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Abstract

This paper is concerned with the turnpike property for a class of stochastic linear-quadratic (LQ, for
short) optimal control problems with periodic coefficients. The stability and stabilizability of the control
system are studied, followed by the discussion of the existence and uniqueness of periodic solutions. A
deterministic periodic LQ problem is introduced and solved, whose optimal pair, together with a pair of
correction processes, serves as the turnpike limit of the stochastic problem. It is shown that the turnpike
limit is periodic in the distribution sense. In the special case of constant coefficients, the turnpike limit turns
out to have stationary distributions, with the expectation being the solution to a static optimization problem.
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1. Introduction

Let (£2, %, P) be a complete probability space equipped with a filtration F = {.%;},>0 which
satisfies the usual conditions. Suppose that on (£2, .%, IP) a standard one-dimensional Brownian
motion W = {W(¢), %;; t > 0} is defined. Thus, F could be larger than the natural filtration
generated by W. Consider the following controlled linear stochastic differential equation (SDE,
for short)

{dX(t) =[A®X @)+ B@Ou@) +b@®)]ldt +[CO)X () +D@O)u) +o@®)]dW (@),
X(0) = x,

and the quadratic cost functional
1 T
) A Q@) S@) X() X (1)
JT(x’”('))_E/R(sm R(t))(u(t))’(u(t)))
0
q(1) X (1)
+2<<r(t))’<u(t))>:|dt' (12)

In the above, A(-), C(-), Q() € L*(0,00; R*™™), B(:), D(-) € L*°(0,00; R"™™), S(-) €
L*(0, 00; R™) R() € L*°(0, 00; R™ ™), b(-), o(), q(-) € L*®(0,00;R"), and r(-) €
L*°(0, co; R™), where L°°(0, co; H) denotes the space of essentially bounded Lebesgue mea-
surable functions from [0, co) into H, some Euclidian space. The functions Q(-) and R(-) are
symmetric matrix-valued. In (1.2), the superscript T denotes the transpose of matrices, and (-, -)
denotes the Frobenius inner product of two matrices (in possibly different spaces). The vector
x € R" in (1.1) is called an initial state, and the process u(-), called a control, is selected from
the following space:

T
w10,T] = u:[o,T]x9—>JR<myueIFandJE/|u(z)|2dt<oo :
0

where the notation u € IF means that u(-) is progressively measurable with respect to the filtration
IF, and | - | is the norm induced by the Frobenius inner product. For a fixed time horizon T > 0,
the stochastic linear-quadratic (LQ, for short) optimal control problem on [0, T] can be stated
as follows.

Problem (SLQ)7. For any given initial state x € R”, find a control ity (-) € % [0, T] such that

Jrxsur() = inf Jr(x;u()) =Vr(x). (1.3)
u()E10,T]

The process it (+) in (1.3) (if exists) is called an open-loop optimal control of Problem (SLQ)r
for the initial state x, the corresponding state process X7(-) is called an open-loop optimal state
process, the pair ()_( 7(-),ur(-)) is called an open-loop optimal pair, and the function Vr(-) is
called the value function of Problem (SLQ)r.
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The study of stochastic LQ optimal control problems began with the works of Kushner [14]
and Wonham [26] in the 1960s. Since then, many researchers have carried out corresponding
research and analysis on this topic, for both the definite (meaning that Q(-) > 0 and R(-) > 0)
and indefinite (if the positive semi-definite/definite conditions are not assumed for Q(-) and R(-))
situations; see, for example, [8,1,4,28,21] and the references cited therein. It is well-known by
now that under proper conditions, Problem (SLQ)7 is uniquely open-loop solvable, by which
we mean that an open-loop optimal control uniquely exists, whose open-loop optimal control
admits a closed-loop representation and can be constructed explicitly in terms of the solution to
a differential Riccati equation. The open-loop optimal control usually depends on the initial state
x, as well as the time horizon T.

The purpose of this paper is to analyze the limiting behavior of the optimal pair (X7 (-), it (-))
as the time horizon T tends to infinity, which, as we shall see later, exhibits the so called expo-
nential turnpike property. Such a property was recently discovered by Sun—Wang—Yong [20] for
stochastic LQ optimal control problems with constant coefficients, in which it was shown that
the following is satisfied:

[EX7(t) —x*| + |Bir () —u*| < K[e ™™ +e*T7D], vrel0,T] (1.4)

for some constants K, A > 0 that are independent of T, where (x*, u™*), referred to as the turnpike
limit, is the solution to a static optimization problem, which is independent of 7" and the (open-
loop) optimal pair (X7 (-), u7(-)). It is easy to see that (1.4) is not good enough and one hopes to
have

E|X7(t) —x*| + Elir(t) —u*| < K[e ™™ +e*T7D], v elo0,T], (1.5)

with the absolute value being inside of the expectation. Unfortunately, the estimate (1.5) is not
true in general. For mean-field stochastic LQ optimal control problems (more general than Prob-
lem (SLQ)7), Sun—Yong [22] introduced a pair of correction processes such that instead of (1.5),
the following strong exponential turnpike property was proved:

E[|1X7(t) — X*(O)1 + lir () —u* O] < K[e ™ +eTD], vre(0,T], (1.6)

where (X*(-), u*(-)) is a pair of stochastic processes independent of 7 and (X710, ar ().
Having the above results, the main novelty and contribution of the current paper can be sum-
marized as follows.

(i) The coefficients are all time-periodic, with a common period > 0. The constant coefficient
framework of [20] can be regarded as a special case of the current one. We have overcome
the essential difficulties that the (time-varying) periodic feature of the coefficients brings
in the stability and stabilizability of periodic stochastic linear systems, the existence and
uniqueness of periodic solutions to SDEs, the periodic solvability of differential Riccati
equations, etc.

(i1) Unlike in [20,22], we use a deterministic periodic LQ optimal control problem, denoted by
Problem (DLQ),, to determine the turnpike limit for our Problem (SLQ)7. This periodic
optimal control problem is explicitly solved, whose optimal pair can be regarded as the
analogue of the solution to the static optimization problem in [20] or [22].
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(iii) It is shown that under proper conditions, the open-loop optimal pair (X7(-), 7 (-)) of
Problem (SLQ)r satisfies (1.6), where K, A > O are constants independent of 7', and
(X*(-), u*(-)) is a pair of T-periodic stochastic processes in the sense that (X*(-), u*(-))
and (X*(t + -),u*(r + -)) have the same finite-dimensional distributions. The pair
(X*(-), u*(-)) can be explicitly determined as follows:

X'O=XO+x"(), u'()=00XO+x"Ol+u*(),

where (x*(-),u*(-)) is the t-extension of the optimal pair of (deterministic) Problem
(DLQ);, X (-) is the t-periodic solution of a linear SDE, and ®(-) is a completely de-
termined matrix function; all of them are independent of 7" and the pair X7, ar ().

(iv) When the coefficients are time invariant, our results reduce to the case studied in [22] with-
out the mean-field, and further we show that the correction processes introduced in [22] can
be chosen to have invariant distributions.

The turnpike property was initially realized by Ramsey [18] and by von Neumann [16], in
the early of last century, for the optimal solution to a dynamic optimization problem in infi-
nite time horizon in studying growth problems of economy systems. The name “turnpike” was
firstly coined by Dorfman—Samuelson—Solow [9] in 1958, suggested by a similar feature of toll
highway in the United States. In the recent years, numerous relevant results were developed for
deterministic optimal control problems of both finite and infinite dimensional systems. Typical
studies include, but not limited to, Porretta—Zuazua [ 17], Damm—Grune—Stieler—Worthmann [7],
Trélat—Zuazua [24], Zaslavski [29,30], Trélat—Zhang [23], Grune—Guglielmi [12], Lou—Wang
[15], Breiten—Pfeiffer [2], Grune—Guglielmi [13], Sakamoto—Zuazua [19], and Faulwasser—
Grune [10]. For a more complete review, we refer the reader to Carlson—Haurie—Leizarowitz
[3] and Zuazua [31]. As for stochastic optimal control problems, to the best of our knowledge,
[20] is the first attempt to discover the corresponding turnpike properties, followed by a deeper
and more general study [22].

The rest of the paper is organized as follows. In Section 2, we introduce some notation, impose
the assumptions, and collect a few lemmas that will be needed later. In Section 3, we study the
stability and stabilizability of stochastic linear systems with periodic coefficients, and show that
a unique periodic solution exists for stable systems in Section 4. In Section 5, we discuss the
long-time behavior of the solution to the differential Riccati equation associated with Problem
(SLQ)r. In Section 6, we introduce the deterministic periodic LQ optimal control problem and
investigate its solvability. In Section 7, we establish the turnpike property for Problem (SLQ)r.

2. Preliminaries
In this paper, a vector always refers to a column vector if not specified otherwise. For a dif-

ferentiable function f : R" — R, we write the row vector (fy,, ..., fx,) as fr. Let R"*" be the
Euclidean space of n x m real matrices, equipped with the Frobenius inner product

(M,N)2tr(M"N), M,NeR"™™",
where M T is the transpose of M and tr (M " N) is the trace of M " N. The norm induced by the
Frobenius inner product is denoted by | - |. Let S” be the space of symmetric n x n real matrices

and S’} the subset of S" consisting of positive definite matrices. For two matrices M, N € S",
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we write M > N if M — N is positive semidefinite. The identity matrix of size n is denoted by
I,,, which is often simply written as / when no confusion occurs. For a Euclidean space H, we
define

L0, 00; H) & {(p 1[0, 00) — H | ¢ is Lebesgue essentially bounded},
C([0,00); H) £ i(p 1[0, 00) > H | @ is continuous},

C(0,T]; H) £ {gp ([0, 71— H | gis continuous}.

Also, recall that (§2,.%7,P) is a complete probability space equipped with a filtration F =
{F:}1>0 satisfying the usual conditions. For a random variable &, we write § € % if § is .7 -
measurable; and for a stochastic process X, we write X € [F if it is progressively measurable with
respect to the filtration IF.

Next, we introduce the assumptions that will be in force throughout the paper. For the simplic-
ity of the presentation, we shall call a function F(-) € L°°(0, co; S™) uniformly positive definite
if for some constant § > 0,

F(t) >8I, ae.tel0,00).

Now, we introduce the following basic assumptions on our Problem (SLQ)7:
(A1) The time-varying coefficients in (1.1) and (1.2) are periodic functions with common period
7 > 0 and satisfy the following boundedness condition:
A(),C(-) € L(0,00; R"™™),  B(-), D(-) € L*(0, 00; R"*™),
0() € L7(0,00;S"), S(-) € L7(0,00; R™*"),  R() € L*(0, 00; S™),
b(-),0(),q() € L*(0,00; R"), r(-) € L™(0,00; R™).

(A2) R(-) and Q(-) — S(-) " R(-)~'S(-) are uniformly positive definite.

It is standard that under (A1)—(A2), the state equation (1.1) is well-posed for all x € R" and
u(-) € [0, T], and the cost functional (1.2) is well-defined and uniformly convex in %[0, T].
Therefore, Problem (SLQ)r is well-formulated and admits a unique open-loop optimal control
(see, for example, [21]).

To conclude this section, we present some useful lemmas. Let

A(),C(-) € L0, T; R™™), B(.), D(-) € L*°(0, T; R"*™),
GeS", Q()eL*®0,T;S", S()eL*>®O,T;R™"™), R()eL>®0,T;S™),

and let X () be the solution to the matrix SDE

dX@t)=ANOX(@)dt +C(HX()dW (), te€][0,T],

Q2.1
X0)=1.
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Lemma 2.1. The solution P(-) € C([0, T]; S™) to the ordinary differential equation (ODE, for
short)

Pt) +POAG) + A0 TPE) +CH)TPHCH) + Q@) =0,
P(T)=G

admits the following representation:

T
P)=E{ [X(TM)X01TGIx(@mx @ "1+ / (X)X @) T Q)X (s)X (1) ds
t

Consequently, if G > 0 and Q(t) > 0 for a.e. t € [0, T, then
P() =0, Vviel0,T].
Proof. See [28], pp. 320-321. O
Lemma 2.2. Suppose that fori = 1,2, P;(-) € C([0, T]; S") satisfies
R+ D) Pi)D(t) >0, ae tel0,T]
and the following Riccati differential equation:

Pi+PA+ AP +CTPC+Q
—(PiB+C"PD+SHR+D'P,D)y ' (B"P +D'PiC+S)=0.

Then with P() 2 P2(-) — P1(),

P+ P(A+BKs) + (A+BK2) P + (€ + DK2) TP(C + DK»)
+ (K2 =K (R+DTPiD) (K, — K1) =0,

where fori =1, 2,

-1
Ki) 2 =[R0 +DOTRODO ]| [BOTP0) +DOTRCH +S0)]

Proof. The proof follows from a direct computation. We omit the details here. O
3. Stability and stabilizability

In this section we introduce the notions of (mean-square exponential) stability and stabiliz-
ability for stochastic linear systems with periodic coefficients. As we shall see in the subsequent
sections, the stabilizability of the controlled state equation plays a key role in the turnpike prop-
erty of Problem (SLQ)7.

We start with the following definition.
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Definition 3.1. Let @ (¢) be the fundamental matrix for the linear SDE
dXt)=AWX@W)dt+CH)X@)dW (), t=0, 3.1
that is, @ (-) is the solution of the matrix linear SDE

do(t)=AM)P@)dt+C@t)D(t)dW (), t=0,
D0)=1.

(3.2)

We say that the system (3.1), or [A(-), C(-)], is mean-square exponentially stable if there exist
constants K, A > 0 such that

El@@®)|> < Ke ™™, Vit>0. (3.3)

As far as the above notion of mean-square exponential stability is concerned, we do not need
the coefficients A(-) and C(-) to be periodic. However, when the coefficients A(-) and C(-) are
periodic (with the same period 7 > 0), we have some further interesting properties. Let us now
explore them.

First, it is well-known that cD(t)_1 exists for any ¢ > 0, and satisfies the following SDE:

dio(m N=o@0 7 'CH)? — ADdt — (1) 'CH)dW (1), >0,
o) '=1.
Next, we present the following lemma (recalling that T > 0 is the period).

Lemma 3.2. Let (A1) hold. Then for any integer j > 1 and any t > 0,

(1) @(t+ jt)q)(jt)_1 and @ (t) are identically distributed,
(i) @(t+ j7:)<15(j7:)_1 and @ (jt) are independent.

Proof. We prove the result for the case j = 1; the general case can be proved in a similar way.
Let Wo (1) = W(t + 1) — W(r) for t > 0. We know that W, = {W.(¢); ¢ > 0} is also a standard

Brownian motion, independent of ﬁrw £ o (W(s); 0<s < 1). Further,

t+1 t+t
Bt+7)= D) + / As)® (s)ds + / C(s)B(5)dW (s)

t t
=¢(t)+/A(s+r)¢(s—i—r)ds—l—/C(s—i—r)d)(s+t)dWT(s)

0 0
t t

=cD(t)+/A(s)d>(s+r)ds+/C(s)q)(s—i—t)dW,(s).
0 0

Let I'(t) 2 & (¢ + t)®(v) . From the above we have
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dr(ty=A@) I t)ydt +C(t) ()dW(t), t=0,
roy=1I.

Thus, by the pathwise uniqueness, I"(¢) and @ (¢) have the same distribution for every ¢ > 0.
Moreover, by the strong uniqueness, I"(-) is adapted to the augmented filtration generated by
W (-). Since W;(-) and ﬁ’fw are independent, so are I"'(t) and @ (7). O

We now present a characterization of the mean-square exponential stability.
Proposition 3.3. Let (A1) hold.

(1) If[A(.), C(-)] is mean-square exponentially stable, then for each t-periodic function A(-) €
L°(0, 0o; S™), the Lyapunov differential equation

P(t)+ P(A®) +A@D) T P@)+C@t)  P)C(t) + A1) =0 (3.4)

admits a unique t-periodic solution P(-) € C([0, 00); S"). Moreover, if A(t) = 0 almost
everywhere (respectively, A(-) is uniformly positive definite), then P(t) > 0 for all t > 0
(respectively, P(-) is uniformly positive definite).

(ii) Suppose that for some t-periodic, uniformly positive definite function A(-) € L°°(0, oo;
S™), equation (3.4) admits a t-periodic, uniformly positive definite solution P(-) € C([0,
00); S™). Then [A(-), C(-)] is mean-square exponentially stable.

Proof. (i) Consider the following linear ODE:

P+ POAG) + AN PO)+C@)" P()CE) + A1) =0, 1e]0,1],
P(t)=M,

where M € S” is a constant matrix to be determined. Clearly, for each M € S" the above equation
has a unique solution Py;(-) € C([0, T']; S"), which, by Lemma 2.1, has the following represen-
tation:

Pyt =E[@(@)® @) ' M@ (@)@ ()™

+ f ()P ()T AP ()P (1) ds ¢, 3.5)
t

where @ (-) is the solution of (3.2). In particular, at = 0, we have

PM(0)=]E[<D(I)TM<D(I)] +E/®(S)TA(S)Q)(S)dsE]E[(D(‘E)TM(D(T)] +L.
0

So we need only show that there exists a unique M € S” such that
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M:E[@(I)TM<D(I)] YL (3.6)
To this end, let My = L and iteratively define for k =1, 2, .. .,
M, = E[qﬁ(r)TMk_lcp(r)] YL

By Lemma 3.2, ®Q20)P(r)"! and & (7) are independent and identically distributed. Thus,

Mo =E (10000 Mi2[920)@ (@) ') + L,
and hence

M =E[¢@E (120001 Mi2[0 0o (1)) o(1)
+ IE[ds(z)Tch(r)] +L

_ E[@(ZI)TMk_2¢(ZT)] n EI:@(‘L')TLQ)(‘C)] YL

By induction, we get
k
M, = ZIE[CD(jr)TL(D(jr)].
j=0
Since [A(-), C(-)] is mean-square exponentially stable, there exist constants K, A > 0 such that
)IE[(D(jr)TLQ(jr)]‘ <Ke™MT Vj>o0.

It follows immediately that M} converges to a solution of (3.6) as k — oco. Moreover, if A(¢) >0

almost everywhere, then L > 0 and hence M > 0. By the representation (3.5), we have P(t) > 0
for all ¢ > 0. If A(-) is uniformly positive definite, i.e., the condition

A(t) =281, aet>0

holds for some constant § > 0, then

T T

LéE/qb(s)TA(s)cp(s)ds >3f1f«:[q>(s)Tq§(s)]ds >5/]E[q>(s)]TIE[q>(s)]ds.
0 0 0

Note that

dE[® ()] = AOE[® ()]dt, >0,
E[®(0)] = I.
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Consequently, the continuous function E[@(-)] is invertible, implying that E[® (-)] TE[®(-)] is
uniformly positive definite over the interval [0, 7]. Let

RIRT

a2 inf {u(r):u() is the smallest eigenvalue of E[& (t)]TIE[CD(t)]} > 0.
Then by (3.6),

M>L >éatl.
Further, by (3.5),

PO >Eflo@e0™1 Me@o 1)1}

>8at E[® (1)@ (1) '1TE[@(1)® ()],
Setfors €7, 7], Y(s) 2 ®(s)®(z)~!. Then

dE[TY (s)]=AG)E[Y (s)]ds, s €]t 1],
E[T®)]=1.

If we let W () be the solution to the matrix ODE

dl(s) =A(s)¥ (s)ds, se]0,r1],
v0)=1,

vt € [0, 7]. (3.7

IIRT

then E[T (s)] = ¥ (s)¥ (t)~!. In particular, E[® ()P (1) '] = ¥ (1)@ (1) ~!. Let

BE inf {u(r): pu(r) is the smallest eigenvalue of [lI/(r)lI/(t)_l]T[J/(r)lI/(t)_l]} > 0.
Then from (3.7) we have (noting that P(-) is T-periodic)

P(t) >8I £8aBtl >0,

vt > 0.
For the uniqueness, we need only show that M = 0 is the unique solution of

M :]E[@(I)TMGD(I)]. (3.8)
Suppose that M solves (3.8), then proceeding similarly as before, we get

M= ]E[(D(kr)TMq)(kr)], Vk>1,
from which we obtain
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Letting k — oo gives M = 0.
(ii) Let @ (-) be the solution of (3.2). By Itd’s rule,

d T

E]E[cb(t) P(t)®(1)]

—E [qﬁ(;)T[P(t) T POAD) +ADT PG + C(t)TP(t)C(t)]cb(t)}
=—E[®(1)" A()D ()] (3.9)

Since both P(-) and A(-) are t-periodic, uniformly positive definite, there are constants «, 8 > 0
such that

al <A®W), P(t) <BI, ae.tel0,00).

Thus, (3.9) implies
%E[@(t)TP(t)QXt)] < —%E[@(I)TP(I)CD(O], vVt > 0.

By Gronwall’s inequality, the mean-square exponential stability of [A(-), C(-)] follows. O

Corollary 3.4. Let (Al) hold. If[A(-), C(-)] is mean-square exponentially stable, then there exist
constants K, . > 0 such that for any t > s > 0, the following holds (comparing with (3.3)):

E|® @)@ (s) "> < Ke 07,
where @ (-) is the solution of (3.2).

Proof. By Proposition 3.3, there exists a t-periodic, uniformly positive definite function P(-) €
C ([0, 00); S™) such that

P+ POAD)+AWN)"PO)+C@H)  P()C(H)+1=0, >0.
Fix s > 0 and set
TFO20(+5)P6)", WO E2W(@E+s)—W(s); t=0.
Then

drr (t) =A@ +s)I(t)dt+ C(t +s)F(t)dW(t), t >0,
ro=1I.

By applying It6’s formula to # — )" P(t + ) (r), we can obtain
d
EIE[F(t)TP(t +5)I ()] =—E[l(t) T (@)
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Let «, 8 > 0 be such that
a ' T<P()<BTI, Viel0,00).

Then the above implies

%E[F(t)TP(t + )TV —BE[C @) Pt +s5)(1)], Vi>=0.
By Gronwall’s inequality, we have
E[r () ' TO1<eE[L (@) Pt +)T(1)] <ae P P(s) < Ee —Pr, V>0,

from which the desired result follows. O

We note that for the case C(-) = 0, namely, for the ODE case, when A(-) is T-periodic, by the
well-known Floquet theory ([11 27]) there are clear characterizations of the fundamental matrix,
denoted by @(-), and in particular, @ () is not necessarily t-periodic in general. Here is a simple

example.

Example 3.5. Let

A@) = <_01 Sl_n1t> , teR.

Then, it is 2 -periodic. The corresponding fundamental matrix d() is given by

Sty =e! (é 1_1“’5’), teR,

which is not 27 -periodic, and it is exponentially stable.

Now for the general case, i.e., both A(-) and C(-) might be non-zero and 7-periodic, we do
not expect the solution @ (-) of (3.2) to be 7-periodic (in the sense that @ (-) and @ (t + -) have
the same distributions), but it still could be exponentially stable. The following example is a

modification of Example 3.5.

Example 3.6. Consider A(-) as in Example 3.5 and C(¢) = al for some constant a. Then (3.2)
reads:

do(t)=A@®)P(t)dt +a®(t)dW (1),
whose solution is given by
a2 A
O(t)y=e 2T WVOG(r), 1>0.
Then,
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E[ir(20)0(0)] = [24 (1~ cos? [t r2rs2aW 0]

= [2 +(1- cost)z]e(“z’z)t — 0, ast— oo,

provided a? < 2. This also shows that @ (7 4+ 7) and @ (¢) cannot have the same distribution for
all # > 0. Otherwise, one at least has

E[et+D]=E[®®], >0,

which contradicts the mean-square exponential stability of @(-). Therefore, &(-) is not t-
periodic (see Definition 4.1).

Next, we consider the following controlled linear SDE, denoted by [A(-), C(:); B(-), D(-)]
(with common period T > 0 for the coefficients):

dX(t)=[AOX@)+ B)u@®)]dt +[C&)X (@) + D@t)u®)ldW (), t=>0.
For this system, we introduce the following notion.
Definition 3.7. System [A(-), C(-); B(:), D(-)], with the common period 7 for the coefficients,
is said to be mean-square exponentially stabilizable if there exists a t-periodic function ®(-) €
L*°(0, oo; R™*™) such that [A(-) + B(-)®(-), C(-) + D(-)®(-)] is mean-square exponentially
stable. In this case, @ (-) is called a stabilizer of [A(-), C(-); B(-), D(-)].

The following result provides a characterization of the mean-square exponential stabilizabil-
ity.

Proposition 3.8. Let (A1) hold, and let
M(-) € L7(0,00; S"), N(:) € L>(0,00:S™)

be two t-periodic, uniformly positive definite functions. The system [A(-), C(-); B(-), D(:)] is
mean-square exponentially stabilizable if and only if the differential Riccati equation

P+PA+A'P+C'PC+M

(3.10)
—(PB+C"PDYN+D"'PD)'B"P+D"PC)=0

admits a t-periodic, uniformly positive definite solution P(-) € C([0, 00); S™). In this case, the
T-periodic, uniformly positive definite solution to (3.10) is unique, and the function ©(-) defined
by

O@) 2 ~[N@)+D®)" P()DOI ' [B@) P(t) + D(t)" P(1)C(1)] (3.11)
is a stabilizer of [A(-), C(-); B(-), D(})].
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Proof. Sufficiency. Suppose that (3.10) admits a t-periodic, uniformly positive definite solution
P(-) € C([0,00); S™). Let ®@(-) be defined by (3.11). Clearly, ®(-) € L*°(0, co; R™*") is t-
periodic, and the equation (3.10) can be rewritten as

P+PA+BO)+(A+BO)'P+(C+DO)'P(C+DO)+O'NO+M=0.

By Proposition 3.3 (ii), [A(-) + B(-)®(-), C(-) + D(-)®(-)] is mean-square exponentially stable.

Necessity. Let ®p(-) be a stabilizer of [A(-), C(-); B(:), D(-)]. Then by Proposition 3.3, the
ODE

P+ Pi(A+ BOy) + (A+ BOgy) ' P; + (C+ DOy Pi(C + DOy)
+ 60y NOg+M =0 (3.12)

admits a unique 7-periodic, uniformly positive definite solution P(-) € C([0, c0); S"). Let
O E2—-(N+D"P D)"Y BTP +D"PC).
Then we can rewrite (3.12) as follows:

P+ Pi(A+ BO)) + (A+BO) P +(C+ DO P|(C+ D6E)
+M+ O] NO| +(0g—0) (N + D" P D)(Oy—O)=0.

We see from Proposition 3.3 (ii) that ®1(-) is a stabilizer of [A(-), C(-); B(-), D(:)]. Now, induc-
tively, setfori =1,2,---,

©;2—(N+D"PD)'B"P+D"PC), A2A+BO;, Ci2C+ Do,
and consider
Piy1+ P Ai + A P+ CT PG+ O NO; + M =0. (3.13)
By induction, we can see that for each i > 1, ®;(-) is a stabilizer of [A(-), C(-); B(:), D(-)], and

the ODE (3.13) has a unique t-periodic, uniformly positive definite solution P;11(-). We claim
that { P; (~)}f.>o | converges pointwise to a limit P (-) that is a t-periodic, uniformly positive definite

solution to the Riccati equation (3.10). To prove this, we set
AEP — Py, AZ0O_1—-0; il
Fori > 1, we have
~hi= PP,
= PAi1 + AL P+ CL PiCii + 6, NO_
— Pir1Ai — Al Pt = G Pyt Ci — 6 N O,
= AjAi + Al A+ CTAICi + Pi(Ai—1 — A) + (Ai—1 — A) T P,
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+C L PCioy —C PCi+ 0 [NOi_| — O N6;. (3.14)
It is easy to check that
Ai—1 —Ai = BA;,
C' P.Ci1—CPCi=AD"PiDA; +CP,DA; + A D" P,C;, (3.15)
O [NO_1 —ONO; = A NA; + AT NO; + O N A;.

Note also that
B'"P,+D"PCi+NO;=B"P,+D"PiC+(N+D'"PD)®; =0.
Then plugging (3.15) into (3.14) yields
A+ NA+ A A +CTACi+ AT (N+DTPD)A; =0. (3.16)

Since [A;(-), C;(-)] is mean-square exponentially stable, it follows from Proposition 3.3 (i) that
A;(t) = 0forall t > 0. Thus, foreachi > 1,

Pi(t) > Pi11(t) =20, Vt>0.

By the monotone convergence theorem, the limit P(z) = lim;_, o P;(¢) exists for all > 0. To
show that the 7-periodic function P(-) is a uniformly positive definite solution to (3.10), we
observe first that

t
Piy1(1) = Pi1(0) — / (Pz-+1A,-+A7Pl-+1+c,T P,»+1Ci+@lTN@i+M)ds. (3.17)
0

Since as i — 00, we have

Oi(t) = —[N@®)+ D) " P()DOI ' [B() T P(t) + D(t) T P(1)C(1)] = O 1),
Ai(t) = A +B1)O®1),  Ci(t) = C(t) + D1)O(1),

the dominated convergence theorem implies that
t
P(t) = P(0) —/ [P(A+B@)+(A+B@)TP+(C+D@)TP(C+D@)+@TN@—i—M]ds.
0

By differentiating both sides of the above and substituting for @, we see that P(-) satisfies the
Riccati equation (3.10).

Finally, let us show that the t-periodic, uniformly positive definite solution to (3.10) is unique.
Suppose that 71 () and IT>(-) are two t-periodic, uniformly positive definite solutions of (3.10).
Set X £ [T, — IT; and
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,2—-(N+D'I,D)'B I+ D' IT;C), i=1,2.
Then by Lemma 2.2,

S+ XA+B)+(A+BY) T+ (C+DY) X(C+ DT»)
+ (M -1)"(N+ D" D)2 — 1) =0.

Since 7»(-) is a stabilizer of [A(-), C(-); B(-), D(-)] and N(¢) 4+ D(¢) " IT; () D(¢) > 0 for almost
all ¢, we conclude from Proposition 3.3 (i) that

IL(t)—I () =X@)=0, Vt=>=0.
Reversing the roles of I7;(-) and IT>(-), we obtain the opposite inequality. 0O

We now further introduce the following assumption.

(A3) System [A(-), C(-); B(:), D(-)] is mean-square exponentially stabilizable.
4. Periodic solutions of stochastic linear systems
In this section, we consider the following linear SDE:

dX)=[AOX@) +b®]dt +[COOX @) +o()]dW (@), =0,
X(0)=¢,

A.1)

where
A(),C() € L2(0,00; R"™™™),  b(-),0(:) € L(0, 00; R")

are t-periodic functions and & € .% is an R"-valued, square-integrable random vector. Note
that [F is not assumed to be the natural filtration generated by W. Thus, £ is a random vector in
general as % is non-trivial.

Definition 4.1. The solution X (-) of (4.1) is said to be t-periodic if X(-) and X(t 4 -) have
the same finite-dimensional distributions, i.e., for any integer m > 1, real numbers 0 <t <1 <
o<ty <oo,and Ay, ..., A, € B(R"), we have

PIX(t+t1) €A, ..., X(T+ty) € An]l=P[X(t1) € A1, ..., X(tm) € Al

We shall show that if [A(-), C(-)] is mean-square exponentially stable, there exists a unique
initial distribution with finite second moment such that the solution of (4.1) is t-periodic. For
this, let us denote by P(R") the set of probability measures on (R”, Z(R")), equipped with the
L%-Wasserstein distance:

d(py, 42) Ainf{\/]Elifl —&?

&; is a random variable in R" with pg = p;; i =1, 2} ,
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where jig; denotes the distribution of &;. It is well known that (P(R"), d) is a complete, separable
metric space (see, for example, [25]).

Proposition 4.2. Suppose that [A(-), C(-)] is mean-square exponentially stable. Then there exists
a unique initial distribution v with finite second moment such that the solution of (4.1) is t-
periodic.

Proof. Let us first use the fixed-point theorem to show that there exists a unique initial distribu-
tion v such that the corresponding solution of (4.1) satisfies px ;) = v. To this end, let v; and
v be two distributions with finite second moments, and let &; and &) be .%(-measurable random

variables whose distributioEs are v1 and v, respectively. Denote by X;(-) the solution of (4.1)
corresponding to & . Then X (-) £ X{(-) — X, (-) satisfies

dX () = AOX@t)dt +COX()dW (@), t>0,
XO0)=&2& —&.

Since [A(+), C(+)] is mean-square exponentially stable, by Proposition 3.3, the ODE
P(t)+POAD +AD TP +CH)TPOCH)+1=0

admits a unique t-periodic, uniformly positive definite solution P(-) € C([0, c0); S*). By ap-
plying I1t6’s rule to  — (P (¢) X (¢), X(¢)), we obtain

d - - -
EE<P(t>X<t>,X(r)>=—1E|X(r>|2.
Let A(¢) > O be the largest eigenvalue of P(¢). Then
dpg POX(1), X(1)) < ) P(X(1), X(t)

By Gronwall’s inequality,

t

E(P(1)X (1), X(1)) <E(P(0)X(0), X(0)) exp —/%ds . Vtelo,tl.

(=}

In particular, noting that P(7) = P(0), we have

4

E(P(0)X (1), X(1)) <E(P(0)X(0), X(0)) exp —f%ds ) (4.2)

S

Now we define a new distance dp(-, -) on P(R") by
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&; is a random variable

dp (i, o) 2 inf { VE(PO)E — 6.6 — &)
in R" with pg, = ;3 i = 1,2}.

Since P(0) > 0, the metrics d(-, -) and dp (-, -) are equivalent. Further, the inequality (4.2) shows
that the mapping I" : P(R") — P(R") defined by

Ir'(v) £ KX (t;v)»

where X (-; v) is the solution of (4.1) with initial distribution v, is a contraction mapping with
respect to the distance dp (-, -). Thus, by the fixed-point theorem, there exists a unique initial
distribution v such that the solution of (4.1) satisfies px .5y = V.

To see that the solution of (4.1) with the initial distribution v is 7-periodic, choose a & € %
with g = v, and let X (-) be the corresponding solution. Then

T+t T+t
X(r+1)=X(1)+ / [A@)X (s) + b(s)]ds + / [C(s)X(s) +o(s)]dW(s)

t
=X(f)+/[A(f+s)X(f+S)+b(r+S)]ds
0

t
+ /[C(r +)X(T+s)+o(T+s)]dW(T+s)— W(r)]
0

t t
=X(7) +/[A(S)X(T +5) +b(s)lds + /[C(S)X(T +5) +o($)1dW(s).
0 0

Thus, X, (-) £ X (t + -) is the solution to the following SDE:

dX.(t) =[AOX:(t) +b®)]dt + [C() X (t) + o ()]dW. (1), =0,
X:(0)=X(1).
Since pux () = pg =V and W; = {W(¢); t > 0} is also a Brownian motion, it follows from the

uniqueness in the sense of probability law that X, (-) and X (-) have the same finite-dimensional
distributions. The desired result is therefore proved. 0O

5. Exponential stability of the Riccati equation

The convergence property of the solution to the Riccati equation associated with Problem
(SLQ)7 plays a key role in establishing the turnpike property. We address this convergence issue
in this section.

First, let us recall the following result, which is concerned with the solvability of Problem
(SLQ)7 (for fixed T') and whose proof can be found in [21, Chapter 2].
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Lemma 5.1. Let (A1)—(A2) hold. Then the differential Riccati equation

Pr+PrA+A"Pr+CTPrC+Q
—(PrB+C"PrD+S"YR+D"PrD)""(B"Pr+ D" PrC+5)=0, (5.1)
Pr(T)=0

admits a unique solution Pr(-) € C([0, T1; S") satisfying Pr(t) > 0 for all t € [0, T]. Further-
more, for each initial state x € R", Problem (SLQ)t admits a unique optimal control given by

iir (1) = Or (0 X7 (1) +$1(0), (52)
where Or () and ¢r(-) are defined by
or@ 2[R+ D0 PrdO] [BOTPr0) + DO Pr(CH) +50)] 63
and
or 2[R0+ DO ProDO] [BOT0r @)+ DO P00 +r(0)], 54
respectively, with o1 (-) being the solution of the following ODE:

o1 (1) +[A@) + BO)Or ()] 91 (1) +[C(1) + D(1)O7 (D] Pr(1)o (1)
+Or®) T r() + Pr()b(t) +q(1) =0, 1€[0,T], (5.5
er(T) =0.

The following result gives some properties of the family { Pr(-)}r>0.
Proposition 5.2. Let (A1)—(A2) hold. The solution Pr(-) has the following properties:
(i) Pr(-) is nondecreasing in T, that is,

Pr,(t) < P, (1), YOK<t<T1<Th<o0. (5.6)

(i) Forany0<t<T < oo,
Pric(t +7) = Pr(). (5.7)
Proof. (i) Let 7> > T1 > 0 and denote Py, (-) simply by P;(-) (i =1,2). Define
P() £ P(1)— Pi(1), 1€[0,T1],
and setfori =1, 2,
0:02 ~[R0) + DY PD®]  [B0T R0+ D0 ROCK) +50)].
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Then on [0, 7T7], we have by Lemma 2.2,

P+P(A+BOy) +(A+BO) P+ (C+ DOy P(C+ DOy)
+(@2—01) (R+D"PD)(O; —6O)) =0,
P(Ty) > 0.

Applying Lemma 2.1 yields (5.6).
(i1) Set for t € [0, T'],

(1) £ Pric(t + 7).

Then IT(T) =0, and

() + IOAG) +A@) TT(@) + C(o) T E)C@) + Q)
~|rwBO+ ) AODO +5OT]

x| R() + D(r)Tmr)D(r)]_l (B0 10+ DO TOCH +51)] =0,

since the coefficients are all 7-periodic by (A1). By the uniqueness of solutions to (5.1), we have
I1(t) = Pr(t) and hence (5.7). O

By Proposition 5.2 (i), the limit
Py(t) £ lim Pr(t) >0 (5.8
T—o00

exists for all # > 0. We are interested in determining the equation satisfied by P (-) and how
fast Pr(t) converges to P (t). To address this question, let us consider the differential Riccati
equation

P+PA+ATP+CTPC+0Q
T T T 1, pT T (59
—(PB+C'PD+S"YR+D"PD)"'B"P+D"PC+S)=0
over the infinite time horizon [0, 00).
Proposition 5.3. Ler (A1)—(A3) hold. Then the Riccati equation (5.9) admits a unique t-

periodic, uniformly positive definite solution P(-) € C ([0, 00); S"). Moreover, the matrix-valued
function © () defined by

o) 2 —[R(t) + D(t)TP(t)D(t)Tl [B(t)TP(z) + D0 POHCH) + S(t)] (5.10)

is a stabilizer of [A(-), C(-); B(-), D(})].
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Proof. Consider the following ODE:

P+PA+ATP+CTPC+Q

(5.11)
—(PB+C"PD)R+D"PD)'(BTP+D"PC)=0,

where

A E(A-BR'S)(), COEC-DR'H()., QO)E(Q-STR'H).
By a direct computation, one can verify that (5.9) and (5.11) are equivalent. Since [A(-), C(-);
B(-), D(-)] is stabilizable, so is [A(-),C(-); B(:), D(-)]. Thus, by Proposition 3.8, the ODE

(5.11), and hence (5.9), has a unique t-periodic, uniformly positive definite solution P (-). Again,
by Proposition 3.8,

-1
—[RO+DOTPODO] T [BOTPO+DOTPOCH) + 50|+ ROTSC)
-1
=—[RO+DOTPODO]| [BOTPO+DOTPOCH)]

is a stabilizer of [A(-), C(-); B(-), D(-)], which implies that the function ® (-) defined by (5.10)
is a stabilizer of [A(-), C(-); B(-), D()]. O

Let Pr(-) be the unique solution of (5.1), and let P(-) be the unique t-periodic, uniformly
positive definite solution to (5.9). The following result shows that P () = P ().

Proposition 5.4. Let (A1)—(A3) hold. Then
lim Pr(t)=P(), Vi=>0.
T— 00
Proof. Set
2r()=P@#)— Pr@t), t€l[0,T]

Then X'7(T) > 0. Proceeding similarly to the proof of Proposition 5.2 (i), we obtain

Pr(t) < P(), YVO<t<T<oo.
This shows that P, (t) < P(¢). On the other hand, by Proposition 5.2 (ii),

Pyo(t+1t)= lim Pr(r+1t)= lim Pri (1t +1) = Pxo(t).
T— o0 T—o00

Thus, P (+) is T-periodic. To see Py (-) = P (), it suffices to show that P (-) satisfies the same
equation as P(-). For this, we observe that forany 0 <s <7 < T,
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t
Pr(t) — Pr(s) = —/ [PTA +ATPr+CTPrC+Q—(PrB+C ' PrD+ST)

N

< (R+DTPrD)"" (BT Py + DT PrC + S)]dr.

Letting T — oo, we obtain from the dominated convergence theorem that

t
Poo(t)—Poo(s)=—/[POOA+ATPOO+CTPOOC+Q—(POOB+CTPOOD+ST)

N

X (R4+ DT PuD) (BT Py + DT PoC + S)]dr.

Differentiating with respect to ¢, we get the desired result. O
To see how quickly Pr(¢) converges to P(t), let us present the following lemma first.

Lemma 5.5. Let a > 0 and g : [0, a] — [0, 00) be a continuous function satisfying

t
o) <K + f e g(s)ds, Vi e[0,al,
0

where K, ). > 0 are two constants. If K < A, then

g <

, Vtel0,al.
TR €[0,al]

Proof. Set fort € [0, a],

t

G2 /e—“g(s)zds.

0

Then G(0) =0 and
MG (1) =g)? <[K + G,

or equivalently,

—1
dl —— | <e™, Vrel0,al.
[K+G(r>} ¢ €l0.al

Integration gives
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t
1 1 ) 1
_— </efbds < -, Vtel0,a].

K K+G@) Py
0

The rest of the proof is clear. O

Now we state and prove the main result of this section, which shows that Pr(¢) converges
exponentially to P (7).

Theorem 5.6. Let (A1)-(A3) hold. Then there exist constants K, ). > 0, independent of T, such
that

|Pr(t) — P()| < Ke T vielo0,T].
Proof. Set X7(-) 2 P(-) — Pr(-). Then by Lemma 2.2,

Yr+Xr(A+BO)+(A+BO) X7 +(C+ DO) X7 (C + DO)
+(© —07)"(R+D"PrD)® — Or) =0,

where @7 (-) and © (-) are defined by (5.3) and (5.10), respectively. Let

Ar2(© —O7)" (R+D"PrD)(® — Or).
Since R+ D" Py D > R and
®—O0r=(R+D"'PrD)Y""(B"Pr+D"PrC+Y5)
—(R+D"'PD)Y"BTP+DTPC+Y)

=—R+D'PrD)'B"Tr+D"X;0)
+ [(R +DTPD) —(R+ DTPD)_I](BTP +DTPC+S)

=—R+D"PrD)'B"Tr+D"X;0)
+(R+D"PrD)'D"X;D(R+D"PD)"(BTP+DTPC+5)
=—(R+D"PrD)'[B" 27 + D" 21 (C + DO)],

we conclude that

AT < K11 D10, YOt <T <00 (5.12)

for some constant K| > 0 that is independent of 7. Let @ (-) be the solution to the following
SDE:

ddg(t) =[A(t) + BO)O )] (1)dt + [C(t) + D@)O ()P (1)dW (1), >0,
Do (0)=1.
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By Proposition 5.3, [A(-) + B(-)®(-), C(-) + D(-)©(-)] is mean-square exponentially stable.
Thus, by Corollary 3.4, there exist constants K7, A > 0 such that

E|®o(s)Pe (1) "> < Kpe ¢ Vs >r>0.

According to Proposition 5.4, we can choose an integer N > 0 such that

2 K| Zn(0)] < .
P 21 XN (0)] 2K, K

Now, to prove the result, we need only show that for any 7' > N + 7, the inequality

1 Zr ()| < Ke P79 Viel0,T) (5.13)

holds for some constant K > 0 independent of T'. For this, let 7 > N + t be fixed but arbitrary,
and let k > 1 be the largest integer such that N 4+ k7 < T. By Proposition 5.2 and the definition
of X'7(-), we have

0< 27 (kt) < Yntie (kT) = XN (0),

and thereby K| X7 (kt)| < K3| XN (0)| = p. On the other hand, from Lemma 2.1 we see that for
t <kr,
S0 = E{[@60k0)@o )1 S () [@0 (1) Po ()]
kt
+ / [%<s>a>@<r>—1]TAT(s>[a>@<s)¢@(r)—l]ds}, (5.14)
t

which, together with (5.12), implies

kt
|27 ()] < |7 kT)| - E|®o (kT)Po (1) ' > + K| /m@(s)%m—wz |27 (s)Pds
t
kt

< pe M0 4 KK, / e M0 Zr(s)Pds, VO <t <kr.

t
Set K3 £ K{K; and
g(t) 2 Kz | Zrkt —1)|, 0<r<kt.

Then for any 0 <t < kr,

1 t

g() < Kzp+ f e Mg()ds < + f e g (s) ds.
0 0

N >
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According to Lemma 5.5, we have (noting that T < N + (k + 1)71)

|2T(t)| — Lef)\,(kffl)g(kt _ t) < ief)»(kl’*l) — Le)\.(TfkT)ef)»(Tfl)
K K3 K3

A
< FeW“)e*W*f), vt € [0, kt]. (5.15)
3

For t € [kt, T], since
N4+kt<T <N+ (k+ Dr,

wehave 0 <t —kt < N+ 1, and

0< 27 (1) € ZNt+1)e () = T4 (E — k7).
Let K4 = maxse[o. N+7] | Zn+7(s)]. Then
|Z1()] < | DN+t — kD) < Ko < Ky V000 e[k, T (5.16)
Combining (5.15) and (5.16) yields the desired (5.13). O
The following is a direct consequence of Theorem 5.6.

Corollary 5.7. Let O (-) and O (-) be defined by (5.3) and (5.10), respectively. Then there exist
constants K, ) > 0, independent of T, such that

Or@) -0 <Ke M0, Vie[o,T].
6. A deterministic periodic LQ optimal control problem

In this section we introduce a deterministic periodic LQ optimal control problem and establish
its solvability. As we shall see in the next section, the optimal pair of this periodic optimal control
problem serves as the turnpike limit of Problem (SLQ)7 in the expectation sense.

Let P(-) € C([0, 0c0); S™) be the unique t-periodic, uniformly positive definite solution to the
Riccati equation (5.9) and @ (-) the matrix defined by (5.10). Let

A2 AW +BHO@W), CH)2C@)+DH)O®), 6.1)
Ft,x,u) 2 (0)x, x) +2(S)x, u) + (R()u, u) + 2(q (1), x) + 2(r (1), u)

+(POICHx + D@O)u+o()], C()x + D()u + o (1)), (6.2)

gt,x,u) 2 f(t,x,0(t)x +u), (6.3)

and denote by L2(0, t; R™) the space of R™-valued functions that are square-integrable over
[0, ] (recall that 7 is the period in (A1)). Consider the ODE
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X(1) = A()x(t) + BOu@) + b(r), te€[0,7], 64)
x(0) = x(1), '
and the cost functional
T
) 2 [ gaxo.uttar. ©.5)
0
By Proposition 5.3, we know that the solution of the matrix ODE
do(t) = A@t)® (H)dt, t>0,
- (6.6)
D0)=1
is exponentially stable, i.e., there exist constants K, A > 0 such that
D) < Ke ™™, Vi>0. 6.7)

Before introducing the deterministic periodic LQ optimal control problem, let us first present
the following result concerning the well-posedness of the ODE (6.4).

Proposition 6.1. Let (A1)~(A3) hold. Then for any u(-) € L*(0, t; R™), the ODE (6.4) has a
unique solution.

Proof. By the variation of constants formula, x(-) is a solution of (6.4) if and only if

t
x(z)=c’E(t)x(O)+q3(t)/$(s)*‘[3(s)u(s)+b(s)]ds, 1[0, 1],
0

x(1) =x(0),

or equivalently, if and only if

t
x(r)=q’5(t)x(0)+c’5(t)/$(s)*1[3(s)u(s)+b(s)]ds, t 0, ],
0

[1 _ q’E(r)]x(O) = &(1) j B(s)”! [B(s)u(s) + b(s)]ds.
0

Note that [0/5 o))" = ) (nt) for every positive integer n. It follows that I — ) (7) is invertible,
since by (6.7),

lim |[@(0)]"| = lim |®(n7)| < lim Ke ™ =0.
n—oo n—oo n—oo
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Thus, the ODE (6.4) has a unique solution with the initial state x(0) given by

x(0) = [1 - a(t)]‘a(wja(s)—l[g(s)u(s) +b(s)]ds.
0

The proof is complete. O

Remark 6.2. It is worth noting that the ODE (6.4) may have many solutions if A (+) is not expo-
nentially stable. For example, consider the one-dimensional ODE

x(t)=u), te]l0,r],
x(0) =x(1).

If u(-) satisfies for u(t)dt = 0, then the above equation has infinite many (periodic) solutions.
Because A(-) might not be stable, we take (6.4) as the state equation instead of the following
ODE:

xX@®)=A@)x(@)+ B)u(t) +b(), te][0,1],

x(0) = x(7).

We now introduce the deterministic periodic LQ optimal control problem.

Problem (DLQ).. Find a control u*(-) € L2(0, t; R™) such that

Jew* () = inf Je(u()). (6.8)
u(-)eL?2(0,7;Rm)

Optimal control for deterministic periodic system was studied by Colonius [5] and Da Prato—
Ichikawa [6]. The following result provides a characterization for the optimal control of Problem
(DLQ)., which can be regarded as a minimum principle for Problem (DLQ),. This can also be
regarded as some modifications of some relevant results in [6].

Proposition 6.3. Let (A1)—-(A3) hold. Then (x*(-), u*(-)) is an optimal pair of Problem (DLQ)-
if and only if the solution of

—~ 1
V) = —A@M) Ty (1) — ngT(r,x*(r), u* (1)), tel0, 1],

y*(0) =y*(r)

(6.9)

satisfies

B(t) y*(t) + %g;r(t, x*(1), u*()) =0, ae tel0,1]. (6.10)
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Remark 6.4. The equation (6.9) has a unique solution. Indeed, let ':I/\(-) be the solution to the
matrix ODE

{d@(z) =—AD)"T@®)dt, t>0,
6.11)

T0)=1.
One can verify that
&)= [6(;?]71, £>0.
Thus,
[—0(r)= [q?(r)T - 1]@@) = [5(r) - I]T@(r)

is invertible. Then we can proceed similarly to the proof of Proposition 6.1 to obtain the unique
solvability of (6.9).

Proof of Proposition 6.3. By definition, a control u*(-) € L2(0, 7; R™) is optimal for Problem
(DLQ), if and only if

Jr(u*() +ev() — J.w () =0, VeeR, Yu(-) e L*0, 7; R™). (6.12)
Let x*(-) and x®(-) be the solutions of (6.4) corresponding to u*(-) and u®(-) £ u*(-) + ev(-),

respectively, and let xV(-) be the solution of

x() = Z(t)x(t) + B(t)v(t), tel0,r],
x(0) = x(7).

Clearly, x¢(-) = x*(-) + exV(-), which, substituting into J; (u*(-) + ev(-)) yields
Je(u* () +ev() — S (u*(-)

T

= [ [st3* @1 @ - gte.x* 0. @) Jas

0

= 82/ [<Q(t)x”(t),x“(t)> +<R(z)ﬁ(r), ﬁ(t)> +2<S(t)x“(t), ﬁ(;))
0
+(POICO" M) + DOIOL, CWOx" (1) + DWD(D))dr
+2e / {11 81 0) + (x" ). o), (6.13)
0

where we have used the notation
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() 2 O@Mx () +u(t), 0" ()2 O@)x* ) +u*(1),
Bi(t) £ R(G* (1) + S()x*(t) +r(t) + D(t) T P()[C(1)x* (1) + D(1)i* (1) + o (1)],
Ba(t) & Q()x*(1) + S(1) Ta* (1) + q(t) + C(t) T P(OIC(1)x* () + D()a* (1) + o (1)].

Note that by (A2) the first integral after the last equal sign in (6.13) is always nonnegative. Thus,
(6.12) is equivalent to

T

/{<f1(t),ﬂl(t)>+<x”(t),,32(t)>]dt:O, Vo() € L2(0, T: R™). (6.14)

0

Observe that

%gu(t,x, w ! = %fu(t,x, OWx+u)'
=R®O[O@)x +ul+ SE)x +r()
+ D" PO{CH)x + DWO[OMx +ul +0(1)},

1 T_1 T, 1 T T
ng(l,x,u) =§fx(l,x,@(t)x+u) +§(“)(t) Jut, x, ©@)x +u)

= %@(t)—rgu (t,x,u)" + QM)x +S@) ' [O@)x +ul+ q(1)
+C)PO{COHx+ DDOIOMx +ul+0 ()}

Thus,

1 * * T 1 * * T T
ﬂl(t)=§gu(l,x ), u"@) ", ﬂz(f)=§gx(f»x ®),u"@) —O) Bi(),

and thereby

T

/{<17(t),,31(t)>+<x”(t),ﬁ2(t)>}dt
0

T

1
=5 [ [t @ @'+ gt 0. oo . (6.15)

0

Now applying integration by parts, we have

0= (x"(1), y*(1)) — (x"(0), y*(0))

T

1
=f [(B(t)Ty*(t),v(t» - ng(t,x*(t),u*(t))x”(t)]dt,

0

which, together with (6.15), implies that (6.14) is equivalent to
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T

/<B(t)Ty*(t) + %g;(l‘, X*(0), u* (1)), v(t)>dt =0, Yu()eL0,7:R™).
0

The above is clearly equivalent to (6.10). O

The next result establishes the solvability of Problem (DLQ); and provides an explicit repre-
sentation for the optimal control.

Proposition 6.5. Let (A1)-(A3) hold. Then Problem (DLQ). admits a unique optimal control,
which is given by

uk (1) = —[R(t) n D(t)TP(t)D(t)]_l [B(I)Tnf(t) + D) P(Ho (1) + r(t)], (6.16)

where 1 (-) is the solution to the following ODE:

{mm +AD )+ CO TP (0)+O) (1) + P(0)b(1) + q(t) =0, 617

17 (0) =1 (7).

Proof. Take a control u(-) € L2(0, t; R™) and let x(-) be the corresponding solution of (6.4).
Let y(-) be the solution of

l ¥ =—A0 Ty - %gl(r,xm, u(), telo,tl,
y(0) = y(1),
and define
e (1) £ y(1) = P()x(1), €0, 7]
Then 7, (0) = 5. () and
=il () = =3 () + P(O)x(t) + P()x(t)
=A0) Ty + %gI(r, x(0), u(0) + P(0)A0)x (1)
+ P(t)B(t)u(t) + P(t)b(t) + P(t)x(¢)
= AN POx®) + AN () + %g)?(r, x(1), u(0)) + P(OA@D)x (1)

+ P(1)B(t)u(t) + P(1)b(1) + P(1)x (1)
= [P0+ P0AW + A0 PO +COT PO + 01)

+O0O RO + SO TOW) + @(t)TS(t)]x(t)
+ [P(t)B(t) +c)TPODG) + ST + @(t)T(R(t) + D(t)TP(t)D(t))]u(t)
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+ A0 () +CO)TP0)o (1) +O1)Tr(t) + P(1)b(t) +q (1)
=AW () +C@O)"P(0)o (1) + O 1) Tr(t) + P(1)b(t) +q(1).

By Proposition 6.3, u(-) is optimal if and only if

1
0=B®"y(0) + 58, (6, x(1), u(®))
= B0 PO)x(t) + B ne (1) + %gl (. x (1), u(0)
= [RO+D®OTPOD® [ut) + [BO 1) + DO PWo (1) + 1)),

or equivalently, if and only if

-1
w0y =—[R0+DOTPODO] [BOT 1)+ DOT P00 +r0)]

The proof is complete since the ODE (6.17) is uniquely solvable. O
7. The turnpike property

In this section we establish the turnpike property for Problem (SLQ)7. Let 1, (-) be the solu-
tion to the ODE (6.17), and let (x}(-), u%(-)) be the unique optimal pair of Problem (DLQ),. We
extend 7 (-), x7 (), and u} (-) to [0, 0o) by defining them to be r-periodic, that is, we define for
t € [0, 00),

n) Ent —kr), x*@)=xit—kr), u*(@t)Eul@ ko), (7.1)

if r € [kt, (k + 1)7) for some integer k > 0. Recall the Z(-) and 6(-) defined by (6.1). It is easily
seen:

W)+ A0 n@)+CO)T PO +O@) r(t) + POb1H) +q1t) =0, t>0, (7.2)
() = A@)x* (1) + B(Ou*(t) +b(t), t>0. (7.3)

Further, we let
p(1) £ COHx* (1) + D@)u*(t) + o (1), (7.4)
and consider the following SDE:

dX (1) = A0)X ()dt +[COX (1) + p(OdW (1), >0,
X(0)=§,

(7.5)

where £ is an R”-valued, square-integrable random vector independent of the Brownian mo-
tion W. By Proposition 5.3, ®(-) is a stabilizer of [A(-), C(-); B(-), D(-)]. Then, according to
Proposition 4.2, the initial state & can be selected so as to the solution of (7.5) is t-periodic.
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Proposition 7.1. Let (A1)—(A3) hold. Let & be an initial state such that the solution X (-) of
(7.5) is t-periodic. Then E[X (1)] = E[£]1 =0 for all t > 0, and the covariance matrix X (t) =
Cov (X (1), X(t)) is the T-periodic solution of the following ODE:
S =A0Z0)+ XA +COEOCHT +pn)pn)".
Proof. The proof is trivial and we omit it here. O
Now, we are ready to state the turnpike property of Problem (SLQ)7.
Theorem 7.2. Let (A1)—(A3) hold. Let (X1 (-), iir(+)) be the optimal pair of Problem (SLQ)r

for the initial state x € R" (which could be arbitrary). Let (x*(-), u*(-)) be defined as in (7.1),
and let X () be the solution of (7.5). Define

X*O)EX@) +x*@), u*t)2O00X* @) +u*@), t=0. (7.6)
Then there exist constants K, A > 0, independent of T, such that
IE[D‘(T(r) — X*(O)) + lar (1) - u*(r>|2] < K[e—“ + e—W—”], Viel0,T]. (7.7)
In order to prove Theorem 7.2, we need the following result.

Proposition 7.3. Let (A1)—(A3) hold. Let o1 () be the solution of (5.5). Then there exist constants
K, A > 0, independent of T, such that

@) —er)| < Ke 70 Vre0,T]. (7.8)
Consequently, the function ¢t (-) defined by (5.4) satisfies
o7 (1) —u* ()] < Ke™MT70, Vi e[0,T] (7.9)
with possibly a different constant K > 0 that is independent of T.
Proof. Recall the notation of (6.1). Also, let
Ar() 2 A()+ B1)Or 1), Cr)2C@)+Dn)Ort); te[0,T]. (7.10)
Then hr(-) £ n(-) — o1 (-) satisfies hy (T) = n(T), and

0="hr )+ Ar@®) "hr (1) + [AG) — Ar )] n() + [P()C() — Pr(t)Cr ()] o (1)
+[0@) —OrM r@) +[P(t) — Pr(t)]b()
=hr (1) + AW "hr (1) + [Ar (1) — ADO1 hr () + [A@) — Ar ()] 5()
+IP(OC@) — Pr()Cr)] o (1) +[01) — Or 1 r(t) + [P(t) — Pr)1b(1)
= h7(t) + A0 "h (1) + I7.(0).
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Let 11/\(~) be the solution of (6.11). Then

T
hr(t) =W @)@ (T)"'n(T) + f W ()W (s) Uz (s)ds.

t

From Theorem 5.6, Corollary 5.7, and Corollary 3.4, we know that there are constants K, > > 0
such that forany 0 <t <s < T < o0,

|P(t) — Pr(0)| + 10(1) — Or ()| + |A(t) — Ar ()| + | P(1)C (t) — Pr(t)Cr (1)
< Ke_A(T_’),

Also, note that n(-), o (-), r(-), and b(-) are all bounded. Thus,

T
hr ()] < Ke T 4 K/e‘“s—’)uT(s)uz
t

T
< Ke M= 4 K/e_)‘(“_’)e_)‘(r_s)[|hT(s)| + l]ds
t
T

=Ke M0 4 Ke_)‘(T_t)/[VlT(S)I + l]ds,

t

with possibly a different constant K. For convenience, hereafter we shall use K and A to denote
two generic positive constants which do not depend on T and may vary from line to line. Set

Br(t) 2 |hr (t)|e™ T,

Then the above can be written as

T
Br (1) <K+K/ [e—“T—”ﬁT(s)Jr l]ds, Vi€ [0, T].
t

Applying Gronwall’s inequality, we obtain
Br(t) <K+ K(T —1), Viel0,T],
from which it follows that
hr ()] < Ke 370 viefo,T).
This completes the proof. O
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Proof of Theorem 7.2. Clearly, X*(-) satisfies the following SDE (recalling X(~) and C (-) de-
fined in (6.1)):

dX*(t) = [A()X*(t) + B()u* (1) + b(1)]dr
+[COX* (1) + DOu*(t) + o ()]dW (1), >0, (7.11)
X*(0) =£ + x*(0).

On the other hand, substituting the closed-loop representation (5.2) into the optimal state equa-
tion for Problem (SLQ)7, we obtain (recalling the notation (7.10))

dX7(t) =[Ar @) X1 (1) + B(t)pr (1) + b(1)]dt
+ [6T(t))_(7(t) +D@®)pr(t)+o@®)dW (), tel0,T], (7.12)
X7(0)=x.

Define

Hr(t)=2 Xr(t) — X*@t), te[0,T].

Subtracting (7.11) from (7.12) yields H7 (0) = x — x*(0) — & and

dHr () = [ Ar () Hr 0 + (A7 () = AOIX*0) + BOlgr () - (0)]|dr

+{CroHr @) + €1 (1) = CIX"0) + DW)Igr (O) — w1 }dW (@),

Recall that P(-) € C([0, 00); S™) is the unique t-periodic, uniformly positive definite solution to
the Riccati equation (5.9). By Itd’s rule,

E(P(r)Hr (1), Hr (1)) — E(P(0)Hr (0), Hr (0))
t
=IEZ/ {(PHT, Hr)+2(PHr, ArHr + (Ar — A)X* + B(pr — u™))
0
+(PICrHr + €1 = OX* + D(gr —u*), CrHr + (€1 — O)X*+ D(gr —u") |ds
t
=IEJ/ {((P + PAr + AP +Cf PCr)Hr, Hr)
0
+2(Hr, Pl(Ar — A)X* + B(¢r — )]+ C} P[(Cr — O)X* + D(¢7 — u™)])

+ (P[(Cr — O)X* + D(¢pr — u™)], (Cr — O)X* + D(¢7 — u*))}ds. (7.13)

Note that
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P+PAr +A}P+C; PCr
=P+PA+A"P+C'PC+P(Ar —A)+(Ar—A)'P
+(Cr-O)"PC+C}P(Cr—C)
=—(Q+O0"RO+STO+O0TS)+PAr—A)+(Ar—A)'P
+(Cr —CO)"PC+C} P(Cr—0C), (7.14)
and that by (A2), there exists a constant § > 0 such that on the interval [0, c0),
0+0'RO+STO+0O'S
=@ +R'S)'TRO+R'S)+0—-STR™'S>261. (7.15)

Recalling Corollary 5.7 and Proposition 7.3, we know that there exist constants K, A > 0, inde-
pendent of T', such that

|A7(1) — A@)| +Cr (1) — CO)| + lpr (1) —u* ()| < Ke ™™ T~ v €[0,T]. (7.16)
Also, by Proposition 7.1, the function E|X™*(-) |2 is bounded. Thus,

E((P + PAr + AP+ C; PCr)Hr, Hr)(1) < [-26 + Ke *T=NE|Hy (1)*, (7.17)
2E(Hr, P[(A7 — A)X* + B(pr — u)] + C; P[(Cr — O)X* 4 D(¢r — u™)])(1)
<SE[Hr (1)) 4+ 257 "E|PL(Ar — A)X* + B(pr — uH]| @)

+257'E|C] PI(Cr — O)X* + D(r —u[(1)

<SE|Hr(1)]> + Ke M0, (7.18)
E(P[(Cr — C)X* + D(¢1 — u*)], (Cr — O)X* + D(pr — u™))(2)
< Ke M0, (7.19)

Differentiating both sides of (7.13) with respect to ¢ and taking into account (7.17)—(7.19), we
obtain

%IE(P(I)HT(t), Hr(0)) <[ 8+ Ke " DEIHr (1) + Ke T, (7.20)
Let «, 8 > 0 be such that
a ' I<P@t)<BT, Viel0,00).
Then (7.20) implies
%E(P(t)HT (1), Hr (1)) <[ — 8B + aKe *T=DE(P(t)Hr (1), Hr (1)) + Ke T,
Using the Gronwall inequality, we get

223



J. Sun and J. Yong Journal of Differential Equations 400 (2024) 189-229
E|X7 () — X* ()1 = E|Hr ()]* < «E(P(0) Hr (1), Hr (1))
<K[e™+e D] YOt <T < o0,
for possibly different K and A. Using the above inequality and the fact
ar (1) —u (1) = Or(O[ X7 (1) = X* O] + [Or(1) = OO]X* 1) + [¢r (1) —u* ()],
we further obtain
Elir(t) —u* (O < K[e ™™ +e*TD], Vo<t <T < o0,
and therefore (7.7). O
The construction of the turnpike limit (X*(-), #*(-)) in Theorem 7.2 reveals that both pro-
cesses have t-periodic distributions. We now establish the uniqueness of the turnpike limit with

this characteristic in the distribution sense.

Theorem 7.4. Suppose that X *() and a*(-) are two processes with T-periodic distributions such
that

E[1Xr@0) = X' 0P +lar@ —a* 0P| < K[ + e vie(o,T]
holds for some constants K, . > 0 independent of T. Then
* d g * d _x
X*"O)=X (@), w@®)=u"(t); Vt=0. (7.21)

That is, X*(t) and X" (t) have the same distribution for all t > 0, and similarly, u*(t) and u*(t)
have the same distribution for all t > 0.

Proof. We provide the proof for

4

X ()= X" (1), Vt=0.

The proof for u*(t) 4 u* () follows a similar argument.

Step 1: Let F be an arbitrary closed set in R”. Define fork =1,2, ...,
fitx) & (1 —klx — F)" =max{l —k|x — F|,0}, xeR",

where |x — F| denotes the distance between x and F'. It is clear that

0< fitx)<1, VxeR" Vk>1, (7.22)
Jim fi()=1p(). VxeR". (7.23)
—00

Furthermore, we conclude that
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[fe(x) = fi) <klx —yl, Vx,yeR™ (7.24)
Indeed, if [x — F| < 1/k and |y — F| < 1/k, then (7.24) follows easily from the triangle in-

equality. Now suppose |x — F| > 1/k. Then it suffices to show that 1 — k|y — F| < k|x — y|, or
equivalently,

<lx—yl+y—Fl. (7.25)

x| —

For this, take any z € F and note that

Shx—FI<|x—zI<|x—yl+y—zl

x| =

Taking the infimum over z € F yields (7.25). By a similar argument we can show that (7.24) also
holds for the case |y — F| > 1/k.

Step 2: We now show that for each integer k > 1,

ELfe X" )] =EL[fe(X*(t)], V¥t >0. (7.26)
To prove the above, we first observe that for any integer j > 1,
IELfi (X" ()] — ELAt X*()]| = [ELfi (X" (¢ + jT)] — ELA(X* (¢ + )]
<EfiX @t +j0) = filX* @ + jo)l,
since both X *(~) and X*(-) have t-periodic distributions. Using (7.24) we obtain
IELf (X" ()] = ELfe(X* DI < KEIX™ (1 + jT) — X*(1 + jo)|

SKEIX"(t + jr) — X*(t + jo)?

S2UE|IX7(t 4 jT) =X (t+ 0> +2kE|X7(t + jT) — X*(t + j7)|?

< 4Kk[e*“’ﬂ'f) n e*”*f*m], VT >0, Vj > 1.

Letting T — oo first, then j — oo yields (7.26).

Step 3: Letting k — oo in (7.26), we obtain from (7.22)—(7.23) and the bounded convergence
theorem that

P[X"(t) e F1=P[X*(t) € F], Vt>0.
The desired result follows, since the closed set F is arbitrary. O
To conclude this section, let us look at the case where all the coefficients are time invariant.
In this case, the unique positive definite solution P(-) of (5.9) is constant-valued, satisfying the

following algebraic Riccati equation (ARE, for short):
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PA+ATP+CTPC+Q

(7.27)
—(PB+C"PD+S"YR+D'"PD)'B"P+D"PC+5)=0,

and (5.10) becomes
O2—R+D'PD)Y"(BTP+DTPC+Y5). (7.28)
The solution to the ODE (6.17) is also constant-valued, given by
ne()=—(A)"(C Pe+OTr+Pb+q). Viel0,1],
where
A2A+BO, C2C+Do.
Consequently, (7.1) defines three constant vectors:

n2 (AN CTPo+0Tr+Pb+q),
w2 _(R+D'PD)Y "B p+D"Po +r), (7.29)
2 AN (Bu* +b).

Let v* £ ©x* + u*. We have the following result.
Proposition 7.5. (x*, v*) is the unique minimum point of

F(x,v) 2 (0x,x)+ (Rv, v) +2(Sx, v) + 2{(q, x) + 2(r, v)
+(P(Cx + Dv+0),Cx+ Dv+o0)

(7.30)

on the space
¥ 2{(x,v) eR" x R™ | Ax + Bv+ b =0}. (7.31)

Proof. Clearly, Ax* + Bv* + b = 0. By an argument similar to the proof of [20, Proposition
3.2], it suffices to show that there exists a A* € R” such that

ATV + Ox*+CTP(Cx* + Dv* +0)+STv* +¢ =0,
B'A*+ Rv*+ D" P(Cx* 4+ Dv* +0) + Sx*+r=0.
One can easily verify that the vector A* £ Px* 4 7 satisfies the above requirements. [
Now let us look at (7.5). In the time invariant case, (7.5) becomes

{dX(t) = AX()dt +[CX (1) + pldW(t), >0,
(7.32)

X(0)=§,
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where p £ Cx* + Du* +o. By Proposition 4.2, we can choose an initial distribution such
that the solution X (-) of (7.32) is stationary. The following result is the stationary version of
Proposition 7.1.

Proposition 7.6. Let & be an initial state such that the solution of (7.5) is stationary. Then
E[X (t)] = 0, and the covariance matrix ¥ = Cov (X (t), X (1)) is the solution of the following
ARE:

A +ZAT+CXC +pp' =0.

In light of Proposition 7.5 and Proposition 7.6, we see that in the time invariant case, the
turnpike limit (X*(-), u*(-)) defined by (7.6) has the following properties:

(i) the expectation and covariance of (X*(-), u*(-)) are time invariant;
(i) (E[X*@®)], E[u*(@)]) = (x*, v*) is the unique minimum point of the optimization problem
(7.30)—(7.31).

8. Concluding remarks

In this paper, we have established the exponential turnpike property (7.7) for a class of stochas-
tic LQ optimal control problems with periodic coefficients. The turnpike limit (X*(-), #*(-))
consists of a pair of t-periodic stochastic processes and is unique in the distribution sense (see
Theorem 7.4). As indicated in (7.6), the turnpike limit (X*(-), #*(-)) can be decomposed into
two components. The first component is the periodic extension of the optimal pair for the deter-
ministic Problem (DLQ),. The second component comprises a pair of stochastic processes with
T-periodic distribution, primarily determined by the correction process X (-), i.e., the t-periodic
solution of the SDE (7.5).

The heuristic approach for obtaining Problem (DLQ), and the correction process can be out-
lined as follows. The existing result presented in Lemma 5.1 shows that the optimal control for
Problem (SLQ)7 follows the closed-loop representation given in (5.2). This representation is es-
sentially determined by the solution Pr(-) to the differential Riccati equation (5.1). As T tends
to infinity, Pr(¢) exponentially converges to P(t), the unique t-periodic solution to the same
Riccati equation. Consequently, the @7 (¢) defined in (5.3) converges to the stabilizer @ (¢) of
[A(), C(); B(-), D(-)] defined in (5.10). By letting T — oo, it is formally expected that the
solution ¢7 () of (5.5) converges to the t-periodic solution of (6.17). This implies that ¢7(¢)
converges to the t-extension u*(¢) of uZ(t) defined in (6.16). Substituting (5.2) into the state
equation (1.1) and letting T — o0, a similar argument shows that the optimal state process X7 (-)
of Problem (SLQ)7 also converges to the 7-periodic solution X*(-) of the following SDE:

dX (1) ={[A®) + B()O (D)X (t) + B(1)u*(1) 4 b(t) }dt
+ {[C(t) +DO®)]IX@) + D)u*(t) + o(t)}dW(t).
Upon taking expectations, it is evident that E[X™*(-)] is exactly the function x*(-) defined in (7.1)
(since x*(-) satisfies the same ODE as E[X*(-)]), and that X () £ X*(-) — x*(-) is the correction

process (i.e., the periodic solution of (7.5)). Upon closer examination of the pair (x*(-), u™(-)),
it appears to constitute the optimal pair for a deterministic LQ optimal control problem. As this
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pair is t-periodic, it is necessary to adjust the formulation of the deterministic LQ problem to
also incorporate periodicity. This adjustment leads to the formulation of Problem (DLQ).
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