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This paper is concerned with an optimal control problem for a forward-backward
stochastic differential equation (FBSDE, for short) with a recursive cost functional
determined by a backward stochastic Volterra integral equation (BSVIE, for short).
It is found that such an optimal control problem is time-inconsistent in general,
even if the cost functional is reduced to a classical Bolza type one as in Peng
[47], Lim—Zhou [38], and Yong [72]. Therefore, instead of finding a global optimal
control (which is time-inconsistent), we will look for a time-consistent and locally
optimal equilibrium strategy, which can be constructed via the solution of an associ-
ated equilibrium Hamilton—Jacobi-Bellman (HJB, for short) equation. A verification
theorem for the local optimality of the equilibrium strategy is proved by means of
the generalized Feynman—Kac formula for BSVIEs and some stability estimates of
the representation parabolic partial differential equations (PDEs, for short). Under
certain conditions, it is proved that the equilibrium HJB equation, which is a non-
local PDE, admits a unique classical solution. As special cases and applications, the
linear-quadratic problems, a mean-variance model, a social planner problem with
heterogeneous Epstein—Zin utilities, and a Stackelberg game are briefly investigated.
It turns out that our framework can cover not only the optimal control problems
for FBSDEs studied in [47,38,72], and so on, but also the problems of the general
discounting and some nonlinear appearance of conditional expectations for the ter-

minal state, studied in Yong [73,75] and Bjérk—Khapko—Murgoci [6].
© 2024 Elsevier Masson SAS. All rights are reserved, including those for text and
data mining, Al training, and similar technologies.

RESUME

Cet article traite d’un probléme de controle optimal pour une équation différentielle
stochastique progressive-rétrograde (EDSP-R), avec une fonction de coiit récursive
déterminée par une équation intégrale stochastique rétrograde de Volterra (EISRV).
I1 est constaté qu’un tel probleme de contréle optimal est généralement incohérent
dans le temps, méme si la fonction de colit est réduite & une forme classique de type
Bolza, comme observé dans les travaux de Peng [47], Lim—Zhou [38], et Yong [72].
Par conséquent, au lieu de chercher un contréle optimal global (qui est incohérent
dans le temps), nous proposons de rechercher une stratégie d’équilibre localement
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optimale et cohérente dans le temps, qui peut étre construite via la solution d’une
équation de Hamilton—Jacobi-Bellman (HJB) associée & I’équilibre. Un théoréme de
vérification pour 'optimalité locale de la stratégie d’équilibre est prouvé au moyen de
la formule de Feynman—-Kac généralisée pour les EISRV et de certaines estimations
de stabilité de la représentation pour les équations aux dérivées partielles (EDP)
paraboliques. Sous certaines conditions, il est prouvé que I’équation de HJB d’équi-
libre, qui est une EDP non locale, admet une solution classique unique. En tant que
cas spéciaux et applications, les problémes linéaires-quadratiques, un modele de
moyenne-variance, un probléme de planificateur social avec des utilités hétérogenes
d’Epstein—Zin, et un jeu de Stackelberg sont briévement examinés. Il s’aveére que
notre cadre peut couvrir non seulement les probléemes de contréle optimal pour les
EDSP-R étudiés dans des travaux antérieurs, tels que ceux de Peng [47], Lim—Zhou
[38], et Yong [72], mais aussi les problémes de 'actualisation générale et certaines
apparitions non linéaires des espérances conditionnelles pour ’état terminal, étudiés

dans les travaux de Yong [73,75] et Bjork—Khapko—Murgoci [6].
© 2024 Elsevier Masson SAS. All rights are reserved, including those for text and
data mining, Al training, and similar technologies.

1. Introduction

Let (©2,F,P) be a complete probability space on which a standard one-dimensional Brownian motion
W ={W(¢);0 <t < oo} is defined. The augmented natural filtration of W is denoted by F = {F;};>¢. Let
T > 0 be a fixed time horizon. We denote

X, = L% (R™) = {£: Q= R™ | € is Fy-measurable, E[|{]?] < oo},
D={(t,&[te0,T), &€ X},

U, T) = {(p :[t,T] x Q — U | ¢ is F-progressively measurable,

T
E/|g0(s)\2ds < oo},

where U C R’ is a nonempty measurable set (either bounded or unbounded). For any given initial pair
(t,€) € D and control process u € U[t,T], consider the following controlled (decoupled) forward-backward
stochastic differential equation (FBSDE, for short) on the time horizon [¢, T7:

= b(s, X(s), u(s))ds + o (s, X(s),u(s))dW(s),
= —g(s,X(s),u(s),Y(s), Z(s))ds + Z(s)dW (s), (1.1)
X()=¢ Y(T)=nX(T)),

where b0 : [0,T] x R" xU — R", g : [0,T] x R* x U x R™ x R™ — R™, and h : R®™ — R™ are given
deterministic mappings. Under certain mild conditions, for any (¢,€) € D and u € U[¢,T], (1.1) admits a
unique adapted solution (X,Y,Z) = (X(-;t,&,u),Y(-;t,& 1), Z(-;t,&,u)), which is called a state process.
To measure the performance of the control u, we introduce the following recursive cost functional:

J(t,&u) = YO(1), (1.2)

where Y is uniquely determined by the following backward stochastic Volterra integral equation (BSVIE,
for short) over [¢, T]:

T
YO(r) = no(r, X (r), X (T) /Z0 r,8)dW (s)
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+ /go (r,s,X(r),X(s),u(s),Y(s), Z(s),Y"(s), Z°(r,s))ds, (1.3)

T

for which (Y?, Z%) is the adapted solution. Here, h° : [0,T] x R™ x R™ x R™ — R and ¢" : A*[0,T] x R™ x
R x U x R™ x R™ xR xR — R are given deterministic mappings with

A*[0,T) = {(t,s) €[0,T]*|0<t<s<T} (1.4)
being the upper triangle domain in the square [0, 7]2. In the case that
h0<ra*%am7y) :ho(may)7 gO(T,S,j7.’I,',u,y,Z,yO,ZO) :90(57%%%3)7 (15>

the recursive cost functional (1.2)—(1.3) is reduced to a Bolza type cost functional for FBSDE state equation
(see Peng [47] and Yong [72], for examples):

T
J(t, & u) = E hO(X(T),Y(t))+/go(s,X(SLU(S)?Y(S)?Z(S))ds ; (1.6)
i
where E;[-] = E[- |F:] is the conditional expectation operator. Further, if

ho(’r"i‘7x’y) = h0($)7 90(T78;f7$auay727y0720) = gO(S,(L‘,U),

then the cost functional is reduced to the most familiar classical Bolza functional:

T
It.60) =B [000D) + [ 806, X (5)u(s))ds].

t

where the two terms on the right-hand side are called terminal and running costs, respectively. Thus, our
recursive cost functional is an extension of Bolza type cost functional. With the state equation (1.1) and
the recursive cost functional (1.2)—(1.3), we may pose the following optimal control problem:

Problem (N). For any given initial pair (¢,£) € D, find a control @ € U[t, T] such that

J(t,&u) = essinf J(t,&u) = V(¢ E). (1.7)

uw€eU[t,T]

Any u € UJt, T] satisfying (1.7) is called an (open-loop) optimal control of Problem (N) for the initial
pair (¢,£); the corresponding state process (X,Y,Z) = (X(-;t,&,u),Y (-5t,&,u), Z(-5t,&,u)) is called an
(open-loop) optimal state process; and V : D — R is called the value function of Problem (N).

We now briefly illustrate the major motivation of the above framework as follows: The (vector-valued)
process X follows a (forward) stochastic differential equation (FSDE, for short). Components of X consist
of two types processes: uncontrolled ones (by the individuals), including prices of securities (such as bonds,
stocks), some economic factors (such as interest rates, unemployment rates, GDP, etc.), and controlled
ones (by the individuals), including market values of the investor’s wealth (subject to trading strategies),
inventory of commodities (subject to the ordering), amounts of goods (subject to the production), etc. On the
other hand, the components of Y, following a multi-dimensional backward stochastic differential equation
(BSDE, for short), could include the prices of some European type contingent claims of the underlying
assets (whose prices are some components of X), and some dynamic risk measures, and so on. Therefore,
it is natural to have an FBSDE as a state equation. Further, the dynamic expected utility /disutility of
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the total assets will be calculated in the recursive way, which can be described by the adapted solution to
a BSVIE (see below). Putting all the above together, we have the framework and the formulation of the
problem.

Let us now briefly illustrate the recursive cost functional of form (1.2)—(1.3). In 1992, Duffie-Epstein
[15,16] introduced a stochastic differential formulation of recursive utility in the case of information generated
by a Brownian motion. In 1997, El Karoui-Peng—Quenez [18] showed that such a process actually is a part of
the adapted solution to a particular BSDE and then they defined a more general class of recursive utilities,
through a general BSDE (see also Lazrak [34] for further developments). The main feature of such a recursive
process, denoted by Y is that the current value Y¥(t) depends on the future values Y(s), t < s < T of
the process. Then, on top of the classical Bolza type cost functional (1.6), mimicking [18], for our FBSDE
state equation, it is natural to introduce the following recursive cost functional:

TRt & u) = YE(),
where Y is determined by the following equation over [t, T7:

T
YO = B B XTLY () + [ 606, X(5),0(5),Y (5, 2(5), Y (3))ds].

r

From the above, we see that the value Y% (¢) depends on the values Y ®(s) for s € [t, T], through the above
equation. Hence the cost process Y has a recursive feature, and thus its name. By Yong [71], for some
process Z, the pair (Y, Z) is the adapted solution to the following BSVIE:

T
YE(r) = O(X(T),Y(r)) + /go(s,X(s),u(s),Y(s), Z(s),YT(s))ds

T
_ / ZR(r, )dW(s), 1€ [t,T]. (1.8)

s

Note that (1.8) is not a BSDE on [t, T, because the free term h°(X (T'), Y (r)) depends on the time variable 7,
which leads to the adjustment process Z%(r, s) depending on r and s. Inspired by the above, we introduce the
general recursive cost functional (1.2)—(1.3). Note that in BSVIE (1.3), the free term h° and the generator
g" are allowed to depend on the initial pair (r, X(r)) at the current time r, which is motivated by the
non-exponential discounting [32,20,73] and the state-dependent risk aversion [8,27] in finance. The recursive
cost functional of form (1.2)—(1.3) was introduced by Wang—Yong [63] for the first time, motivated by the
recursive utility /disutility process for classical optimal control problems. Comparing with the cost functional
studied in [63], the free term h° and the generator g° of BSVIE (1.3) are additionally allowed to depend
on the initial state X (r) and the backward process (Y, Z). Moreover, we highlight that (1.2)—(1.3) can also
be regarded as a recursive version of the cost functional studied in Bjork-Khapko-Murgoci [6], because
E.[X(T)] is the backward state process Y of a trivial BSDE.

It is well-known by now that the introduction of BSDEs by Bismut [4,5] in the early 1970s was for the
purpose of studying optimal control of FSDEs. The later developments of general BSDEs by Pardoux—
Peng [45] (see also Duffie-Epstein [15] and El Karoui-Peng—Quenez [18]), and the extension to FBSDEs
by Antonelli [1], Ma—Protter—Yong [39], Hu—Peng [28] (see also the books of Ma—Yong [40] and Zhang
[78]) have been attracting many researchers’ attention. Among many other publications, a big number
of literature on the optimal control problems for BSDEs/FBSDEs keep appearing. See, Peng [47], Xu [69],
Dokuchaev—Zhou [14], Ji-Zhou [31], Shi-Wu [52], Huang-Wang—Xiong [30], Yong [72], Wang—Wu—Xiong [59],
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and Hu-Ji—Xue [24] on the Pontryagin’s maximum principle for controlled BSDEs/FBSDEs; Lim—Zhou [38],
Wang-Wu—Xiong [60], Huang—Wang—Wu [29], Wang—Xiao—Xiong [61], Li-Sun—Xiong [37], Hu-Ji—Xue [25],
Sun—Wang [55], Sun—-Wu—Xiong [58], Sun—Wang-Wen [56] on the linear-quadratic (LQ, for short) optimal
control problems for BSDEs/FBSDEs; and so on. It is observed that the problems investigated in the above
listed works are all essentially the special cases of Problem (N), and have been treated as usual stochastic
optimal control problems. There is an essential feature has been overlooked in all the above, which we now
indicate that.

For a dynamic optimal control problem, suppose that at a given initial pair (¢,&) € D, the problem has
an (open-loop) optimal control 4 = (- ;t,€) with the (open-loop) optimal state being X = X (-;t,&, ).
Then, we could not expect the following:

J(r, X (7); 4l inf J(r,X(7);u), V7€ (t,T], as. (1.9)

[TvT]) - w€U|r, T

In other words, an optimal control selected at a given initial pair might not stay optimal thereafter. Then,
we say that the optimal control problem is time-inconsistent. It turns out that, in general, Problem (N) is
time-inconsistent, and the dynamical programming principle (DPP, for short) does not hold. This reveals
a surprising feature of Problem (N). To see that, let us elaborate the time-inconsistency in a little more
details, from which we will see how Problem (N) is generally time-inconsistent.

o Time-preferences and discounting. Suppose the continuously compound interest rate is a constant
A > 0. Then one needs to deposit an amount e~*° at 7 in order to get 1 unit at 7 + Ty. We call e the
discount factor of the time interval [r, 7 4+ Tp], which could also be defined as the value of this time interval.
Clearly, such a value e =70 of [, 7 +Tp] is independent of the initial time 7 and it is also independent of the
time t € [0,00) at which [r, 7 + Tp] is evaluated, either ¢ < 7 or ¢ > 7. Because of this, such an exponential
evaluation is said to be rational. Or equivalently, rationality can be described by the exponential discounting.
On the other hand, it is common that most people overweight the utility of the immediate future events,
which can be convinced by the fact that one often regrets the (optimal) decisions made earlier. This means
that people evaluate the immediate future time period more expensively than it should be, which amounts
to saying that the discount factor for that time interval is larger than the rational one. Hence, we need to
replace the exponential discounting by more general ones to more precisely describe the real situations.

In the above recursive cost functional (1.2)—(1.3), if we have

90(7,.7 S, jv x,u, y7 Z, y07 ZO) = e_A(S_T)gO(S’ x, U),
for some discount rate A > 0, then the cost functional is reduced to the classical exponential discounting
Bolza cost functional:

T
J(t,&u) =E, [e*’\(T*t)hO(X(T)) + / e M50 (s, X (), u(s))ds|.

t

In this case, there are no (European type) contingent claims involved, and there are no dynamic risks
taken into account. Therefore, the BSDE for (Y, Z) in (1.1) is irrelevant. Also, the involved individual
is completely rational (as far as the time-preferences are concerned). For such a case, the corresponding
Problem (N) is time-consistent. Now, if e M7=t and e~ 2~ are replaced by some non-exponential decay
functions, the cost functionals are referred to as non-exponential ones, which describe some kinds of irra-
tionality of time-preferences for the involved individuals. In this case, namely, the cost functional is given
by (1.2)—(1.3), our Problem (N) is time-inconsistent. The earliest mathematical consideration in this aspect



6 H. Wang et al. / J. Math. Pures Appl. 190 (2024) 103603

was given by Strotz [54], followed by Pollak [50], and the recent works of Ekeland—Pirvu [20], Ekeland—
Lazrak [19], Yong [73,75,76], Wei—Yong—Yu [68], Mei—Yong [43], Mei—Zhu [44], Wang—Yong [63], Hamaguchi
[22], Herndndez—Possamai [23], and Lazrak—Wang—Yong [35] for various kinds of problems relevant to non-
exponential discounting.

o Risk-preferences and nonlinear appearance of conditional expectations of the (terminal) state. Different
groups of people should have different opinions of risks on the in-coming events. This is referred to as
people’s subjective risk-preferences. One way to describe this is to allow the conditional expectation of the
state to (nonlinearly) appear in the cost functional. It turns out that such a formulation will lead to time-
inconsistency of the optimal control problem in general. See Basak—Chabakauri [3], Hu-Jin—Zhou [26,27],
Bjork-Murgoci [7], Bjork-Murgoci-Zhou [8], Bjork—-Khapko-Murgoci [6], and Yong [76] for some relevant
results.

Let us now make an observation for our Problem (N). Let m = n, and

hz) =z, g(s,z,u,y,z)=0, ho(r,gﬁ,w7y) = ho(a:,y),

go(r7 S7i’x7u7y’ Z?:UO?Zo) = go(s7x7u7y)’
then
Y(s) = ElX(T)], sc€ltT],

and the recursive cost functional (1.2)—(1.3) becomes

T

I(t.650) = B[l (XD ELX D) + [ (5. X(5),ulo). EL[X(D)]) ).

t

In the above, E{[X(T)] appears nonlinearly and the corresponding optimal control problem is time-
inconsistent. From the above observation, we see that the state equation being an FBSDE can include
many situations of nonlinear appearance of conditional expectations.

We have seen that Problem (N) is generally time-inconsistent. Therefore, we should treat it from the
angle differently from the usual classical ones. Before going further, let us present the following simple
example, from which we will see the more essential reason for Problem (N) to be time-inconsistent.

Example 1.1. Consider the one-dimensional (degenerate) FBSDE state equation

{X(s) =0, Y(s)=u(s), seltT], (1.10)
Xt)y=z, Y(T)=0
with the cost functional
T
J(t, xz;u) / )+ u(s)]?]ds. (1.11)

A straightforward calculation (see Example 3.2 for details) shows that at the initial pair (¢,z), the unique
optimal control u(-;t,x) is given by
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Then, for any 7 € (t,T), the unique optimal control at (7, X (7)) = (7, x) is given by

_ .
—%, se[r,T).

Clearly,

Thus, the problem is time-inconsistent.

Tt is worthy of pointing out that in the above example, (1.11) is a Bolza type cost functional for FBSDE
state equations, and unlike Yong [73] and Bjork—Khapko-Murgoci [6], neither non-exponential discounting
nor conditional expectations (nonlinearly) appear. Furthermore, the controlled system (1.10) is a determin-
istic ordinary differential equation, and the terminal cost of (1.11) equals zero, due to which (1.11) is also a
Lagrange type cost functional. This tells us that an optimal control problem could be time-inconsistent solely
because the state equation is a forward-backward one. Hence, the time-inconsistency feature is intrinsically
contained in the optimal control problems for FBSDEs. Such a feature distinguishes the current paper from
the previous ones concerning the time-inconsistency, in other aspects.

Having the above time-inconsistent feature of the problem, we now highlight the main results of this
paper.

(i) Using Pontryagin’s maximum principle, we will show that Problem (N) is generically time-inconsistent.
The advantage of such an approach is that we are not satisfied with just some counterexamples, instead,
we will show that if @ is optimal at (¢, &), which will satisfy the Pontragin’s type maximum principle (MP,
for short) on [t,T], then u|[, ) hardly satisfies the MP on [, T] for 7 € (¢, T]. Therefore, (1.9) should not
be expected in general.

(ii) Since Problem (N) is time-inconsistent in general, finding an optimal control at any given initial
pair (t,€) is not very useful. Instead, one should find an equilibrium strategy, which is time-consistent and
possesses certain kind of local optimality. Inspired by Yong [73], we derive the equilibrium HJB equation
associated with Problem (N), through which an equilibrium strategy can be constructed. Our equilibrium
HJB equation can cover the results obtained in Yong [73] and Bjérk—Khapko—Murgoci [6]. In the case that
the recursive cost functional is governed by a BSDE, one could apply the method of multi-person differential
games, by viewing that the controller is playing a cooperative game with all his incarnations in the future.
Such an idea can be traced back to the work of Pollak [50] in 1968. Later, the approach was adopted
and further developed in [19,20,73,75,76,7,8,6,68,43,44,63]. We point out that the multi-person differential
game approach used in [73,68] does not directly apply to Problem (N) of the current paper, because the
DPP does not hold for controlled FBSDEs even if the cost functional does not depend on the initial values
(t, X(t),Y(t)). We overcome the difficulty by making use of the Feymann-Kac formula for BSVIEs, which
has been recently well-developed in our works [67,62,64]. In the proof of the verification theorem, some
technical assumptions imposed in [68,63] and [6] are relaxed.

(iii) When the diffusion term of the forward state equation does not contain the control u, the equilib-
rium HJB equation associated with Problem (N) is a system of semi-linear parabolic partial differential
equations with non-local terms. Under the non-degenerate condition, the well-posdness of the equilibrium
HJB equation is established in the sense of classical solutions.

(iv) Some comparisons between our equilibrium HJB equations and those derived by Peng [49], by Yong
[73,75], and by Bjork—-Khapko-Murgoci [6] are carefully made, respectively. We find that the backward
controlled equation has a significant influence on the form of the associated equilibrium HJB equation.
When Problem (N) is reduced to the problem studied by Bjork—Khapko-Murgoci [6], the form of our
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equilibrium HJB equations is more natural than their so-called extended HJB equation. We note that there
was no rigorous proof on the well-posedness of the extended HJIB equation presented in [6].

(v) The linear-quadratic optimal control problems for FBSDEs are briefly studied and a linear equilibrium
strategy is obtained, provided the associated Riccati equation is solvable. This partially covers the work of
Yong [76]. Further, as applications, a mean-variance model, a social planner model of Merton’s consumption—
portfolio selection with heterogeneous Epstein—Zin utilities, and a Stackelberg game are investigated, which
are all special cases of Problem (N). It is shown that these specific problems are all time-inconsistent, and
by the theoretical results obtained in the paper, the associated equilibrium strategies can be explicitly
constructed.

The rest of this paper is organized as follows. In Section 2, we state the main results of our paper,
with some explanations. In Section 3, we compare the results obtained in the paper with the existing ones.
The linear-quadratic problem is studied in Section 4, and three applications are presented in Section 5. In
Section 6, the verification theorem is proved. Some technical and lengthy proofs are given in Section 7.

2. The main results
2.1. Preliminaries: notations and Feynman—Kac formula

Let T > 0 be a given time horizon and recall the upper triangle domain A*[0, 7] from (1.4). Let S™ be
the subspace of R™*" consisting of symmetric matrices and U C R¢ be a nonempty measurable set which
could be bounded or unbounded. We will use K > 0 to represent a generic constant which could be different
from line to line. For any Euclidean space H (as well as Hy, Hs), we introduce the following spaces:

LE(Q;C([0,T); H)) = {ga :[0,T] x @ = H | ¢ is F-adapted, pathwise

continuous, E[ sup [¢(s)[?] < oo};
0<s<T

Cr ([0, T); L*(Q; H)) = {(p :[0,7] x Q@ — H | ¢ is F-adapted, E[y] is

continuous, sup E[|p(s)]?] < oo};
0<s<T

L(0,T;H) = {<p 110, 7] x @ — H | ¢ is F-progressively measurable

T

on (0,71, E [ [o(s)Pds < oo}

C([0,T); LA(-, T; H)) = {(p A0, T) x Q- H | o(t,) € L3 (t, T; H), t € [0,T),

E [ lot.s)Pds e co.1)

L>*(Hy; Hy) = {cp H; — H, |  is essentially bounded};
C’k(Hl; Hs) = {gp : Hy — Hoy ’  is j-th continuously differentiable
forany 0 <5 < k};
CF(H,; Hy) = {pe C*(Hy; Hy) | the j-th derivatives are bounded, 0 < j < k}.

To guarantee the well-posedness of the controlled FBSDE (1.1) and BSVIE (1.3) governing the recursive
cost functional, we introduce the following assumptions.
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(H1). Let the mappings b,o : [0, T| xR"xU — R", g : [0,T] xR xU xR™ xR™ — R™, and h : R - R™
be continuous. There exists a constant L > 0 such that

[b(s,0,u)| + |o(s,0,u)] + |h(0)[ +[g(s,0,u,0,0)| < L(1 + |u]),

[b(s, 21,u) — b(s,x9,u)| + |o(s,21,u) — o(s,xa,u)| + |h(x1) — h(z2)]

+lg(s, 1, u, 51, 21) — g(s, 22, u, 92, 22)| < Loy — 2| + [y1 — yo| + |21 — 2],
V(s,u) € 10, T] x U, (x;,yi,2i) €ER" x R™ x R™, ¢ =1,2.

(H2). Let the mappings h° : [0, T|xR"xR"xR™ — R and ¢° : A*[0, T|xR"xR"xUxR™xR™xRxR — R

be continuous. There exists a constant L > 0 such that

|h°(t,0,0,0)| + [g°(t, 5,0,0,u,0,0,0,0)| < L(1 + |u]),

19°(t1, 8, 81, 21, u, 1, 21,97, 27) — 90 (ta, 5, Fa, T2, U, Yo, 22, U, 25) |

+ RO (tr, &1, w1, 91) — hO(ta, Bo, o, y2)| < L[ty — to| + |21 — Fo| + |21 — 22
+ 1 = 2l + |21 = 2| + [y) — 5] + |27 — 23],

Y(ts,s) € A*[0,T], Zj,z; €R™, w €U, yi,zs €R™, 42,22 e R, i =1,2.

By Yong—Zhou [77, Chapter 7] and Yong [71], we have the following results about the well-posedness of
(decoupled) FBSDE (1.1) and BSVIE (1.3).

Lemma 2.1. Let (H1) hold. Then for any initial pair (t,€) € D and control u € U[t, T, state equation (1.1)
admits a unique adapted solution (X,Y,Z) € L& (4 C([t,T};R™)) x L& (% C([t, T); R™)) x L& (¢, T;R™).
Moreover, there exists a constant K > 0, independent of (t,€) and u, such that

T

[ o (X4 VO + [ 129P0s] < 1B [1 i+ [ o]

In addition, if (H2) holds, then for any initial pair (t,€) € D, control uw € U[t,T], and the corresponding
state process (X,Y,Z), BSVIE (1.3) admits a unique adapted solution (Y°,Z%) € Cg([t,T); L*>(Q;R)) x
C([t,T); L& (-, T;R)). Moreover, there exists a constant K > 0, independent of (t,£) and u, such that

T T
sup Et[|yo(r)|2+/\zO(r,s)|st} < KE, [1+|§|2+/|u(s)|2ds]
t<r<T J /

As another preparation, we consider the following system of FBSDEs and BSVIEs without controls over
[t,T7:
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X() =€+ [ Ws. X(o)ds + [ ols, X()dW (o),

T T
Y(r)=h(X(T)) —|—/g(s,X(s),Y(s),Z(s))ds - /Z(s)dW(s),

YO(r) = h0(r, X(r), X(T),Y (r)) + [ ¢°(r,;5,X(r), X(5),Y (s), Z(s), Y(5), Z°(r, 5) )ds

Tt~

T

- [ 20 saw ),

T

where the coefficients b, o, h, g, h°, g° satisfy (H1)—(H2) (independent of the control u). Suggested by Wang—
Yong [67] and Wang—Yong—Zhang [64], we introduce the following system of semi-linear PDEs:

O (s, ) + 1[0k, (5,2)0(s, 2)o(s,2) ] + O (s, 2)b(s,2)
+ g(s,z, (s, 1:) Ou(s,z)o(s,z)) =0, V(s,x)€[t,T]xR", 1 <k<m,
0%r, s, &, x,y) + tr (0%, (r, 8,2, x,9)0(s,x)o(s,z) "] +O%r, s, &,z,y)b(s, ) (2.2)

+ gO (T7 57 :’Zv:’ I, 6(8’ '1:)7 63:(8’ l’1:)0(57 x)’ 60(87 57 :Z:’ I, 6(5’ :1:))7 @2(7’, 87 j’? x’ y)0(57 x)) = 07
V(r, s, &, x,y) € A*[t,T] x R™ x R™ x R™,
O(T,z) = h(z), O°r,T,z,x,vy)=h"(r 2 2,79),

with © = (01,-.-,0™)T. Note that ©° is a function of (r,s,#,z,y), and ©%, 00  are the derivatives with
respect to the 4th argument. We have the following representation theorem.

Proposition 2.2. Suppose that the PDE (2.2) admits a classical solution (©,0°). Assume that the system of
FBSDEs and BSVIEs (2.1) admits a unique adapted solution (X,Y,Z,Y° Z°). Then the following repre-
sentation holds:

Y(r)=0(X(r), Zr)=0,(rX(r)o(r,X(r), reltT], as
YO(r) = (er()X()@(rX( )))7 relt,T], a
Zo(r,s) (r,s,X(r),X( ), O(r, (r))) (s, X(s)), (r,s) e A*[t,T], a.s

The proof of Proposition 2.2 is given in [65].

Remark 2.3. Proposition 2.2 is a generalization of the Feynman-Kac formula for Markovian BSVIEs, which
was established by Wang—Yong [67] and Wang [62], in the sense of classical solutions. Under the non-
degenerate assumption, the well-posedness of PDE (2.2) will be established by an analytic method, as a
byproduct of Theorem 2.10. The probabilistic approach, without the non-degenerate assumption, can be
also obtained by the arguments employed by Wang—Yong—Zhang [64].

2.2. Time-inconsistency analysis of problem (N)

In this subsection, we shall discuss the time-inconsistency of Problem (N) from the Pontryagin’s maximum
principle viewpoint. For simplicity, we consider the case that (1.5) holds so that the cost functional reads
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s (1.6) (of Bolza type, without involving BSVIEs). Also, we suppose that the control domain U = R*
and all involved functions are continuously differentiable. Let (X*¢,u*, Y*¢, Z¢) be an optimal 4-tuple
(supposing it exists) of Problem (N) on [t,T] with a given initial pair (¢,£) € D, for which we assume to be
time-consistent. Then, for any 7 € (¢, 77,

J(T7 Xt,E (T), até | [T,T]) = uEllxﬂ‘lf: ] J<T7 Xté (T)7 U),

and

(X5(s), @S (s), YHE(s), Z%(s))

= (XX (), am X (), YOI (), 278 O()), s € [T, as

Now, we denote

byt (s) = ba(s, X"5(s), 0" (s)), b (s) = bu(s, X 4 (s), a"4(s)),
95°(5) = ga(5, X"(), 04 (), Y5(5), 2%(5), 9u*(s) = gu(s, -+, 2"4(s)),
y°(s) = gy(s, -+, Z"4(s)), o5 (s) = ga (s, -, ZM4(s)),
hy$(T) = ha(X"4(T)), ha$(t) = hg(XPS(T), YH4(1)),

and 64%(s), 555 (s), g0t (s), g4 (s), g4 (s), g2 4 (s), B4 (t) are defined similarly. Then by applying the
Pontryagin’s maximum principle (see [47,24,25], for examples), to the optimal 4-tuple on [¢t,T] and [r, T,
respectively, we get the following stationarity conditions:

Gt (5) " + gyt (s) TS (s) 05 (5) TV (s)

+a5(s)T 255 (s) =0, selt,T], (2.3)
— X8 (r 7 T XUE(r

goE(s) T+ ght () TN (5) 405 (5) TV ()

158 () T2 X sy =0, sernT), (2.4)

where (Y5¢, Z5€) is the co-state process pair of X*¢, and X*¢ is the co-state process of (Y*¢, Z4¢), for
which the following holds on [¢,T] almost surely:

AV (s) = —[g5% (s) TS (s) + 0L () T YV (s) + 555 (s) T 295 (s) + gt (s) T ]ds
+ Z55(s)dW (s),

dX"(s) = [g,°(s) T X5 (s) + gyt (s) T ds + [gh(s) TP () + g5 (s) T AW (),

VI(T) = REE(D) TS + RS0, X = B0,

(2.5)
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and (yTX () ZTX 5(7)) is the co-state process pair of XT’XL&(T), and X7X"*() is the co-state process
of (Y7X' #(m), Zn X! 5(7)) for which the following holds on [r, T almost surely:
aYT X (s) = — [ ()T AT O () 4 2 ()T YR )
+ 588 (5) TZPX O (5) 4 g0 (s) T]ds + 27X () (5)aW (s),

dX‘r,)_(t’g(‘r) g) = —t,& S TXT,}_(t'g(T) + (Jt§ T

(s) = [g,°(s) w() gyt (s) ' ]ds (2.6)

+ (754 (s) T (5) 4 gPE () TTdW (s),

YREOT) = B () TR OT) £ ()
X8 (r A
XX (1) = E [y () T].

We conclude the results as follows.

Proposition 2.4. If the optimal 4-tuple (Xb€,ub€ YHE, ZH€) is time-consistent, then (2.4) holds for any
€ (t,T], subject to (2.6).

The necessary condition (2.4) with 7 € [t,T] can be regarded as a dynamic version of the famous
Pontryagin’s maximum principle. Interestingly, we can use it to characterize the time-consistency of the
optimal controls.

Now, let us make a careful comparison between (2.5) and (2.6). First of all, these decoupled FBSDEs
have exactly the same coefficients. If we restrict (2.5) on [, T], then it has the initial condition X*¢(7), and
we do not expect the following:

Xb8(r) = Er[i_zg’t’E(T)T] = ET[hg(Xt*E(T),Yt’g(t))T], v e (¢, 7).
Hence, in general, the following cannot be guaranteed:

(AT XE O s), X0 (5), YrEEO (), 2T ()
= (X"4(s), uS(s), YHo(s), 244(s)), s € [r,T], as., Vr e [t,T].

Consequently, having (2.3), it is too much to request (2.4). From this, we see that Problem (N) is intrinsically
time-inconsistent.

2.8. Equilibrium strategy and equilibrium HJB equation

Since Problem (N) is time-inconsistent in general, we shall find the equilibrium strategy, whose definition
is given as follows.

Definition 2.5. A mapping ¥ : [0, 7] x R™ — U is called a feedback strategy (of state equation (1.1)) on [0, T]
if for every (t,£) € D, the following closed-loop system:

dX(s) =b(s, X(s),¥(s,X(s)))ds+ o(s,X(s),V(s,X(s)))dW(s),

(
dY (s) = —g(s, X(s), W(s, X(5)), Y (5), Z(s))ds + Z(s)dW (s),
X(t) =¢, Y(T) = hX(T)),

S

) =
)=

admits a unique adapted solution (X,Y,Z) = (X(-;t,£,¥), Y(-;£,£, V), Z(-;¢,£,¥))= (XY, VY, Z7) and
the outcome u¥ = (-, XY(-)) of ¥ belongs to U[t, T).
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We now introduce the following definition.

Definition 2.6. A feedback strategy ¥, with X being the forward component of the corresponding state
process, is called an equilibrium strategy if

J(t, X (1); %) — J(t, X (1); V)

liminf,_, o+

>0

)

for any ¢t € [0,T) and u € L%, (Q; U), where

T(s) o= {\Il(s,XE(s)), sEt+eT); 27)

u, s € [t,t+e),
with X := XV = X (¢, X(t), U¥) being the forward component of the state process corresponding to ¥e.

The intuition behind Definition 2.6 is similar to that in [73,26,6,63]. At any given time ¢, the controller is
playing a game with all his/her incarnations in the future by minimizing his/her cost functional on [¢,t+¢),
and knowing that he/she will lose the control of the system beyond t + €. We now briefly list our main
results as follows.

To find an equilibrium strategy of Problem (N), we introduce the following spaces:

A[0,T]:=[0,T] x R" x U x R™ x R™*™,
A°[0,T] := A*[0,T] x R™ x R" x U x R™ x R™*"™ x R x R'*™.

For simplicity, we denote
©=(0,p) cR" xR™"  @°=(#°p°) e R x RI*",
Now, we define the following Hamiltonians:

H(s,xz,u,®, P) = tr[Pa(s,z,u)] + pb(s, z,u) + g(s, x,u,0,po(s,x, u)),
H(t,s, & x,u,©,0° P
= tr[Pa(s, z,u)] + p°b(s, z,u) + ¢°(t, s, &, z,u, 0, po(s, z,u), 0, p°c (s, 2, u)),
I;Io(t,s,:i,x,u,(%,P, e’ 4" PY
= H(t,s,2z,2,u, H H°, P°) + ¢"H(s,2,u,©, P),

V(t, s, i,7,u,0,0" € A°0,T], Pe[S"]™, ¢* e R**™, PO esm, (2.8)

where a is defined by
1 T n
a(s,x,u) = §U(s,x,u)a(s,x,u) , (syz,u) €10,T] x R" x U,
and, with P = (P!, P%,-.., P™)T ¢ [S"]™,

tr
tr

Pla(s,z,u)
P2a(s,z,u)

tr [Pa(s,z,u)] =

tr [P™a(s, z,u)]
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In what follows, we will use the following hypothesis.

(H3). Suppose that there exists a unique mapping 1 such that

ﬁo(t s, @,2,9(t,s,%,2,0,P,0" ¢, P, @, P,0° ¢, P

zlng(tsxxu@PG)oq PY),
u

V(t, s, %,2,u,0,0°%) € A°0,T], P e [S"]", ¢* e R*™, PP eS™.

Moreover, we suppose that v is smooth enough with bounded derivatives.
We now introduce the following equilibrium HJB equation:

Os(s,x) +H( JU(s,2),0(8,2),0,(s, ), O44(s,2)) =0,
0Y(t,s, 2, z,y) + H'(t,5,,2,¥(s,7),0(s,7),0,(s, 7),
0%, s, z, , @(8 x)),0%(t, s, %, x,y), 0%, (t, s, &,2,y)) =0,
(t,s,&,2,y) € A*[0,T] x R™ x R" x R™,
O(T,z) = h(z), O°t,T, & x,9) = ho(t,z,2,9),
(t,Z,z,y) € [0,T] x R™ x R™ x R™,

where for any (s,z) € [0,T] x R™,

U(s,z) = 1/}(8, s,2,2,0(5,2),0,(s,1), (s, 1),0%s, s, z,2,0(s,x)),

0°(s, s, x,,0(s, 1)), @2(8, s,x,2,0(s,2)),0°% (s, z,1,0(s, m)))

We have the following result.

(2.9)

(2.10)

(2.11)

Theorem 2.7. Let W : [0,T] x R® — U be defined by (2.11), with (©,0°) being the classical solution to the
equilibrium HJB equation (2.10). Let U be a feedback strateqy. Then it is an equilibrium strategy of Problem

(N).

Remark 2.8. Theorem 2.7 is a verification theorem for Problem (N), whose proof is given in Section 6.

Taking the equilibrium strategy ¥ in (1.1) and (1.3), we get the following equilibrium system on [0, T]:

dX (s) = b(s, X (s), U(s, X (s)))ds + o (s, X (s), U (s, X (s)))dW (s),
dY (s) = —g(s, X(5), U(s, X (5)), Y (5), Z(s))ds + Z(s)dW (s),
X(0)=¢ Y(T)=hX(T)),

and
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Then by Proposition 2.2, we have the following representation formula:

Y(r)=0(rX(r), Z(r)=06.(r,X(r))o(r,X(r),¥(rX(r))),
YO(r) =@° (r, r, X (r), X(r),0(r, X(r))),
Z°(r,s) = ©° (r, s, X(r), X(s),0(r, X(T)))O‘(S, X (5),¥(s, X(s))),
provided the equilibrium HJB equation (2.10) admits a classical solution (©,0"). Thus, the form of the
equilibrium HJB equation (2.10) is very natural, though it seems a little bit complicated. Using the local

optimality condition (2.9), the equilibrium strategy value ¥(s, z) is determined by O (s, z) and the diagonal
value ©Y(s, s, x, 2, O(s, 1)).

Remark 2.9. If the cost functional reads as (1.6), then we have

H(s,2,u,0,0°% P% = tr[P%a(s, ,u)] + p°b(s, z,u) + ¢°(s,z,u, 0, po(s, x,u)),
I:IO(s,x,u, ©,P,0° ¢°, P%) = tr[P°a(s, z,u)] + p°b(s, z,u) + ¢°(s, z,u, 0, po(s,z,u))
+ qo(tr[Pa(s, u, x)] + pb(s, x,u) + g(s,x,u, b, po(s,x, u))),
Y(s,x,u,®,P,0" ¢°, P%) € A[0,T] x [S"]™ x R x R**™ x R**™ x §™. (2.12)

2.4. Well-posedness of the equilibrium HJB equation

In this subsection, we will present the well-posedness of equation (2.10) to some extent. Note that (2.10) is
a coupled system of fully nonlinear parabolic PDEs with a non-local feature, whose well-posedness is a very
challenging problem. Indeed, even for the equilibrium HJB equation associated with the time-inconsistent
problems for SDEs (see Yong [73]), the well-posedness is still widely open, except when the time horizon
is small enough (see Lei-Pun [36]). For the small time case, one can construct a contraction mapping in a
Banach space depending on the terminal conditions and does not need to establish a prior estimate, which
is exactly the main difficulty in establishing the well-posedness.

We now assume that

o(s,x,u) =o(s,z), (s,z,u)€0,T]xR"xU. (2.13)
In this case, we denote

H(s,z,u,®) = pb(s,z,u) + g(s,z,u,0,po(s,)),
Ho(t’ S, i’7 x’ u7 6’ 60) = pob(87 J;’ u) + go(t7 S? j’ x7 u’ 0’p0(87 J»‘)’ Ho’pOO-(S’ m))’

H(t,5,7,2,u,0,0°,¢°) = H'(t,5,%,7,u,0,0°) + ¢"H(s, z,u,),
Y(t, s, &, z,u,©,0°% ¢ A°00,T], ¢° € RY*™,

Then the mapping ¢ determined by (H3) can be determined by the following;:
ﬂ—o(t’ 87 i? x’ w(t) 87 5:7 x’ 67 60’ q0)7 67 607 qo) = in{] ﬂ-o(t7 8’ 5:‘7 x’ u7 6’ ®07 q0)7
ue
Y(t,s, &, z,u,®,0°% c A°[0,T], ¢° € R**™, (2.14)

Namely, in the current case, v is independent of P and P°. Then (2.10) is reduced to the following system
of semilinear PDEs:
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Os(s,2) + tr[Opr (s, x)a(s, )] + Ou(s, z)b(s, z, ¥(s, x))
+g(s,2,9(s,2),0(s,z), 0.(s,x)0(s,z)) = 0,
0%t, s, &, x,y) + tr[@° (t, 5, %, z,y)a(s, )] + O°t, s, &, x,y)b(s, z, U(s,z))
+ ¢ (t,s,i,x, U(s,x),0(s,1),0,(s,2)0(s,x),0°(s, s,2,2,0(s, 1)),
0°(t, s, &, , y)a(s,x)) =0,
O(T,z) = h(z), O°t,T, & x,y) =ho(t, 2, 2,9),

(2.15)

with

U(s,x) = 1/)(5, s,x,2,0(s,x),0.(s,x),0%s, s, z,z,0(s, 1)),
09%(s, s, z,z,0(s, 1)), @8(3, s,x,z,0(s, a:)))

Now, we denote

5(5, z,0(s,x),0.(s, ), 90(5, s,z,x,0(s,x)), @2(5, s,x,x,0(s,x)), @g(s, s, x,x, 0O(s, x)))
= b(s, x, w(s, s,x,2,0(s,2),0,(s,x),0%s,s,x,r,0(s,1)),0%(s, s, 2,2,0(s, ),
@g(s,s,x,x,@(s,x)))).

Further, § and §° can be defined similarly. Because of the above dependence, we may write the above (2.15)
as follows:

Os(s, ) + tr[O4 (s, z)a(s, x)] + O (s, CC)B(S, z,0(s,x),0.(s,x),
@O(S’ S’ x’ 1’7 9(87 1’))’ 62(87 87 x’ x? 6(83 x))? 62(87 87 x’ x? @(87 :L.)))
+g(s,a:,@(8,33)761(5,:5),@0(8, s,x,x,0(s,x)),
0°(s, s, z,, @(s,x)),@2(3,8,x,x,@(s,x))) =0,

GS(tv S, &, , y) + tr[@gx(t, 8, &, x, y)a(sa :U)] + @2(15, $,Z,x, y) (2'16)
X B(sw, O(s,x), @m(s,x),60(57s,x,x,@(s,x)),@ﬁ(s,s,x,x, O(s,x)),
@2(3, 8, T, T, @(s,x))) + go(t, 5,%,2,0(s,2),0,(s,2),0%s, s, z,1,0(s, 1)),
00(s, 5,,2,0(s,x)), 0y (s, 5,2, 7,0(s,2)), OL(t, 5, &, 2, y)) = 0,

O(T,z) = h(z), ©°(t,T. & x,y) =h(t, %, z,y).

Although the above looks complicated, it actually has a usual HJB equation form. For the above system,
we introduce the following assumption.

(H4). The mappings

(s,) = a(s,x), x> h(x), (t,7z,y)— h0Ft32,y),
(8,1’, 67 803 qo) '—> B(S7x7 (-)3 907q0)? (87x7 (-)3 go,qo) +_> g(s7xﬂ (-)? go,qo)?
(t7 87j7x7 ®7®O7q07ﬁ0) '_> go(t7 871.7 $7®7®O7q07ﬁ0)

are bounded, have all required differentiability with bounded derivatives. Moreover, there exist two constants
Ao, A1 > 0 such that

Ml <alt,z) < MI, V(t,z)e[0,T] x R™
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Theorem 2.10. Let (H4) hold. Then the equilibrium HJB equation (2.16) admits a unique classical solution.

The proof of Theorem 2.10 is technical and lengthy, which will be given in Section 7. Note that (2.16)
contains the diagonal term @2(5, s,x,x,0(s,x)). To our best knowledge, it is the first time that such type
of equilibrium HJB equations is derived.

3. Comparison with the existing results
3.1. Comparison with Peng [49]

In [49], Peng established the well-known dynamic programming principle (DPP, for short) for the recursive
optimal control problem with the state equation

dX(s) =b(s, X(s),u(s))ds+ o(s, X (s),u(s)dW(s), selt,T],
dY (s) = —g(s, X(s),u(s),Y(s), Z(s))ds + Z(s)dW (s), s € [t,T], (3.1)
X(@)=¢ Y(T)=hnX(T)),

and the cost functional

(&) =Y (2), (3.2)

with the backward process Y being one-dimensional. Such a problem is denoted by Problem (R). It turns out
that in this case, the optimal control problem is time-consistent. The following provides a time-consistency
analysis of Problem (R) from the viewpoint of Pontryagin’s maximum principle.

Proposition 3.1. Suppose that u*¢ is an optimal control of Problem (R) with the initial pair (t,€) € D. Then
ub¢ satisfies the necessary condition (2.4) for any T € (t,T).

Proposition 3.1 can be proved by comparing (2.3)—(2.4), and we give the proof in [65].
We remark that Problem (R) is a very special case of Problem (N). When Y is multi-dimensional, the

problem is time-inconsistent in general, even if J(¢, £; u) is a linear function of Y'(¢). Here is a simple example.

Example 3.2. Consider the (degenerate) FBSDE state equation

X(s)=0, Yi(s)=u(s), Ya(s)=-Yi(s) —uls) — |u(s)]®, s€[tT],
X(t) =, Yl (T) = 07 YQ(T) = 07

with the cost functional

Then

Tt w50) = / (41— s)us) + fu()?] s

t

Thus, the unique optimal control u(-;¢,x) for initial pair (¢,x) is given by
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s—t—1

5 setT).

u(s) = u(s;t,x) =

And for any 0 <t < 7 < T, the optimal control at (7, X (7)) = (7, z) is given by
s € [r,T).
Clearly,

u(s) £ a(s), se|r,T],
which implies that the problem is time-inconsistent.

We now show that in the case of (3.1)—(3.2) (with m = 1), the equilibrium HJB equation (2.10) is reduced
to the classical HJB equation associated with recursive stochastic optimal control problems. In fact, the
associated equilibrium HJB equation is given as follows:

O4(s, ) + Ou(s,z)b(s, 2, U (s, z)) + tr[Ous (s, x)a(s, z, ¥ (s, z))]
+g(s,2,¥(s,2),0(s,2),0.(s,2)0(s,z,¥(s,z))) = 0,

0%t,s, &, x,y) + O%(t, s, &, x,y)b(s, x, ¥(s,x)) (3.3)
+tr[0° (t, 5, %, 2, y)a(s, x, U(s,z))] = 0,

O(T,z) = h(z), O°t,y,2T,z)=y,

where W satisfies the local optimality condition (2.9). Clearly, ©° = v is a classical solution to the second PDE
n (3.3). Thus, the local optimality condition (2.9) can be rewritten as follows: For any (s, ) € [0,T] x R™,

H(s,2,¥(s,2),0(s,7),0,(s,2), 0ps(s, 7))

= 11615 H(s,z,u,0(s,x),0,(s, ), Oy (s,2)),

where H is defined by (2.8). Then the equilibrium value function is given by
0°(s, s,x,2,0(s, 7)) = O(s,z), (s,2) €[0,T] x R™,
with © being uniquely determined by
Os(s,x) + JrelfU {@x(sm)b(s,x, u) + tr[O4y (s, 2)a(s, x, u)]

+g(s,x,u,®(s,x),@m(s,x)o(s,%u))} =0, (s,z)€l0,T]xR",
O(T,x) = h(x), z=e€R",

which is exactly the HIB equation derived by Peng [49].
3.2. Comparison with Yong [73,75] and Wang—Yong [63]

As an equilibrium recursive version of [73,75,68], Wang—Yong [63] considered the optimal control problems
with the state equation given by the forward equation in (1.1), and the cost functional given by

J(t,&u) =YO(1),
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where Y is uniquely determined by the following BSVIE:

T
YO(r) = h¥(r, X(T)) + /go(r, 5, X (s),u(s),Y?(s), Z%(r, s))ds

T
—/Zo(r,s)alVV(s)7 r et T].

s

Then by comparing the above with (1.2) and (1.3), we see that in our problem, the cost functional can
additionally depend on the initial state X (r) and the backward process (Y, Z). If the diffusion term of
the state equation does not depend on the control u, the associated equilibrium HJB equation admits the

following form:

0%t, s, z) + tr[@°, (t, s, 2)a(s, z)] + O°(t, s, x)B(s, z,0%s,s,2),0%(s,s, x))
+g° (t,s,x,@o(s, s,1),0°%(s, s,2),0%(t, s,m)) =0, (t,s)€A*[0,T], zeR", (3.4)
Q%t, T, x) = h°(t,x), (t,z) €[0,T] x R™.

Compared with the equilibrium HJB equation (3.4) derived in [73,68,63], (2.16) has the following new
features:

e Equilibrium HJB equation (2.16) is a coupled system of parabolic PDEs. It is interesting that the
last PDE in (2.16) is coupled with the first m equations not only through the appearance of ©(s,z) and
O.(s,z) in the function ¢°, but also through the non-local terms ©°(s, s, z, z, O(s, z)), 0% (s, 5, z, z, O(s, z)),
and @2 (s,8,2,7,0(s,7)) of the unknown function 6°.

e Equilibrium HJB equation (2.16) depends on the partial derivative @2 along the “diagonal” points
(s,8,2,2,0(s,z)), by which we see that the backward controlled equation has a significant influence on
deducing the equilibrium HJB equation. To be more clear, we take a look at this from a probabilistic
viewpoint. By the It6’s formula, the stochastic system associated with (2.16) reads

X(t) =€+ / b(s, X(s), Y (s), Z(s)o (5, X (5)) "L, Y°(s),
0

Z%(s, s)a(S,X(s))—17?0(s))ds+/U(S,X(S))dW(S),
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and
T

YO(t) = hO(t, X (1), X(T), Y (t)) +/Qo(t,S,X(t),X(S)»Y(S),Z(S)O(S,X(S))_l,YO(S%

T
2%(s, 8)o (s, X (5))"1, ¥O(s), Z(t, 8)or (s, X (5)) ") ds — /ZO(t,s)dW(s),

YO(t) :hg(uX(t),X(T),Y(t))+/ggo (t,s, X (1), X(s),Y(s), Z(s)o(s, X (s)) ", Y (s),

Z0(s,8)0(s, X (s)) 7, ?O(s), Z0(t, s)o (s, X(s))_l)ZO(t7 s)o(s, X (s)) " ds
T

— /Zo(t, $)dW (s).

t

Compared with [63, Theorem 5.1}, the first backward equation and the third backward equation are new.
The appearance of the first backward equation is natural, because the state system (1.1) is a controlled
FBSDE. However, the appearance of the third backward equation is surprising. Indeed, the process VO is
introduced for providing a probabilistic representation for @2(5, x,8,x,0(s,x)), which comes from the local
optimality condition of the Hamiltonian (2.14).

3.8. Comparison with Bjork-Khapko—Murgoci [6]

In [6], Bjork, Khapko, and Murgoci considered the optimal control problems with the state equation

{dX(s) = b(s, X(s),u(s))ds + o(s, X(s),u(s))dW(s), (3.5)

X(t) =¢,
and the cost functional

J(t,w5u) = E[F(X (1), X(T))] + G(X(0)E[X (T))),

where F and G are given deterministic functions. The so-called extended HJB equation derived by Bjork—
Khapko-Murgoci [6] reads

inf ((A"7)(t,2) = (A" f)(t,2,2) + (A" ) (t,2) — A“(C o g)(t,2)

where 4(t, z); (t,x) € [0,T] x R™ denotes the strategy which realizes the infimum in the first equation; that
is

(AMT)(t,2) — (A" f)(t,2,2) + (A" )1, 2) — AN (G0 g)(t,2) + (HG)(t,2)

= inf ((A"V)(t ) — (A" f)(t 2, 2) + (A" f*)(t.2) — A"(G 0 §)(t,2) + (H"G)(t,) ).

uelU

In the above, the following notations are used
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ft,2,2) = f*(t.2), (Gog)(t.x) =Gz, g(t ),
Hug(ta I) = éy(& g(tv .’,U))Aug(t, ‘T)v
and the operator A" is determined by
Ei[k(t + h, X(t + h))] = k(t,z) + hA"k(t,x) + o(h), Yk e C*?

where X = X (-;¢, 2, u) is the unique solution to (3.5).
The associated equilibrium HJB equation (2.10) reads

O(s, ) + Ou(s,z)b(s, 2, ¥(s,2)) + tr [Ope(s, x)a(s, z, ¥(s,z))] = 0,

Q(s, &, x,y) +tr [0, (s, %, z,y)a(s, x, U(s,z))] + O%(s, Z,2,y)b(s, z, ¥(s,z)) = 0, (3.7
OT.x) =z, OUT.%xy) = F(#,2)+G(2,),

where W satisfies the local optimality condition:

Ot z,x,0(t, 2))b(t,x, U(t,z)) + tr [0%, (t,z,z,0(t, ))a(t, v, U(t, z))]
+ @g(t, z,2,0(t,2)){O0,(t, z)b(t, z, U(t, x)) + tr [Ogy (t, 2)a(t, z, ¥(t, z))] }

= 11615 {@2(t,x,x,@(t,x))b(t,x,u) +tr[0Y, (¢, z,z,O(t, x))a(t, v, u)]

+ @_2(25, x,z, 0(t, a:)){@x(t, x)b(t, z,u) + tr O (¢, )a(t, z,u)) } }

Now we compare the equilibrium HJB equation (3.7) with the extended HJB equation (3.6) derived in
[6] carefully.

Proposition 3.3. Suppose that the equilibrium HJB equation (3.7) admits a classical solution (©,0°). Then
the solution V of the extended HJB equation (3.6) and the equilibrium control law U can be given by

V(t,z) = 0%t,z,z,0(t,x)), at,x)=V(taz), (tz)el0,T]xR"

The proof of Proposition 3.3 is given in [65]. Compared with Bjérk—Khapko—Murgoci [6], our approach
has the following advantages.

e The equilibrium value function is given by ?(t,x) = 0%¢t,z,7,0(t,x)), in which ©°(-,%,-,y) can
be regarded as an auxiliary function with parameters (#,y). By introducing this auxiliary function, the
structure of equilibrium HJB equations is much clearer than that of extended HJB equations (compare
(3.7) with (3.6), for example), and the meaning of the two PDEs in equilibrium HJB equations is also very
clear (see Remark 2.8).

e The state term X (T') and the conditional expectation term E;[X (T")] in the terminal cost of (1.3) could
be inseparable, while in [6], they are required to be separable. The reason is that in our approach, we do
not need to introduce a PDE to give an additional representation for @(X (t),E([X(T)]). Thus, there are
only two PDEs in the equilibrium HJB equation, while the extended HJB equation (3.6) is involved with
three PDEs.

e More importantly, by Theorem 2.10 the well-posedness of equilibrium HJB equations is established
under Assumption (H4), while there is no rigorous argument about the well-posedness of the extended HJB
equation (3.6) given in [6]. More generally, the problem studied in the paper can depend on a controlled
backward process and have a recursive cost functional, which is determined by a BSVIE. In Subsections
5.2 and 5.3, two examples are presented to show that the introduction of backward controlled processes is
necessary in some applications.
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4. Linear-quadratic problems

Consider the controlled linear FBSDEs:

dX(s) =[A(s)X (s) + B(s)u(s)]ds + [C(s) X (s) + D(s)u(s)]dW (s),
s) = —[A(5)X (s) + B(s)u(s) + C(s)Y (s) + D(s)Z(s)]ds + Z(s)dW (s), (4.1)
X(t) ==z, Y(T)=HX(T).

We introduce the following cost functional:

T

J(t,z5u) = %Et{/ [(Q()X (5), X (5)) + (M (5)Y (5),Y () + (N(5)Z(s), Z(s)) + (R(s)u(s), u(s))]ds

t

+(G1X(T), X(T)) + (G2Y (1), Y (1)) + (G3X(¢),Y () + 2(g,X(T))}. (4.2)

The above problem is referred to as a linear-quadratic (LQ, for short) optimal control problem for
FBSDEs, due to the linearity of the state equation (4.1) and the quadratic form of the cost functional (4.2).
For simplicity, we shall denote the optimal control problem with state equation (4.1) and cost functional
(4.2) by Problem (FBLQ). We refer [38,60,29,61,37,25,55,58] again for some related results of the LQ control
problems for FBSDEs/BSDEs.

Remark 4.1. Note that in the cost functional (4.2), we introduce a cross term (G3X (t),Y (¢)). In the litera-
ture, the dependence of initial states is motivated by the so-called state-dependent risk aversions in finance
(see Bjork-Murgoci-Zhou [8]). Indeed, the initial state X (t), with a form of (X (¢),Y(¢)), will also arise
naturally when we study the leader’s problem of an LQ Stackelberg game (see [56, Subsection 3.2]).

Let us take a look at a special case of the above LQ problem.

Example 4.2. Let m =n =1; A,D =0, C,B = 1; /Al,é,a,f) =0, H=1,and Q,M,N =0, R = 21,
G1 =0, G2 =2I, G3 =0, g =0. Note that Y (¢t) = E{[X(T)]. Then the state equation (4.1) and the cost
functional (4.2) are reduced to

dX(s) =u(s)ds+ X(s)dW(s), se[t,T], X(t) ==,

and

T

Tt 25 0) :Et[/|u(s)|2ds+ ELx(D))P].

By Yong [74], the unique optimal control «(-; ¢, ) with initial pair (¢, ) is given by

T

u(s;t,x) = T i1

s € [t,T].

Then the optimal state process X = X(-;t, ) is given by

S 1 T 1
T(s) = o= Hs—D+W(8) =W (D) 7/ ~ 3 (=)W () =W (1) .
(s)=e"2 x+T—t—|—1 e 2 dr, se|t,T]

t
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For any 7 € (¢,T), the optimal control with initial pair (7, X (7)) is given by

w(s;m, X(1)=———"—, sen,T].
Thus, on [1,T],

u(-3t,x) #ul-; 1, X(7)),

which implies that the problem is time-inconsistent.

23

From the above example and Example 1.1, we see that the L.Q optimal control problem for FBSDEs is
also time-inconsistent in general. Recently, an LQ problem for coupled FBSDEs was studied by Hu—Ji—Xue

[25], in which, however, the time-consistency was not considered. Thus the optimal control obtained in [2

is a pre-committed optimal control.

5]

In the following, we will mainly look at the corresponding forms of our equilibrium HJB equations. The

well-posedness of the associated Riccati equation is left for our future research. The associated equilibrium

HJB equation reads

Os(5,2) + O (s, 2)[A(s)z + B(s)¥ (s, 2)]
+%<®m(s7x)[0( )z + D(s)¥(s,2)], C(s)z + D(s)¥(s, 2))

~

+ A(s)z + B(s)U(s,2) + C(s)O(s, ) + D(s)O4 (s, 2)[C(s)x + D(s)¥(s,z)] =0,
0Y(s, &, x,y) + ©%(s, &, 2,y)[A(s)z + B(s)¥(s,z)]

+ %(@296(5, Z,z,y)[C(s)x + D(s)\i/(s, z)], C(s)x + D(s)\il(s7 x))
+ %{@(8)%%) + (M(5)O(s,2),0(s, 7)) + (R(s)¥(s,x), (s, z))
+ (N(5)04(s,2)[C(s)x + D(5)¥(s,2)], O4(s,2)[C(s)z + D(s)¥(s,x)]) } =0,

T
1 1 1 -
§<G1$ -T> §<G2y7y> + §<G3x,y> + <g7x>a

O(T,z) = Hx, OYT,&,x,y)=
where

U(s,z) = —-[D"O° (s,2,2,0(s,2))D + R+ D"0,(s,2) ' NO,(s,2)D] "
x {[DTOY,(s,2,2,0(s,2))C + D' O,(s,2) ' NO,(s,z)Clz + B'O02(s,z,2,0(s, 7))
+[BTO,(s,2)T + BT + DT@z(s,x)TﬁT]Qg(s,x,x, O(s,z))}.

In the above, we have taken the ansatz ©,, = 0. Now let us take the following ansatz for ©° and ©:

O (s, ,2,4) = 3 (@1(5)2, ) + 3 (2(5)0, 1) + 5 (@o(T,0) + Pa(s) + D),

O(s,x) = Pg(s)x + P7(s),

where ®; (i = 1,...,7) are undetermined functions (of proper dimensions). Then the equilibrium strategy is

given by
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U(s,2) = —[DT®,D + R+ DTq>6TN<I>6D]—1{DT<I>1C + DT O] NoGC
~ ~ 1
+B'®, 4+ BT®] Dy + B 006 + D' DT ydg + 5BT<1>§<1>3
14 1 ~
+ 5BT<1>3 + ED%QDT@S}QC —[D"® D+ R+D"®] NbgD] !
x {BT®,+ [BT®] + BT + D"®J D"]®,®;}
= U(s)x + v(s), (4.3)
where ®; is determined by the following system of Riccati-type ordinary differential equations (ODEs, for
short):
) + D (A4 BY) + (A+BY)"®, + (C+ DU)"d,(C + DY)
+Q+ 0 Mg + (C + DU) & NOG(C + D) + ¥ RV =0,
b, =0, D;3=0,
&y +0 ' B'® + @y (A+ BY)+0' D' ®(C+ D) + ] MPg
+9' D"®) Nbg(C + DY) 45 RV =0,

: 1 1 1 1
b5 + ®4BU + §5TDT<I>1D17 + §5TDT@§N<I>6D@ + iﬁTRﬁ + 5<I>7TM<1>7 =0,
$g 4+ Bs(A+ BY) + A+ BU + CPg + DPG(C + D) = 0,
&, + ®6 BT + Bo + C®7 + DO DG = 0,
O (T) =G1, PoT) =Ga, P3(T) =Gz, Py(T) =y,
(I)S(T) =0, q)ﬁ(T) =H, ¢7(T) =0.

Proposition 4.3. Suppose that the Riccati equation (4.4) admits a unique solution. Then the strategy U given
by (4.3) is an equilibrium strategy of Problem (FBLQ).

When the weighting matrices Gg3 = 0 and ¢ = 0, then ®; = 0 for ¢ = 3,4,5,7, and the Riccati
equation (4.4) can be simplified. The following result shows that the LQ problem for FBSDEs is closely
related to the so-called mean-field LQ optimal control problems (see [74,76,57], for example) as well. Let

E, B, 6, 137 M,N=0,G3=0,g=0and H = I,. Then the state equation (4.1) and the cost functional
(4.2) are reduced to

and

Tt i) = %Et{ / [(Q(5)X (), X ()) + (R(s)u(s), u(s))] ds

+{(GIX(T), X(T)) + (GaE[X(T)], B [X(T)]) },

respectively. The associated Riccati equation (4.4) reads
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&) 4+ @ (A+ BY) 4+ (A+ BU)"®, 4+ (C+DV)'®(C+DV)+Q+ V'R =0,
by =0, &g+ dg(A+ BY) =0, (4.5)
O (T) =G, Do(T) =Go, (T) =1,

with
U=—[D"® D+R"'D"® C+B"®, +BTd] 0ydg)]. (4.6)
Denote ® = ®; and ® = ®; + & ®,P. Then we can rewrite (41.5)(4.6) as follows:
®+ A+ BY)+ (A+BY) &+ (C+ DY) '®(C+ DY) +Q+ TRV =0,

B+ B(A+ BU) + (A+ BY) &+ (C+ DU)T(C + DU) +Q+ T RY =0, (4.7)
(I)(T) =Gy, EI;(T) = G1 + Gs,

with
U =—[DT®D+ R|"'[DT®C + BT d].

We emphasize that (4.7) is exactly a special case of the Riccati-type equation derived by Yong [76]. Thus,
under some positivity conditions, one can obtain the well-posedness of (4.7) from [76, Theorem 4.6] directly.
The general well-posedness of Riccati equation (4.4) is still under study and we hope to report it in the
future.

5. Applications

In this section, we shall investigate three important applications, which are also the main motivations of
studying forward-backward optimal control problems mentioned in Introduction.

5.1. Dynamic mean-variance models

Consider a Black—Scholes market model in which there is one bond with the riskless interest rate r > 0
and one stock with the appreciation rate p > 0 and volatility ¢ > 0. Then a standard argument leads to
the following SDE for the wealth process X:

{dX(s) =[rX(s) + (u—r)u(s)]ds + ou(s)dW(s), se€[t, T,
X(t) =¢,

where u is the dollar amount invested in the stock. The investor wishes to minimize the following functional:
Y g
J(t & ) = —EX(T)] + SEX(T)] = 5 [E[X(T)]| (5.1)
It is known (see Basak—Chabakauri [3]) that the optimal control of the above mean-variance model is time-
inconsistent. We shall apply Theorem 2.7 to find a time-consistent equilibrium. Note that the cost functional
(5.1) can be rewritten as

J(t,6w) = —EJX(T)) + JEJX (TP - T v P,

with
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{dX(s) =[rX(s) + (1 —r)u(s)lds + ou(s)dW(s), se€t,T],
dY (s) = Z(s)dW(s), selt,T], X()=¢ Y(T)=X(T).

Thus, the mean-variance model is a special case of the linear-quadratic problems for FBSDEs. By Proposi-
tion 4.3, the equilibrium strategy ¥ can be given by

U(t,x) = U(s)x +v(s), (t,x)€[0,T] xR,

where
W = o2 @0] (= 1)y + (r— )88 + (1 — 1)y
v=—[0?®] (1 — )Py + (n— 1) PsP2P7],

with

by + 201 (r 4+ (u — r)\il) +0Ud00 =0, by = 0, by = 0,

Dy +0(p—1)0) 4+ Py(r 4 (p—1r)V) + 60P10¥ = 0,

D5 + Oy(p— )0+ %6(;@106 =0,

fbﬁ-‘rq)g(?“-i-(u—?“)\i/):o, ¢)7+¢6(M—T)77=07
(I)l(T) = ’)/, @2(T) = —’y, (I)g(T) = 07 (I>4(T) = —1,
O5(T) =0, ®6(T)=1, ®(T)=0.

From the above, it is easily seen that @3 = —v, &3 =0 and ®; + PP, P¢ = 0. Thus,

U=0, v=—[c"®] " [(p—1)Ps— (n—1r)PsyP7], (5.2)
and

(i)]_ +2T‘(I)1 == 07 ci)4 —U_Q(M—T)Q [(I)4 _¢6'y(b7}¢)1 +’I“(I)4 :0,
Pg+ 10 =0, 7 —Dg(p—1)[0?®1) (1 —1)Ps — (b — 1) DeyD7] =0, (5.3)
O1(T) =7, Pu(T)=—1, &(T)=1, P(T)=0.

By first solving the unknown variables ®; and ®g, equation (5.3) becomes a linear equation. By the variation
of constants formula, the unique solution (®1, @4, ®g, P7) of equation (5.3) can be explicitly solved. Then
the equilibrium strategy can be given by (5.2). Indeed, we can observe that

d[®y — Py P7]

7 = —[®y — By P7], [Py — Py D] (T) = —1,

which implies that
(D4 — Dy 7] (t) = —e 10T,

Substituting the above and ®,(t) = e=27*=7) into (5.2), the equilibrium strategy ¥ is explicitly given by

U(t,z) = “7;2746""“*), (t,z) € [0,T] x R.
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From the above, we see that the optimal control problem of FBSDEs is a natural extension of the
conditional mean-variance problem, with the dynamic risk measure var;[X(T)] replaced by some more
general ones, which can be described by some process Y satisfying a BSDE. We refer the reader to Riedel [51],
Barrieu—El Karoui [2] and Detlefsen—Scandolo [13] for the theory of risk measures. Moreover, Problem (N)
can also be regarded as an extension of the dynamic mean-variance models with the conditional expectation
operator E¢[-] replaced by the so-called g-expectation operator £, ,[-|, which was introduced by Peng [48]
and has been widely applied in finance; see Chen—Epstein [10], Coquet et al. [11] and Chen—Chen—Davison
[9], for example.

5.2. Social planner problems with heterogeneous Epstein-Zin utilities

In this subsection, we shall consider a social planner problem for Merton’s investment-consumption
models, in which each agent’s objective is given by an Epstein—Zin utility. The social planner would like
to maximize the utility of the coalition, which is a convex combination of each agent’s utility. The main
feature of our model is that the discount rate in each agent’s utility can be different. We will reveal two
interesting facts: (i) the model is time-inconsistent; (ii) the situation of controlled backward state equations
is not avoidable in this model.

Consider the following SDE for the wealth process X:

dX (s) = {rX(s) + (u — r)[us(s) + u2(s)] = [c1(s) + c2(s)] }ds
+ o [u1(s) 4 ua(s)]dW (s),

where u; and ¢; are the dollar amount invested in the stock and the consumption of agent ¢ (i=1,2),
respectively. Naturally, agent ¢ wants to maximize his/her utility functional

Ji(t, & ur, ug, ¢, c2) = Yi(t),

where Y;, called an Epstein—Zin utility (see [15,18], for example), is determined by

Vils) = B[ [ gier(r) + calo), Yitr))dr + (X)), s € 8.7,

with
xt=

gile,y) =a (A =y T [ = pi(L=7)y) ™), hi(z) :
The parameter v > 0 controls the risk aversion of the agents, % > 0 gives the agents’ IES, and p; is the
discount rate of agent ¢ (which could be different for different 7).

Such type of models was initially studied by Duffie-Geoffard—Skiadas [17] (also see Ma—Yong [40, Page
6]), however, the time-inconsistency issue was not realized. If the agents decide to cooperate, then the social
planer would try to maximize

‘]A(tvg;uhqucvaQ) = AJl(tag;ulv’LLQvCl?CQ) + (1 - )\)JQ(t,ﬁ;Uth,Cl,Cg),

where A € (0,1) is a weighting parameter of the two agents. Denote ¢ = ¢; + ¢2 and u = w3 + ug. Then the
state equation and the utility functional of the social planner (or called a group decision-maker) become
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dX(s) =[rX(s)+ (u—r)u(s) —c(s)]ds + ou(s)dW (s),
dY;(s) = —gi(c(s),Yi(s))ds + Z;(s)dW (s); i=1,2, (5.4)

and

T

e

JA<t,€;u,c)=1Et X(@) +/ )\a_l —NY1(r) T (e(r)® = pr((1 —)Ya(r) T )

~

(1= X (1= ) ¥a(r) 5 () — pal(L = Ve 0)ar k. (55)

Remark 5.1. Note that when a@ = 1 — v, the Epstein—Zin utility Y; is reduced to the standard constant
relative risk aversion (CRRA, for short) utility case. Then the corresponding utility (5.5) becomes

JMt, & u,c) = Et{ [Ae‘pl(T—t) +(1- )\)e—Pz(T—t)} X(T)~
Q
T
t

The control problem with state equation (5.4) and utility functional (5.6) is exactly the Merton’s problem
with a quasi-exponential discounting function Ae=?*(= (1 — X)e=P2(5=8) We refer the reader to [20,19,
41,42,73] for more results on this special case. In the general case, that is a could not equal 1 — =, the
Epstein—Zin utility Y; is described by the solution to a nonlinear BSDE. Then the situation of controlled
BSDEs is not avoidable.

It is clearly seen that the control problem with state equation (5.4) and utility functional (5.5) is time-
inconsistent. Thus, the group decision-maker should look for an equilibrium strategy for the coalition. The
associated equilibrium HJB equation reads

O} (t,x) + OLt, x)[re + (u—r)U(t,z) — C(t,z)] + %@im(t, z)[oU(t, z))?
+a (1 =)0 (@) T [C(ta)* = pr((1 =)0 (t,2))T7] = 0,

OF(t,z) + O2(t,x)[rz + (u—r)U(t,z) — C(t,z)] + %@ix(t, z)[oU(t, 2))?
+a (1 =9)0%(t,2)" " T [Ct,2)" = pa((1 =)0 (t,2)) 7] = 0,

07 (t,z) + O (t,x)[rz + (un—r)U(t,z) — C(t,z)] + 1(95230(@ z)[oU(t,z)]?

+Aa7H (L =)0 (t, @) T T C(t,2)" — pr((1 = 7)O' (t,2)) 7]

+ (1= Na (1 =7)0%(t,2)' "7 [C(t,2)" — pa((1 — 7)O*(t,2)) ™7 ] = 0,
1—~ = =
@l(Tvx):m> @2(T7x):m> @ (T (K) 1_77

with the equilibrium investment strategy:

(r — w)o5(t 7)

Ulto) = =560 (ta)
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and the equilibrium consumption strategy:

1 — ~)Tas Q0 a1
(C(t,.’E) _ ( 177’11 ®x<t7$) —
(MOt ) T 4+ (1= N)O2(t,z) T3 |=T

Let us make the ansatz:

O'(t,2) = o (1), O%(t,x) = ' Ths(1),

01, z) = P00 1y _ A + (1= Nba(1) 1y

1—7 1—7

Then

@i(t,l‘) = 0;(t)z7, @;x(.%') = _Vei(t)x_‘y_lv
Q% (t,x) = N1 (H)z™7 + (1 — N)Oa(t)z ™7,
Q% () = M0 (H)x™ "t — (1 — Ay ()7L

The equilibrium investment strategy (5.7) and the equilibrium consumption strategy (5.8) become

(n—r)
yo?

U(t,z) =

and

C(t,x) = — xz, x€R", (5.10)

with

= } (5.11)

Proposition 5.2. Let v € [1 — a, 1). Then the system of ODEs (5.11) admits a unique solution (01, 602), and
the strategies U and C, given by (5.9)—(5.10), is an equilibrium investment—consumption strategy pair.

Proof. It suffices to show that if (1, 63) is a postive solution of (5.11) on [tg, T, then

0<0;(s) <k, s€lte,T); i=1,2,
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for some positive constants §,x > 0 independent of ty;. Without loss of generality, let p; > po.

Af = 61 — 0. Note that

(n—r)? [A01(t) + (1 = N)B2(t)] =T }
2007 (D) T 4 (L= Nea(n) T e

— (1= y)pra™"AG(t) + (1 — 7)(p2 — pr)o " 6(t)
a™ (1 =y — )0y (t) + (1 — N)b(t)] a1
NL() 57 4 (1= \)a(t) T )T

AO(T) = 0,

AD(t) + (1 — ) AB(t) |7 +

1
/ 161 () + (1 — 1) ()] =5 dIAG(E) =

0

and
(1=7)(p2 — pr)a'02(t) <0
Then, 6; < 5. Thus,

(8) + 1= Mo, (t)}ﬁ

a

'y ]a—l

91()17;&@9
[Ael()lliw +(1 )\)92()
el<t>wl<>l—v +(1— wﬁeg()wm +(1— >92<>1+1

RS O Wl() S (L= Na(t) T
s OO T+ (1 N80 TN + (L Mea(t))7
D011 57+ (1= N)a(t) ]

01(t)[A01(¢) + (1 /\)92( )]_1
T (1= \)a(t)

Yo 1
- ] a—1

)
(
NG (8) 5 4 (1= N)a(t) T
(
)

ot

which implies

(
[>\91(t) - —I—(l—)\)@z(t) =5 Je-T
Y Gt VO ) N0 O R (Y 10) Gl
- 1—y—«a l—vy—a_ 1 - Y-
(A1) =+ (L= A)a(t) = =
It follows that
01(1) > elt O-lr=pre” = s > Th=lir=pra 4+ S=02 o

By 05 > 01, we get 65 > 0. Then

S50 =1,2, ML) 4+ (1= N)ba(t)] 5T < da-1,

0;(t) 15
MOL () T+ (1= N)oa(t) 757w < T

From the above, we get that there exists a constant x > 0, independent of ¢y, such that

Denote
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9,‘ < K.
Then the well-posedness of (5.11) can be proved by routine arguments. O

For more details of this type of models, we refer the reader to Wang—Zhou [66]. In particular, [66] showed
that the Epstein-Zin utility is much more effective than the CRRA utility in the social planner problem.

5.8. Stackelberg games

In this subsection, we consider a specific Stackelberg game (also called a leader-follower game). We will
show that the leader’s problem in this Stackelberg game is an optimal control problem for FBSDEs, whose
optimal control is time-inconsistent. By applying Theorem 2.7, we can find a time-consistent equilibrium
for the leader. This will give a very good illustration.

Example 5.3. Consider the following one-dimensional state equation
X(s) = wr(s) —usls), s€ft1], X(t) =g,

and the cost functionals

1

Ji(t, @5 ur,uz) = | X (1) +/ [lur (s)* — [u2(s)[] ds,

Jo(t @3 u1, uz) = / [— ui(s) + f_% +ua(s) + |u2(s)|2} ds.

In the above, Player 2 is the leader (or the principal), who announces his/her control usy first, and Player 1
is the follower (or the agent), who chooses his/her control u; accordingly. Whatever the leader announces,
the follower will select a control u; (- ;t, 2, us) (depending the control us announced by the leader as well as
the initial pair (¢, x)) such that uy — Ji (¢, ;u1, ug) is minimized. Knowing this, the leader will choose a iy
a priori so that ug — Ja(t, ;1 (-3¢, 2, us), uz) is minimized. For any given initial pair (¢,2) and control us
of the leader, by the standard results of LQ control problems (see [77, Chapter 6]), the follower admits a
unique optimal strategy u (- ; ¢, x,us). Then by some straightforward calculations, the leader’s problem can
be stated as follows: Find a control us to minimize

1
Jo(t, x;u (-5t @, ug), / s) +ua(s) + |U2(3)|2}d3,

with the backward state equation

Y(s) = 5 i SY(S) +

Note that

Then



32 H. Wang et al. / J. Math. Pures Appl. 190 (2024) 103603

1

Ja(t, zyur (-5t w,ug), ug) = /{[111(2 — ) —In(2 —t) + Lua(s) + |u2(s)|2}ds.

t

It follows that the unique optimal control of the leader is given by

In(2—¢)—In(2—s5)—1

ﬂg(s;t,x) = 9 9

€ [t 1].
In particular, at the initial pair (0,x), the unique optimal control of the leader is

In2—-In(2—-s) -1
2 )

U2(s;0,2) = s €10,1].

Let X = X (-;0,) be the state process with initial pair (0,z) and optimal controls (u;(-;t,x, uz), U2). For
any given t € (0,1), at the initial pair (¢, X (¢;0,z)), the unique optimal control of the leader is

In(2—t)—In(2—s5)—1
2 )

uy(s;t, X (t;0,2)) = € [t,1].

Thus, for t € (0,1), on the time interval [, 1],
tg(5 0, ) # Uz (- t, X (¢;0,x)),

which implies that the leader’s problem is time-inconsistent. By Theorem 2.7, we can easily obtain the
time-consistent equilibrium strategy of the leader, which is given by

U(s,z)=—=, (s,x)€0,1] x R™

Remark 5.4. We refer the reader to [53,70,12,56] for some theoretical results and financial applications of
Stackelberg games. It is worthy of pointing out that the well-known principal-agent model can be regarded
as a special case.

6. Verification theorem

In this section, we shall show that the function ¥, determined by (2.11), is an equilibrium strategy of
Problem (N). In other words, we would like to rigorously prove the verification theorem (i.e., Theorem 2.7).
To do this, we assume that the equilibrium HJB equation (2.10) admits a classical solution and the function
U defined by (2.11) is a feedback strategy. We also assume that all the involved functions are bounded and
differentiable with bounded derivatives.

Let (X,Y,Z) and (Y, Z°) be the solutions to FBSDE (1.1) and BSVIE (1.3), respectively, corresponding
to the strategy ¥ and the initial pair (0,¢). For any ¢t € [0,T), u € Lfft (;U) and € € [0,T — t), define the
strategy W¢ by (2.7). With the initial pair (¢, X (t)) € D, take the strategy ¥¢, then the corresponding state
equation (1.1) and cost functional (1.2)—(1.3) become

dX®(s) = b(s, X°(s), U(s, X°(s)))ds
+ (s, X(s), U(s, X°(s)))dW (s), s€[t+e T
dX°(s) =b(s, X°(s),u)ds + o(s, X°(s),u)dW (s), s€ ]t t+e), 6.1)
dY*e(s) = —g(s, X°(s),U(s,X°(s)),Y(s), Z°(s))ds + Z°(s)dW (s), s€ [t+¢e,T];
dY*e(s) = —g(s, X°(s),u,Y(s), Z°(s))ds + Z°(s)dW (s), s € [t,t+¢e),
Xo(t) = X(t), Y*(T)=n(X(T)),
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and
‘](tv X(t); \IIE) =YO* (t)’

respectively, with

VO£ (r) = BO(r, X5 (r), X2(T), Y(r)) — / 20 (r, $)dW (s)

T
+ / g° (1,8, X5(r), X°(s), U(s, X(s)), Y=(s5), Z°(s), YOO (5), 2% (r, 5) ) ds
(t+e)vr
tte
+ / g° (1,8, X°(r), X°(s),u, Y°(5), Z°(s), Y% (5), 2% (r,8))ds, r€t,t+e). (6.2)
(t+e)Ar

Next, let us deduce the PDEs associated with the FBSDE (6.1) and the BSVIE (6.2).
By the Feynman—Kac formula for BSDEs (see Pardoux—Peng [46], for example), we get

Ye(s) = O(s, X(s)), Z°(s) = O,(s,X%(s))o(s, X°(s), (s, X%(5))), s€[t+eT],

where © is the unique solution to the first PDE in (2.10). Then on the time interval [¢, ¢+ €], we can rewrite
(6.1) as follows:

dX*®(s) =b(s, X°(s),u)ds + o(s, X°(s),u)dW (s), s€lt,t+e],
dY<(s) = —g(s, X°(s),u,Y?(s),Z%(s))ds + Z°(s)dW (s), s € [t t+¢],
Xe(t)=X(t), Y(t+e)=0O(t+e X(t+2)).

Note that the control u € L%} (Q; U) is Fy-measurable. Then by the Feynman—Kac formula for BSDEs again,
we get

Ye(s) = O%(s, X(5)), Z°(s) =0O%L(s,X°(s))o(s, X (s),u), sE€E[t,t+e], (6.3)
where ©° is the unique classical solution to the following perturbation PDE:

05(s,) + O (5, 2)b(s, ,u) + tr [O%, (s, )als, 7, )
+9(s,2,u,0%(s,2), 0,(s, 2)o(s,2,u)) =0, s €[t,t+¢], (6.4)
O°(t+e,2) =0(t+¢,x).
Remark 6.1. Indeed, (6.4) is a PDE with random parameters, because u € L%_—t (©Q;U) is a random variable.
However, note that u is F;-measurable and (6.4) is considered on [t,t + €]. The random PDE (6.4) can be

treated as a deterministic one.

By Proposition 2.2, on the time interval [t + &, T], we get

Y%e(s) = 0%, s, z,2,0(s, X°(5))), (6.5)
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where OV is the solution of the second PDE in (2.10). Motivated by [64], we introduce the following auxiliary
processes with two time variables:

dY%e(r;s) = —go(r7s7X5(r),X€(s), (s, X(s)),Y2(s), Z°(s), Y% (s), 2% (r; s))ds
+ 2% (r;8)dW (s), scl(t+e)VvrT], reltT];

dY(r;5) = —g° (r, 5, X°(r), X°(5),u, Y= (s), Z°(s), YO (s), Z%(r; 5) ) ds (6.6)
+ 2% (r;5)dW (s), (r,s) € A*[t,t+ €],

YO (r;T) = A (r, X°(r), X°(T),Y*(r)), re[t,T],

which can give the unique solution of BSVIE (6.2) by
YOe(s) = Y% (s;5), Z%(r,s) = Z%°(r;s), (r,s) € A*[t,T]. (6.7)

Notice that for any fixed r € [t,T], (6.6) is a BSDE. Recall the representations (6.3) and (6.5). Then by the
Feynman—Kac formula for BSDEs again, we get that for any r € [t,t +¢] and s € [t + ¢, T,

YO (r;5) = ©%r, s, X5(r), X°(5), ©° (1, X°(1))),
Z%¢(r;5) = ©Y(r, 5, X°(r), X°(s5), 0% (1, X°(r)))o (s, X°(s), U(s, X°(5))). (6.8)

On the other hand, by the flow property of the auxiliary process Y¢, we have

t+e
YO (rir) = YO8 (rit +¢) + /go(r,S,XE(T),XE(S),u7Y6(S),ZE(S),YO’E(S),ZO‘E(T;S))dS
t+e
—/ZO’S(T;S)dW(s), r € [t,t+¢e].

T

Substituting (6.8) into the above and noting (6.7), we get

YO (r) = @°(r,t + &, X°(r), X°(t + ), 0°(r, X*(1)))
t+e
+/gO(T,S,XE(T),XE(S),U7Y8(8)7Z€(8),Y0’8(8),ZO’E(T,S))dS
t+e
—/ZO’E(r,s)dW(s), rett+el (6.9)

r

Then by Proposition 2.2 (recalling (6.3)—(6.4)), we have the following representation:

YOe(r) = @%¢(r,r, X (1), X°(r), ©° (r, X°(1))),
ZO’E(TVS) - @2’8(7”,3,)(5(7”),)(5(5), ee(r’ X€(7”)))(T(S,X€(S),u), (T’,S) € A*[t’t+ 5]7 (610)

where ©%¢ is the unique solution to the following perturbation PDE:
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O (r, s, &, x,y) + OY(r, s, &, 2,y)b(s, z,u) + tr[O0 (r, 5, &, x, y)a(s, ¥, u)]
+¢° (r, $, &, x,u,0°(s,x),05(s, x)o(s, x,u), @0’5(5, s,x,x,0%(s, z)), (6.11)
0% (r,s, %, 2,y)0(s,x,u)) =0, (r,s) € A"[t,t+¢], '

GO’E(T,t—f—e,f,x,y) = @O(T,t +e,&,2,y), rEItt+e]

Remark 6.2. Note that both (6.4) and (6.11) are semilinear parabolic equations. To guarantee the well-
posedness of PDEs (6.4) and (6.11), we assume that the following non-degenerate condition holds: There
exist two constants Ag, A1 > 0 such that

Ml <a(t,z,u) < MI, Y(t,z,u)€[0,T] xR" xU. (6.12)

Under the assumption (6.12), we have the following convergence result of the families {©%}.50 and
{®O7€}E>O'

Proposition 6.3. Let (6.12) hold. Then the PDEs (6.4) and (6.11) admit unique classical solutions ©°
and ©%¢, respectively. Moreover, there exists a constant K > 0, only depending on ||®||C%,2+a and
10°] 055 .01 ta, such that

107 = Ollcozprre) + 18% — % co0r0p 14e) < K2, (6.13)
where o € (0,1) is a constant.

Proposition 6.3 can be obtained by modifying [67, Theorem 5.2] immediately. We emphasize that for
Proposition 6.3, the assumption (6.12) should not be necessary, because one could replace the analytic
approach by a probabilistic argument (see [46,64]).

Remark 6.4. The estimate (6.13) plays the same role as the convergence assumption (H3) in Wei—Yong—Yu
[68], which was proved only for some special cases (see [68, Theorem 6.2]). In Proposition 6.3, we can show
that (6.13) holds in general. The key point is that (6.13) is only a byproduct of the regualirty of semi-linear
parabolic equations, while the assumption (H3) in [68] is concerned with the fully nonlinear PDEs.

6.1. Proof of Theorem 2.7

For any fixed t € [0,T), € € [0,T —t] and u € L% (4 U), let ©° and ©%¢ be the unique classical solution
to PDEs (6.4) and (6.11), respectively. With the representations (6.3) and (6.10), by (6.9) we can represent
Y%4(t) as follows:

t4e
YO£(t) = B [O0(t 4 2, X7(0), X7+ ). 050, X7(0) + [ 9°%(ts,w)ds],

t

where
g%e(t, s,u) == g° (t, s, X(t), X°(s), u, ©°(X°(s),s),05(s,X°(s))o(s, X°(s),u),

0% (s, 5, X°(s), X*(5), ©%(5, X°(5))), ©3° (¢, 5, X*(t), X*(5), O° (¢, X° (1))
X a(s,XE(s),u)). (6.14)
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Note that X¢©(t)

X (t). Applying Ito’s formula to the mapping s — 0°(t, s, X°(t), X(s),0°(t, X*(t)))
yields that

YOE(t) = Et{@o(t,t,X(t),X(t), O%(t, X (t))) + /

+09%(t, s, X (t), X°(s), ©°(t, X (t)))b(s,
)

+tr [00, (, 5, X (t), X=(s), ©°(t, X (£)))a(s, X=(s),u)] + govf(t,s,u)} ds}.

Using the fact ©%(t + ¢,-) = O(t + ¢,-) and then by applying the Itd’s formula to the mapping s +—
0°%(t,t, X (t), X(t),0°(s, X (5))), we have

YO£(t) = Et{@o(t,t,)_((t),)_((t),@(t te, X(t+e))
t+e

> w [@gy(t,t,X(t),X(t),@E(s,X(s)))@i(s,X(s))&(s)[@i(s,X(s))&(s)]qu

t+e
—/@2(t,t,X(t),X(t),@f(s,)?(s)))[@g(s,)?(s))+@§(3,X(s))5(s)

t+e

+ [0, (s, X (5))a(s)] | ds + / [68(t,5, X (1), X7(5), (1, X (1))

t

+0°%(t, 5, X(t), X°(5), 0°(t, X (1)))b(s, X°(s5),u) + g™ (t, s, u)

[0, (¢ s, X (1), X°(5), 07 (, X (1)) Jals, X*(5), u)] | ds},

(6.15)
where
@(s) := (s, X(s),¥(s,X(5))), s € [t,t+¢], (6.16)
for ¢ = b, 0,a. Recalling (6.4) and (2.10), we get that on [t,t + €],
05 (5, X (5)) + O5 (s, X (5))b(s) + tr [05,(s, X (s))a(s)]
= O3 (5, X (3))[b(s) — b(s, X (s),u)] — g°(s,u) + tr {©5,(s, X(s))[a(s) — a(s, X (s),u)]} (6.17)
and
0%t,s, X (t), X°(s), 0°(t, X (t))) + ©%(t, s, X (t), X°(5),0°(t, X (t)))b(s, X°(5),u)
+tr[0Y (¢, s, X(t), X°(s), 0°(t, X (t)))a(s, X°(s),u)]
= O0(t, s, X(t), X°(s), ©°(t, X(1)))[b(s, X°(s),u) — b°(s)] — §*°(t, s)
+tr {O),(t,s, X(t), X°(s),0°(t, X(1)))[a(s, X*(s),u) — a*(s)]},
where

(6.18)
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©°(s) := (s, X°(s),¥(s,X%(s))), for @=0,0, a,

9°(s,u) = g(s, X (s),u, 0°(s, X (5)), 05 (s, X (5)) (5, X (), ),

§¥<(t,5) = g°(t,5, X (1), X7(s), U(s, X°(5)), O(s, X (5)), O (5, X°(5))5°(5),
0°(s, 5, X°(s), X°(5),0(s, X°(5))), ©2(t, 5, X (1), X°(s),0(t, X (1)))7°(5)). ~ (6.19)

Substituting (6.17) and (6.18) into (6.15) yields that

YO£(t) = Et{GO(t,t,X(t), X(1),0(t + e, X(t+¢)))
t+e
+ / @g(t,t, X(t), X(t),0°(s, X (s))) [gs(s,u) + ©5 (s, X (5))
x [b(s, )_((s), u) — B(S)} + tr {@ix(s, X(s))[a(s, )?(s)7 u) — d(s)}}} ds
1 t+e
= / tr [@0 (t,t,X(t),X(t),@6(5,X(s)))@;(s,X(s))g(s)[@;(s,X(s))&(s)ﬂds

vy
t

t+e

b [ o5t = 340 + 005, X0, X4(), 07(0, X () bls, X (5), ) — ()

+ 0 {09, (t, 5, X (£), X*(s), O (t, X (£)))[a(s, X*(s), u) — Ef(s)]}] ds}. (6.20)
Applying the above arguments to Y°(t), we have

J(t, X (0 %) = VO(1) = B 0°(1,, X (), (), Ot +¢, X (¢ + <))

t+e

- / tr {09, (¢, 1, X (1), X(1), O(s, X ()@ (s, X ()7 (5)[O0 (s, X ())ar(s)] }ds

/@0 (t,t, X (t t),0(s, X (s )))g(s,\il(s,)_((s)))ds}, (6.21)

where

g(s,u) = g(s, X (s),u,0(s5, X (5)), O(s, X (5))o (s, X (s), u)). (6.22)

Combining (6.20) with (6.21) together, we get

Y

voc(e) - o) =B [ 0506, X(0).X(0). 0°(s, X(5)) [g°(s.0

t

+ 05 (s, X ())[b(s, X (5),u) = b(s)] + tr [0, (s, X (s))[als, X (s),u) - @(S)H} ds

t+e
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t+e

b [ [ ) = 507(05) + €085, X(0), X (5), 070, X ()bl X7 (5), )

-~

x [@z(s,X(s))a(s)}T}ds}. (6.23)

By the standard results of SDEs, we get

Ed| s (IX()2+|X(s))] < KO +IX@)P),
s€E[t,t+e]
Bil sup 1¥(s) - X507 < KO+ X 0P (6.24)

By Proposition 6.3, we have

E[|©°(s, X(5)) = O(s, X ()| + [05(s, X (5)) — Ou(s, X (5))]

e

+105,(s, X(5)) — Ona(s, X(s))[] < Ke2. (6.25)
It follows that
]Et[!@g(ttaff( ): X(1),0%(s, X (s))) — ©5(t,, X (1), X (1), O(s, X (5)))]

)
+ 100, (8,1, X (t), X (1), 0% (s, X(5))) — Oy, (.1, X (1), X (1), ( ( )|
+[05(t 5, X(1), X°(s), 0°(t, X (1)) — @O(t s, X(t), X(s), 0(t, X (1)))]

+[00.(t, 5, X(1), X°(s), 0°(, X (1)) — ©3.(t, 5, X (), X (5), O(¢, (t)))ﬂ

< Ke¥ 4 Ke3(1+|X(1)]) < Ke (1+[X(1)]), (6.26)
and
Eq|lg®(s,u) = g(s,u)| + [7°(t, 5) — 3°(t, 5, (s, X (5)))]
+[5°(s) = b(s)| + [5%(s) = o(s)]| < K% (1+ X)), (6.27)
where

0%, s, X (s), X(s),0(s, X (5))),0%(t, s, X (t), X (s),0(t, X (t)))o(s, X (), u)) , (6.28)

x

and the form of other functions is given in (6.16), (6.19), and (6.22). Moreover, by Proposition 6.3 and
(6.24), we have
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Ee[lg™(t,s,u) = g°(t,s,u)|] < Ke¥ (1+[X(1))), (6.29)
where g*¢(t, s,u) is given by (6.14). With the above estimates (6.24)—(6.29), from (6.23) we have

t+e
VO£(t) - YO() = Be{ / 09 (t,, X (1), X (1), 0(s, X(5))) g5, ) — s, (s, X(s))
+ O,(s, X(5))[b(s, X(5),u) — b(s)] + tr {Gm(& X (s)[a(s, X (s),u) — @(8)]}:| ds
t+e
+ / {go(t,s,u) —3%(t,5,(s, X(5))) +0%(t, s, X(t), X(s),0(s, X(5)))

t

x [b(s, X (s),u) — b(s)] + tr {@%(t, 5, X (t), X (s),0(s, X(5)))[a(s, X (s),u)
- a(s)]}] ds} +o(e)(1 + | X(1)]).

Thus,
(% (OR SRR (O NS G OB 40
e 50+ € e—0+ €
= B0 (OB (W [b(t, X(t), u) — b(t)] + tr {Bo(t)[alt, X (1), w) — a(t)]}
+g(tw) — 5t U(E X (2) | + OBt X (£), ) — b(2)
+ 1 {89, (1)[a(t, X (1), u) — a(O)]} +5° (4t u) — (1,4, W(t X (1),
where

Ot) :=0(t, X (), ©Yt) =6 tt X(t),X(t),0( X)), teclo,T].

Then by the local optimality condition (2.9) of ¥, we have

lim inf J(t, X (1); ¥°) — J(t, X(2); \I’)

e—0+ €

>0

which completes the proof.
7. Some proofs

For the ease of presentation, in the rest of the paper we restrict to the case with m = 1 only. However, all
our results hold true in the multiple dimensional situation. To begin with, let us first adopt some notations.

Some Notations: For any functions ¢ : [S,7] = R and v : R" — R, with a € (0,1) and S € [0,T), let

|s(s1) —<(s2)]
Iy = sp =)l
51,52€[8,T], s1#s2 |81 - 32' 2

)

w0 i)

I
“ z1,22€R™, 0< |z —22|<1 ‘131 _$2|a

For any ¢ : [S,T] x R™ = R, let
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ellog .o wgy = @l s myxrnr) + sup [[o(-,2)[lg + sup |lo(s,)la;
” ||Cg ([S,T)xR™;R) ” H ([S,T]x ) beRr ” )H2 se[S,T]H ( Ha

”SOHC%JJrO‘([S,T]XRH;R) = ”(p”COvl([S,T]X]R”;]R) + H(‘DHC%’“([S,T}XR";R) + ||9092||0%’“([S7T]XR1L;R)'

We will often simply write C'2:1+%([S, T] x R™; R) as C'2-1* when there is no confusion. Similarly, we can
define C%>3 @14 *2([8 T] x [S,T] x R™ x R™ x R;R), etc. For any § € C%'*® and §° € CO0x1+a2 et us
consider the following PDE:

LO(s,x) + @I(s,x)l;(s,m; 0, 90) + g(s,x; 0, 90) =0,
L£O°(t,s,%,x,y) + Ot s, &, 2,y)b(s,2:60,0°) + §°(t, s, &, x,y;0,6°) = 0, (7.1)
O(T,z) = h(z), Ot,T,& x,y) =h'(t, & 2,y),

where the differential operator £ is defined by the following:
Lop(s,1) = 0s(s,2) + tr [pre(z)a(s, x)], Vo € CH2, (7.2)
and

@(s,2;0,0%) = ng(s, z, 0(s,x), 0,(s,x), 0°(s,x,5,2,0(s, 1)),
0°(s,x,s,x,0(s,x)), 92(8,£C7S71‘,9(S,£L’)>)7

for ¢ = b, j, and

go(t7 s7j7x7y; 9’ 90) = go (t7 87 i” x, 9(8’ x)? 91(8,1‘)’ 90(871.7 S’x79(s’ x))’
ag(s,x,S,CC,Q(S,1’)),02(8,.%,3,1’,9(871')), 92(t78,£f,x,y)).

From [21, Chapter 1], the fundamental solution associated with the differential operator £ is given by

~

E(s,z,r,p) =D(s,x,r,p) + T(s,2,m, ), (s,2),(r,p) €[0,T] xR,

with

1 _lamm) T @), (z—p))
A(r—s)

(4n(r — 5))% (detla(r, m))) % * ’

F(S,Jf,?", /.L) =

f(&%ﬁﬂ)://Fm(saxaT,W)T(T,nar,ﬂ)dndﬂ
s Rn

and T is the unique solution to the following Volterra integral equation:

T

Y(s,z,r,p) = LT (s, 2,7, 1) +//£I‘(s,x77, v)Y(1,v,r, p)drdv.
s Rn

Moreover, from [21, Chapter 1] we have
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1 —Ale—p|?
(r—s)

[T(s,z,r,w)|, |Z(s, 2,7, p)| < K———F€ 30—
(r—s)>

- 1 —Ao—pl?
ITw (s, 2,7, 1), |2z (s, 2,7, 1)| < Kﬁe s
r—s) 2
1 “Az—p|?

Y (s,z,r @) < Kme (=)

for some 0 < A < Ag and some small enough 0 < e < 1.

Lemma 7.1. Fiz a (t,Z,y) €
admits a unique classical solution (©,0°(t,-, &

[0,T] x R" x R. Then for any 0 € C%*** and §°

Os,) = [ (o0, T ) + /T JECED

T
OOt 5, 7,2, y) = / (s, 2, T, p)hO(t, &, 1, y)du + / / =(s, 2,7, 1)

Rn

s Rn»

X |:®$(Ta H)E(T7 122 97 90) + g(T, 3 9, 90):| d/.td’/’,

R~ s Rn

x [@g(t,r,iﬂu,y)g(r,u;ﬁﬂo) +3°(t,r, &, 1y 9,90)}dudr-

Proof. For any fixed § € C%1+® and 6° € C9%*1+22 denote

vi(s,2) =0(s,x), wva(s,z) =0.(s,2), wvs(s,x)
0°(s,s,7,2,0(s,2)), vs(s,x)= 92(8, s, x,x,0(s,x)).

V4(3v

Then we have v; €

x) =

c%e, for i =1,...,5. Taking (¢, %
get that PDE (7.1) admits a classical solution (., )

T
O(s,x) = /é(sm,T,u)h(,u)du—&—//é(s,x,r,u)g(r,N;G,Oo)dudr,

Rn

60(t7 S’ '/j:) :177 y)

s Rn

R~ s Rn»

where Z is the fundamental solution associated with the following operator:

~

Lo(s,x

) = @s(8, ) 4 tr [pea(T)als, z)] + va(s, J:)B(r, w; 0, 90)’

Now we consider the following equation with the unknown (0,0°(¢,-, %, -, y)):

LO(s,x) + Oy (s, )(sz00)+§(sx;0,90)20
£e° (t,s,zfc,x,y)—i—@ (t,s,Z,2,y)b (s x;0 90) + 3%, s, &, x,1;0,0°) =
®(T7 x) = h(x)7 ®S(t7 T’ ‘%7 x7 y) = ho(t’ j7m’ y)?

= 90(8,871‘,$,9(8,$)),

T
— [E T a g+ [ [ 2w g (6 0.6) dur

Yo € CH2

41

€ CO0elta2 the PDE (7.1)
%, -,y)) € OL2 x OY2 with the following relationship:

(7.5)

) as parameters by [21, Chapter 1, Theorem 12], w
O(t,-, 7,-,y)) € C12, which is given by

(7.6)
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with the operator £ is defined by (7.2). By [21, Chapter 1, Theorems 12 and 16], (7.6) admits a unique
classical solution (0, 0°(¢,-, &, -,y)) € C1'2, which is given by

@@m=/é@aﬂmmmw+f/é@anm

R» s Rn

x [éx(n 1)b(r, 15 0,6°) + g(r, H;9790)]dﬂdﬁ (7.7)

T
O (t,s52.9) = [ Zs.0. Tt wpdn+ [ [ Es,zirg
R~ s R»

X [ég(tmi,u,y)g(r,u;9790) +3° (tmi“,u,y;@,@o)}dudr- (7.8)
Note that (,00(t,-,Z,-,y)) € C12 also satisfies (7.6), which, together with the uniqueness of solutions to

(7.7) (7.8), implies that (©,0°) = (©,00). Thus, (7.4) and (7.5) hold. The other results can be obtained
easily. O

Define
O(s,x;T) := /E(s,x,T,u)h(u)du,
R

O(t,s, &z, y; T) := /E(s,:r,T,u)hO(t@,u,y)du-
Rn

Then (O(-;T),0°(-;T)) satisfies the following equation:

LO(s,z;T) =0, L£O%¢t s, & z,y;T) =0,
{ ( ) ( ) (7.9)

O(T,x;T) = h(z), Ot T,%,z,y;T)=h(t, &, x,y).

Note that (©(-;T),0°;T)) is independent of (0,0") and by taking (¢,%,y) as parameters, (7.9) is a
classical linear parabolic equation. Then by the standard estimates of PDEs (see [33, Chapter IV]), we have
the following results.

Lemma 7.2. There exists a constant k > 0 such that

H@(';T)HCI+%,2+OC + ||60(‘;T)‘|C%,1+%,a,2+a,2 S H[Hh||c2+a + ||h0||C%,a,2+a,2].

We now establish a (global) C%!-norm estimate for (©,0°(¢,-, 7, -, y)).

Lemma 7.3. There exists a constant k > 0, independent of 0 and 6°, such that

1©]lcor + sup 19°(¢, -, &, -, y))|lcoa
t,%,y€[0,T]xR" xR

<w[Utllhllosse + sup RO, y)ene]. (7.10)
t,z,y€[0,T] xR xR
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Proof. By (7.4), we have

O.(s,2) = O,(s,2;T) //Hx 8, T, T, ,u @ (r, w)b(r, 13 6, 6%) + g(r, w; 0,90)} dpudr. (7.11)
s R»

Then by Lemma 7.2 and the estimate (7.3), we get

Az—n|?

10..(5,2)| < 0, sxT|+//K L (1 1 10 ) dpudr
T—S

2

s Rn
1 ENT—
K(1+ [hflgase) + / / KA o, () dudr
J e

By Gronwall’s inequality, we obtain

1Oz (s, )] < K(1+[|h]|g2+a), V(s,x) € [0,T] x R".
Substituting the above into (7.4) and then by (7.3) again, we have

|O(s,2)] < K1+ ||h]|c2+a), V(s,z) €[0,T] x R™.

It follows that

1O|cor < K(1+ ||h]cz+a). (7.12)
By (7.5), we get
@g(t7373~37$»y) :G)g(t78aj7xay;T)+//EI(S7$3T7IU’) 92(t7r7i‘7uay)6(r7u;9790)
s Rn
+ 30t 7,7, :0,6°) | dpadr. (7.13)

By the same argument as the above, we get

109t -3, y)llcos <K sup  [14[BO(EE, - p)llcase].
t,&,y€[0,T]xR™ xR

Combining the above with (7.12) implies the estimate (7.10) holds. O

The following gives the (local) regularity estimate of ©°(t, s, , x,y) with respect to the parameters t, 7,
and y.

Lemma 7.4. There exist two constants 0 < & < T and k > 0 such for any § € C91T and §° € C2-0 142
with

16°0l g 0,00, 2oz < E[L+ 1A% o5 2tz (7.14)
the unique solution (©,0°) of PDE (7.1) satisfies

||@ ”07 0.0,1.2 (7 _z 77 < H[l + HhO”c%,a,wﬂl,z]. (715)
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Proof. From (7.5) and (7.13), it is easily seen that both ©°(¢, s, Z, x,y) and ©Y(¢, s, ¥, x,y) are differentiable

with respect to the parameter y. Moreover, the derivatives are given by

@g(t,sj,x,y) = @S(t, s, z,x,y; T) +//5(S,~T7T, 1) [Ggy(t,hﬁu,y)é(hu;@ﬁo)
s Rn

00 (1,3, 1,3 0,09)08, (17,7, 1) | dud,

@gy(t, $,%,x,y) = ®2y(t, s, &, x,y; T) + / / (s, x,m 1) {@gy(t,r, &, 1, y)b(r, 10, 6°)
s Rn

+ ggo (ta T, j) My Y5 67 eg)egy (t7 T, JNj7 M, y):| d,ud?"
Applying the arguments employed in the proof of Lemma 7.3, we have

109l es_. oy + 198 lles . oy < KL+ [IBgllco0zsan) + KVE6R, 15

[T—&,T] —&,71]"

Let £ = 10K + 10 and & be small enough such that Kv/& < then

10’

1©yllzes_. oy + 102, ll5_, 0y < QK + 1)1+ 1A 55 a2va2),

[T—¢&,T] —&,7)

for 09 satisfying (7.14). Note that

@gy(usj,x,y) = GSy(t, s, &, x,y; T //E S, @, 7, ,u zyy(t &,y y)b(r, 1 0, 6°)
s Rn

+ <g20p0 (ta T, "i'7 s Ys 07 ao)egy (tv T, ja My y)7 egy (t7 T, ja My y)>

+ 0 (t, 7, &, 1,3 0,69)60,,, (. 2, 1, y)}dudr

s Rn

+ (G900 (7, &, 1, 3 0,0°)00,, (t,7, &, iy y), 00, (E, 7, &, p1,y))
+ G0 (b7, &, 1, 30,0909, (t, 7, E, 11, y)} dpdr.
Then by the arguments employed in the proof of Lemma 7.3 again, we get

||@ + ||@EUU|| [T £,T)

SK(l-ﬁ-Hh ||C’002+“0)+K\/—HezyyHL[T . —i—I_(\/EHH ||Loo

[T-&,1)°

yyHL[T £,T)

(7.16)

(7.17)

(7.18)

(7.19)

(7.20)

(7.21)

where K > 0 can be same as that in (7.18). Further, we let £ > 0 be small enough such that Kv/z < 4i

and K+/Z[|6° yllze < KVE&2kR(1 + ”hO”C%*“*”‘l*z) < 45, then

[T—&,T)

0

—£,

yy”L T—¢&,T)

sk(1+||h2yuco,o,z+a,o> LG PP 7 P

< @K+1)(1+ ||h°||cg,a,2+a,z)-
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For any Z1,%2 € R™, denote
5@O(ta S, T, y) = 90)1(ta S, T, y) - 6072(75’ S, T, y)a

with ©%¢(t,s,2,y) := O%(t, s,%;,2,y), i = 1,2. Similarly, we define §0° and 6%%. Then, we have

6Wmaam=@maha%ﬂ—@wa@mwn+//z@mmn
s Rn

x (000t 9)b(r, 15 0,6°) + (1,7, 1, 1,3 0,6°, 601

- go(t,’l", an“’vy;970079072):| dﬂd’f’, (722)

592(1&, s, x,y) = @2(t7s73~cl7x,y;T) - 62(t,s,5:2,x,y;T) + / / E(s,x,r, 1)
s R»

X {692 (t Ty [y y) (7" M79 90) +69 (ta7”»/%y)f]&)(@ﬁ@dby§9790790’1)

+ 922!12 (ta Ty 1y y) [ggo (t7 T, 5:17 " Ys 9, 007 90’1) - g;go (ta T, 5:2a Y3 07 007 0072)] }dﬂdﬂ (723)

5%@&%@:%@&%%wﬂ*%@&@m%ﬂ+//iﬁwmm
s Rn»

X 000t 7, 1, )b, 130, 6°) + (1,7, 21, 1,50, 6°, 0
—3°(t, 532,;173/;9,90,00’2)} dudr, (7.24)

and

5®2y(t757xay) = ®2y(t757j17$ay;T) - egy(tS,fz,%y;T) + / / Ex(S,ZU,T, H)
s Rn»

x {5@2y(f7ﬁu,y)5(nu;9790) + 660, (£, 1, y)Goo (£, 7, F1, 3 60,6°,6%1)

+ 927; (t, r, W, y) [ﬁgo (tv T, i'lv My Y3 97 907 90’1) - 920 (ta r, ij Y3 67 907 9072)] }d/J,d'f’ (725)
By Lemma 7.2, (7.3), and (7.18), we get

160 ez, 4y + 1180 llzes . . + 1602 Les. . 1) + 1002, llzes

[T—&,T] [T—&,T] [T—&,T] —&,T]

< K(l —+ ||h0HCOa 24,0 + ||h ||CO a,24a,0 + HhOyHCO a,24a, 0)|$1 - :172|a +K\/_||500HL

+ K V2662, || es + KVE0%2 | es

[T—¢&,T)

[T—¢&,T] [T— ET][||590||L[T &1 + |=%1 _fﬁ2|a}a

which implies that

0 0 0 0
187l cg0a00 +19yllceoaoo + 11Ozl ceoa oo + [1Ozyllgeoaoo

< (2K +1)(1+ ||h°)co.a2ta),
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by choosing a proper € > 0. By continuing the above arguments, we can also have

HG?OJ?J”CFT(LEC;JO + HGgyy”C[oT(i(g%]o < (QI_{ + 1)(1 + ||h0||co,a,2+a,2).

The C%-estimate for the parameter ¢ can be obtained by the same arguments as above. Combining these
estimates together, we get (7.15). O

Next, we are going to establish the C***norm estimate for ©°(t, s, %, -,y) and O(s,-). To achieve this,
we need to make some preparations.
By making the transform x — p = (v/r — s)ji in the integral term of (7.11)—(7.13), respectively, we have

T
Ox(s,2) = Oy(s,x;T) + //f‘x(s,x,r,x ) {@x(r,x — /1 — sji)

s Rn

X B(r,x — V= s1;0,0°) + G(r,x — r — sji; 9,00)}dﬂdr

T
+ / / s, ) [ (r, )b, :0,0%) + (. i 0,6%)| (7.26)
s Rn
and
T
O9t.5,8,0,) = 08t s, 50,y T) + [ [ Bulossnrs = Vo=
s Rn
X |:®g(t,’r,j}7$ —VTr—= Sﬂ7y>6(r>x —VTr—= Sﬂveaao)
T
—|—§O(t,7’,a~c,x— V7’—sﬂ;@,&o)]dﬂdr—f—//fx(s,x,r,,u)
s R»
X |9t &, o y)b(r. i 0,0%) + 3°(t, 7, &, 1,y 0, 0°) | dpdr, (7.27)
where

Co(s,z,rx —r—si=—Ty(s,z,rx —Vr—si)(r —s)?
1
(47)% (detfa(r, x — /1 — sfi)])?
_tatramvim~tm a(r, @ — Vi —sp) ! i

xe N —s (7.28)
By some straightforward calculations, it is clearly seen that
~ K N
Ty (s,x,r,x —/r—si)| < e_’\|”|27
r—s
[ Jr i Kl
HFI(Sa'ara' - T_SM)”OC S ﬁe 5 (729)

for some 0 < A < Ag. Moreover, by [21, Chapter 1, Lemma 3 and Theorem 7], we have
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“Maz—p|?
~ e T —S8 o~ —~
|Fw(s,x,r, /’[')| S K( )n+e ) |F$<S,$1,T, M) - F$(851‘27r7 /’[’)| (730)
r—s) 2
“Aazy —p? “Azg—p|?
e r—3s e rT—s
<K — + n+€}|.’)§‘1 —SL‘Q‘Q7 Va1, xo ERn7 (731)
(r—=s)yz  (r—s)z

for some small enough 0 < € < 1.

Lemma 7.5. There exist two constants 0 < € < & < T and k > 0 such for any € CO1T* and §° €
C3- 0l with satisfying (7.14) and

||9$||Co,a([T,g’T]) + ||92Hco,o,o,a,O({T,g’T]) < 2k [1 + ||hHCQ+a + ||h0||CO,O,2+a,O:|7 (7.32)

the unique solution (©,0°) of PDE (7.1) satisfies

10zl o (r—e,77) + 102l co00.co(r—ery < 28[1+ [|h]c2te + [|B°]|co02+a0]. (7.33)

Moreover, there exists a constant kK > 0, which depends on &, such that

||@wy||Co,o,o,a,0([T,5’T]) < 7’5[1 + ||hl|c2+e + ||h0||co,o,2+a,1]. (7.34)
Proof. For any x1, 5 € R™, from (7.26), by the estimate (7.31) we have

©z(s,21) — Ou(s, 22)|

T
K 712 5~ [e%
< K|hforealzs — 2o]® + / / e e [1+ 0, 1]y —

s Rn»

/ | = [0ty = V=) = O = Vi =)

s Rn
+ V)(ﬁfﬁ V=53 0,60%) — b(r, zo — /1 — sji; 0,6°) |||@ 7S
+ |g(r,z1 — V1 = s1;6,0°) — G(r,xo — V/r — sji; 0,6 )|]dﬂdr

—Am m “Alzg—p|?

// (r—s) ; :5) }d:“dT[l‘FH@ Lo |21 — 22| . (7.35)

s Rn

Note that for ¢ = 5, g,

@(r,xy — Vr — sj1;0,60%) — @(r, 0 — V1 — sji;6,60°)

0°(r, x1 — 1 — 8,7, 21 — 1T — 81, 0(r, 1 — /1 — 5j1)),
r,x1 — VT — S, r,x1 — V1 — s, 0(r,x1 — 1 — Sft)),
)
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0°(r, w0 — /1 — 8fi, 7, T2 — /T — 8f1, 0(r, 29 — /17 — 51)),
0°(r, 20 — /1 — 81,7, 20 — /7 — 81, 0(r, 20 — /7 — 51)),
(r XTo — T — Sfi, T, Ty — \/r—sﬂ,ﬂ(r,mg—\/r—sﬂ))).

Then by Lemma 7.4, we get

|G(r, 21 — /1 — 815 0,0°) — P(r, 20 — /1 — si1;0,6%)|
< KL+ 1020 )llew + 102(r, 7,5 Yoo |21 — w2|*,

where K > 0 depends on h and h°. Substituting the above into (7.35) and then by Lemma 7.3, we have

K
02 (sv1) = O (s,22)| < K (1-+ [l care) o =2l + | —==[1€. (1)

10, e + 10907, oo drlan = aal?,

which implies that

T
[CHODIMES SCER L= / - [1©2(r, o
1102 (r, Ylem + 16207, Yoo | dr (7.36)

By the same argument as the above (noting (7.27)), we also have

T
K
1080t 5. 5o < K (14 11007 )lease) + [ =100t 5.5l
+ ||91(’I“, ')”04 + ||92(’I“, ST ')HC’O’O"O + Heg(t,’f‘,i‘, '7y)||04:| d?‘, (737)

T
. . K .
H(agy(tasvx7 '7y)||o¢ < K(l + Hho(tamv ) ')||C2+‘3"1) + / \/ﬁ [llggy(tasaxa '7y)||a

+ 11020, Mo + 1620, 7, lcowo + 1602, (8,7, 2, '>y)||a}d7"- (7.38)
Combining (7.36) and (7.37) yields that

10zl co.a(jr—e,17) + ”@2”CO’UvOﬂ’O([T—a‘,T])
< R[1+ [[hllczte + [0l co02va0] + RVE[||Oz]lcom (r—z1))

+ 102l co00mo(r—ery + 10zllcow(r—z1y + 102l co00.00(r—c1p], (7.39)

where & > x, only depending on (h, §, k", §°), is a fixed constant. Let 0 < & < & be small enough such that
RVE < L and

||9cho,a([T,g’T]) + ||92Hco,o,o,a,O([T,g’T]) < 2k [1 + ||hH02+a + ||hOHCO.,0,2+a,0]. (7.40)
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Then from (7.39), we get
102l co.e (ir—z,17) + 100l co.0.0.00(7—271) < 28[1 + [|hllc2te + |h°]|co.0.24a0].
Substituting (7.40) into (7.38) also yields (7.34) immediately. The proof is complete. O
The following is concerned with the local solvability of the equilibrium HJB equation (2.16).

Proposition 7.6. There ezists a constant € € (0, €] such that the equilibrium HJB equation (2.16) admits a
unique classical solution on the time interval [T —&,T].

Proof. Denote
B: = {(0,60°) € CO1F x 020t ®2 | (9 9°) satisfies (7.14) and (7.32)}.

For any (,0°) € Bz, by Lemma 7.1, PDE (7.1) admits a unique classical solution (6, 0°). Moreover, from
Lemmas 7.3, 7.4, and 7.5, we know that (©,0°) € B:. Thus, the mapping I : Bz — Bz, given by

r'0,6°) = (0,8,
is well-defined. For any (6%,60%%) € Bz (i = 1,2), let
(©4,0%) =T(6,6%), i=1,2.
Denote
50 =0"—0* s0=0'-07 0°=0""-0"% 0°=0e"" "
and

5@(s,z) = @(s,x;0",0%") — p(s,2;0%,6%%), for ©=b,g,
5§0<ta S,j,.’l?,y) = go(tasvjaxay; 91,9071) - go(tasaj7x7y;9179072)'

We hope to show that

[60flcosse + 1605 0cnes < 3 [190]lcnsn + [60°] 5 0rve]. (7.41)
on some time interval [T'—&,T| C [T —¢&,T). Thus, I is a contraction mapping and then it admits a unique
fixed point (©,0°) € CO1F x 030142 By Lemma 7.1, (0, 0°) is the unique classical solution of equi-
librium HJB equation (2.16) on [T —&, T]. Further, we can show that (©,0°) € %2+ x 0215242
Indeed, with (©,80°) € Ot x C5:0x1+a2 Ly the classical C'2-estimates for ©, with respect to the
time variable of linear parabolic equations (see [33, Chapter IV]), we know that (©,8°) € C5:! x C% 2,011
on [T — &, T]. Combining this with the fact that (©,0°) € C%1+e x C%:0.a1+a2 we get that the values
O(s,2),0,(s,r) and O%(s, s, x,z,0(s,x)), OL(s,z,s,7,0(s,2)), @2(s,x,s,x,@(s,x)), 0% (t, s, &, z,y) are
S-Holder and a-Hoélder continuous with respect to s and x, respectively. It follows [33, Chapter IV] that
(@7@0) c Q9.2+ 05 1+ 5,02+4a,2

In the following, let us show that (7.41) really holds for some & > 0.
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Step 1. From (7.4)—(7.5), we have

T

56(s.2) = [ [ Zlo.ro ) B0 m)3b(r, ) + 50 (1, )b(r. 67, 6°%) + 53(r. )|
s Rn

36°(t,5.2.2.5) = [ [ Ss.2,m,1) 001 (0. )00 )

s R

+ 5@2 (t7 T, 5:) 12 y)g(ra 3 027 90’2) + 5§O(t7 T, 53, M, y):| d,udr

By Lemma 7.3 and the estimate (7.3), from (7.42) we get

Ml ul

160(s, )| < K// (1850 )1+ 180, 2)| + (5. )]
s Rn

For ¢ = b, g, by Lemma 7.4 we have
165 (5, )| < K [160(s,2)| + |80 (5, 2)| + |36 (s, 2, 5,1, 6" (5, )
+106% (s, 2, 5,2,0 (s, 2))| + \592(s,x,s,x,91(s,x))\].
Substituting the above into (7.44) yields that

160(s,2)| < K(T = ) [160]| o + 100z ]| 2 + [166°]| 2 + [1663][ o + (|66 L]

A|z— ;L\z

+K//7n\5® (r, p)|dpdr.
(r—s)

s Rn

Similar to (7.45), using Lemma 7.4 again, we have

|(5§0(t,s,9~c,x,y)| < K[\(Sﬁ(s,xﬂ + 160, (s, x)| + |690(s,a:, s,x,@l(s,m))\
+ 1600 (s, x, 5,2,0" (s, 2))| + 00, (s, x, 5,2, 0" (s, 7))

+ 1002t 5, 7,2, )]
Substituting the above into (7.43), we get

00°(t, 5, &, 2, y)| < K(T — ) [[[60|| 1o + 1|00 oo + [166°(| Lo + 1062]| Lo + (565 || o]
Alz—p|?

T a(r—s)
+K// o 1600 (t, v, &, p, y)|dudr.

From (7.11) and (7.13), we have

30,(5,) = [ [ Ealo.vere ) [0 m)3b(r, ) + 50 (1, )b(r. 67, 6°%) + 53(r. )|

s Rn

(7.42)

(7.43)

(7.44)

(7.45)

(7.46)

(7.47)

(7.48)

(7.49)
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560(t,5,,0.) = [ [ Zalsvro) [0 613010, 0)8000 )
s Rn»

+ 008 (1,7, &, . y)b(r, 1507, 0°%) + 6° (1,7, &, . )| dpa. (7.50)
By Lemma 7.3 and the estimates (7.3), (7.45) and (7.47), we get

1604 (s, 2)| < KVT = s[[160]| L + 1|00z [z + [166°][ Lo + (1663 oe + |60y ]
_ Az— ;L

a(r=s)
+K// ﬂ+1 |00, (7, 1) |dpdr, (7.51)

T—S
s Rn

000(t, 5, &, x,y)| < KVT — s[||660] Lo + 1|00 + [06°(| Lo + 11669 ]| Lo + (166 || <]
T Az—p|?

i(r—s)
—|—K// eimw@o(t r, &, w,y)|dudr. (7.52)

(r—s)

Combining (7.46), (7.48), (7.51) and (7.52) together, and then by the Gronwall’s inequality, we get

16001 (i< 77) + [160° || o000 (7 —c 1))
< KVE[[160]lcor (e ,ry) + 1660 co0.0 (r—c 1] - (7.53)

Step 2. From the proof of Lemma 7.4, by some direct computations, it is easily seen that

562(t»57577$ay)://5(5793’7",#) [Ggg(trv‘%auvy)ég(rau)
s R

+ 000, (.7, &, 1, y)b(r, 1507, 0°%) + 6g00 (¢, 7, &, 11, )09 (£,7, &, 11, y)

+ gy (t, 7, &, pyy; 601,001, 0%1)667 (¢, 7, &, p,y) | dudr,

O I = CE X | CECE T
s Rn

+000, (t,r, &, i, y)b(r, 3 0%,0°2) + 650 (t, 7, &, 11, y) 02 (£, %, 1, )

+ Gyo(t,m, &, 1, y; 0", 0%1,001)8607, (¢, 7, &, 1, y) | dpdr,

6@2y(t,s,§c,x,y)z//E(sm,r,u @gz}y(t,r,i,u,y)ég(r,u)
s Rn
+605,,(t, 7 F, p, y)b(r, 1; 62,60%%) + Gy (t,m, &, 11, y) Oy, (8,7, &, 11, y)
—|—gpo(t,r,:E,u,y;@l,ﬂo’l,@o’l)(s@gyy(t T T, Y)
+ (0Gp0p0 (87, T, 1, 9)0y) (8,7, T, 1), 02y (8,7, T, 11, y))

+ <ggop0 (ta r, jv My Y5 927 90727 6072)698:y(ta r, 517, Hy y)7 92;} (t7 T, iu H,y y)>

+ <g20p0 (ta r, i‘7 Hs Y3 927 00’2, 60’2)92’; (t7 T, ja M, y)a 69;23/ (t7 T, ff:a M, y)> d,udr7
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and

560, (1. s / / =, (5,7, ) [O% (¢, 7. 2. 1, )50(r. )
s Rn

+000,, (t,r, &, 11, y)b(r, 1150%,0%%) + 6400 (£, 7, &, 11, y) O, (£, 7, &, 11, y)

+ g](y)o (ta r, 5;7 My Y3 617 90717 9071)69‘211:[/(1;) T, 577 My y)

+ <6§20p0 (t7 T, i> M, y)eg;gl (ta T, j? M, Zl/>7 eg’yl (ta r, '%7 My y)>
+ (Gpopo (8, 7, s 1,95 0%,09%,0%2)600, (8,7, &, 1,y), 00 (6,7, &, 11, y))

+ <§20p0 (ta T, j, Hy Y 927 60727 9072)92%/2<t5 r, j"a My y)7 69;(1);y<t7 r, j"a My y)>:| d,udr

Then by Lemma 7.4 and the estimate (7.3), we get

160y (t, s, &, 2,)| < K(T ){Wllmo + 11000l + [166°| o + (1063 L + ||590|\Loc]

efm ]
R

669, (t,5.2,2.9)| < KVT—s 3[||59|\L°o 1106l e + 1860 e+ 186 2 + 11563] 2

T Mz—u|2
e alr—s) ~ i
+K//W[5@gy(t,r,w,ﬂ,y)+|592y(t,r,x,u,y)|}dudr’
r—s) 2
s Rn

1609, (5, 2,9)] < K(T ~ 5)[106] = + 8620 + 86 o + 86 2 + 1669 ]
_ AMaz—pl?

A(r—s)
+K// 1900, (0.1 Fp )] 1060, (8.7 1)
s Rn

11660, (¢, 7, T, 1, y)|] dudr,

and

1608y, (8,7, 5,2)] < KVT — S[IIMIILw + 1000l + [106°| o + 1662 2 + (16,

Ao —p|?

P )
+K//W[|5@xyy(t &, y)| + ‘59”@ r &, 1, y)|

+ \(nyy(t T, &, 1, y)\]dudr.
Combining the above with the estimate (7.53) together, by Gronwall’s inequality again we get

160l co.r (e, 77y + 6©° o012 (17— 1)
< \/EK[||60HCO,1([T_E7T]) + ”590||COv01071v2([T—a,T])]-

For any %1,Z2 € R™, denote
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5é0(t7 vaay) = 660(t? Svjf‘lvxay) - 690(t7 3a52a$7y)~

Then from (7.50), we have

T
560(t,5.0.9) = [ [ Zulonar ) {16900, pe) — O2* (1 )00 )
s R»

+ 562(ta T, Ly y)g(r7 122 927 90’2) + 5g0(t7 T, jla My y) - 5‘60@7 T, 5:27 My y)}d,udr

Note that

|6§0(t7raj§17u7y) - 6§O(t,’l", 5327/”')?4)'
< K663t 5,2, y)| + K[369 (¢, 5, %1, 2, 9)| [1 + 1697 (£, 5,-,2,9) |
+ 1022t 5, 2,9)|la] |71 — Fa| .

Then by the fact that [|0%(, s, -, 2,9) |l and ||©%(t, s, -, 2,9)||o are bounded over [T'—¢&,T] (see Lemma 7.4),
we get

Alz—p|?

T

~ e A== ~

5880, < K [ [ s {19800 r il + 15800 )
s Rn

+ [160] 2o + (1082 + [186° | 2o + (1663 Lo + (|66, || <] [E1 — @P}dudr.

It follows that

160°|co0.eno(r—e.rp) < VEK[[|86]|co.1 (e, 1p) + 106° | 000t -z 17)] -

By continuing the above arguments, we have

H(s@”CO’l([T—E,T]) + H(sGOHc%vo,%lv?([T,E’T])

< VeK[[|6]con (r—e ) + 106l 050000 (pe gy

Step 3. Recalling (7.26)—(7.27), similar to (7.49)—(7.50), we have

50, (s, 7) = /T / Pals,,ry = V7= 5p) 83, = V= sp0)

s R

+ OL(rx — r = sp)db(r,x — 1 — sp) + 60, (r,x — /1 — sp)

T

X B(’I‘,l‘ —\r— Sﬂ;92790’2)} dpdr + //fx(s,x,r, 1)
s Rn

X [ég(r, [L) + @; (7’, /L)(sB(Ta /1,) + 5®I (T’ 'U')E(T’ HJ):| d‘LLd’f',

T

0% (t,5.3y) = [ [ Fulosnars = V=5 090,30~ Vi =)

s Rn



54 H. Wang et al. / J. Math. Pures Appl. 190 (2024) 103603

+ 0%t &y — 1 — sp,y)0b(r, x — /T — sp)
+000(t, 7, &, — N1 — s, y)b(r, x — /1 — sp; 62, 0°2)| dpdr

T
* / / fx(s’ €, T, /l) [6§O(tv T, Ty b, y) + @g’l(ta T T, y)éi)(r, N)
s Rn

+ 692 (ta T, ‘%a 122 y)B(r, NJ):| d/lzd’l",
where T is defined by (7.28). For any z1, 22 € R™, we have

6@2(t787.’f?,$1’y) - 5@g(t757ﬂ~3,$279)

= /T/ [To(s 1m0 — V1 — sp) — To(s, 20,7, 20 — V1 — sp)]

s Rn

X {5§0(t77ﬂ7(ia L1 — VI — Sﬂ’y) + 62’1(1577“3*%; L1 — VI — Su’y)ai)(rvxl — VT = 8/~L)

+000(t, 7, &, x1 — T — sp,y)b(r,x1 — Vr — sp; 0%, 00’2)} dudr

T
—|—//f‘z(s,x2,r,x2— VT_SM){[égO(t7rai7xl_ \/T_S/Jay)

S En
— 850ty &y w0 — VT — sp,y)] + [O%1(t, &y w1 — v — sp,y)

X 0b(r, 1 — 1 — sp) — O%L(t, 1, &, w0 — /T — spu,y)0b(r, zo — Vr—sp)]
+ [5@2(@7",5:,3:1 — \/mu,y)(}(nxl s 62,002)

= 000013 = V7= s blr s = V7= 567, 6°2)] pdr

T
—l—//[fm(s,xl,nu) —fm(S,CL'Q,T,,U,)] [6§O(t,r75c,,u7y)
s Rn

+ O (1,8, y)OH(r, 1) + 0O (L, 7,7, 1, )b, )| dpcr. (7.54)
Note that on [T' — ¢, T], by Lemmas 7.4 and 7.5 we have

|[eg’1(7"7$177“a$1a 91(7",.1'1)) - 92’2(7',171,7“,351, 92(7",.1'1))]

- [0271(7”7 T2,T,T2, ol(rv 332)) - 92)2(7”7 €r2,T,T2, 92(T7 xQ))H

< {||593;y||mo||91\lcw + 11065 [|co.0.ca0 + 11635 [ Lo (160 co.c

+ (11625 | (16| co.o + 10l co.0) + 1163 [|co.0.0.0.0] H59||Lm}|$1 — xa|®

Yy

< K[||69g||co,o,a,a,1 + [160]|co.o ] |w1 — 22| (7.55)
By the same arguments as the above, we have

|[90’1(r, xy, 7, 21,0 (ry 1)) — 002 (r, 21,7, 21, 0% (r, 1))

- [90’1(71’ xr2,T,T2, 01(7.’ .132)) - 9072(71’ xr2,T,T2, 02(7,’ .132))”
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< K[[106°|co0aan + [1660]|go.e |21 — 22|, (7.56)
and

|[9271(7ﬂ7 L1, T, 21, 91(7,,7 xl)) - 92’2(7" L1, 7,21, 02(7'3 xl))]
- [92’1(7“, To, 7, 2o, 0 (1, 20)) — 92’2(7“, Lo, 7, Ta, 0% (r, 372))]’

< K“|(592Hco,o,a,a,1 + ||59||Co,n] |.’171 — l‘gla. (757)
For any ¢ € C*2, denote

(530(‘%1) - 590(‘%2) = [50(331, 02’1(7" Z1,7,21, ol(r’ xl))) - 90(1'1’ 0372(“ Z1,7,21, 02(7”, xl)))]

- [go(acg, 92’1(7', ZTo,T, m2,91(r, x2))) — p(xa, 92’2(7”, Zo,T, X2, 92(7", xg)))]
From (7.55), we have the following estimate:
6(ar) — p(w2)] < K [80coo.mes + 36| coe] 21 — o],
on [T —¢,T], where K depends on ||¢|co.1. Thus, by the estimates (7.55)—(7.57), we get

|6§0<t7 T, '%7 X1, y) - 5g0(t7 T, ju x2, y)'
< K[H690||CO,0,0,1+&,2 + 1|00 conta + |66°(t, 7, &, -, Y)la]lz1 — z2]*. (7.58)

Similarly,
6b(r, 21) — 6b(r, 22)| < K [||66°]|co.0.0ntaz + [|00]|coara]|zr — za|™. (7.59)

By (7.29), (7.31), Lemmas 7.3 and 7.5, from (7.54) we obtain

T
K 2T, o~
||5@g(t;57§?7‘7y)H0& S // meiA‘u‘ |:|(;b(7',1'7 \/r*su)‘+|5g0(t7r7{i,’xi /T*S/L,y)‘

s Rn

T
K
+ |5®2(t77",f,$ —Vr—= Su,y)|] dudr + / / ﬁe—/\lulz

s Rn

X |16b(r, 21 = V7= sp)l + 1185, o + 19000t 7, 7,1 — V7= 54, )

1600t 2, )l + 1650t 7, 9) |

+ O (£, 7. y)3b(r. 1) + 008 (t, 7, , . y)b(r. )| dpdr

Substituting the estimates (7.45), (7.47), (7.58) and (7.59) into the above, and then by Gronwall’s inequality,
we get

||(5@g(t, 8,2, y) e < K\/EI:H690||CO,O,O<,1+O¢,2 + ||60HCO,1+(X:|.



56 H. Wang et al. / J. Math. Pures Appl. 190 (2024) 103603

By the same arguments as the above, we have
10025, M < KVE[06 o001z + 86 o140
By continuing the above arguments, we get
100 o + 19025 0mz < KVE[I 5 0mssm + 60 conrsa].
Step 4. Combining the estimates in Steps 1-3 together, we get
100l cosre + 106 g s < KVEII g s + [66] corre].

Then by choosing a 0 < € < € small enough, we get that on [T — &, T,

100|040 + 1100°]| 50,0140z < 5 [||<590 oaitaz +[|08]lgorre].

HC 2
Thus, (7.41) holds and this completes the proof. O

Complete the proof of Theorem 2.10. We have proved that equilibrium HJB equation (2.16) admits a unique
classical solution (0,0°) on [T — &, T, where £ is given by Proposition 7.6. By a routine argument, we can
prove that equilibrium HJB equation (2.16) admits a unique classical solution (©,0°) on [T — &, T], where
g is given by Lemma 7.5. Thus, to extend the solution to the whole time interval [0, T7], it suffices to prove
a global prior estimate for [|©]|co1+a and 0% ;5 00,1400

By (7.16) and (7.17), we have

T
102(t, 5, %, 2, y)| < K[[h]] 5202 +K/ 189, (£, 7, &, -, y) | codpdr,

S
T
|@2y(t,s,i,z,y)| < K”h“onc%,a»?“l 2 / ”@ (t, 72, y)llcodpdr,

which implies that
1091~ + 116 s~ < KR v (7.60)

Next, from (7.20) and (7.21), we have

100, (t,5, 7,2, )| < K[| 15 esren +K/ 102, (1,7, 2, ) o

+ ”@gy(t,rvjv '7y)‘|%‘0:|dlud7’,

00y, (.58 2,)| < KK e +/ (162, (7,7, )

Jr—s
+ ”@2y(tarﬂ z, ’7y)||%'0]d,ud7',

which, together with the global prior estimate (7.60), yields that
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1©yyllz + 105y, [l < K[Ih°l g 2ta.

Tyy

By (7.22)—(7.25), we get
”@O(ta S, ',$7y)Ha < K||h0|‘c%v“vz+ﬂ’2 + K/ {H@g(t,?“, B -7y)||ca,0 +1 dT,

”@Z(ta S, ',mvy)Ha < K||h0|‘c%wa:2+0<v2 + K/ [H@gy(t,?”, K 'ay)||C'°‘=0

+ H@gy(t,’/‘, R y)”CO’O(l + ||®2(ta Ty '7y)||C""O):| d?",

and

H@g(ta S, T, y)”a < KHhonc%ﬂ«?‘H’ 2

T, ,~’y)||ca,0 + ]‘:| d’l",

Hegy(tvsv ',x;y)“a S KHhOHC%va,Hav? +

K
/ = 195,67, e
+ ||@23y(t77ﬁ’ ERE y)”CO*O(l + Hgg(tﬂ“’ ) '7y)||CD<’0):| dr.

With the global estimate (7.60), the above implies that

1©°(t, 5, @, y)llow + 1Oy (L, s, -, z,y)llce + [OL(t, 5,2, y) | o
1168, (t, 5,2, 9)llce < K1+ A% 5.024a2)-

By continuing the above, we have
10l ¢3 0mns < K1+ K o5 rvece). (7.61)

By the arguments employed in the proof of Lemma 7.5 (see (7.36)—(7.37)), with the global estimate (7.61),
we get

183(t, 5,2, y)la + 1O (s, )l

T
< K[1+||hllozsa + 11 o g ceec2] +/ 165t 7.2, o + 10 (r, ) lla] dr

ik

Thus,

102 llcos0m0 + [€slcow < KL+ [hllcara + [10]] g0 e ]-

This completes the proof.
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