics of the jobs, such as 
their execution times or areas, when prioritizing them in the list/queue 
and will not take any global characteristics, such as the jobs’ relative 
positions in the precedence graph, into consideration. The following 
theorem shows this lower bound, which holds regardless of the resource 
allocation scheme for the first phase.

Theorem 6. Any deterministic list scheduling algorithm with local job pri-
ority considerations is no better than ý-approximation for the multi-resource 
scheduling problem.

Proof. The lower bound is constructed by using a set of jobs whose 
precedence constraints form a tree. Each job takes unit-time to com-
plete, and only requires a unit resource allocation from a single resource 
type. For each resource type ÿ, there is a total amount ÿ (ÿ) = 2 of avail-
able resource. Fig. 1 illustrates our lower bound instance with ÿ = 2ýý

jobs, where ý is an integer multiple of 3. The nodes represent the jobs, 
the arrows represent the precedence constraints, and the color of a node 
represents the single resource type the corresponding job requires. The 
jobs form a grid, and the job in the ÿ-th row and ý-th column is denoted 
by (ÿ, ý). They satisfy the following properties:

• The number of jobs in each row of the grid is defined as follows. 
For all ÿ ∈ [1, 2(ý−1)], we have ý ∈ [1, ý]. For all ÿ ∈ [2ý−1, 2ý+1], 
we have ý ∈ [1, 2ý

3
].

• For all ÿ ≥ 1 and ý > 1, job (ÿ, ý) requires resource type ÿ =
min(+ ÿ

2
,, ý). For all ÿ > 2, job (ÿ, 1) requires resource type ÿ = + ÿ

2
, −1, 

while jobs (1, 1) and (1, 2) require resource type ÿ = 1.
• The jobs have the following dependencies. For all ÿ ≥ 1 and ý ≥ 1, 
we have (ÿ, ý) → (ÿ, ý + 1). For ÿ ∈ [1, ý − 1], we have (2ÿ, 1) → (2ÿ +

1, 1) and (2ÿ, 1) → (2ÿ + 2, 1). Finally, we have (2ý, 1) → (2ý + 1, 1).
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Fig. 1. Lower bound instance with an approximation ratio of ý for any deter-
ministic list-based scheduling algorithm with local job priority considerations.

The optimal schedule can be obtained by prioritizing the job de-
pendencies going downward, thus enabling more resource types to be 
utilized concurrently. This results in a makespan of ÿOPT =ý + ý − 1. 
Any deterministic list scheduling algorithm with only local priority con-
siderations cannot distinguish jobs that require the same resource type. 
Hence, in the worst-case, it could only utilize one type of resource at 
any time by prioritizing horizontal job dependencies. This results in a 
makespan of ÿ =ý(ý−1) + 4ý

3
=ýý+

ý

3
. Choosing ý > 3(ý2−ý), the 

worst-case approximation ratio is given by:

ÿ

ÿOPT
=

ýý +
ý

3

ý + ý − 1
=

ý +
1

3

1 +
ý−1

ý

>
ý +

1

3

1 +
1

3ý

= ý .

This completes the proof of the theorem. □

Remarks. Theorem 6 implies that MRSA, when handling a large num-
ber of resource types as shown in Theorem 2, essentially achieves a 
tight approximation ratio up to the dominating factor (i.e., ý) among 
the generic class of local list-based scheduling algorithms.

7. Simulation results

This section presents the results obtained by using simulations for 
evaluating the performance of MRSA and comparing it against two 
heuristic algorithms. For reproducibility purpose, the simulation code 
is publicly available at: https://gitlab .inria .fr /luperoti /mrsa.

7.1. Simulation setup

Workflow generation. In our simulations, we focus on evaluating the al-
gorithms under general graphs/workflows (not special graphs such as 
trees or SP graphs). For that purpose, we use DAGGEN [62], a synthetic 
task graph generator capable of generating DAGs of different struc-
tures. DAGGEN has been previously used for evaluating single-resource 
scheduling algorithms for moldable jobs [33,15]. The graphs generated 
by DAGGEN have their jobs organized in layers, and important param-
eters that influence the structure of the graphs are described below.

Fig. 2. A graph consisting of 100 jobs generated by DAGGEN with fat = 0.5, 
density = 0.5, regular = 0.5, and jump = 1.

• fat: controls the width of the DAG, i.e., the maximum number of 
jobs that can be executed concurrently;

• density: determines the number of dependencies between jobs of 
two consecutive layers of the DAG;

• regular: specifies the regularity of the distribution of jobs between 
different layers of the DAG;

• jump: controls the maximum number of layers that can be spanned 
by the edges of the DAG.

The range of possible values for fat, density, and regular is between 
0 and 1, and jump can take any integer at least 1. In our default simula-
tion setting, we will choose fat = 0.5, density = 0.5, regular = 0.5, and 
jump = 1. In Section 7.4, we will also vary these parameters to evalu-
ate their impacts on the performance of the algorithms. Fig. 2 shows a 
graph consisting of 100 jobs generated by DAGGEN under this setting.

Job speedup models. We extend some common speedup models to de-
fine how resources of different types interact and contribute to the 
overall speedup of a moldable job. In particular, we adopt the follow-
ing execution time functions for the jobs proposed in [61] that extend 
the classical Amdahl’s law [1] and power law [51] speedup models.

• Amdahl-Sum: ý(ý) =ÿ

(
ý0 +

∑ý

ÿ=1

ýÿ

ý(ÿ)

)
;

• Amdahl-Max: ý(ý) =ÿ

(
ý0 +maxÿ=1..ý

ýÿ

ý(ÿ)

)
;

• Power-Sum: ý(ý) =ÿ

(∑ý

ÿ=1

ýÿ(
ý(ÿ)

)ÿÿ
)
;

• Power-Max: ý(ý) =ÿ

(
maxÿ=1..ý

ýÿ(
ý(ÿ)

)ÿÿ
)
.

In all the models above, ÿ denotes the total amount of work to 
be completed by the job, and ýÿ denotes the fraction of work for the 
resource type ÿ. For the two Amdahl models, ý0 denotes the sequential 
fraction that is not affected by the resource allocations. For the two 
power models, ÿÿ denotes the efficiency factor for the utilization of the 
resource type ÿ. We note that all of these speedup models above satisfy 
the monotonic job assumption stated in Section 3.1.

In our simulations, the sequential fraction ý0 is uniformly gener-
ated in (0, 0.2], and the fraction ýÿ for each resource type ÿ is uniformly 
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Fig. 3. Scatter plots showing the makespans of MRSA for 50 workflows with ÿ = 30 jobs, ý = 3 resource types, and ÿ (ÿ) = 64 for each resource type under the four 
speedup models. Each point represents a workflow, the x-axis represents the makespan when considering all possible resource allocations, and the y-axis represents 
the corresponding makespan when using only power-of-2 allocations.

generated in (0, 1] and then normalized such that 
∑ý

ÿ=1 ýÿ = 1 − ý0. The 
efficiency factor ÿÿ is uniformly generated in [0.3, 1). Finally, the total 
work ÿ is uniformly generated in (0, 1]. These follow the same param-
eter choices as in [61]. In Section 7.5, we will also vary the ranges for 
the sequential fraction ý0 and the efficiency factor ÿÿ to evaluate their 
impacts on the performance of the evaluated algorithms.

Comparing algorithms. To the best of our knowledge, we are not aware 
of any previously proposed multi-resource scheduling algorithms for 
moldable workflows. Hence, we compare our algorithm MRSA against 
two baseline heuristics, which are described below.7

• minTime: allocates resources to minimize the execution time of each 
job;

• minArea: allocates resources to minimize the average area of each 
job.

Both minTime and minArea also use list scheduling to schedule the 
jobs (in Phase 2). Thus, they only differ from MRSA in how resources 
are allocated (in Phase 1). For all the evaluated algorithms, we use the 
LPT (Longest Processing Time) priority rule to order the jobs in the 
list schedule, which is known to work well for reducing the makespan. 
Thus, if the waiting queue contains more than one job, these jobs will be 
ordered by non-increasing order of execution time given their resource 
allocations.

While minTime and minArea could compute the resource allocations 
for a job relatively efficiently,8 MRSA would take ÿ(Πý

ÿ=1
ÿ (ÿ)) time by 

examining all possible resource allocations. Although this remains poly-
nomial in the input size, when the total amount of available resources 
in the system is large, the complexity of MRSA can be quite high, mak-
ing simulations feasible only for small problem instances. Thus, to speed 
up the simulations, we consider only the power-of-2 choices (i.e., 1, 2, 
4, 8, ...) when computing MRSA’s resource allocation for each resource 
type. This leads to a factor of 2 increase in the approximation ratio of 
the algorithm in the worst case,9 but it drastically reduces the complex-
ity of the algorithm to ÿ(Πý

ÿ=1
lgÿ (ÿ)), thus allowing to simulate larger 

problem instances in a reasonable amount of time.

7 In Section 7.7, we also compare MRSA with a few other approximation 
algorithms that are designed for scheduling a single type of resource.
8 Given the monotonic job assumption, minTime could allocate all the avail-
able resources to a job for minimizing its execution time, while minArea would 
typically allocate a small amount of resource to a job for minimizing its area.
9 For any job with resource allocation ýÿ =

(
ý
(1)
ÿ
, ⋯ , ý(ý)

ÿ

)
, the allocation ob-

tained by rounding all the ý(ÿ)
ÿ
’s to the closest higher power-of-2 results in a 

smaller time and an area at most twice as high. Therefore, the best trade-
off achievable using only power-of-2 choices is at most twice as high as 
ÿ(ý∗) = ÿmin, and the rest of the analysis still holds with this extra factor of 
2.

The scatter plots in Fig. 3 show the makespans of MRSA for 50 
workflows with ÿ = 30 jobs, ý = 3 resource types, and ÿ (ÿ) = 64 for 
each resource type under the four speedup models. In the plots, each 
point represents a workflow, the x-axis represents the makespan when 
MRSA considers all resource allocations, and the y-axis represents the 
corresponding makespan when MRSA uses only power-of-2 allocations. 
When running the simulations on a laptop, it took more than 10 hours 
for each speedup model by considering all allocations, while it took only 
a few seconds by considering power-of-2 allocations. In terms of the 
makespan, from the figure, we can see a generally strong and positive 
correlation between the two allocation schemes for the Amdhal-Sum 
and Power-Sum models. In the case of Amdahl-Max and Power-Max 
models, the makespans obtained when using power-of-2 allocations are 
even better than those obtained when using all allocations for most 
workflows. This is possibly because power-of-2 allocations potentially 
allow the ready jobs to be better packed/scheduled in the second phase 
of the algorithm. Given these results and to enable faster simulations, 
we will use power-of-2 allocations for MRSA in all the experiments.

7.2. Performance comparison of algorithms

We first evaluate and compare the performance of the three al-
gorithms (MRSA, minTime and minArea) for workflows that contain 
ÿ = 100 jobs using ý = 3 types of resources. Each resource type ÿ has up 
to ÿ = 1024 amount of available resources, and we consider the follow-
ing two scenarios.

• Uniform ÿ : the total amount of available resources across all re-
source types is the same. In this experiment, we set ÿ (ÿ) = 256 for 
all 1 ≤ ÿ ≤ ý.

• Non-uniform ÿ : the total amount of available resources may differ 
among different resource types. Specifically, for each resource type 
ÿ, the value of ÿ (ÿ) is randomly selected from {32, 64, 128, 256, 512,
1024}.

Other parameters (e.g., for generating graphs and job execution 
times) are set as their default values/ranges as described in Section 7.1. 
In the simulations, we randomly generate 50 workflows and obtain, for 
each workflow, the makespans of the three algorithms. We then normal-
ize the obtained makespans by the lower bound (as shown in Lemma 1) 
for that workflow and report the statistics on the normalized makespans 
across the 50 workflows.

The boxplots in Fig. 4 show the simulation results for the three al-
gorithms in the uniform ÿ scenario under the four speedup models. We 
can see that MRSA outperforms the other two heuristics significantly 
in all cases. In terms of the makespan distribution, even MRSA’s worst 
makespan for the 50 workflows is better than the best makespan ob-
tained by the other two heuristics. When comparing the median/mean 
makespan across the 50 workflows, MRSA is almost six times faster than 
at least one of the two heuristics.
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Fig. 4. Boxplots showing the normalized makespans of the three algorithms for 50 workflows with ÿ = 100 jobs, ý = 3 resource types, and uniform ÿ (= 256) under 
the four speedup models.

Fig. 5. Boxplots showing the normalized makespans of the three algorithms for 50 workflows with ÿ = 100 jobs, ý = 3 resource types, and non-uniform ÿ (up to 
1024) under the four speedup models.

Fig. 6. Impact of the number of jobs ÿ on the performance of the three algorithms under the four speedup models.

Fig. 5 shows the corresponding results in the non-uniform ÿ sce-
nario. The results are quite similar to those in the uniform scenario, and 
MRSA again significantly outperforms the other two heuristics in terms 
of the makespan distribution, as well as the mean and median values. 
In contrast to the uniform ÿ scenario, MRSA’s makespans now exhibit 
a slightly more skewed distribution and a larger range of variation, due 
to the non-uniformity in the amount of available resources of different 
types. But in both scenarios, we can observe that MRSA’s performance 
is much better than the theoretical analysis predicts, which under this 
setting has an approximation ratio of 10.26 according to Theorem 1, 
while the normalized makespan of MRSA is at most 7 in our simulation.

Due to the similarity of results in both scenarios, we will use the 
uniform scenario for all subsequent experiments, which evaluate the 
impacts of different parameters from the default setting considered in 
this section.

7.3. Impact of system parameters

This section presents the simulation results that focus on evaluating 
the impacts of different system parameters on the performance of the 

algorithms. In particular, we consider three parameters: the number of 
jobs in a workflow (ÿ), the amount of available resources (ÿ ), and the 
number of resource types (ý). In the experiments, only the evaluated 
parameter is varied and all other parameters are set at their default 
values as in Section 7.2. We again generate 50 workflows and compute 
the normalized makespans of the three algorithms for each workflow. 
The results are reported by averaging the normalized makespans across 
the 50 workflows for each algorithm.

Impact of number of jobs ÿ. Fig. 6 shows the results when the number of 
jobs ÿ is varied between 10 and 200. It is evident that MRSA consistently 
performs well in all cases. As ÿ increases, its normalized makespan stays 
almost constant for the two Amdahl models and only increases slightly 
for the two power models. In contrast, we can observe a steady in-
crease in the normalized makespan of minTime and a significant drop 
for minArea. This is because as the jobs do not have perfectly linear 
speedup, minTime becomes less efficient by allocating all the resources 
to each job. On the other hand, minArea allocates a small amount of 
resources to each job, which enables more jobs to be executed concur-
rently and more efficiently when there are more jobs in a workflow.
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Fig. 7. Impact of the amount of available resources ÿ on the performance of the three algorithms under the four speedup models.

Fig. 8. Impact of the number of resource types ý on the performance of the three algorithms under the four speedup models.

Fig. 9. Impact of the fat parameter in DAGGEN on the performance of the three algorithms under the four speedup models.

Impact of amount of available resources ÿ . Fig. 7 shows the impact of 
the amount of available resources ÿ (uniform across all resource types) 
when it is varied as a power-of-2 between 32 and 1024. We can see 
that the normalized makespan of MRSA decreases as the amount of re-
sources increases, demonstrating its ability to leverage the availability 
of more system resources to improve performance. The only exception 
is for the Power-Sum model, where the normalized makespan of MRSA 
appears unaffected by ÿ . For minTime, the performance trend is similar 
to that of MRSA but it remains worse than MRSA by a significant mar-
gin. For minArea, we see a general increase in normalized makespan as 
ÿ increases. This is because not all resources will be utilized in this case 
due to minArea’s conservative resource allocation strategy.

Impact of number of resource types ý. Fig. 8 shows the performance of 
the algorithms when the number of resource types ý is varied from 1 
to 5. Although the approximation ratio of MRSA as suggested by The-
orem 1 grows linearly with ý, its practical performance as shown in 
the figure appears not much affected by the number of resource types, 
except for the Power-Sum model, where the normalized makespan grad-
ually increases with ý. The performance trend for minTime is similar to 
that for MRSA, and the impact on minArea varies for different speedup 
models, but MRSA remains the best performer in all cases.

7.4. Impact of graph structure

This section evaluates the impact of workflow/graph structure on 
the performance of the scheduling algorithms. As described in Sec-
tion 7.1, four parameters (i.e., fat, density, regular and jump) affect 
the structure of the graphs generated by DAGGEN. To evaluate their 
impacts, we vary fat, density, and regular from 0 to 1 at an increment 
of 0.1, and vary jump from 1 to 5 at an increment of 1. Again, all other 
parameters are set at their default values, and the average normalized 
makespans across 50 workflows are reported for all algorithms.

Impact of fat parameter. The fat parameter controls the width of a 
graph. Fig. 9 shows that, as the graph becomes wider, the normalized 
makespan of MRSA experiences only a mild increase, whereas minTime 
has a sharper increase in normalized makespan. While minTime allo-
cates all the resources to each job and thus executes them sequentially, 
given a fixed number of jobs, its makespan is likely not affected but 
the makespan lower bound will decrease due to increased graph width 
(hence decreased graph depth and critical-path length). This results in 
an increase in minTime’s normalized makespan. On the other hand, 
we see a decrease in the normalized makespan for minArea. This is be-
cause a larger graph width allows more jobs to be executed concurrently 
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Fig. 10. Impact of the density parameter in DAGGEN on the performance of the three algorithms under the four speedup models.

Fig. 11. Impact of the regular parameter in DAGGEN on the performance of the three algorithms under the four speedup models.

Fig. 12. Impact of the jump parameter in DAGGEN on the performance of the three algorithms under the four speedup models.

by minArea, which only allocates a small amount of resources to each 
job.

Impact of density parameter. The density parameter controls the num-
ber of dependencies between jobs of two consecutive layers of a graph. 
Fig. 10 shows that density barely affects the performance of MRSA, 
and as it increases, the normalized makespans of both minTime and 
minArea tend to decrease. This is probably due to the increase in the 
critical path and hence the makespan lower bound that has resulted 
from increased connectivity between layers of the graph.

Impact of regular parameter. The regular parameter controls the distri-
bution of jobs between different layers of a graph. Fig. 11 shows that 
this parameter has little impact on the performance of all three algo-
rithms.

Impact of jump parameter. The jump parameter controls the maximum 
number of layers that can be spanned by the edges of a graph. Fig. 12
shows that MRSA is again not affected by this parameter, except for the 
Power-Max model where its normalized makespan has a slight increase. 
The performance of minArea is also not affected much by jump, except 
for the Power-Sum model where its normalized makespan decreases. A 
larger jump potentially reduces the critical-path length of a graph and 

hence the makespan lower bound. This causes a uniform increase in the 
normalized makespan for minTime, as can be seen in the figure.

7.5. Impact of job speedup functions

In this section, we evaluate the impact of the jobs’ speedup functions 
on the performance of the algorithms. In particular, we focus on two 
parameters, namely, the sequential fraction ý0 (in the Amdahl models) 
and the efficiency factor ÿÿ (in the power models). Both parameters 
control the degree of parallelism for a job: while a larger ý0 makes the 
job less parallelizable, a larger ÿÿ makes the job more parallelizable. In 
this set of simulations, we choose three different ranges (small, medium 
and large) for setting these two parameters.

For the sequential fraction ý0 in the two Amdahl models, its ranges 
are set as follows.

• small: ý0 is uniformly generated in (0, 0.1];
• medium: ý0 is uniformly generated in (0.2, 0.3];
• large: ý0 is uniformly generated in (0.4, 0.5].

For the efficiency factor ÿÿ in the two power models, its ranges are 
set as follows.
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Fig. 13. Impact of the sequential fraction ý0 (in the two Amdahl models) and the efficiency factor ÿÿ (in the two power models) on the performance of the three 
algorithms.

Fig. 14. Impact of parameters ÿ and ÿ on the performance of MRSA under the four speedup models. The red dot (∙) indicates the combination of ÿ and ÿ that 
gives the best simulated average normalized makespan (in parentheses), while the white plus sign (+) indicates the combination as suggested by Theorem 1 (with 
simulated average normalized makespan in parentheses).

• small: ÿÿ is uniformly generated in (0.2, 0.4];
• medium: ÿÿ is uniformly generated in (0.5, 0.7];
• large: ÿÿ is uniformly generated in (0.8, 1].

Fig. 13 shows that MRSA is not much affected by different ranges of 
these two parameters in all speedup models and it consistently performs 
well, illustrating its ability to adapt to variations in the speedup func-
tions of the jobs. For the two Amdahl models (as shown in Fig. 13(a,b)), 
we can see an increasing trend in the normalized makespan of minTime 
as ý0 increases and a decreasing trend in the normalized makespan of 
minArea. This is because when the jobs become less parallelizable (with 
an increased sequential fraction ý0), the minTime algorithm that allo-
cates all resources to a job becomes less efficient, and it calls for a more 
conservative resource allocation strategy, which is what minArea does. 
The same can be observed and explained for the two power models (as 
shown in Fig. 13(c,d)). In particular, as ÿÿ increases, which makes the 
jobs more parallelizable, minTime becomes more efficient in resource 
allocation, thus its normalized makespan decreases. On the other hand, 
the normalized makespan of minArea increases due to its inability to 
adapt to changes in job characteristics and to utilize all the available 
resources in the system. Note that when ÿÿ is large (i.e., close to 1), the 
jobs become almost fully parallelizable, thus allocating all resources to 
a job (as is done by minTime) is close to being optimal, which is why 
minTime fares even better than MRSA in this case.

7.6. Impact of MRSA parameters

Two parameters ÿ and ÿ are used in MRSA and they are involved 
in the derivation of the algorithm’s approximation ratio. According to 
Theorem 1, their values are optimized at ÿ∗ ≈ 0.382 and ÿ∗ ≈ 0.312 when 
there are three types of resources (i.e., ý = 3). In this experiment, we 
aim to evaluate the impact of these two parameters on the practical 
performance of the algorithm.

Fig. 14 shows the normalized makespan of MRSA (averaged over 50 
workflows) under the four speedup models when ÿ is varied from 0.1 to 
0.5 and ÿ is varied from 0.1 to 0.9, both with an increment of 0.01 each 
time. The red dot (∙) in each plot indicates the combination of ÿ and ÿ

that gives the best average normalized makespan (in parentheses) under 
the respective speedup model in our simulation, while the white plus 
sign (+) indicates the combination as suggested by Theorem 1 with av-
erage normalized makespan obtained in simulation in parentheses. We 
can see that the simulation results are not exactly in line with the theo-
retical analysis. For the two Amdahl models, the best ÿ is between 0.15 
and 0.2, and the best ÿ is close to 0.9. However, the difference in av-
erage normalized makespan is relatively small (i.e., within 0.2 in both 
cases). For the two power models, the best ÿ is around 0.3, and the 
best ÿ is between 0.6 and 0.7. In these two cases, there is a larger dif-
ference in average normalized makespan (i.e., 2.67 in Power-Sum and 
0.68 in Power-Max). Such a discrepancy is possibly due to the follow-
ing reasons: (1) the approximation ratio derived in Theorem 1 is not 
tight, hence the suggested ÿ∗ and ÿ∗ are not optimal; (2) the theoretical 
analysis assumes the worst-case scenario, thus may not reflect the prac-
tical performance as reported by the simulation10; and (3) the analysis 
is based on a generic job execution model and does not consider specific 
speedup functions. The insights gained in this experiment can be poten-
tially explored in future work to improve the approximation results of 
the algorithm (e.g., by further tuning the choices of parameters ÿ and 
ÿ, and by taking into account specific speedup models of the jobs).

7.7. Results for a single resource type

In this section, we evaluate the performance of MRSA when there 
is only a single type of resource, i.e., ý = 1. For this special case, the 
two parameters of MRSA are set as ÿ∗ ≈ 0.382 and ÿ∗ ≈ 0.44 according 
to Theorem 1, and it has an approximation ratio of 5.164.

We note that MRSA is not specifically designed and optimized for 
a single resource type, and there exist better approximation algorithms 

10 Indeed, the worst-case scenario considers that, at any time, only one of the ý
resource types is used, resulting in a very low efficiency in term of the area. This 
leads to a conservative decision with a small ÿ that trades low areas with high 
critical-path length. In the practical simulations, however, several resources are 
used most of the time, which is why a larger ÿ gives better results.
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Fig. 15. Performance comparison of the four approximation algorithms for the single resource case (ý = 1) under the two speedup models.

for this case. This section provides a performance comparison of MRSA 
with a few other approximation algorithms that similarly use the two-
phase scheduling framework for this scheduling problem. In particular, 
the compared algorithms all use list scheduling in the second phase 
to schedule the jobs but they deploy different strategies to allocate 
resources in the first phase by strategically balancing the area and 
critical-path length of the graph. The following describes the compared 
algorithms and their resource allocation strategies.

• LTW: This algorithm was proposed by Lepère, Trystram, and Woeg-
inger [42]. It works similarly as MRSA by setting ÿ ≈ 0.382 but 
ÿ = 0.5. It was shown to have an approximation ratio of 5.236.

• JZ: This algorithm was proposed by Jansen and Zhang [36]. It 
also follows the same general strategy as MRSA and LTW, but sets 
ÿ ≈ 0.2709 and ÿ ≈ 0.431, achieving a better approximation ratio of 
4.73.

• TSAS/CPA: TSAS was proposed in [55], and it finds a resource 
allocation using convex programming that balances the area and 
critical-path length (i.e., minimizes the maximum of the two), 
while setting ÿ ≈ 0.58579. It was shown to have an approximation 
ratio of 11.66. CPA [54] works similarly as TSAS but finds an allo-
cation using a greedy heuristic that has much lower computational 
complexity.

The simulation of this section follows the same setup as in the pre-
vious sections (but with ý = 1), while varying the total amount ÿ of 
the only resource type between 32 and 1024. Thanks to the smaller 
search space with ý = 1, we consider all possible allocations (instead of 
only power-of-2 allocations as done in previous sections), thus offering 
a more precise evaluation of these algorithms.

Fig. 15 shows the comparison results for the four algorithms un-
der the Amdahl and power models. Note that, when ý = 1, the “Sum” 
and “Max” variations collapse into the same model. We can see that 
the four algorithms have very similar performance under the Amdahl 
model for all values of ÿ . For the power model, LTW and TSAS/CPA 
perform slightly better than the other two algorithms for small ÿ , but 
all of them again have similar performance when ÿ become larger. Un-
der both models, the normalized makespans of all algorithms never 
exceed 2.6 and the average values decrease as ÿ increases, showing 
these algorithms’ ability to effectively utilize the available resources to 
achieve good performance. Overall, the results suggest that MRSA along 
with the compared approximation algorithms perform comparably for 
scheduling moldable workflows under a single resource type.

8. Conclusion and future work

In this paper, we have studied the problem of scheduling moldable 
workflows with multiple types of resources with the objective of mini-
mizing the makespan. We have proposed a multi-resource scheduling al-
gorithm, MRSA, that adopts a two-phase approach by combining an ap-

Table 1
Summary of approximation results.

Precedence Approximation Ratio

General 
Graphs

∙ 1.619ý + 2.545
√
ý + 1 for ý ≥ 1

∙ ý + 3
3
√
ý2 +ÿ(

3
√
ý) for ý ≥ 22

SP Graphs 
or Trees

∙ (1 + ÿ) (1.619ý + 1) for ý ≥ 1

∙ (1 + ÿ)
(
ý + 2

√
ý − 1

)
for ý ≥ 4

Independent 
Jobs

∙ 2ý for ý ≥ 1 [61]
∙ 1.619ý + 1 for ý = 3

∙ ý + 2
√
ý − 1 for ý ≥ 4

proximate resource allocation and an extended list scheduling scheme. 
Theoretically, we have proven approximation ratios of the algorithm for 
general workflows, as well as improved ratios for some special graphs 
including SP graphs or trees and independent jobs. Table 1 summa-
rizes all the approximation results. We have also proven a lower bound 
on the approximation ratio of any local list-based scheduling scheme. 
Empirically, we have evaluated the performance of MRSA by conduct-
ing simulations using synthetic workflows generated by DAGGEN and 
moldable jobs following different speedup models. The results show 
that the practical performance of MRSA is better than the approxima-
tion ratio predicts, and that it outperforms two other heuristic algo-
rithms under a variety of parameter settings, including different system 
parameters, graph structures, job speedup models, etc. It also performs 
comparably with a few other approximation algorithms designed for 
the special case of a single resource type.

The future work for this research could include both theoretical and 
empirical extensions. On the theoretical front, we will seek to find bet-
ter scheduling algorithms by proving improved approximation ratios, 
while possibly taking specific job speedup functions into account. We 
point out that the lower bound shown in Theorem 6 does not rule out 
the possibility of a global list scheduling algorithm that considers the 
structure of the precedence graph when determining the priorities for 
the jobs (e.g., by prioritizing the jobs on the critical path). On the prac-
tical side, while our evaluations in this paper are based on simulations 
using synthetic jobs, it will be insightful to validate the performance of 
our algorithm by evaluating it using real-world moldable workflows on 
real systems that have multi-resource scheduling capabilities.
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