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This paper is concerned with an optimal control problem for a forward-backward 
stochastic differential equation (FBSDE, for short) with a recursive cost functional 
determined by a backward stochastic Volterra integral equation (BSVIE, for short). 
It is found that such an optimal control problem is time-inconsistent in general, 
even if the cost functional is reduced to a classical Bolza type one as in Peng 
[47], Lim–Zhou [38], and Yong [72]. Therefore, instead of finding a global optimal 
control (which is time-inconsistent), we will look for a time-consistent and locally 
optimal equilibrium strategy, which can be constructed via the solution of an associ-
ated equilibrium Hamilton–Jacobi–Bellman (HJB, for short) equation. A verification 
theorem for the local optimality of the equilibrium strategy is proved by means of 
the generalized Feynman–Kac formula for BSVIEs and some stability estimates of 
the representation parabolic partial differential equations (PDEs, for short). Under 
certain conditions, it is proved that the equilibrium HJB equation, which is a non-
local PDE, admits a unique classical solution. As special cases and applications, the 
linear-quadratic problems, a mean-variance model, a social planner problem with 
heterogeneous Epstein–Zin utilities, and a Stackelberg game are briefly investigated. 
It turns out that our framework can cover not only the optimal control problems 
for FBSDEs studied in [47,38,72], and so on, but also the problems of the general 
discounting and some nonlinear appearance of conditional expectations for the ter-
minal state, studied in Yong [73,75] and Björk–Khapko–Murgoci [6].

© 2024 Elsevier Masson SAS. All rights are reserved, including those for text and 
data mining, AI training, and similar technologies.

r é s u m é

Cet article traite d’un problème de contrôle optimal pour une équation différentielle 
stochastique progressive-rétrograde (EDSP-R), avec une fonction de coût récursive 
déterminée par une équation intégrale stochastique rétrograde de Volterra (EISRV). 
Il est constaté qu’un tel problème de contrôle optimal est généralement incohérent 
dans le temps, même si la fonction de coût est réduite à une forme classique de type 
Bolza, comme observé dans les travaux de Peng [47], Lim–Zhou [38], et Yong [72]. 
Par conséquent, au lieu de chercher un contrôle optimal global (qui est incohérent 
dans le temps), nous proposons de rechercher une stratégie d’équilibre localement 
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optimale et cohérente dans le temps, qui peut être construite via la solution d’une 
équation de Hamilton–Jacobi–Bellman (HJB) associée à l’équilibre. Un théorème de 
vérification pour l’optimalité locale de la stratégie d’équilibre est prouvé au moyen de 
la formule de Feynman–Kac généralisée pour les EISRV et de certaines estimations 
de stabilité de la représentation pour les équations aux dérivées partielles (EDP) 
paraboliques. Sous certaines conditions, il est prouvé que l’équation de HJB d’équi-
libre, qui est une EDP non locale, admet une solution classique unique. En tant que 
cas spéciaux et applications, les problèmes linéaires-quadratiques, un modèle de 
moyenne-variance, un problème de planificateur social avec des utilités hétérogènes 
d’Epstein–Zin, et un jeu de Stackelberg sont brièvement examinés. Il s’avère que 
notre cadre peut couvrir non seulement les problèmes de contrôle optimal pour les 
EDSP-R étudiés dans des travaux antérieurs, tels que ceux de Peng [47], Lim–Zhou 
[38], et Yong [72], mais aussi les problèmes de l’actualisation générale et certaines 
apparitions non linéaires des espérances conditionnelles pour l’état terminal, étudiés 
dans les travaux de Yong [73,75] et Björk–Khapko–Murgoci [6].

© 2024 Elsevier Masson SAS. All rights are reserved, including those for text and 
data mining, AI training, and similar technologies.

1. Introduction

Let (Ω, F , P ) be a complete probability space on which a standard one-dimensional Brownian motion 
W = {W (t); 0 ≤ t < ∞} is defined. The augmented natural filtration of W is denoted by F = {Ft}t≥0. Let 
T > 0 be a fixed time horizon. We denote

Xt = L2
Ft

(Ω;Rn) =
{

ξ : Ω → Rn | ξ is Ft-measurable,E[|ξ|2] < ∞
}

,

D =
{

(t, ξ) | t ∈ [0, T ), ξ ∈ Xt

}
,

U [t, T ] =
{

ϕ : [t, T ] × Ω → U
∣∣ ϕ is F -progressively measurable,

E

T∫
t

|ϕ(s)|2ds < ∞
}

,

where U ⊆ R� is a nonempty measurable set (either bounded or unbounded). For any given initial pair
(t, ξ) ∈ D and control process u ∈ U [t, T ], consider the following controlled (decoupled) forward-backward 
stochastic differential equation (FBSDE, for short) on the time horizon [t, T ]:⎧⎪⎪⎨⎪⎪⎩

dX(s) = b(s, X(s), u(s))ds + σ(s, X(s), u(s))dW (s),

dY (s) = −g(s, X(s), u(s), Y (s), Z(s))ds + Z(s)dW (s),

X(t) = ξ, Y (T ) = h(X(T )),

(1.1)

where b, σ : [0, T ] × Rn × U → Rn, g : [0, T ] × Rn × U × Rm × Rm → Rm, and h : Rn → Rm are given 
deterministic mappings. Under certain mild conditions, for any (t, ξ) ∈ D and u ∈ U [t, T ], (1.1) admits a 
unique adapted solution (X, Y, Z) ≡

(
X(· ; t, ξ, u), Y (· ; t, ξ, u), Z(· ; t, ξ, u)

)
, which is called a state process. 

To measure the performance of the control u, we introduce the following recursive cost functional:

J(t, ξ; u) = Y 0(t), (1.2)

where Y 0 is uniquely determined by the following backward stochastic Volterra integral equation (BSVIE, 
for short) over [t, T ]:

Y 0(r) = h0(r, X(r), X(T ), Y (r)) −
T∫

Z0(r, s)dW (s)

r
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+
T∫

r

g0(
r, s, X(r), X(s), u(s), Y (s), Z(s), Y 0(s), Z0(r, s)

)
ds, (1.3)

for which (Y 0, Z0) is the adapted solution. Here, h0 : [0, T ] ×Rn ×Rn ×Rm → R and g0 : Δ∗[0, T ] ×Rn ×
Rn × U × Rm × Rm × R × R → R are given deterministic mappings with

Δ∗[0, T ] =
{

(t, s) ∈ [0, T ]2
∣∣ 0 ≤ t ≤ s ≤ T

}
(1.4)

being the upper triangle domain in the square [0, T ]2. In the case that

h0(r, x̃, x, y) = h0(x, y), g0(r, s, x̃, x, u, y, z, y0, z0) = g0(s, x, u, y, z), (1.5)

the recursive cost functional (1.2)–(1.3) is reduced to a Bolza type cost functional for FBSDE state equation 
(see Peng [47] and Yong [72], for examples):

J(t, ξ; u) = Et

[
h0(X(T ), Y (t)) +

T∫
t

g0(s, X(s), u(s), Y (s), Z(s))ds
]
, (1.6)

where Et[ · ] = E[ · |Ft] is the conditional expectation operator. Further, if

h0(r, x̃, x, y) = h0(x), g0(r, s, x̃, x, u, y, z, y0, z0) = g0(s, x, u),

then the cost functional is reduced to the most familiar classical Bolza functional:

J(t, ξ; u) = Et

[
h0(X(T )) +

T∫
t

g0(s, X(s), u(s))ds
]
,

where the two terms on the right-hand side are called terminal and running costs, respectively. Thus, our 
recursive cost functional is an extension of Bolza type cost functional. With the state equation (1.1) and 
the recursive cost functional (1.2)–(1.3), we may pose the following optimal control problem:

Problem (N). For any given initial pair (t, ξ) ∈ D, find a control ū ∈ U [t, T ] such that

J(t, ξ; ū) = essinf
u∈U [t,T ]

J(t, ξ; u) = V (t, ξ). (1.7)

Any ū ∈ U [t, T ] satisfying (1.7) is called an (open-loop) optimal control of Problem (N) for the initial 
pair (t, ξ); the corresponding state process (X̄, Ȳ , Z̄) ≡

(
X(· ; t, ξ, ̄u), Y (· ; t, ξ, ̄u), Z(· ; t, ξ, ̄u)

)
is called an 

(open-loop) optimal state process; and V : D → R is called the value function of Problem (N).
We now briefly illustrate the major motivation of the above framework as follows: The (vector-valued) 

process X follows a (forward) stochastic differential equation (FSDE, for short). Components of X consist 
of two types processes: uncontrolled ones (by the individuals), including prices of securities (such as bonds, 
stocks), some economic factors (such as interest rates, unemployment rates, GDP, etc.), and controlled 
ones (by the individuals), including market values of the investor’s wealth (subject to trading strategies), 
inventory of commodities (subject to the ordering), amounts of goods (subject to the production), etc. On the 
other hand, the components of Y , following a multi-dimensional backward stochastic differential equation 
(BSDE, for short), could include the prices of some European type contingent claims of the underlying 
assets (whose prices are some components of X), and some dynamic risk measures, and so on. Therefore, 
it is natural to have an FBSDE as a state equation. Further, the dynamic expected utility/disutility of 
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the total assets will be calculated in the recursive way, which can be described by the adapted solution to 
a BSVIE (see below). Putting all the above together, we have the framework and the formulation of the 
problem.

Let us now briefly illustrate the recursive cost functional of form (1.2)–(1.3). In 1992, Duffie–Epstein 
[15,16] introduced a stochastic differential formulation of recursive utility in the case of information generated 
by a Brownian motion. In 1997, El Karoui–Peng–Quenez [18] showed that such a process actually is a part of 
the adapted solution to a particular BSDE and then they defined a more general class of recursive utilities, 
through a general BSDE (see also Lazrak [34] for further developments). The main feature of such a recursive 
process, denoted by Y R, is that the current value Y R(t) depends on the future values Y R(s), t < s ≤ T of 
the process. Then, on top of the classical Bolza type cost functional (1.6), mimicking [18], for our FBSDE 
state equation, it is natural to introduce the following recursive cost functional:

JR(t, ξ; u) = Y R(t),

where Y R is determined by the following equation over [t, T ]:

Y R(r) = Er

[
h0(X(T ), Y (r)) +

T∫
r

g0(s, X(s), u(s), Y (s), Z(s), Y R(s))ds
]
.

From the above, we see that the value Y R(t) depends on the values Y R(s) for s ∈ [t, T ], through the above 
equation. Hence the cost process Y R has a recursive feature, and thus its name. By Yong [71], for some 
process ZR, the pair (Y R, ZR) is the adapted solution to the following BSVIE:

Y R(r) = h0(X(T ), Y (r)) +
T∫

r

g0(s, X(s), u(s), Y (s), Z(s), Y R(s))ds

−
T∫

r

ZR(r, s)dW (s), r ∈ [t, T ]. (1.8)

Note that (1.8) is not a BSDE on [t, T ], because the free term h0(X(T ), Y (r)) depends on the time variable r, 
which leads to the adjustment process ZR(r, s) depending on r and s. Inspired by the above, we introduce the 
general recursive cost functional (1.2)–(1.3). Note that in BSVIE (1.3), the free term h0 and the generator
g0 are allowed to depend on the initial pair (r, X(r)) at the current time r, which is motivated by the 
non-exponential discounting [32,20,73] and the state-dependent risk aversion [8,27] in finance. The recursive 
cost functional of form (1.2)–(1.3) was introduced by Wang–Yong [63] for the first time, motivated by the 
recursive utility/disutility process for classical optimal control problems. Comparing with the cost functional 
studied in [63], the free term h0 and the generator g0 of BSVIE (1.3) are additionally allowed to depend 
on the initial state X(r) and the backward process (Y, Z). Moreover, we highlight that (1.2)–(1.3) can also 
be regarded as a recursive version of the cost functional studied in Björk–Khapko–Murgoci [6], because 
E·[X(T )] is the backward state process Y of a trivial BSDE.

It is well-known by now that the introduction of BSDEs by Bismut [4,5] in the early 1970s was for the 
purpose of studying optimal control of FSDEs. The later developments of general BSDEs by Pardoux–
Peng [45] (see also Duffie–Epstein [15] and El Karoui–Peng–Quenez [18]), and the extension to FBSDEs 
by Antonelli [1], Ma–Protter–Yong [39], Hu–Peng [28] (see also the books of Ma–Yong [40] and Zhang 
[78]) have been attracting many researchers’ attention. Among many other publications, a big number 
of literature on the optimal control problems for BSDEs/FBSDEs keep appearing. See, Peng [47], Xu [69], 
Dokuchaev–Zhou [14], Ji–Zhou [31], Shi–Wu [52], Huang–Wang–Xiong [30], Yong [72], Wang–Wu–Xiong [59], 
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and Hu–Ji–Xue [24] on the Pontryagin’s maximum principle for controlled BSDEs/FBSDEs; Lim–Zhou [38], 
Wang–Wu–Xiong [60], Huang–Wang–Wu [29], Wang–Xiao–Xiong [61], Li–Sun–Xiong [37], Hu–Ji–Xue [25], 
Sun–Wang [55], Sun–Wu–Xiong [58], Sun–Wang–Wen [56] on the linear-quadratic (LQ, for short) optimal 
control problems for BSDEs/FBSDEs; and so on. It is observed that the problems investigated in the above 
listed works are all essentially the special cases of Problem (N), and have been treated as usual stochastic 
optimal control problems. There is an essential feature has been overlooked in all the above, which we now 
indicate that.

For a dynamic optimal control problem, suppose that at a given initial pair (t, ξ) ∈ D, the problem has 
an (open-loop) optimal control ū ≡ ū(· ; t, ξ) with the (open-loop) optimal state being X̄ ≡ X(· ; t, ξ, ̄u). 
Then, we could not expect the following:

J
(
τ, X̄(τ); ū

∣∣
[τ,T ]

)
= inf

u∈U [τ,T ]
J(τ, X̄(τ); u), ∀τ ∈ (t, T ], a.s. (1.9)

In other words, an optimal control selected at a given initial pair might not stay optimal thereafter. Then, 
we say that the optimal control problem is time-inconsistent. It turns out that, in general, Problem (N) is 
time-inconsistent, and the dynamical programming principle (DPP, for short) does not hold. This reveals 
a surprising feature of Problem (N). To see that, let us elaborate the time-inconsistency in a little more 
details, from which we will see how Problem (N) is generally time-inconsistent.

• Time-preferences and discounting. Suppose the continuously compound interest rate is a constant 
λ > 0. Then one needs to deposit an amount e−λT0 at τ in order to get 1 unit at τ + T0. We call e−λT0 the 
discount factor of the time interval [τ, τ + T0], which could also be defined as the value of this time interval. 
Clearly, such a value e−λT0 of [τ, τ +T0] is independent of the initial time τ and it is also independent of the 
time t ∈ [0, ∞) at which [τ, τ + T0] is evaluated, either t ≤ τ or t > τ . Because of this, such an exponential 
evaluation is said to be rational. Or equivalently, rationality can be described by the exponential discounting. 
On the other hand, it is common that most people overweight the utility of the immediate future events, 
which can be convinced by the fact that one often regrets the (optimal) decisions made earlier. This means 
that people evaluate the immediate future time period more expensively than it should be, which amounts 
to saying that the discount factor for that time interval is larger than the rational one. Hence, we need to 
replace the exponential discounting by more general ones to more precisely describe the real situations.

In the above recursive cost functional (1.2)–(1.3), if we have

h0(r, x̃, x, y) = e−λ(T −r)h0(x),

g0(r, s, x̃, x, u, y, z, y0, z0) = e−λ(s−r)g0(s, x, u),

for some discount rate λ > 0, then the cost functional is reduced to the classical exponential discounting 
Bolza cost functional:

J(t, ξ; u) = Et

[
e−λ(T −t)h0(X(T )) +

T∫
t

e−λ(s−t)g0(s, X(s), u(s))ds
]
.

In this case, there are no (European type) contingent claims involved, and there are no dynamic risks 
taken into account. Therefore, the BSDE for (Y, Z) in (1.1) is irrelevant. Also, the involved individual 
is completely rational (as far as the time-preferences are concerned). For such a case, the corresponding 
Problem (N) is time-consistent. Now, if e−λ(T −t) and e−λ(s−t) are replaced by some non-exponential decay 
functions, the cost functionals are referred to as non-exponential ones, which describe some kinds of irra-
tionality of time-preferences for the involved individuals. In this case, namely, the cost functional is given 
by (1.2)–(1.3), our Problem (N) is time-inconsistent. The earliest mathematical consideration in this aspect 
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was given by Strotz [54], followed by Pollak [50], and the recent works of Ekeland–Pirvu [20], Ekeland–
Lazrak [19], Yong [73,75,76], Wei–Yong–Yu [68], Mei–Yong [43], Mei–Zhu [44], Wang–Yong [63], Hamaguchi 
[22], Hernández–Possamai [23], and Lazrak–Wang–Yong [35] for various kinds of problems relevant to non-
exponential discounting.

• Risk-preferences and nonlinear appearance of conditional expectations of the (terminal) state. Different 
groups of people should have different opinions of risks on the in-coming events. This is referred to as 
people’s subjective risk-preferences. One way to describe this is to allow the conditional expectation of the 
state to (nonlinearly) appear in the cost functional. It turns out that such a formulation will lead to time-
inconsistency of the optimal control problem in general. See Basak–Chabakauri [3], Hu–Jin–Zhou [26,27], 
Björk–Murgoci [7], Björk–Murgoci–Zhou [8], Björk–Khapko–Murgoci [6], and Yong [76] for some relevant 
results.

Let us now make an observation for our Problem (N). Let m = n, and

h(x) = x, g(s, x, u, y, z) ≡ 0, h0(r, x̃, x, y) = h0(x, y),

g0(r, s, x̃, x, u, y, z, y0, z0) = g0(s, x, u, y),

then

Y (s) = Es[X(T )], s ∈ [t, T ],

and the recursive cost functional (1.2)–(1.3) becomes

J(t, ξ; u) = Et

[
h0(

X(T ),Et[X(T )]
)

+
T∫

t

g0(
s, X(s), u(s),Es[X(T )]

)
ds

]
.

In the above, Et[X(T )] appears nonlinearly and the corresponding optimal control problem is time-
inconsistent. From the above observation, we see that the state equation being an FBSDE can include 
many situations of nonlinear appearance of conditional expectations.

We have seen that Problem (N) is generally time-inconsistent. Therefore, we should treat it from the 
angle differently from the usual classical ones. Before going further, let us present the following simple 
example, from which we will see the more essential reason for Problem (N) to be time-inconsistent.

Example 1.1. Consider the one-dimensional (degenerate) FBSDE state equation

{
Ẋ(s) = 0, Ẏ (s) = u(s), s ∈ [t, T ],

X(t) = x, Y (T ) = 0,
(1.10)

with the cost functional

J(t, x; u) =
T∫

t

[Y (s) + u(s) + |u(s)|2]ds. (1.11)

A straightforward calculation (see Example 3.2 for details) shows that at the initial pair (t, x), the unique 
optimal control ū(· ; t, x) is given by

ū(s) ≡ ū(s; t, x) = s − t − 1
, s ∈ [t, T ].
2
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Then, for any τ ∈ (t, T ), the unique optimal control at (τ, X̄(τ)) ≡ (τ, x) is given by

ũ(s) ≡ ũ(s; τ, X̄(τ)) = s − τ − 1
2

, s ∈ [τ, T ].

Clearly,

ū(s) 	= ũ(s), s ∈ [τ, T ].

Thus, the problem is time-inconsistent.

It is worthy of pointing out that in the above example, (1.11) is a Bolza type cost functional for FBSDE 
state equations, and unlike Yong [73] and Björk–Khapko–Murgoci [6], neither non-exponential discounting 
nor conditional expectations (nonlinearly) appear. Furthermore, the controlled system (1.10) is a determin-
istic ordinary differential equation, and the terminal cost of (1.11) equals zero, due to which (1.11) is also a 
Lagrange type cost functional. This tells us that an optimal control problem could be time-inconsistent solely 
because the state equation is a forward-backward one. Hence, the time-inconsistency feature is intrinsically 
contained in the optimal control problems for FBSDEs. Such a feature distinguishes the current paper from 
the previous ones concerning the time-inconsistency, in other aspects.

Having the above time-inconsistent feature of the problem, we now highlight the main results of this 
paper.

(i) Using Pontryagin’s maximum principle, we will show that Problem (N) is generically time-inconsistent. 
The advantage of such an approach is that we are not satisfied with just some counterexamples, instead, 
we will show that if ū is optimal at (t, ξ), which will satisfy the Pontragin’s type maximum principle (MP, 
for short) on [t, T ], then ū|[τ,T ] hardly satisfies the MP on [τ, T ] for τ ∈ (t, T ]. Therefore, (1.9) should not 
be expected in general.

(ii) Since Problem (N) is time-inconsistent in general, finding an optimal control at any given initial 
pair (t, ξ) is not very useful. Instead, one should find an equilibrium strategy, which is time-consistent and 
possesses certain kind of local optimality. Inspired by Yong [73], we derive the equilibrium HJB equation
associated with Problem (N), through which an equilibrium strategy can be constructed. Our equilibrium 
HJB equation can cover the results obtained in Yong [73] and Björk–Khapko–Murgoci [6]. In the case that 
the recursive cost functional is governed by a BSDE, one could apply the method of multi-person differential 
games, by viewing that the controller is playing a cooperative game with all his incarnations in the future. 
Such an idea can be traced back to the work of Pollak [50] in 1968. Later, the approach was adopted 
and further developed in [19,20,73,75,76,7,8,6,68,43,44,63]. We point out that the multi-person differential 
game approach used in [73,68] does not directly apply to Problem (N) of the current paper, because the 
DPP does not hold for controlled FBSDEs even if the cost functional does not depend on the initial values 
(t, X(t), Y (t)). We overcome the difficulty by making use of the Feymann–Kac formula for BSVIEs, which 
has been recently well-developed in our works [67,62,64]. In the proof of the verification theorem, some 
technical assumptions imposed in [68,63] and [6] are relaxed.

(iii) When the diffusion term of the forward state equation does not contain the control u, the equilib-
rium HJB equation associated with Problem (N) is a system of semi-linear parabolic partial differential 
equations with non-local terms. Under the non-degenerate condition, the well-posdness of the equilibrium 
HJB equation is established in the sense of classical solutions.

(iv) Some comparisons between our equilibrium HJB equations and those derived by Peng [49], by Yong 
[73,75], and by Björk–Khapko–Murgoci [6] are carefully made, respectively. We find that the backward 
controlled equation has a significant influence on the form of the associated equilibrium HJB equation. 
When Problem (N) is reduced to the problem studied by Björk–Khapko–Murgoci [6], the form of our 
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equilibrium HJB equations is more natural than their so-called extended HJB equation. We note that there 
was no rigorous proof on the well-posedness of the extended HJB equation presented in [6].

(v) The linear-quadratic optimal control problems for FBSDEs are briefly studied and a linear equilibrium 
strategy is obtained, provided the associated Riccati equation is solvable. This partially covers the work of 
Yong [76]. Further, as applications, a mean-variance model, a social planner model of Merton’s consumption–
portfolio selection with heterogeneous Epstein–Zin utilities, and a Stackelberg game are investigated, which 
are all special cases of Problem (N). It is shown that these specific problems are all time-inconsistent, and 
by the theoretical results obtained in the paper, the associated equilibrium strategies can be explicitly 
constructed.

The rest of this paper is organized as follows. In Section 2, we state the main results of our paper, 
with some explanations. In Section 3, we compare the results obtained in the paper with the existing ones. 
The linear-quadratic problem is studied in Section 4, and three applications are presented in Section 5. In 
Section 6, the verification theorem is proved. Some technical and lengthy proofs are given in Section 7.

2. The main results

2.1. Preliminaries: notations and Feynman–Kac formula

Let T > 0 be a given time horizon and recall the upper triangle domain Δ∗[0, T ] from (1.4). Let Sn be 
the subspace of Rn×n consisting of symmetric matrices and U ⊆ R� be a nonempty measurable set which 
could be bounded or unbounded. We will use K > 0 to represent a generic constant which could be different 
from line to line. For any Euclidean space H (as well as H1, H2), we introduce the following spaces:

L2
F (Ω; C([0, T ];H)) =

{
ϕ : [0, T ] × Ω → H

∣∣ ϕ is F -adapted, pathwise

continuous, E
[

sup
0≤s≤T

|ϕ(s)|2
]

< ∞
}

;

CF ([0, T ]; L2(Ω;H)) =
{

ϕ : [0, T ] × Ω → H
∣∣ ϕ is F -adapted, E[ϕ] is

continuous, sup
0≤s≤T

E
[
|ϕ(s)|2

]
< ∞

}
;

L2
F (0, T ;H) =

{
ϕ : [0, T ] × Ω → H

∣∣ ϕ is F -progressively measurable

on [0, T ], E
T∫

0

|ϕ(s)|2ds < ∞
}

;

C([0, T ]; L2
F (· , T ;H)) =

{
ϕ : Δ∗[0, T ] × Ω → H

∣∣ ϕ(t, ·) ∈ L2
F (t, T ;H), t ∈ [0, T ],

E

T∫
·

|ϕ(· , s)|2ds ∈ C([0, T ])
}

;

L∞(H1;H2) =
{

ϕ : H1 → H2
∣∣ ϕ is essentially bounded

}
;

Ck(H1;H2) =
{

ϕ : H1 → H2
∣∣ ϕ is j-th continuously differentiable

for any 0 ≤ j ≤ k
}

;

Ck
b (H1;H2) =

{
ϕ ∈ Ck(H1;H2) | the j-th derivatives are bounded, 0 ≤ j ≤ k

}
.

To guarantee the well-posedness of the controlled FBSDE (1.1) and BSVIE (1.3) governing the recursive 
cost functional, we introduce the following assumptions.
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(H1). Let the mappings b, σ : [0, T ] ×Rn ×U → Rn, g : [0, T ] ×Rn ×U ×Rm ×Rm → Rm, and h : Rn → Rm

be continuous. There exists a constant L > 0 such that

|b(s, 0, u)| + |σ(s, 0, u)| + |h(0)| + |g(s, 0, u, 0, 0)| ≤ L(1 + |u|),

|b(s, x1, u) − b(s, x2, u)| + |σ(s, x1, u) − σ(s, x2, u)| + |h(x1) − h(x2)|

+ |g(s, x1, u, y1, z1) − g(s, x2, u, y2, z2)| ≤ L
[
|x1 − x2| + |y1 − y2| + |z1 − z2|

]
,

∀(s, u) ∈ [0, T ] × U, (xi, yi, zi) ∈ Rn × Rm × Rm, i = 1, 2.

(H2). Let the mappings h0 : [0, T ] ×Rn×Rn×Rm → R and g0 : Δ∗[0, T ] ×Rn×Rn×U×Rm×Rm×R ×R → R

be continuous. There exists a constant L > 0 such that

|h0(t, 0, 0, 0)| + |g0(t, s, 0, 0, u, 0, 0, 0, 0)| ≤ L(1 + |u|),

|g0(t1, s, x̃1, x1, u, y1, z1, y0
1 , z0

1) − g0(t2, s, x̃2, x2, u, y2, z2, y0
2 , z0

2)|

+ |h0(t1, x̃1, x1, y1) − h0(t2, x̃2, x2, y2)| ≤ L
[
|t1 − t2| + |x̃1 − x̃2| + |x1 − x2|

+ |y1 − y2| + |z1 − z2| + |y0
1 − y0

2 | + |z0
1 − z0

2 |
]
,

∀(ti, s) ∈ Δ∗[0, T ], x̃i, xi ∈ Rn, u ∈ U, yi, zi ∈ Rm, y0
i , z0

i ∈ R, i = 1, 2.

By Yong–Zhou [77, Chapter 7] and Yong [71], we have the following results about the well-posedness of 
(decoupled) FBSDE (1.1) and BSVIE (1.3).

Lemma 2.1. Let (H1) hold. Then for any initial pair (t, ξ) ∈ D and control u ∈ U [t, T ], state equation (1.1)
admits a unique adapted solution (X, Y, Z) ∈ L2

F (Ω; C([t, T ]; Rn)) × L2
F (Ω; C([t, T ]; Rm)) × L2

F (t, T ; Rm). 
Moreover, there exists a constant K > 0, independent of (t, ξ) and u, such that

Et

[
sup

t≤r≤T

(
|X(r)|2 + |Y (r)|2

)
+

T∫
t

|Z(s)|2ds
]

≤ KEt

[
1 + |ξ|2 +

T∫
t

|u(s)|2ds
]
.

In addition, if (H2) holds, then for any initial pair (t, ξ) ∈ D, control u ∈ U [t, T ], and the corresponding 
state process (X, Y, Z), BSVIE (1.3) admits a unique adapted solution (Y 0, Z0) ∈ CF ([t, T ]; L2(Ω; R)) ×
C([t, T ]; L2

F (· , T ; R)). Moreover, there exists a constant K > 0, independent of (t, ξ) and u, such that

sup
t≤r≤T

Et

[
|Y 0(r)|2 +

T∫
r

|Z0(r, s)|2ds
]

≤ KEt

[
1 + |ξ|2 +

T∫
t

|u(s)|2ds
]
.

As another preparation, we consider the following system of FBSDEs and BSVIEs without controls over 
[t, T ]:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(r) = ξ +
r∫

t

b(s, X(s))ds +
r∫

t

σ(s, X(s))dW (s),

Y (r) = h(X(T )) +
T∫

r

g(s, X(s), Y (s), Z(s))ds −
T∫

r

Z(s)dW (s),

Y 0(r) = h0(r, X(r), X(T ), Y (r)) +
T∫

r

g0(r, s, X(r), X(s), Y (s), Z(s), Y 0(s), Z0(r, s))ds

−
T∫

r

Z0(r, s)dW (s),

(2.1)

where the coefficients b, σ, h, g, h0, g0 satisfy (H1)–(H2) (independent of the control u). Suggested by Wang–
Yong [67] and Wang–Yong–Zhang [64], we introduce the following system of semi-linear PDEs:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θk
s(s, x) + 1

2tr [Θk
xx(s, x)σ(s, x)σ(s, x)�] + Θk

x(s, x)b(s, x)

+ g
(
s, x, Θ(s, x), Θx(s, x)σ(s, x)

)
= 0, ∀(s, x) ∈ [t, T ] × Rn, 1 ≤ k ≤ m,

Θ0
s(r, s, x̃, x, y) + 1

2tr [Θ0
xx(r, s, x̃, x, y)σ(s, x)σ(s, x)�] + Θ0

x(r, s, x̃, x, y)b(s, x)

+ g0(
r, s, x̃, x, Θ(s, x), Θx(s, x)σ(s, x), Θ0(s, s, x, x, Θ(s, x)), Θ0

x(r, s, x̃, x, y)σ(s, x)
)

= 0,

∀(r, s, x̃, x, y) ∈ Δ∗[t, T ] × Rn × Rn × Rm,

Θ(T, x) = h(x), Θ0(r, T, x̃, x, y) = h0(r, x̃, x, y),

(2.2)

with Θ = (Θ1, · · ·, Θm)�. Note that Θ0 is a function of (r, s, ̃x, x, y), and Θ0
x, Θ0

xx are the derivatives with 
respect to the 4th argument. We have the following representation theorem.

Proposition 2.2. Suppose that the PDE (2.2) admits a classical solution (Θ, Θ0). Assume that the system of 
FBSDEs and BSVIEs (2.1) admits a unique adapted solution (X, Y, Z, Y 0, Z0). Then the following repre-
sentation holds:

Y (r) = Θ(r, X(r)), Z(r) = Θx(r, X(r))σ(r, X(r)), r ∈ [t, T ], a.s.,

Y 0(r) = Θ0(
r, r, X(r), X(r), Θ(r, X(r))

)
, r ∈ [t, T ], a.s.,

Z0(r, s) = Θ0
x

(
r, s, X(r), X(s), Θ(r, X(r))

)
σ(s, X(s)), (r, s) ∈ Δ∗[t, T ], a.s.

The proof of Proposition 2.2 is given in [65].

Remark 2.3. Proposition 2.2 is a generalization of the Feynman–Kac formula for Markovian BSVIEs, which 
was established by Wang–Yong [67] and Wang [62], in the sense of classical solutions. Under the non-
degenerate assumption, the well-posedness of PDE (2.2) will be established by an analytic method, as a 
byproduct of Theorem 2.10. The probabilistic approach, without the non-degenerate assumption, can be 
also obtained by the arguments employed by Wang–Yong–Zhang [64].

2.2. Time-inconsistency analysis of problem (N)

In this subsection, we shall discuss the time-inconsistency of Problem (N) from the Pontryagin’s maximum 
principle viewpoint. For simplicity, we consider the case that (1.5) holds so that the cost functional reads 
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as (1.6) (of Bolza type, without involving BSVIEs). Also, we suppose that the control domain U ≡ R�

and all involved functions are continuously differentiable. Let 
(
X̄t,ξ, ūt,ξ, Ȳ t,ξ, Z̄t,ξ

)
be an optimal 4-tuple 

(supposing it exists) of Problem (N) on [t, T ] with a given initial pair (t, ξ) ∈ D, for which we assume to be 
time-consistent. Then, for any τ ∈ (t, T ],

J(τ, X̄t,ξ(τ); ūt,ξ|[τ,T ]) = inf
u∈U [τ,T ]

J(τ, X̄t,ξ(τ); u),

and

(
X̄t,ξ(s), ūt,ξ(s), Ȳ t,ξ(s), Z̄t,ξ(s)

)
=

(
X̄τ,X̄t,ξ(τ)(s), ūτ,X̄t,ξ(τ)(s), Ȳ τ,X̄t,ξ(τ (s), Z̄τ,X̄t,ξ(τ)(s)

)
, s ∈ [τ, T ], a.s.

Now, we denote

b̄t,ξ
x (s) = bx(s, X̄t,ξ(s), ūt,ξ(s)), b̄t,ξ

u (s) = bu(s, X̄t,ξ(s), ūt,ξ(s)),

ḡt,ξ
x (s) = gx(s, X̄t,ξ(s), ūt,ξ(s), Ȳ t,ξ(s), Z̄t,ξ(s)), ḡt,ξ

u (s) = gu(s, · · ·, Z̄t,ξ(s)),

ḡt,ξ
y (s) = gy(s, · · ·, Z̄t,ξ(s)), ḡt,ξ

z (s) = gz(s, · · ·, Z̄t,ξ(s)),

h̄t,ξ
x (T ) = hx(X̄t,ξ(T )), h̄0,t,ξ

x (t) = h0
x(X̄t,ξ(T ), Ȳ t,ξ(t)),

and σ̄t,ξ
x (s), σ̄t,ξ

u (s), ḡ0,t,ξ
x (s), ḡ0,t,ξ

u (s), ḡ0,t,ξ
y (s), ḡ0,t,ξ

z (s), h̄0,t,ξ
y (t) are defined similarly. Then by applying the 

Pontryagin’s maximum principle (see [47,24,25], for examples), to the optimal 4-tuple on [t, T ] and [τ, T ], 
respectively, we get the following stationarity conditions:

ḡ0,t,ξ
u (s)� + ḡt,ξ

u (s)�X t,ξ(s) + b̄t,ξ
u (s)�Yt,ξ(s)

+ σ̄t,ξ
u (s)�Zt,ξ(s) = 0, s ∈ [t, T ], (2.3)

ḡ0,t,ξ
u (s)� + ḡt,ξ

u (s)�X τ,X̄t,ξ(τ)(s) + b̄t,ξ
u (s)�Yτ,X̄t,ξ(τ)(s)

+ σ̄t,ξ
u (s)�Zτ,X̄t,ξ(τ)(s) = 0, s ∈ [τ, T ], (2.4)

where (Yt,ξ, Zt,ξ) is the co-state process pair of X̄t,ξ, and X t,ξ is the co-state process of (Ȳ t,ξ, Z̄t,ξ), for 
which the following holds on [t, T ] almost surely:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dYt,ξ(s) = −
[
ḡt,ξ

x (s)�X t,ξ(s) + b̄t,ξ
x (s)�Yt,ξ(s) + σ̄t,ξ

x (s)�Zt,ξ(s) + ḡ0,t,ξ
x (s)�]

ds

+ Zt,ξ(s)dW (s),

dX t,ξ(s) =
[
ḡt,ξ

y (s)�X t,ξ(s) + ḡ0,t,ξ
y (s)�]

ds +
[
ḡt,ξ

z (s)�X t,ξ(s) + ḡ0,t,ξ
z (s)�]

dW (s),

Yt,ξ(T ) = h̄t,ξ
x (T )�X t,ξ(T ) + h̄0,t,ξ

x (t)�, X t,ξ(t) = Et[h̄0,t,ξ
y (t)�],

(2.5)
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and (Yτ,X̄t,ξ(τ), Zτ,X̄t,ξ(τ)) is the co-state process pair of X̄τ,X̄t,ξ(τ), and X τ,X̄t,ξ(τ) is the co-state process 
of (Ȳ τ,X̄t,ξ(τ), Z̄τ,X̄t,ξ(τ)), for which the following holds on [τ, T ] almost surely:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dYτ,X̄t,ξ(τ)(s) = −
[
ḡt,ξ

x (s)�X τ,X̄t,ξ(τ)(s) + b̄t,ξ
x (s)�Yτ,X̄t,ξ(τ)(s)

+ σ̄t,ξ
x (s)�Zτ,X̄t,ξ(τ)(s) + ḡ0,t,ξ

x (s)�]
ds + Zτ,X̄t,ξ(τ)(s)dW (s),

dX τ,X̄t,ξ(τ)(s) =
[
ḡt,ξ

y (s)�X τ,X̄t,ξ(τ)(s) + ḡ0,t,ξ
y (s)�]

ds

+
[
ḡt,ξ

z (s)�X τ,X̄t,ξ(τ)(s) + ḡ0,t,ξ
z (s)�]

dW (s),

Yτ,X̄t,ξ(τ)(T ) = h̄t,ξ
x (T )�X τ,X̄t,ξ(τ)(T ) + h̄0,t,ξ

x (τ)�,

X τ,X̄t,ξ(τ)(τ) = Eτ [h̄0,t,ξ
y (τ)�].

(2.6)

We conclude the results as follows.

Proposition 2.4. If the optimal 4-tuple (X̄t,ξ, ̄ut,ξ, Ȳ t,ξ, Z̄t,ξ) is time-consistent, then (2.4) holds for any 
τ ∈ (t, T ], subject to (2.6).

The necessary condition (2.4) with τ ∈ [t, T ] can be regarded as a dynamic version of the famous 
Pontryagin’s maximum principle. Interestingly, we can use it to characterize the time-consistency of the 
optimal controls.

Now, let us make a careful comparison between (2.5) and (2.6). First of all, these decoupled FBSDEs 
have exactly the same coefficients. If we restrict (2.5) on [τ, T ], then it has the initial condition X t,ξ(τ), and 
we do not expect the following:

X t,ξ(τ) = Eτ [h̄0,t,ξ
y (τ)�] ≡ Eτ

[
h0

y(X̄t,ξ(T ), Ȳ t,ξ(t))�]
, ∀τ ∈ (t, T ].

Hence, in general, the following cannot be guaranteed:(
X τ,X̄t,ξ(τ)(s), ūτ,X̄t,ξ(τ)(s), Yτ,X̄t,ξ(τ)(s), Zτ,X̄t,ξ(τ)(s)

)
=

(
X t,ξ(s), ūt,ξ(s), Yt,ξ(s), Zt,ξ(s)

)
, s ∈ [τ, T ], a.s., ∀τ ∈ [t, T ].

Consequently, having (2.3), it is too much to request (2.4). From this, we see that Problem (N) is intrinsically 
time-inconsistent.

2.3. Equilibrium strategy and equilibrium HJB equation

Since Problem (N) is time-inconsistent in general, we shall find the equilibrium strategy, whose definition 
is given as follows.

Definition 2.5. A mapping Ψ : [0, T ] ×Rn → U is called a feedback strategy (of state equation (1.1)) on [0, T ]
if for every (t, ξ) ∈ D, the following closed-loop system:⎧⎪⎪⎨⎪⎪⎩

dX(s) = b(s, X(s), Ψ(s, X(s)))ds + σ(s, X(s), Ψ(s, X(s)))dW (s),

dY (s) = −g(s, X(s), Ψ(s, X(s)), Y (s), Z(s))ds + Z(s)dW (s),

X(t) = ξ, Y (T ) = h(X(T )),

admits a unique adapted solution (X, Y, Z) ≡
(
X(· ; t, ξ, Ψ), Y (· ; t, ξ, Ψ), Z(· ; t, ξ, Ψ)

)
≡ (XΨ, Y Ψ, ZΨ) and 

the outcome uΨ ≡ Ψ(· , XΨ(·)) of Ψ belongs to U [t, T ].
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We now introduce the following definition.

Definition 2.6. A feedback strategy Ψ̄, with X̄ being the forward component of the corresponding state 
process, is called an equilibrium strategy if

liminfε→0+
J(t, X̄(t); Ψε) − J(t, X̄(t); Ψ̄)

ε
≥ 0,

for any t ∈ [0, T ) and u ∈ L2
Ft

(Ω; U), where

Ψε(s) :=
{

Ψ̄(s, Xε(s)), s ∈ [t + ε, T ];

u, s ∈ [t, t + ε),
(2.7)

with Xε := XΨε ≡ X(· ; t, X̄(t), Ψε) being the forward component of the state process corresponding to Ψε.

The intuition behind Definition 2.6 is similar to that in [73,26,6,63]. At any given time t, the controller is 
playing a game with all his/her incarnations in the future by minimizing his/her cost functional on [t, t +ε), 
and knowing that he/she will lose the control of the system beyond t + ε. We now briefly list our main 
results as follows.

To find an equilibrium strategy of Problem (N), we introduce the following spaces:

A[0, T ] := [0, T ] × Rn × U × Rm × Rm×n,

A0[0, T ] := Δ∗[0, T ] × Rn × Rn × U × Rm × Rm×n × R × R1×n.

For simplicity, we denote

Θ = (θ, p) ∈ Rm × Rm×n, Θ0 = (θ0, p0) ∈ R × R1×n.

Now, we define the following Hamiltonians:

H(s, x, u, Θ, P ) = tr[Pa(s, x, u)] + pb(s, x, u) + g
(
s, x, u, θ, pσ(s, x, u)

)
,

H0(t, s, x̃, x, u, Θ, Θ0, P 0)

= tr[P 0a(s, x, u)] + p0b(s, x, u) + g0(t, s, x̃, x, u, θ, pσ(s, x, u), θ0, p0σ(s, x, u)),

Ĥ
0
(t, s, x̃, x, u, Θ, P, Θ0, q0, P 0)

= H0(t, s, x̃, x, u, H, H0, P 0) + q0H(s, x, u, Θ, P ),

∀(t, s, x̃, x, u, Θ, Θ0) ∈ A0[0, T ], P ∈
[
Sn

]m
, q0 ∈ R1×m, P 0 ∈ Sn, (2.8)

where a is defined by

a(s, x, u) = 1
2σ(s, x, u)σ(s, x, u)�, (s, x, u) ∈ [0, T ] × Rn × U,

and, with P = (P 1, P 2, · · ·, P m)� ∈ [Sn]m,

tr
[
Pa(s, x, u)

]
=

⎛⎜⎜⎜⎝
tr

[
P 1a(s, x, u)

]
tr

[
P 2a(s, x, u)

]
...[

m
]
⎞⎟⎟⎟⎠ .
tr P a(s, x, u)
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In what follows, we will use the following hypothesis.

(H3). Suppose that there exists a unique mapping ψ such that

Ĥ
0
(t, s, x̃, x, ψ(t, s, x̃, x, Θ, P, Θ0, q0, P 0), Θ, P , Θ0, q0, P 0)

= inf
u∈U

Ĥ
0
(t, s, x̃, x, u, Θ, P, Θ0, q0, P 0),

∀(t, s, x̃, x, u, Θ, Θ0) ∈ A0[0, T ], P ∈
[
Sn

]m
, q0 ∈ R1×m, P 0 ∈ Sn. (2.9)

Moreover, we suppose that ψ is smooth enough with bounded derivatives.

We now introduce the following equilibrium HJB equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θs(s, x) + H
(
s, x, Ψ̄(s, x), Θ(s, x), Θx(s, x), Θxx(s, x)

)
= 0,

Θ0
s(t, s, x̃, x, y) + H0(

t, s, x̃, x, Ψ̄(s, x), Θ(s, x), Θx(s, x),

Θ0(s, s, x, x, Θ(s, x)), Θ0
x(t, s, x̃, x, y), Θ0

xx(t, s, x̃, x, y)
)

= 0,

(t, s, x̃, x, y) ∈ Δ∗[0, T ] × Rn × Rn × Rm,

Θ(T, x) = h(x), Θ0(t, T, x̃, x, y) = h0(t, x̃, x, y),

(t, x̃, x, y) ∈ [0, T ] × Rn × Rn × Rm,

(2.10)

where for any (s, x) ∈ [0, T ] × Rn,

Ψ̄(s, x) = ψ
(
s, s, x, x, Θ(s, x), Θx(s, x), Θxx(s, x), Θ0(s, s, x, x, Θ(s, x)),

Θ0
x(s, s, x, x, Θ(s, x)), Θ0

y(s, s, x, x, Θ(s, x)), Θ0
xx(s, s, x, x, Θ(s, x))

)
. (2.11)

We have the following result.

Theorem 2.7. Let Ψ̄ : [0, T ] × Rn → U be defined by (2.11), with (Θ, Θ0) being the classical solution to the 
equilibrium HJB equation (2.10). Let Ψ̄ be a feedback strategy. Then it is an equilibrium strategy of Problem 
(N).

Remark 2.8. Theorem 2.7 is a verification theorem for Problem (N), whose proof is given in Section 6. 
Taking the equilibrium strategy Ψ̄ in (1.1) and (1.3), we get the following equilibrium system on [0, T ]:⎧⎪⎪⎨⎪⎪⎩

dX̄(s) = b(s, X̄(s), Ψ̄(s, X̄(s)))ds + σ(s, X̄(s), Ψ̄(s, X̄(s)))dW (s),

dȲ (s) = −g(s, X̄(s), Ψ̄(s, X̄(s)), Ȳ (s), Z̄(s))ds + Z̄(s)dW (s),

X̄(0) = ξ, Ȳ (T ) = h(X̄(T )),

and

Ȳ 0(r) = h0(r, X̄(r), X̄(T ), Ȳ (r)) −
T∫

r

Z̄0(r, s)dW (s)

+
T∫

r

g0(
r, s, X̄(r), X̄(s), Ψ̄(s, X̄(s)), Ȳ (s), Z̄(s), Ȳ 0(s), Z̄0(r, s)

)
ds.
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Then by Proposition 2.2, we have the following representation formula:

Ȳ (r) = Θ(r, X̄(r)), Z̄(r) = Θx(r, X̄(r))σ(r, X̄(r), Ψ̄(r, X̄(r))),

Ȳ 0(r) = Θ0(
r, r, X̄(r), X̄(r), Θ(r, X̄(r))

)
,

Z̄0(r, s) = Θ0
x

(
r, s, X̄(r), X̄(s), Θ(r, X̄(r))

)
σ(s, X̄(s), Ψ̄(s, X̄(s))),

provided the equilibrium HJB equation (2.10) admits a classical solution (Θ, Θ0). Thus, the form of the 
equilibrium HJB equation (2.10) is very natural, though it seems a little bit complicated. Using the local 
optimality condition (2.9), the equilibrium strategy value Ψ̄(s, x) is determined by Θ(s, x) and the diagonal 
value Θ0(s, s, x, x, Θ(s, x)).

Remark 2.9. If the cost functional reads as (1.6), then we have

H0(s, x, u, Θ, Θ0, P 0) = tr[P 0a(s, x, u)] + p0b(s, x, u) + g0(s, x, u, θ, pσ(s, x, u)),

Ĥ
0
(s, x, u, Θ, P, Θ0, q0, P 0) = tr[P 0a(s, x, u)] + p0b(s, x, u) + g0(s, x, u, θ, pσ(s, x, u))

+ q0(
tr[Pa(s, u, x)] + pb(s, x, u) + g(s, x, u, θ, pσ(s, x, u))

)
,

∀(s, x, u, Θ, P, Θ0, q0, P 0) ∈ A[0, T ] × [Sn]m × R × R1×n × R1×m × Sn. (2.12)

2.4. Well-posedness of the equilibrium HJB equation

In this subsection, we will present the well-posedness of equation (2.10) to some extent. Note that (2.10) is 
a coupled system of fully nonlinear parabolic PDEs with a non-local feature, whose well-posedness is a very 
challenging problem. Indeed, even for the equilibrium HJB equation associated with the time-inconsistent 
problems for SDEs (see Yong [73]), the well-posedness is still widely open, except when the time horizon 
is small enough (see Lei–Pun [36]). For the small time case, one can construct a contraction mapping in a 
Banach space depending on the terminal conditions and does not need to establish a prior estimate, which 
is exactly the main difficulty in establishing the well-posedness.

We now assume that

σ(s, x, u) = σ(s, x), (s, x, u) ∈ [0, T ] × Rn × U. (2.13)

In this case, we denote

H(s, x, u, Θ) = pb(s, x, u) + g(s, x, u, θ, pσ(s, x)),

H0(t, s, x̃, x, u, Θ, Θ0) = p0b(s, x, u) + g0(t, s, x̃, x, u, θ, pσ(s, x), θ0, p0σ(s, x)),

Ĥ
0
(t, s, x̃, x, u, Θ, Θ0, q0) = H0(t, s, x̃, x, u, Θ, Θ0) + q0H(s, x, u, Θ),

∀(t, s, x̃, x, u, Θ, Θ0) ∈ A0[0, T ], q0 ∈ R1×m.

Then the mapping ψ determined by (H3) can be determined by the following:

Ĥ
0
(t, s, x̃, x, ψ(t, s, x̃, x, Θ, Θ0, q0), Θ, Θ0, q0) = inf

u∈U
Ĥ

0
(t, s, x̃, x, u, Θ, Θ0, q0),

∀(t, s, x̃, x, u, Θ, Θ0) ∈ A0[0, T ], q0 ∈ R1×m. (2.14)

Namely, in the current case, ψ is independent of P and P 0. Then (2.10) is reduced to the following system 
of semilinear PDEs:



16 H. Wang et al. / J. Math. Pures Appl. 190 (2024) 103603
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θs(s, x) + tr[Θxx(s, x)a(s, x)] + Θx(s, x)b(s, x, Ψ̄(s, x))

+ g(s, x, Ψ̄(s, x), Θ(s, x), Θx(s, x)σ(s, x)) = 0,

Θ0
s(t, s, x̃, x, y) + tr[Θ0

xx(t, s, x̃, x, y)a(s, x)] + Θ0
x(t, s, x̃, x, y)b(s, x, Ψ̄(s, x))

+ g0(
t, s, x̃, x, Ψ̄(s, x), Θ(s, x), Θx(s, x)σ(s, x), Θ0(s, s, x, x, Θ(s, x)),

Θ0
x(t, s, x̃, x, y)σ(s, x)

)
= 0,

Θ(T, x) = h(x), Θ0(t, T, x̃, x, y) = h0(t, x̃, x, y),

(2.15)

with

Ψ̄(s, x) = ψ
(
s, s, x, x, Θ(s, x), Θx(s, x), Θ0(s, s, x, x, Θ(s, x)),

Θ0
x(s, s, x, x, Θ(s, x)), Θ0

y(s, s, x, x, Θ(s, x))
)
.

Now, we denote

b̃
(
s, x, Θ(s, x), Θx(s, x), Θ0(s, s, x, x, Θ(s, x)), Θ0

x(s, s, x, x, Θ(s, x)), Θ0
y(s, s, x, x, Θ(s, x))

)
:= b

(
s, x, ψ

(
s, s, x, x, Θ(s, x), Θx(s, x), Θ0(s, s, x, x, Θ(s, x)), Θ0

x(s, s, x, x, Θ(s, x)),

Θ0
y(s, s, x, x, Θ(s, x))

))
.

Further, g̃ and g̃0 can be defined similarly. Because of the above dependence, we may write the above (2.15)
as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θs(s, x) + tr[Θxx(s, x)a(s, x)] + Θx(s, x)b̃
(
s, x, Θ(s, x), Θx(s, x),

Θ0(s, s, x, x, Θ(s, x)), Θ0
x(s, s, x, x, Θ(s, x)), Θ0

y(s, s, x, x, Θ(s, x))
)

+ g̃
(
s, x, Θ(s, x), Θx(s, x), Θ0(s, s, x, x, Θ(s, x)),

Θ0
x(s, s, x, x, Θ(s, x)), Θ0

y(s, s, x, x, Θ(s, x))
)

= 0,

Θ0
s(t, s, x̃, x, y) + tr[Θ0

xx(t, s, x̃, x, y)a(s, x)] + Θ0
x(t, s, x̃, x, y)

× b̃
(
s, x, Θ(s, x), Θx(s, x), Θ0(s, s, x, x, Θ(s, x)), Θ0

x(s, s, x, x, Θ(s, x)),

Θ0
y(s, s, x, x, Θ(s, x))

)
+ g̃0(

t, s, x̃, x, Θ(s, x), Θx(s, x), Θ0(s, s, x, x, Θ(s, x)),

Θ0
x(s, s, x, x, Θ(s, x)), Θ0

y(s, s, x, x, Θ(s, x)), Θ0
x(t, s, x̃, x, y)

)
= 0,

Θ(T, x) = h(x), Θ0(t, T, x̃, x, y) = h0(t, x̃, x, y).

(2.16)

Although the above looks complicated, it actually has a usual HJB equation form. For the above system, 
we introduce the following assumption.

(H4). The mappings⎧⎪⎪⎨⎪⎪⎩
(s, x) �→ a(s, x), x �→ h(x), (t, x̃, x, y) �→ h0(t, x̃, x, y),

(s, x, Θ, Θ0, q0) �→ b̃(s, x, Θ, Θ0, q0), (s, x, Θ, Θ0, q0) �→ g̃(s, x, Θ, Θ0, q0),

(t, s, x̃, x, Θ, Θ0, q0, p̂0) �→ g̃0(t, s, x̃, x, Θ, Θ0, q0, p̂0)

are bounded, have all required differentiability with bounded derivatives. Moreover, there exist two constants 
λ0, λ1 > 0 such that

λ0I ≤ a(t, x) ≤ λ1I, ∀(t, x) ∈ [0, T ] × Rn.
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Theorem 2.10. Let (H4) hold. Then the equilibrium HJB equation (2.16) admits a unique classical solution.

The proof of Theorem 2.10 is technical and lengthy, which will be given in Section 7. Note that (2.16)
contains the diagonal term Θ0

y(s, s, x, x, Θ(s, x)). To our best knowledge, it is the first time that such type 
of equilibrium HJB equations is derived.

3. Comparison with the existing results

3.1. Comparison with Peng [49]

In [49], Peng established the well-known dynamic programming principle (DPP, for short) for the recursive 
optimal control problem with the state equation⎧⎪⎪⎨⎪⎪⎩

dX(s) = b(s, X(s), u(s))ds + σ(s, X(s), u(s))dW (s), s ∈ [t, T ],

dY (s) = −g(s, X(s), u(s), Y (s), Z(s))ds + Z(s)dW (s), s ∈ [t, T ],

X(t) = ξ, Y (T ) = h(X(T )),

(3.1)

and the cost functional

J(t, ξ; u) = Y (t), (3.2)

with the backward process Y being one-dimensional. Such a problem is denoted by Problem (R). It turns out 
that in this case, the optimal control problem is time-consistent. The following provides a time-consistency 
analysis of Problem (R) from the viewpoint of Pontryagin’s maximum principle.

Proposition 3.1. Suppose that ūt,ξ is an optimal control of Problem (R) with the initial pair (t, ξ) ∈ D. Then 
ūt,ξ satisfies the necessary condition (2.4) for any τ ∈ (t, T ].

Proposition 3.1 can be proved by comparing (2.3)–(2.4), and we give the proof in [65].
We remark that Problem (R) is a very special case of Problem (N). When Y is multi-dimensional, the 

problem is time-inconsistent in general, even if J(t, ξ; u) is a linear function of Y (t). Here is a simple example.

Example 3.2. Consider the (degenerate) FBSDE state equation

{
Ẋ(s) = 0, Ẏ1(s) = u(s), Ẏ2(s) = −Y1(s) − u(s) − |u(s)|2, s ∈ [t, T ],

X(t) = x, Y1(T ) = 0, Y2(T ) = 0,

with the cost functional

J(t, x; u) = Y2(t).

Then

J(t, x; u) =
T∫

t

[
(1 + t − s)u(s) + |u(s)|2

]
ds.

Thus, the unique optimal control ū(· ; t, x) for initial pair (t, x) is given by



18 H. Wang et al. / J. Math. Pures Appl. 190 (2024) 103603
ū(s) ≡ ū(s; t, x) = s − t − 1
2 , s ∈ [t, T ].

And for any 0 ≤ t < τ ≤ T , the optimal control at (τ, X̄(τ)) ≡ (τ, x) is given by

ũ(s) ≡ ũ(s; τ, X̄(τ)) = s − τ − 1
2 , s ∈ [τ, T ].

Clearly,

ū(s) 	= ũ(s), s ∈ [τ, T ],

which implies that the problem is time-inconsistent.

We now show that in the case of (3.1)–(3.2) (with m = 1), the equilibrium HJB equation (2.10) is reduced 
to the classical HJB equation associated with recursive stochastic optimal control problems. In fact, the 
associated equilibrium HJB equation is given as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θs(s, x) + Θx(s, x)b(s, x, Ψ̄(s, x)) + tr[Θxx(s, x)a(s, x, Ψ̄(s, x))]

+ g(s, x, Ψ̄(s, x), Θ(s, x), Θx(s, x)σ(s, x, Ψ̄(s, x))) = 0,

Θ0
s(t, s, x̃, x, y) + Θ0

x(t, s, x̃, x, y)b(s, x, Ψ̄(s, x))

+ tr[Θ0
xx(t, s, x̃, x, y)a(s, x, Ψ̄(s, x))] = 0,

Θ(T, x) = h(x), Θ0(t, y, z, T, x) = y,

(3.3)

where Ψ̄ satisfies the local optimality condition (2.9). Clearly, Θ0 ≡ y is a classical solution to the second PDE 
in (3.3). Thus, the local optimality condition (2.9) can be rewritten as follows: For any (s, x) ∈ [0, T ] ×Rn,

H(s, x, Ψ̄(s, x), Θ(s, x), Θx(s, x), Θxx(s, x))

= inf
u∈U

H(s, x, u, Θ(s, x), Θx(s, x), Θxx(s, x)),

where H is defined by (2.8). Then the equilibrium value function is given by

Θ0(s, s, x, x, Θ(s, x)) = Θ(s, x), (s, x) ∈ [0, T ] × Rn,

with Θ being uniquely determined by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Θs(s, x) + inf

u∈U

{
Θx(s, x)b(s, x, u) + tr[Θxx(s, x)a(s, x, u)]

+ g(s, x, u, Θ(s, x), Θx(s, x)σ(s, x, u))
}

= 0, (s, x) ∈ [0, T ] × Rn,

Θ(T, x) = h(x), x ∈ Rn,

which is exactly the HJB equation derived by Peng [49].

3.2. Comparison with Yong [73,75] and Wang–Yong [63]

As an equilibrium recursive version of [73,75,68], Wang–Yong [63] considered the optimal control problems 
with the state equation given by the forward equation in (1.1), and the cost functional given by

J(t, ξ; u) = Y 0(t),
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where Y 0 is uniquely determined by the following BSVIE:

Y 0(r) = h0(r, X(T )) +
T∫

r

g0(r, s, X(s), u(s), Y 0(s), Z0(r, s))ds

−
T∫

r

Z0(r, s)dW (s), r ∈ [t, T ].

Then by comparing the above with (1.2) and (1.3), we see that in our problem, the cost functional can 
additionally depend on the initial state X(r) and the backward process (Y, Z). If the diffusion term of 
the state equation does not depend on the control u, the associated equilibrium HJB equation admits the 
following form:

⎧⎪⎪⎨⎪⎪⎩
Θ0

s(t, s, x) + tr[Θ0
xx(t, s, x)a(s, x)] + Θ0

x(t, s, x)b̃
(
s, x, Θ0(s, s, x), Θ0

x(s, s, x)
)

+ g̃0(
t, s, x, Θ0(s, s, x), Θ0

x(s, s, x), Θ0
x(t, s, x)

)
= 0, (t, s) ∈ Δ∗[0, T ], x ∈ Rn,

Θ0(t, T, x) = h0(t, x), (t, x) ∈ [0, T ] × Rn.

(3.4)

Compared with the equilibrium HJB equation (3.4) derived in [73,68,63], (2.16) has the following new 
features:

• Equilibrium HJB equation (2.16) is a coupled system of parabolic PDEs. It is interesting that the 
last PDE in (2.16) is coupled with the first m equations not only through the appearance of Θ(s, x) and 
Θx(s, x) in the function g0, but also through the non-local terms Θ0(s, s, x, x, Θ(s, x)), Θ0

x(s, s, x, x, Θ(s, x)), 
and Θ0

y(s, s, x, x, Θ(s, x)) of the unknown function Θ0.
• Equilibrium HJB equation (2.16) depends on the partial derivative Θ0

y along the “diagonal” points 
(s, s, x, x, Θ(s, x)), by which we see that the backward controlled equation has a significant influence on 
deducing the equilibrium HJB equation. To be more clear, we take a look at this from a probabilistic 
viewpoint. By the Itô’s formula, the stochastic system associated with (2.16) reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(t) = ξ +
t∫

0

b̃
(
s, X(s), Y (s), Z(s)σ(s, X(s))−1, Y 0(s),

Z0(s, s)σ(s, X(s))−1, Ŷ 0(s)
)
ds +

t∫
0

σ(s, X(s))dW (s),

Y (t) = h(X(T )) +
T∫

t

g̃
(
s, X(s), Y (s), Z(s)σ(s, X(s))−1, Y 0(s),

Z0(s, s)σ(s, X(s))−1, Ŷ 0(s)
)
ds −

T∫
Z(s)dW (s),
t
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and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y 0(t) = h0(t, X(t), X(T ), Y (t)) +
T∫

t

g̃0(
t, s, X(t), X(s), Y (s), Z(s)σ(s, X(s))−1, Y 0(s),

Z0(s, s)σ(s, X(s))−1, Ŷ 0(s), Z0(t, s)σ(s, X(s))−1)
ds −

T∫
t

Z0(t, s)dW (s),

Ŷ 0(t) = h0
y(t, X(t), X(T ), Y (t)) +

T∫
t

g̃0
p0

(
t, s, X(t), X(s), Y (s), Z(s)σ(s, X(s))−1, Y 0(s),

Z0(s, s)σ(s, X(s))−1, Ŷ 0(s), Z0(t, s)σ(s, X(s))−1)
Ẑ0(t, s)σ(s, X(s))−1ds

−
T∫

t

Ẑ0(t, s)dW (s).

Compared with [63, Theorem 5.1], the first backward equation and the third backward equation are new. 
The appearance of the first backward equation is natural, because the state system (1.1) is a controlled 
FBSDE. However, the appearance of the third backward equation is surprising. Indeed, the process Ŷ 0 is 
introduced for providing a probabilistic representation for Θ0

y(s, x, s, x, Θ(s, x)), which comes from the local 
optimality condition of the Hamiltonian (2.14).

3.3. Comparison with Björk–Khapko–Murgoci [6]

In [6], Björk, Khapko, and Murgoci considered the optimal control problems with the state equation{
dX(s) = b(s, X(s), u(s))ds + σ(s, X(s), u(s))dW (s),

X(t) = ξ,
(3.5)

and the cost functional

J(t, x; u) = Et[F̂ (X(t), X(T ))] + Ĝ(X(t)Et[X(T )]),

where F̂ and Ĝ are given deterministic functions. The so-called extended HJB equation derived by Björk–
Khapko–Murgoci [6] reads⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

inf
u∈U

(
(AuV̂ )(t, x) − (Auf̂)(t, x, x) + (Auf̂x)(t, x) − Au(Ĝ � ĝ)(t, x)

+ (Huĝ)(t, x)
)

= 0, Aûf̂ x̃(t, x) = 0, Aûĝ(t, x) = 0,

V̂ (T, x) = F̂ (x, x) + Ĝ(x, x), f̂ x̃(T, x) = F̂ (x̃, x), ĝ(T, x) = x,

(3.6)

where û(t, x); (t, x) ∈ [0, T ] ×Rn denotes the strategy which realizes the infimum in the first equation; that 
is

(AûV̂ )(t, x) − (Aûf̂)(t, x, x) + (Aûf̂x)(t, x) − Aû(Ĝ � ĝ)(t, x) + (H ûĝ)(t, x)

= inf
u∈U

(
(AuV̂ )(t, x) − (Auf̂)(t, x, x) + (Auf̂x)(t, x) − Au(Ĝ � ĝ)(t, x) + (Huĝ)(t, x)

)
.

In the above, the following notations are used
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f̂(t, x, x̃) = f̂ x̃(t, x), (Ĝ � ĝ)(t, x) = Ĝ(x, ĝ(t, x)),

Huĝ(t, x) = Ĝy(s, ĝ(t, x))Auĝ(t, x),

and the operator Au is determined by

Et[k(t + h, X(t + h))] = k(t, x) + hAuk(t, x) + o(h), ∀k ∈ C1,2,

where X = X(·; t, x, u) is the unique solution to (3.5).
The associated equilibrium HJB equation (2.10) reads⎧⎪⎪⎨⎪⎪⎩

Θs(s, x) + Θx(s, x)b(s, x, Ψ̄(s, x)) + tr [Θxx(s, x)a(s, x, Ψ̄(s, x))] = 0,

Θ0
s(s, x̃, x, y) + tr [Θ0

xx(s, x̃, x, y)a(s, x, Ψ̄(s, x))] + Θ0
x(s, x̃, x, y)b(s, x, Ψ̄(s, x)) = 0,

Θ(T, x) = x, Θ0(T, x̃, x, y) = F̂ (x̃, x) + Ĝ(x̃, y),

(3.7)

where Ψ̄ satisfies the local optimality condition:

Θ0
x(t, x, x, Θ(t, x))b(t, x, Ψ̄(t, x)) + tr [Θ0

xx(t, x, x, Θ(t, x))a(t, x, Ψ̄(t, x))]

+ Θ0
y(t, x, x, Θ(t, x))

{
Θx(t, x)b(t, x, Ψ̄(t, x)) + tr [Θxx(t, x)a(t, x, Ψ̄(t, x))]

}
= inf

u∈U

{
Θ0

x(t, x, x, Θ(t, x))b(t, x, u) + tr [Θ0
xx(t, x, x, Θ(t, x))a(t, x, u)]

+ Θ0
y(t, x, x, Θ(t, x))

{
Θx(t, x)b(t, x, u) + tr [Θxx(t, x)a(t, x, u)]

}}
.

Now we compare the equilibrium HJB equation (3.7) with the extended HJB equation (3.6) derived in 
[6] carefully.

Proposition 3.3. Suppose that the equilibrium HJB equation (3.7) admits a classical solution (Θ, Θ0). Then 
the solution V̂ of the extended HJB equation (3.6) and the equilibrium control law û can be given by

V̂ (t, x) = Θ0(t, x, x, Θ(t, x)), û(t, x) = Ψ̄(t, x), (t, x) ∈ [0, T ] × Rn.

The proof of Proposition 3.3 is given in [65]. Compared with Björk–Khapko–Murgoci [6], our approach 
has the following advantages.

• The equilibrium value function is given by V̂ (t, x) ≡ Θ0(t, x, x, Θ(t, x)), in which Θ0(· , ̃x, · , y) can 
be regarded as an auxiliary function with parameters (x̃, y). By introducing this auxiliary function, the 
structure of equilibrium HJB equations is much clearer than that of extended HJB equations (compare 
(3.7) with (3.6), for example), and the meaning of the two PDEs in equilibrium HJB equations is also very 
clear (see Remark 2.8).

• The state term X(T ) and the conditional expectation term Et[X(T )] in the terminal cost of (1.3) could 
be inseparable, while in [6], they are required to be separable. The reason is that in our approach, we do 
not need to introduce a PDE to give an additional representation for Ĝ(X(t), Et[X(T )]). Thus, there are 
only two PDEs in the equilibrium HJB equation, while the extended HJB equation (3.6) is involved with 
three PDEs.

• More importantly, by Theorem 2.10 the well-posedness of equilibrium HJB equations is established 
under Assumption (H4), while there is no rigorous argument about the well-posedness of the extended HJB 
equation (3.6) given in [6]. More generally, the problem studied in the paper can depend on a controlled 
backward process and have a recursive cost functional, which is determined by a BSVIE. In Subsections 
5.2 and 5.3, two examples are presented to show that the introduction of backward controlled processes is 
necessary in some applications.
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4. Linear-quadratic problems

Consider the controlled linear FBSDEs:⎧⎪⎪⎨⎪⎪⎩
dX(s) = [A(s)X(s) + B(s)u(s)]ds + [C(s)X(s) + D(s)u(s)]dW (s),

dY (s) = −
[
Â(s)X(s) + B̂(s)u(s) + Ĉ(s)Y (s) + D̂(s)Z(s)

]
ds + Z(s)dW (s),

X(t) = x, Y (T ) = HX(T ).

(4.1)

We introduce the following cost functional:

J (t, x; u) = 1
2Et

{ T∫
t

[
〈Q(s)X(s), X(s)〉 + 〈M(s)Y (s), Y (s)〉 + 〈N(s)Z(s), Z(s)〉 + 〈R(s)u(s), u(s)〉

]
ds

+ 〈G1X(T ), X(T )〉 + 〈G2Y (t), Y (t)〉 + 〈G3X(t), Y (t)〉 + 2〈g, X(T )〉
}

. (4.2)

The above problem is referred to as a linear-quadratic (LQ, for short) optimal control problem for 
FBSDEs, due to the linearity of the state equation (4.1) and the quadratic form of the cost functional (4.2). 
For simplicity, we shall denote the optimal control problem with state equation (4.1) and cost functional 
(4.2) by Problem (FBLQ). We refer [38,60,29,61,37,25,55,58] again for some related results of the LQ control 
problems for FBSDEs/BSDEs.

Remark 4.1. Note that in the cost functional (4.2), we introduce a cross term 〈G3X(t), Y (t)〉. In the litera-
ture, the dependence of initial states is motivated by the so-called state-dependent risk aversions in finance 
(see Björk–Murgoci–Zhou [8]). Indeed, the initial state X(t), with a form of 〈X(t), Y (t)〉, will also arise 
naturally when we study the leader’s problem of an LQ Stackelberg game (see [56, Subsection 3.2]).

Let us take a look at a special case of the above LQ problem.

Example 4.2. Let m = n = 1; A, D ≡ 0, C, B ≡ 1; Â, B̂, Ĉ, D̂ ≡ 0, H = 1; and Q, M, N ≡ 0, R ≡ 2I, 
G1 = 0, G2 = 2I, G3 = 0, g = 0. Note that Y (t) = Et[X(T )]. Then the state equation (4.1) and the cost 
functional (4.2) are reduced to

dX(s) = u(s)ds + X(s)dW (s), s ∈ [t, T ], X(t) = x,

and

J(t, x; u) = Et

[ T∫
t

|u(s)|2ds + |Et[X(T )]|2
]
.

By Yong [74], the unique optimal control ū(·; t, x) with initial pair (t, x) is given by

ū(s; t, x) = − x

T − t + 1 , s ∈ [t, T ].

Then the optimal state process X̄ ≡ X̄(· ; t, x) is given by

X̄(s) = e− 1
2 (s−t)+W (s)−W (t)x + x

T − t + 1

s∫
e− 1

2 (s−r)+W (s)−W (r)dr, s ∈ [t, T ].

t
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For any τ ∈ (t, T ), the optimal control with initial pair (τ, X̄(τ)) is given by

ū(s; τ, X̄(τ)) = − X̄(τ)
T − τ + 1 , s ∈ [τ, T ].

Thus, on [τ, T ],

ū(· ; t, x) 	= ū(· ; τ, X̄(τ)),

which implies that the problem is time-inconsistent.

From the above example and Example 1.1, we see that the LQ optimal control problem for FBSDEs is 
also time-inconsistent in general. Recently, an LQ problem for coupled FBSDEs was studied by Hu–Ji–Xue 
[25], in which, however, the time-consistency was not considered. Thus the optimal control obtained in [25]
is a pre-committed optimal control.

In the following, we will mainly look at the corresponding forms of our equilibrium HJB equations. The 
well-posedness of the associated Riccati equation is left for our future research. The associated equilibrium 
HJB equation reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θs(s, x) + Θx(s, x)[A(s)x + B(s)Ψ̄(s, x)]

+ 1
2 〈Θxx(s, x)[C(s)x + D(s)Ψ̄(s, x)], C(s)x + D(s)Ψ̄(s, x)〉

+ Â(s)x + B̂(s)Ψ̄(s, x) + Ĉ(s)Θ(s, x) + D̂(s)Θx(s, x)[C(s)x + D(s)Ψ̄(s, x)] = 0,

Θ0
s(s, x̃, x, y) + Θ0

x(s, x̃, x, y)[A(s)x + B(s)Ψ̄(s, x)]

+ 1
2 〈Θ0

xx(s, x̃, x, y)[C(s)x + D(s)Ψ̄(s, x)], C(s)x + D(s)Ψ̄(s, x)〉

+ 1
2

{
〈Q(s)x, x〉 + 〈M(s)Θ(s, x), Θ(s, x)〉 + 〈R(s)Ψ̄(s, x), Ψ̄(s, x)〉

+ 〈N(s)Θx(s, x)[C(s)x + D(s)Ψ̄(s, x)], Θx(s, x)[C(s)x + D(s)Ψ̄(s, x)]〉
}

= 0,

Θ(T, x) = Hx, Θ0(T, x̃, x, y) = 1
2 〈G1x, x〉 + 1

2 〈G2y, y〉 + 1
2 〈G3x̃, y〉 + 〈g, x〉,

where

Ψ̄(s, x) = −[D�Θ0
xx(s, x, x, Θ(s, x))D + R + D�Θx(s, x)�NΘx(s, x)D]−1

×
{

[D�Θ0
xx(s, x, x, Θ(s, x))C + D�Θx(s, x)�NΘx(s, x)C]x + B�Θ0

x(s, x, x, Θ(s, x))

+ [B�Θx(s, x)� + B̂� + D�Θx(s, x)�D̂�]Θ0
y(s, x, x, Θ(s, x))

}
.

In the above, we have taken the ansatz Θxx ≡ 0. Now let us take the following ansatz for Θ0 and Θ:

Θ0(s, x̃, x, y) = 1
2 〈Φ1(s)x, x〉 + 1

2 〈Φ2(s)y, y〉 + 1
2 〈Φ3(s)x̃, y〉 + Φ4(s)x + Φ5(s),

Θ(s, x) = Φ6(s)x + Φ7(s),

where Φi (i = 1, ..., 7) are undetermined functions (of proper dimensions). Then the equilibrium strategy is 
given by
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Ψ̄(s, x) = −[D�Φ1D + R + D�Φ�
6 NΦ6D]−1

{
D�Φ1C + D�Φ�

6 NΦ6C

+ B�Φ1 + B�Φ�
6 Φ2Φ6 + B̂�Φ2Φ6 + D�Φ�

6 D̂�Φ2Φ6 + 1
2B�Φ�

6 Φ3

+ 1
2 B̂�Φ3 + 1

2D�Φ�
6 D̂�Φ3

}
x − [D�Φ1D + R + D�Φ�

6 NΦ6D]−1

×
{

B�Φ4 + [B�Φ�
6 + B̂� + D�Φ�

6 D̂�]Φ2Φ7
}

=: Ψ̄(s)x + v̄(s), (4.3)

where Φi is determined by the following system of Riccati-type ordinary differential equations (ODEs, for 
short):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ̇1 + Φ1(A + BΨ̄) + (A + BΨ̄)�Φ1 + (C + DΨ̄)�Φ1(C + DΨ̄)

+ Q + Φ�
6 MΦ6 + (C + DΨ̄)�Φ�

6 NΦ6(C + DΨ̄) + Ψ̄�RΨ̄ = 0,

Φ̇2 = 0, Φ̇3 = 0,

Φ̇4 + v̄�B�Φ1 + Φ4(A + BΨ̄) + v̄�D�Φ1(C + DΨ̄) + Φ�
7 MΦ6

+ v̄�D�Φ�
6 NΦ6(C + DΨ̄) + v̄�RΨ̄ = 0,

Φ̇5 + Φ4Bv̄ + 1
2 v̄�D�Φ1Dv̄ + 1

2 v̄�D�Φ�
6 NΦ6Dv̄ + 1

2 v̄�Rv̄ + 1
2Φ�

7 MΦ7 = 0,

Φ̇6 + Φ6(A + BΨ̄) + Â + B̂Ψ̄ + ĈΦ6 + D̂Φ6(C + DΨ̄) = 0,

Φ̇7 + Φ6Bv̄ + B̂v̄ + ĈΦ7 + D̂Φ6Dv̄ = 0,

Φ1(T ) = G1, Φ2(T ) = G2, Φ3(T ) = G3, Φ4(T ) = g,

Φ5(T ) = 0, Φ6(T ) = H, Φ7(T ) = 0.

(4.4)

Proposition 4.3. Suppose that the Riccati equation (4.4) admits a unique solution. Then the strategy Ψ̄ given 
by (4.3) is an equilibrium strategy of Problem (FBLQ).

When the weighting matrices G3 = 0 and g = 0, then Φi ≡ 0 for i = 3, 4, 5, 7, and the Riccati 
equation (4.4) can be simplified. The following result shows that the LQ problem for FBSDEs is closely 
related to the so-called mean-field LQ optimal control problems (see [74,76,57], for example) as well. Let 
Â, B̂, Ĉ, D̂, M, N ≡ 0, G3 = 0, g = 0 and H = In. Then the state equation (4.1) and the cost functional 
(4.2) are reduced to

{
dX(s) = [A(s)X(s) + B(s)u(s)]ds + [C(s)X(s) + D(s)u(s)]dW (s),

X(t) = x,

and

J(t, x; u) = 1
2Et

{ T∫
t

[
〈Q(s)X(s), X(s)〉 + 〈R(s)u(s), u(s)〉

]
ds

+ 〈G1X(T ), X(T )〉 + 〈G2Et[X(T )],Et[X(T )]〉
}

,

respectively. The associated Riccati equation (4.4) reads



H. Wang et al. / J. Math. Pures Appl. 190 (2024) 103603 25
⎧⎪⎪⎨⎪⎪⎩
Φ̇1 + Φ1(A + BΨ̄) + (A + BΨ̄)�Φ1 + (C + DΨ̄)�Φ1(C + DΨ̄) + Q + Ψ̄�RΨ̄ = 0,

Φ̇2 = 0, Φ̇6 + Φ6(A + BΨ̄) = 0,

Φ1(T ) = G1, Φ2(T ) = G2, Φ6(T ) = In,

(4.5)

with

Ψ̄ = −[D�Φ1D + R]−1[D�Φ1C + B�Φ1 + B�Φ�
6 Φ2Φ6]. (4.6)

Denote Φ = Φ1 and Φ̂ = Φ1 + Φ�
6 Φ2Φ6. Then we can rewrite (4.5)–(4.6) as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Φ̇ + Φ(A + BΨ̄) + (A + BΨ̄)�Φ + (C + DΨ̄)�Φ(C + DΨ̄) + Q + Ψ̄�RΨ̄ = 0,

˙̂Φ + Φ̂(A + BΨ̄) + (A + BΨ̄)�Φ̂ + (C + DΨ̄)�Φ(C + DΨ̄) + Q + Ψ̄�RΨ̄ = 0,

Φ(T ) = G1, Φ̂(T ) = G1 + G2,

(4.7)

with

Ψ̄ = −[D�ΦD + R]−1[D�ΦC + B�Φ̂].

We emphasize that (4.7) is exactly a special case of the Riccati-type equation derived by Yong [76]. Thus, 
under some positivity conditions, one can obtain the well-posedness of (4.7) from [76, Theorem 4.6] directly. 
The general well-posedness of Riccati equation (4.4) is still under study and we hope to report it in the 
future.

5. Applications

In this section, we shall investigate three important applications, which are also the main motivations of 
studying forward-backward optimal control problems mentioned in Introduction.

5.1. Dynamic mean-variance models

Consider a Black–Scholes market model in which there is one bond with the riskless interest rate r > 0
and one stock with the appreciation rate μ > 0 and volatility σ > 0. Then a standard argument leads to 
the following SDE for the wealth process X:{

dX(s) = [rX(s) + (μ − r)u(s)]ds + σu(s)dW (s), s ∈ [t, T ],

X(t) = ξ,

where u is the dollar amount invested in the stock. The investor wishes to minimize the following functional:

J(t, ξ; u) = −Et[X(T )] + γ

2Et[|X(T )|2] − γ

2 |Et[X(T )]|2. (5.1)

It is known (see Basak–Chabakauri [3]) that the optimal control of the above mean-variance model is time-
inconsistent. We shall apply Theorem 2.7 to find a time-consistent equilibrium. Note that the cost functional 
(5.1) can be rewritten as

J(t, ξ; u) = −Et[X(T )] + γ

2Et[|X(T )|2] − γ

2 |Y (t)|2,

with
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{
dX(s) = [rX(s) + (μ − r)u(s)]ds + σu(s)dW (s), s ∈ [t, T ],

dY (s) = Z(s)dW (s), s ∈ [t, T ], X(t) = ξ, Y (T ) = X(T ).

Thus, the mean-variance model is a special case of the linear-quadratic problems for FBSDEs. By Proposi-
tion 4.3, the equilibrium strategy Ψ̄ can be given by

Ψ̄(t, x) = Ψ̄(s)x + v̄(s), (t, x) ∈ [0, T ] × R,

where

Ψ̄ = −[σ2Φ1]−1[
(μ − r)Φ1 + (μ − r)Φ2Φ2

6 + 1
2(μ − r)Φ3Φ6

]
,

v̄ = −[σ2Φ1]−1[
(μ − r)Φ4 + (μ − r)Φ6Φ2Φ7

]
,

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ̇1 + 2Φ1(r + (μ − r)Ψ̄) + σΨ̄Φ1σΨ̄ = 0, Φ̇2 = 0, Φ̇3 = 0,

Φ̇4 + v̄(μ − r)Φ1 + Φ4(r + (μ − r)Ψ̄) + v̄σΦ1σΨ̄ = 0,

Φ̇5 + Φ4(μ − r)v̄ + 1
2 v̄σΦ1σv̄ = 0,

Φ̇6 + Φ6(r + (μ − r)Ψ̄) = 0, Φ̇7 + Φ6(μ − r)v̄ = 0,

Φ1(T ) = γ, Φ2(T ) = −γ, Φ3(T ) = 0, Φ4(T ) = −1,

Φ5(T ) = 0, Φ6(T ) = 1, Φ7(T ) = 0.

From the above, it is easily seen that Φ2 ≡ −γ, Φ3 ≡ 0 and Φ1 + Φ6Φ2Φ6 ≡ 0. Thus,

Ψ̄ = 0, v̄ = −[σ2Φ1]−1[
(μ − r)Φ4 − (μ − r)Φ6γΦ7

]
, (5.2)

and ⎧⎪⎪⎨⎪⎪⎩
Φ̇1 + 2rΦ1 = 0, Φ̇4 − σ−2(μ − r)2[

Φ4 − Φ6γΦ7
]
Φ1 + rΦ4 = 0,

Φ̇6 + rΦ6 = 0, Φ̇7 − Φ6(μ − r)[σ2Φ1]−1[
(μ − r)Φ4 − (μ − r)Φ6γΦ7

]
= 0,

Φ1(T ) = γ, Φ4(T ) = −1, Φ6(T ) = 1, Φ7(T ) = 0.

(5.3)

By first solving the unknown variables Φ1 and Φ6, equation (5.3) becomes a linear equation. By the variation 
of constants formula, the unique solution (Φ1, Φ4, Φ6, Φ7) of equation (5.3) can be explicitly solved. Then 
the equilibrium strategy can be given by (5.2). Indeed, we can observe that

d[Φ4 − Φ6γΦ7
]

dt
= −γ[Φ4 − Φ6γΦ7

]
, [Φ4 − Φ6γΦ7

]
(T ) = −1,

which implies that

[Φ4 − Φ6γΦ7
]
(t) = −e−γ(t−T ).

Substituting the above and Φ1(t) = e−2γ(t−T ) into (5.2), the equilibrium strategy Ψ̄ is explicitly given by

Ψ̄(t, x) = μ − r
2 e−r(t−T ), (t, x) ∈ [0, T ] × R.
γσ
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From the above, we see that the optimal control problem of FBSDEs is a natural extension of the 
conditional mean-variance problem, with the dynamic risk measure vart[X(T )] replaced by some more 
general ones, which can be described by some process Y satisfying a BSDE. We refer the reader to Riedel [51], 
Barrieu–El Karoui [2] and Detlefsen–Scandolo [13] for the theory of risk measures. Moreover, Problem (N) 
can also be regarded as an extension of the dynamic mean-variance models with the conditional expectation 
operator Et[ · ] replaced by the so-called g-expectation operator Eg,t[ · ], which was introduced by Peng [48]
and has been widely applied in finance; see Chen–Epstein [10], Coquet et al. [11] and Chen–Chen–Davison 
[9], for example.

5.2. Social planner problems with heterogeneous Epstein-Zin utilities

In this subsection, we shall consider a social planner problem for Merton’s investment-consumption 
models, in which each agent’s objective is given by an Epstein–Zin utility. The social planner would like 
to maximize the utility of the coalition, which is a convex combination of each agent’s utility. The main 
feature of our model is that the discount rate in each agent’s utility can be different. We will reveal two 
interesting facts: (i) the model is time-inconsistent; (ii) the situation of controlled backward state equations 
is not avoidable in this model.

Consider the following SDE for the wealth process X:⎧⎪⎪⎨⎪⎪⎩
dX(s) =

{
rX(s) + (μ − r)[u1(s) + u2(s)] − [c1(s) + c2(s)]

}
ds

+ σ
[
u1(s) + u2(s)

]
dW (s),

X(t) = ξ,

where ui and ci are the dollar amount invested in the stock and the consumption of agent i (i=1,2), 
respectively. Naturally, agent i wants to maximize his/her utility functional

Ji(t, ξ; u1, u2, c1, c2) = Yi(t),

where Yi, called an Epstein–Zin utility (see [15,18], for example), is determined by

Yi(s) = Es

[ T∫
s

gi(c1(r) + c2(r), Yi(r))dr + hi(X(T ))
]
, s ∈ [t, T ],

with

gi(c, y) = α−1((1 − γ)y)1− α
1−γ [cα − ρi((1 − γ)y)

α
1−γ ], hi(x) = x1−γ

1 − γ
.

The parameter γ > 0 controls the risk aversion of the agents, α
1−γ > 0 gives the agents’ IES, and ρi is the 

discount rate of agent i (which could be different for different i).
Such type of models was initially studied by Duffie–Geoffard–Skiadas [17] (also see Ma–Yong [40, Page 

6]), however, the time-inconsistency issue was not realized. If the agents decide to cooperate, then the social 
planer would try to maximize

Jλ(t, ξ; u1, u2, c1, c2) = λJ1(t, ξ; u1, u2, c1, c2) + (1 − λ)J2(t, ξ; u1, u2, c1, c2),

where λ ∈ (0, 1) is a weighting parameter of the two agents. Denote c = c1 + c2 and u = u1 + u2. Then the 
state equation and the utility functional of the social planner (or called a group decision-maker) become
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⎧⎪⎪⎨⎪⎪⎩
dX(s) = [rX(s) + (μ − r)u(s) − c(s)]ds + σu(s)dW (s),

dYi(s) = −gi(c(s), Yi(s))ds + Zi(s)dW (s); i = 1, 2,

X(t) = ξ, Yi(T ) = hi(X(T )),

(5.4)

and

Jλ(t, ξ; u, c) = Et

{X(T )1−γ

1 − γ
+

T∫
t

[
λα−1((1 − γ)Y1(r))1− α

1−γ
(
c(r)α − ρ1((1 − γ)Y1(r))

α
1−γ

)
+ (1 − λ)α−1((1 − γ)Y2(r))1− α

1−γ
(
c(r)α − ρ2((1 − γ)Y2(r))

α
1−γ

)]
dr

}
. (5.5)

Remark 5.1. Note that when α = 1 − γ, the Epstein–Zin utility Yi is reduced to the standard constant 
relative risk aversion (CRRA, for short) utility case. Then the corresponding utility (5.5) becomes

Jλ(t, ξ; u, c) = Et

{[
λe−ρ1(T −t) + (1 − λ)e−ρ2(T −t)]X(T )α

α

+
T∫

t

[
λe−ρ1(r−t) + (1 − λ)e−ρ2(r−t)]c(r)αdr

}
. (5.6)

The control problem with state equation (5.4) and utility functional (5.6) is exactly the Merton’s problem 
with a quasi-exponential discounting function λe−ρ1(s−t) +(1 − λ)e−ρ2(s−t). We refer the reader to [20,19,
41,42,73] for more results on this special case. In the general case, that is α could not equal 1 − γ, the 
Epstein–Zin utility Yi is described by the solution to a nonlinear BSDE. Then the situation of controlled 
BSDEs is not avoidable.

It is clearly seen that the control problem with state equation (5.4) and utility functional (5.5) is time-
inconsistent. Thus, the group decision-maker should look for an equilibrium strategy for the coalition. The 
associated equilibrium HJB equation reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ1
t (t, x) + Θ1

x(t, x)[rx + (μ − r)U(t, x) − C(t, x)] + 1
2Θ1

xx(t, x)[σU(t, x)]2

+ α−1((1 − γ)Θ1(t, x))1− α
1−γ [C(t, x)α − ρ1((1 − γ)Θ1(t, x))

α
1−γ ] = 0,

Θ2
t (t, x) + Θ2

x(t, x)[rx + (μ − r)U(t, x) − C(t, x)] + 1
2Θ2

xx(t, x)[σU(t, x)]2

+ α−1((1 − γ)Θ2(t, x))1− α
1−γ [C(t, x)α − ρ2((1 − γ)Θ2(t, x))

α
1−γ ] = 0,

Θ0
t (t, x) + Θ0

x(t, x)[rx + (μ − r)U(t, x) − C(t, x)] + 1
2Θ0

xx(t, x)[σU(t, x)]2

+ λα−1((1 − γ)Θ1(t, x))1− α
1−γ [C(t, x)α − ρ1((1 − γ)Θ1(t, x))

α
1−γ ]

+ (1 − λ)α−1((1 − γ)Θ2(t, x))1− α
1−γ [C(t, x)α − ρ2((1 − γ)Θ2(t, x))

α
1−γ ] = 0,

Θ1(T, x) = x1−γ

1 − γ
, Θ2(T, x) = x1−γ

1 − γ
, Θ0(T, x) = x1−γ

1 − γ
,

with the equilibrium investment strategy:

U(t, x) = (r − μ)Θ0
x(t, x)

2 0 , (5.7)

σ Θxx(t, x)
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and the equilibrium consumption strategy:

C(t, x) = (1 − γ)
1−γ−α

(1−γ)(1−α) Θ0
x(t, x)

1
α−1

[λΘ1(t, x)
1−γ−α

1−γ + (1 − λ)Θ2(t, x)
1−γ−α

1−γ ]
1

α−1
. (5.8)

Let us make the ansatz:

Θ1(t, x) = 1
1 − γ

x1−γθ1(t), Θ2(t, x) = 1
1 − γ

x1−γθ2(t),

Θ0(t, x) = θ0(t)
1 − γ

x1−γ = λθ1(t) + (1 − λ)θ2(t)
1 − γ

x1−γ .

Then

Θi
x(t, x) = θi(t)x−γ , Θi

xx(x) = −γθi(t)x−γ−1,

Θ0
x(t, x) = λθ1(t)x−γ + (1 − λ)θ2(t)x−γ ,

Θ0
xx(x) = −λγθ1(t)x−γ−1 − (1 − λ)γθ2(t)x−γ−1.

The equilibrium investment strategy (5.7) and the equilibrium consumption strategy (5.8) become

U(t, x) = (μ − r)
γσ2 x, x ∈ R, (5.9)

and

C(t, x) = [λθ1(t) + (1 − λ)θ2(t)]
1

α−1

[λθ1(t)
1−γ−α

1−γ + (1 − λ)θ2(t)
1−γ−α

1−γ ]
1

α−1
x, x ∈ Rn, (5.10)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̇1(t) + (1 − γ)θ1(t)
[
r + (μ − r)2

2γσ2 − [λθ1(t) + (1 − λ)θ2(t)]
1

α−1

[λθ1(t)
1−γ−α

1−γ + (1 − λ)θ2(t)
1−γ−α

1−γ ]
1

α−1

]

− (1 − γ)ρ1α−1θ1(t) + α−1(1 − γ)θ1(t)
1−γ−α

1−γ [λθ1(t) + (1 − λ)θ2(t)]
α

α−1

[λθ1(t)
1−γ−α

1−γ + (1 − λ)θ2(t)
1−γ−α

1−γ ]
α

α−1
= 0,

θ̇2(t) + (1 − γ)θ2(t)
[
r + (μ − r)2

2γσ2 − [λθ1(t) + (1 − λ)θ2(t)]
1

α−1

[λθ1(t)
1−γ−α

1−γ + (1 − λ)θ2(t)
1−γ−α

1−γ ]
1

α−1

]

− (1 − γ)ρ2α−1θ2(t) + α−1(1 − γ)θ2(t)
1−γ−α

1−γ [λθ1(t) + (1 − λ)θ2(t)]
α

α−1

[λθ1(t)
1−γ−α

1−γ + (1 − λ)θ2(t)
1−γ−α

1−γ ]
α

α−1
= 0,

θ1(T ) = θ2(T ) = 1.

(5.11)

Proposition 5.2. Let γ ∈ [1 − α, 1). Then the system of ODEs (5.11) admits a unique solution (θ1, θ2), and 
the strategies U and C, given by (5.9)–(5.10), is an equilibrium investment–consumption strategy pair.

Proof. It suffices to show that if (θ1, θ2) is a postive solution of (5.11) on [t0, T ], then

δ ≤ θi(s) ≤ κ, s ∈ [t0, T ]; i = 1, 2,
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for some positive constants δ, κ > 0 independent of t0. Without loss of generality, let ρ1 ≥ ρ2. Denote 
Δθ = θ1 − θ2. Note that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δθ̇(t) + (1 − γ)Δθ(t)
[
r + (μ − r)2

2γσ2 − [λθ1(t) + (1 − λ)θ2(t)]
1

α−1

[λθ1(t)
1−γ−α

1−γ + (1 − λ)θ2(t)
1−γ−α

1−γ ]
1

α−1

]
− (1 − γ)ρ1α−1Δθ(t) + (1 − γ)(ρ2 − ρ1)α−1θ2(t)

+ α−1(1 − γ − α)[λθ1(t) + (1 − λ)θ2(t)]
α

α−1

[λθ1(t)
1−γ−α

1−γ + (1 − λ)θ2(t)
1−γ−α

1−γ ]
α

α−1

1∫
0

[lθ1(t) + (1 − l)θ2(t)]
−α

1−γ dlΔθ(t) = 0,

Δθ(T ) = 0,

and

(1 − γ)(ρ2 − ρ1)α−1θ2(t) ≤ 0.

Then, θ1 ≤ θ2. Thus,

θ1(t)
1−γ−α

1−γ [λθ1(t) + (1 − λ)θ2(t)]
α

α−1

[λθ1(t)
1−γ−α

1−γ + (1 − λ)θ2(t)
1−γ−α

1−γ ]
α

α−1

= θ1(t)[λθ1(t)
1−γ−α

1−γ + (1 − λ)θ1(t)
−α

1−γ θ2(t)][λθ1(t) + (1 − λ)θ2(t)]
1

α−1

[λθ1(t)
1−γ−α

1−γ + (1 − λ)θ2(t)
1−γ−α

1−γ ][λθ1(t)
1−γ−α

1−γ + (1 − λ)θ2(t)
1−γ−α

1−γ ]
1

α−1

≥ θ1(t)[λθ1(t)
1−γ−α

1−γ + (1 − λ)θ2(t)
1−γ−α

1−γ ][λθ1(t) + (1 − λ)θ2(t)]
1

α−1

[λθ1(t)
1−γ−α

1−γ + (1 − λ)θ2(t)
1−γ−α

1−γ ][λθ1(t)
1−γ−α

1−γ + (1 − λ)θ2(t)
1−γ−α

1−γ ]
1

α−1

= θ1(t)[λθ1(t) + (1 − λ)θ2(t)]
1

α−1

[λθ1(t)
1−γ−α

1−γ + (1 − λ)θ2(t)
1−γ−α

1−γ ]
1

α−1
,

which implies

(1 − γ)θ1(t)
[

− [λθ1(t) + (1 − λ)θ2(t)]
1

α−1

[λθ1(t)
1−γ−α

1−γ + (1 − λ)θ2(t)
1−γ−α

1−γ ]
1

α−1

]

+ α−1(1 − γ)θ1(t)
1−γ−α

1−γ [λθ1(t) + (1 − λ)θ2(t)]
α

α−1

[λθ1(t)
1−γ−α

1−γ + (1 − λ)θ2(t)
1−γ−α

1−γ ]
α

α−1

≥ (α−1 − 1)(1 − γ)θ1(t)[λθ1(t) + (1 − λ)θ2(t)]
1

α−1

[λθ1(t)
1−γ−α

1−γ + (1 − λ)θ2(t)
1−γ−α

1−γ ]
1

α−1
≥ 0.

It follows that

θ1(t) ≥ e
∫ T

t
(1−γ)[r−ρ1α−1+ (μ−r)2

2γσ2 ]ds ≥ e
−T |1−γ||r−ρ1α−1+ (μ−r)2

2γσ2 | =: δ > 0.

By θ2 ≥ θ1, we get θ2 ≥ δ. Then

θi(t)
1−γ−α

1−γ ≤ δ
1−γ−α

1−γ ; i = 1, 2, [λθ1(t) + (1 − λ)θ2(t)]
α

α−1 ≤ δ
α

α−1 ,

[λθ1(t)
1−γ−α

1−γ + (1 − λ)θ2(t)
1−γ−α

1−γ ]
1

1−α ≤ δ
1−γ−α

(1−α)(1−γ) .

From the above, we get that there exists a constant κ > 0, independent of t0, such that
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θi ≤ κ.

Then the well-posedness of (5.11) can be proved by routine arguments. �
For more details of this type of models, we refer the reader to Wang–Zhou [66]. In particular, [66] showed 

that the Epstein-Zin utility is much more effective than the CRRA utility in the social planner problem.

5.3. Stackelberg games

In this subsection, we consider a specific Stackelberg game (also called a leader-follower game). We will 
show that the leader’s problem in this Stackelberg game is an optimal control problem for FBSDEs, whose 
optimal control is time-inconsistent. By applying Theorem 2.7, we can find a time-consistent equilibrium 
for the leader. This will give a very good illustration.

Example 5.3. Consider the following one-dimensional state equation

Ẋ(s) = u1(s) − u2(s), s ∈ [t, 1], X(t) = x,

and the cost functionals

J1(t, x; u1, u2) = |X(1)|2 +
1∫

t

[
|u1(s)|2 − |u2(s)|2

]
ds,

J2(t, x; u1, u2) =
1∫

t

[
− u1(s) + X(s)

s − 2 + u2(s) + |u2(s)|2
]
ds.

In the above, Player 2 is the leader (or the principal), who announces his/her control u2 first, and Player 1
is the follower (or the agent), who chooses his/her control u1 accordingly. Whatever the leader announces, 
the follower will select a control ū1(· ; t, x, u2) (depending the control u2 announced by the leader as well as 
the initial pair (t, x)) such that u1 �→ J1(t, x; u1, u2) is minimized. Knowing this, the leader will choose a ū2
a priori so that u2 �→ J2(t, x; ̄u1(· ; t, x, u2), u2) is minimized. For any given initial pair (t, x) and control u2
of the leader, by the standard results of LQ control problems (see [77, Chapter 6]), the follower admits a 
unique optimal strategy ū1(· ; t, x, u2). Then by some straightforward calculations, the leader’s problem can 
be stated as follows: Find a control u2 to minimize

J2(t, x; ū1(· ; t, x, u2), u2) =
1∫

t

[
Y (s) + u2(s) + |u2(s)|2

]
ds,

with the backward state equation

Ẏ (s) = 1
2 − s

Y (s) + 1
2 − s

u2(s), s ∈ [t, 1], Y (1) = 0.

Note that

Y (s) = 1
s − 2

1∫
s

u2(r)dr.

Then
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J2(t, x; ū1(· ; t, x, u2), u2) =
1∫

t

{[
ln(2 − s) − ln(2 − t) + 1

]
u2(s) + |u2(s)|2

}
ds.

It follows that the unique optimal control of the leader is given by

ū2(s; t, x) = ln(2 − t) − ln(2 − s) − 1
2 , s ∈ [t, 1].

In particular, at the initial pair (0, x), the unique optimal control of the leader is

ū2(s; 0, x) = ln 2 − ln(2 − s) − 1
2 , s ∈ [0, 1].

Let X̄ ≡ X̄(·; 0, x) be the state process with initial pair (0, x) and optimal controls (ū1(·; t, x, ̄u2), ū2). For 
any given t ∈ (0, 1), at the initial pair (t, X̄(t; 0, x)), the unique optimal control of the leader is

ū2(s; t, X̄(t; 0, x)) = ln(2 − t) − ln(2 − s) − 1
2 , s ∈ [t, 1].

Thus, for t ∈ (0, 1), on the time interval [t, 1],

ū2(·; 0, x) 	= ū2(·; t, X̄(t; 0, x)),

which implies that the leader’s problem is time-inconsistent. By Theorem 2.7, we can easily obtain the 
time-consistent equilibrium strategy of the leader, which is given by

Ψ̄(s, x) = −1
2 , (s, x) ∈ [0, 1] × Rn.

Remark 5.4. We refer the reader to [53,70,12,56] for some theoretical results and financial applications of 
Stackelberg games. It is worthy of pointing out that the well-known principal-agent model can be regarded 
as a special case.

6. Verification theorem

In this section, we shall show that the function Ψ̄, determined by (2.11), is an equilibrium strategy of 
Problem (N). In other words, we would like to rigorously prove the verification theorem (i.e., Theorem 2.7). 
To do this, we assume that the equilibrium HJB equation (2.10) admits a classical solution and the function 
Ψ̄ defined by (2.11) is a feedback strategy. We also assume that all the involved functions are bounded and 
differentiable with bounded derivatives.

Let (X̄, Ȳ , Z̄) and (Ȳ 0, Z̄0) be the solutions to FBSDE (1.1) and BSVIE (1.3), respectively, corresponding 
to the strategy Ψ̄ and the initial pair (0, ξ). For any t ∈ [0, T ), u ∈ L2

Ft
(Ω; U) and ε ∈ [0, T − t), define the 

strategy Ψε by (2.7). With the initial pair (t, X̄(t)) ∈ D, take the strategy Ψε, then the corresponding state 
equation (1.1) and cost functional (1.2)–(1.3) become⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXε(s) = b(s, Xε(s), Ψ̄(s, Xε(s)))ds

+ σ(s, Xε(s), Ψ̄(s, Xε(s)))dW (s), s ∈ [t + ε, T ];

dXε(s) = b(s, Xε(s), u)ds + σ(s, Xε(s), u)dW (s), s ∈ [t, t + ε),

dY ε(s) = −g(s, Xε(s), Ψ̄(s, Xε(s)), Y ε(s), Zε(s))ds + Zε(s)dW (s), s ∈ [t + ε, T ];

dY ε(s) = −g(s, Xε(s), u, Y ε(s), Zε(s))ds + Zε(s)dW (s), s ∈ [t, t + ε),

Xε(t) = X̄(t), Y ε(T ) = h(Xε(T )),

(6.1)
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and

J(t, X̄(t); Ψε) = Y 0,ε(t),

respectively, with

Y 0,ε(r) = h0(r, Xε(r), Xε(T ), Y ε(r)) −
T∫

r

Z0,ε(r, s)dW (s)

+
T∫

(t+ε)∨r

g0(
r, s, Xε(r), Xε(s), Ψ̄(s, Xε(s)), Y ε(s), Zε(s), Y 0,ε(s), Z0,ε(r, s)

)
ds

+
t+ε∫

(t+ε)∧r

g0(
r, s, Xε(r), Xε(s), u, Y ε(s), Zε(s), Y 0,ε(s), Z0,ε(r, s)

)
ds, r ∈ [t, t + ε). (6.2)

Next, let us deduce the PDEs associated with the FBSDE (6.1) and the BSVIE (6.2).
By the Feynman–Kac formula for BSDEs (see Pardoux–Peng [46], for example), we get

Y ε(s) = Θ(s, Xε(s)), Zε(s) = Θx(s, Xε(s))σ(s, Xε(s), Ψ̄(s, Xε(s))), s ∈ [t + ε, T ],

where Θ is the unique solution to the first PDE in (2.10). Then on the time interval [t, t + ε], we can rewrite 
(6.1) as follows:

⎧⎪⎪⎨⎪⎪⎩
dXε(s) = b(s, Xε(s), u)ds + σ(s, Xε(s), u)dW (s), s ∈ [t, t + ε],

dY ε(s) = −g(s, Xε(s), u, Y ε(s), Zε(s))ds + Zε(s)dW (s), s ∈ [t, t + ε],

Xε(t) = X̄(t), Y ε(t + ε) = Θ(t + ε, Xε(t + ε)).

Note that the control u ∈ L2
Ft

(Ω; U) is Ft-measurable. Then by the Feynman–Kac formula for BSDEs again, 
we get

Y ε(s) = Θε(s, Xε(s)), Zε(s) = Θε
x(s, Xε(s))σ(s, Xε(s), u), s ∈ [t, t + ε], (6.3)

where Θε is the unique classical solution to the following perturbation PDE:⎧⎪⎪⎨⎪⎪⎩
Θε

s(s, x) + Θε
x(s, x)b(s, x, u) + tr [Θε

xx(s, x)a(s, x, u)]

+ g(s, x, u, Θε(s, x), Θε
x(s, x)σ(s, x, u)) = 0, s ∈ [t, t + ε],

Θε(t + ε, x) = Θ(t + ε, x).

(6.4)

Remark 6.1. Indeed, (6.4) is a PDE with random parameters, because u ∈ L2
Ft

(Ω; U) is a random variable. 
However, note that u is Ft-measurable and (6.4) is considered on [t, t + ε]. The random PDE (6.4) can be 
treated as a deterministic one.

By Proposition 2.2, on the time interval [t + ε, T ], we get

Y 0,ε(s) = Θ0(s, s, x, x, Θ(s, Xε(s))), (6.5)
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where Θ0 is the solution of the second PDE in (2.10). Motivated by [64], we introduce the following auxiliary 
processes with two time variables:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dY 0,ε(r; s) = −g0(
r, s, Xε(r), Xε(s), Ψ̄(s, Xε(s)), Y ε(s), Zε(s), Y 0,ε(s), Z0,ε(r; s)

)
ds

+ Z0,ε(r; s)dW (s), s ∈ [(t + ε) ∨ r, T ], r ∈ [t, T ];

dY 0,ε(r; s) = −g0(
r, s, Xε(r), Xε(s), u, Y ε(s), Zε(s), Y 0,ε(s), Z0,ε(r; s)

)
ds

+ Z0,ε(r; s)dW (s), (r, s) ∈ Δ∗[t, t + ε],

Y 0,ε(r; T ) = h0(r, Xε(r), Xε(T ), Y ε(r)), r ∈ [t, T ],

(6.6)

which can give the unique solution of BSVIE (6.2) by

Y 0,ε(s) = Y 0,ε(s; s), Z0,ε(r, s) = Z0,ε(r; s), (r, s) ∈ Δ∗[t, T ]. (6.7)

Notice that for any fixed r ∈ [t, T ], (6.6) is a BSDE. Recall the representations (6.3) and (6.5). Then by the 
Feynman–Kac formula for BSDEs again, we get that for any r ∈ [t, t + ε] and s ∈ [t + ε, T ],

Y 0,ε(r; s) = Θ0(r, s, Xε(r), Xε(s), Θε(r, Xε(r))),

Z0,ε(r; s) = Θ0
x(r, s, Xε(r), Xε(s), Θε(r, Xε(r)))σ(s, Xε(s), Ψ̄(s, Xε(s))). (6.8)

On the other hand, by the flow property of the auxiliary process Y 0,ε, we have

Y 0,ε(r; r) = Y 0,ε(r; t + ε) +
t+ε∫
r

g0(
r, s, Xε(r), Xε(s), u, Y ε(s), Zε(s), Y 0,ε(s), Z0,ε(r; s)

)
ds

−
t+ε∫
r

Z0,ε(r; s)dW (s), r ∈ [t, t + ε].

Substituting (6.8) into the above and noting (6.7), we get

Y 0,ε(r) = Θ0(r, t + ε, Xε(r), Xε(t + ε), Θε(r, Xε(r)))

+
t+ε∫
r

g0(r, s, Xε(r), Xε(s), u, Y ε(s), Zε(s), Y 0,ε(s), Z0,ε(r, s))ds

−
t+ε∫
r

Z0,ε(r, s)dW (s), r ∈ [t, t + ε]. (6.9)

Then by Proposition 2.2 (recalling (6.3)–(6.4)), we have the following representation:

Y 0,ε(r) = Θ0,ε(r, r, Xε(r), Xε(r), Θε(r, Xε(r))),

Z0,ε(r, s) = Θ0,ε
x (r, s, Xε(r), Xε(s), Θε(r, Xε(r)))σ(s, Xε(s), u), (r, s) ∈ Δ∗[t, t + ε], (6.10)

where Θ0,ε is the unique solution to the following perturbation PDE:
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Θ0,ε
s (r, s, x̃, x, y) + Θ0,ε

x (r, s, x̃, x, y)b(s, x, u) + tr [Θ0,ε
xx (r, s, x̃, x, y)a(s, x, u)]

+ g0(
r, s, x̃, x, u, Θε(s, x), Θε

x(s, x)σ(s, x, u), Θ0,ε(s, s, x, x, Θε(s, x)),

Θ0,ε
x (r, s, x̃, x, y)σ(s, x, u)

)
= 0, (r, s) ∈ Δ∗[t, t + ε],

Θ0,ε(r, t + ε, x̃, x, y) = Θ0(r, t + ε, x̃, x, y), r ∈ [t, t + ε].

(6.11)

Remark 6.2. Note that both (6.4) and (6.11) are semilinear parabolic equations. To guarantee the well-
posedness of PDEs (6.4) and (6.11), we assume that the following non-degenerate condition holds: There 
exist two constants λ0, λ1 > 0 such that

λ0I ≤ a(t, x, u) ≤ λ1I, ∀(t, x, u) ∈ [0, T ] × Rn × U. (6.12)

Under the assumption (6.12), we have the following convergence result of the families {Θε}ε>0 and 
{Θ0,ε}ε>0.

Proposition 6.3. Let (6.12) hold. Then the PDEs (6.4) and (6.11) admit unique classical solutions Θε

and Θ0,ε, respectively. Moreover, there exists a constant K > 0, only depending on ‖Θ‖
C

α
2 ,2+α and 

‖Θ0‖
C

α
2 , α

2 ,α,1+α,α , such that

‖Θε − Θ‖C0,2[t,t+ε] + ‖Θ0,ε − Θ0‖C0,0,0,1,0[t,t+ε] ≤ Kε
α
2 , (6.13)

where α ∈ (0, 1) is a constant.

Proposition 6.3 can be obtained by modifying [67, Theorem 5.2] immediately. We emphasize that for 
Proposition 6.3, the assumption (6.12) should not be necessary, because one could replace the analytic 
approach by a probabilistic argument (see [46,64]).

Remark 6.4. The estimate (6.13) plays the same role as the convergence assumption (H3) in Wei–Yong–Yu 
[68], which was proved only for some special cases (see [68, Theorem 6.2]). In Proposition 6.3, we can show 
that (6.13) holds in general. The key point is that (6.13) is only a byproduct of the regualirty of semi-linear 
parabolic equations, while the assumption (H3) in [68] is concerned with the fully nonlinear PDEs.

6.1. Proof of Theorem 2.7

For any fixed t ∈ [0, T ), ε ∈ [0, T − t] and u ∈ L2
Ft

(Ω; U), let Θε and Θ0,ε be the unique classical solution 
to PDEs (6.4) and (6.11), respectively. With the representations (6.3) and (6.10), by (6.9) we can represent 
Y 0,ε(t) as follows:

Y 0,ε(t) = Et

[
Θ0(t, t + ε, Xε(t), Xε(t + ε), Θε(t, Xε(t))) +

t+ε∫
t

g0,ε(t, s, u)ds
]
,

where

g0,ε(t, s, u) := g0
(

t, s, Xε(t), Xε(s), u, Θε(Xε(s), s), Θε
x(s, Xε(s))σ(s, Xε(s), u),

Θ0,ε(s, s, Xε(s), Xε(s), Θε(s, Xε(s))), Θ0,ε
x (t, s, Xε(t), Xε(s), Θε(t, Xε(t)))

× σ(s, Xε(s), u)
)

. (6.14)
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Note that Xε(t) = X̄(t). Applying Itô’s formula to the mapping s �→ Θ0(t, s, Xε(t), Xε(s), Θε(t, Xε(t)))
yields that

Y 0,ε(t) = Et

{
Θ0(t, t, X̄(t), X̄(t), Θε(t, X̄(t))) +

t+ε∫
t

[
Θ0

s(t, s, X̄(t), Xε(s), Θε(t, X̄(t)))

+ Θ0
x(t, s, X̄(t), Xε(s), Θε(t, X̄(t)))b(s, Xε(s), u)

+ tr
[
Θ0

xx(t, s, X̄(t), Xε(s), Θε(t, X̄(t)))a(s, Xε(s), u)
]

+ g0,ε(t, s, u)
]
ds

}
.

Using the fact Θε(t + ε, ·) = Θ(t + ε, ·) and then by applying the Itô’s formula to the mapping s �→
Θ0(t, t, X̄(t), X̄(t), Θε(s, X̄(s))), we have

Y 0,ε(t) = Et

{
Θ0(t, t, X̄(t), X̄(t), Θ(t + ε, X̄(t + ε)))

− 1
2

t+ε∫
t

tr
[
Θ0

yy(t, t, X̄(t), X̄(t), Θε(s, X̄(s)))Θε
x(s, X̄(s))σ̄(s)[Θε

x(s, X̄(s))σ̄(s)]�
]
ds

−
t+ε∫
t

Θ0
y(t, t, X̄(t), X̄(t), Θε(s, X̄(s)))

[
Θε

s(s, X̄(s)) + Θε
x(s, X̄(s))b̄(s)

+ tr [Θε
xx(s, X̄(s))ā(s)]

]
ds +

t+ε∫
t

[
Θ0

s(t, s, X̄(t), Xε(s), Θε(t, X̄(t)))

+ Θ0
x(t, s, X̄(t), Xε(s), Θε(t, X̄(t)))b(s, Xε(s), u) + g0,ε(t, s, u)

+ tr [Θ0
xx(t, s, X̄(t), Xε(s), Θε(t, X̄(t)))a(s, Xε(s), u)]

]
ds

}
, (6.15)

where

ϕ̄(s) := ϕ(s, X̄(s), Ψ̄(s, X̄(s))), s ∈ [t, t + ε], (6.16)

for ϕ = b, σ, a. Recalling (6.4) and (2.10), we get that on [t, t + ε],

Θε
s(s, X̄(s)) + Θε

x(s, X̄(s))b̄(s) + tr [Θε
xx(s, X̄(s))ā(s)]

= Θε
x(s, X̄(s))[b̄(s) − b(s, X̄(s), u)] − gε(s, u) + tr

{
Θε

xx(s, X̄(s))[ā(s) − a(s, X̄(s), u)]
}

, (6.17)

and

Θ0
s(t, s, X̄(t), Xε(s), Θε(t, X̄(t))) + Θ0

x(t, s, X̄(t), Xε(s), Θε(t, X̄(t)))b(s, Xε(s), u)

+ tr [Θ0
xx(t, s, X̄(t), Xε(s), Θε(t, X̄(t)))a(s, Xε(s), u)]

= Θ0
x(t, s, X̄(t), Xε(s), Θε(t, X̄(t)))[b(s, Xε(s), u) − b̄ε(s)] − ḡ0,ε(t, s)

+ tr
{

Θ0
xx(t, s, X̄(t), Xε(s), Θε(t, X̄(t)))[a(s, Xε(s), u) − āε(s)]

}
, (6.18)

where
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ϕ̄ε(s) := ϕ(s, Xε(s), Ψ̄(s, Xε(s))), for ϕ = b, σ, a,

gε(s, u) := g
(
s, X̄(s), u, Θε(s, X̄(s)), Θε

x(s, X̄(s))σ(s, X̄(s), u)
)
,

ḡ0,ε(t, s) := g0(
t, s, X̄(t), Xε(s), Ψ̄(s, Xε(s)), Θ(s, Xε(s)), Θx(s, Xε(s))σ̄ε(s),

Θ0(s, s, Xε(s), Xε(s), Θ(s, Xε(s))), Θ0
x(t, s, X̄(t), Xε(s), Θ(t, X̄(t)))σ̄ε(s)

)
. (6.19)

Substituting (6.17) and (6.18) into (6.15) yields that

Y 0,ε(t) = Et

{
Θ0(t, t, X̄(t), X̄(t), Θ(t + ε, X̄(t + ε)))

+
t+ε∫
t

Θ0
y(t, t, X̄(t), X̄(t), Θε(s, X̄(s)))

[
gε(s, u) + Θε

x(s, X̄(s))

× [b(s, X̄(s), u) − b̄(s)] + tr
{

Θε
xx(s, X̄(s))[a(s, X̄(s), u) − ā(s)]

}]
ds

− 1
2

t+ε∫
t

tr
[
Θ0

yy(t, t, X̄(t), X̄(t), Θε(s, X̄(s)))Θε
x(s, X̄(s))σ̄(s)[Θε

x(s, X̄(s))σ̄(s)]�
]
ds

+
t+ε∫
t

[
g0,ε(t, s, u) − ḡ0,ε(t, s) + Θ0

x(t, s, X̄(t), Xε(s), Θε(t, X̄(t)))[b(s, Xε(s), u) − b̄ε(s)]

+ tr
{

Θ0
xx(t, s, X̄(t), Xε(s), Θε(t, X̄(t)))[a(s, Xε(s), u) − āε(s)]

}]
ds

}
. (6.20)

Applying the above arguments to Ȳ 0(t), we have

J(t, X̄(t); Ψ̄) ≡ Ȳ 0(t) = Et

{
Θ0(t, t, X̄(t), X̄(t), Θ(t + ε, X̄(t + ε)))

− 1
2

t+ε∫
t

tr
{

Θ0
yy(t, t, X̄(t), X̄(t), Θ(s, X̄(s)))Θx(s, X̄(s))σ̄(s)[Θx(s, X̄(s))σ̄(s)]�

}
ds

+
t+ε∫
t

Θ0
y(t, t, X̄(t), X̄(t), Θ(s, X̄(s)))ḡ(s, Ψ̄(s, X̄(s)))ds

}
, (6.21)

where

ḡ(s, u) := g
(
s, X̄(s), u, Θ(s, X̄(s)), Θx(s, X̄(s))σ(s, X̄(s), u)

)
. (6.22)

Combining (6.20) with (6.21) together, we get

Y 0,ε(t) − Ȳ 0(t) = Et

{ t+ε∫
t

Θ0
y(t, t, X̄(t), X̄(t), Θε(s, X̄(s)))

[
gε(s, u)

+ Θε
x(s, X̄(s))[b(s, X̄(s), u) − b̄(s)] + tr

[
Θε

xx(s, X̄(s))[a(s, X̄(s), u) − ā(s)]
]]

ds

− 1
2

t+ε∫
tr

[
Θ0

yy(t, t, X̄(t), X̄(t), Θε(s, X̄(s)))Θε
x(s, X̄(s))σ̄(s)[Θε

x(s, X̄(s))σ̄(s)]�
]
ds
t
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+
t+ε∫
t

[
g0,ε(t, s, u) − ḡ0,ε(t, s) + Θ0

x(t, s, X̄(t), Xε(s), Θε(t, X̄(t)))[b(s, Xε(s), u)

− b̄ε(s)] + tr
{

Θ0
xx(t, s, X̄(t), Xε(s), Θε(t, X̄(t)))[a(s, Xε(s), u) − āε(s)]

}]
ds

−
t+ε∫
t

Θ0
y(t, t, X̄(t), X̄(t), Θ(s, X̄(s)))ḡ(s, Ψ̄(s, X̄(s)))ds

+ 1
2

t+ε∫
t

tr
[
Θ0

yy(t, t, X̄(t), X̄(t), Θ(s, X̄(s)))Θx(s, X̄(s))σ̄(s)

× [Θx(s, X̄(s))σ̄(s)]�
]
ds

}
. (6.23)

By the standard results of SDEs, we get

Et

[
sup

s∈[t,t+ε]

(
|X̄(s)|2 + |Xε(s)|2

)]
≤ K(1 + |X̄(t)|2),

Et

[
sup

s∈[t,t+ε]
|X̄(s) − Xε(s)|2

]
≤ K(1 + |X̄(t)|2)ε. (6.24)

By Proposition 6.3, we have

Et

[
|Θε(s, X̄(s)) − Θ(s, X̄(s))| + |Θε

x(s, X̄(s)) − Θx(s, X̄(s))|
+ |Θε

xx(s, X̄(s)) − Θxx(s, X̄(s))|
]

≤ Kε
α
2 . (6.25)

It follows that

Et

[∣∣Θ0
y(t, t, X̄(t), X̄(t), Θε(s, X̄(s))) − Θ0

y(t, t, X̄(t), X̄(t), Θ(s, X̄(s)))
∣∣

+
∣∣Θ0

yy(t, t, X̄(t), X̄(t), Θε(s, X̄(s))) − Θ0
yy(t, t, X̄(t), X̄(t), Θ(s, X̄(s)))

∣∣
+

∣∣Θ0
x(t, s, X̄(t), Xε(s), Θε(t, X̄(t))) − Θ0

x(t, s, X̄(t), X̄(s), Θ(t, X̄(t)))
∣∣

+
∣∣Θ0

xx(t, s, X̄(t), Xε(s), Θε(t, X̄(t))) − Θ0
xx(t, s, X̄(t), X̄(s), Θ(t, X̄(t)))

∣∣]
≤ Kε

α
2 + Kε

1
2 (1 + |X̄(t)|) ≤ Kε

α
2 (1 + |X̄(t)|), (6.26)

and

Et

[
|gε(s, u) − ḡ(s, u)| + |ḡ0,ε(t, s) − ḡ0(t, s, Ψ̄(s, X̄(s)))|

+ |b̄ε(s) − b̄(s)| + |σ̄ε(s) − σ̄(s)|
]

≤ Kε
α
2 (1 + |X̄(t)|), (6.27)

where

ḡ0(t, s, u) := g0
(

t, s, X̄(t), X̄(s), u, Θ(s, X̄(s)), Θx(s, X̄(s))σ(s, X̄(s), u),

Θ0(s, s, X̄(s), X̄(s), Θ(s, X̄(s))), Θ0
x(t, s, X̄(t), X̄(s), Θ(t, X̄(t)))σ(s, X̄(s), u)

)
, (6.28)

and the form of other functions is given in (6.16), (6.19), and (6.22). Moreover, by Proposition 6.3 and 
(6.24), we have
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Et

[
|g0,ε(t, s, u) − ḡ0(t, s, u)|

]
≤ Kε

α
2 (1 + |X̄(t)|), (6.29)

where g0,ε(t, s, u) is given by (6.14). With the above estimates (6.24)–(6.29), from (6.23) we have

Y 0,ε(t) − Ȳ 0(t) = Et

{ t+ε∫
t

Θ0
y(t, t, X̄(t), X̄(t), Θ(s, X̄(s)))

[
ḡ(s, u) − ḡ(s, Ψ̄(s, X̄(s)))

+ Θx(s, X̄(s))[b(s, X̄(s), u) − b̄(s)] + tr
{

Θxx(s, X̄(s))[a(s, X̄(s), u) − ā(s)]
}]

ds

+
t+ε∫
t

[
ḡ0(t, s, u) − ḡ0(t, s, Ψ̄(s, X̄(s))) + Θ0

x(t, s, X̄(t), X̄(s), Θ(s, X̄(s)))

× [b(s, X̄(s), u) − b̄(s)] + tr
{

Θ0
xx(t, s, X̄(t), X̄(s), Θ(s, X̄(s)))[a(s, X̄(s), u)

− ā(s)]
}]

ds
}

+ o(ε)(1 + |X̄(t)|).

Thus,

lim inf
ε→0+

J(t, X̄(t); Ψε) − J(t, X̄(t); Ψ̄)
ε

= lim inf
ε→0+

Y 0,ε(t) − Ȳ 0(t)
ε

= Θ̄0
y(t)

{
Θ̄x(t)[b(t, X̄(t), u) − b̄(t)] + tr

{
Θ̄xx(t)[a(t, X̄(t), u) − ā(t)]

}
+ ḡ(t, u) − ḡ(t, Ψ̄(t, X̄(t)))

}
+ Θ̄0

x(t)[b(t, X̄(t), u) − b̄(t)]

+ tr
{

Θ̄0
xx(t)[a(t, X̄(t), u) − ā(t)]

}
+ ḡ0(t, t, u) − ḡ0(t, t, Ψ̄(t, X̄(t))),

where

Θ̄(t) := Θ(t, X̄(t)), Θ̄0(t) := Θ0(t, t, X̄(t), X̄(t), Θ(t, X̄(t))), t ∈ [0, T ].

Then by the local optimality condition (2.9) of Ψ̄, we have

lim inf
ε→0+

J(t, X̄(t); Ψε) − J(t, X̄(t); Ψ̄)
ε

≥ 0,

which completes the proof.

7. Some proofs

For the ease of presentation, in the rest of the paper we restrict to the case with m = 1 only. However, all 
our results hold true in the multiple dimensional situation. To begin with, let us first adopt some notations.

Some Notations: For any functions ς : [S, T ] → R and ν : Rn → R, with α ∈ (0, 1) and S ∈ [0, T ), let

‖ς‖ α
2

= sup
s1,s2∈[S,T ], s1 �=s2

|ς(s1) − ς(s2)|
|s1 − s2| α

2
,

‖ν‖α = sup
x1,x2∈Rn, 0<|x1−x2|≤1

|ν(x1) − ν(x2)|
|x1 − x2|α .

For any ϕ : [S, T ] × Rn → R, let
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‖ϕ‖
C

α
2 ,α([S,T ]×Rn;R) = ‖ϕ‖L∞([S,T ]×Rn;R) + sup

x∈Rn

‖ϕ(· , x)‖ α
2

+ sup
s∈[S,T ]

‖ϕ(s, ·)‖α,

‖ϕ‖
C

α
2 ,1+α([S,T ]×Rn;R) = ‖ϕ‖C0,1([S,T ]×Rn;R) + ‖ϕ‖

C
α
2 ,α([S,T ]×Rn;R) + ‖ϕx‖

C
α
2 ,α([S,T ]×Rn;R).

We will often simply write C
α
2 ,1+α([S, T ] ×Rn; R) as C α

2 ,1+α when there is no confusion. Similarly, we can 
define C

α
2 , α

2 ,α,1+α,2([S, T ] × [S, T ] × Rn × Rn × R; R), etc. For any θ ∈ C0,1+α and θ0 ∈ C0,0,α,1+α,2, let us 
consider the following PDE:

⎧⎪⎪⎨⎪⎪⎩
LΘ(s, x) + Θx(s, x)b̃

(
s, x; θ, θ0)

+ g̃(s, x; θ, θ0)
= 0,

LΘ0(t, s, x̃, x, y) + Θ0
x(t, s, x̃, x, y)b̃

(
s, x; θ, θ0)

+ g̃0(t, s, x̃, x, y; θ, θ0) = 0,

Θ(T, x) = h(x), Θ0
s(t, T, x̃, x, y) = h0(t, x̃, x, y),

(7.1)

where the differential operator L is defined by the following:

Lϕ(s, x) = ϕs(s, x) + tr [ϕxx(x)a(s, x)], ∀ϕ ∈ C1,2, (7.2)

and

ϕ̃(s, x; θ, θ0) := ϕ̃
(
s, x, θ(s, x), θx(s, x), θ0(s, x, s, x, θ(s, x)),

θ0
x(s, x, s, x, θ(s, x)), θ0

y(s, x, s, x, θ(s, x))
)
,

for ϕ = b̃, ̃g, and

g̃0(t, s, x̃, x, y; θ, θ0) := g̃0(
t, s, x̃, x, θ(s, x), θx(s, x), θ0(s, x, s, x, θ(s, x)),

θ0
x(s, x, s, x, θ(s, x)), θ0

y(s, x, s, x, θ(s, x)), θ0
x(t, s, x̃, x, y)

)
.

From [21, Chapter 1], the fundamental solution associated with the differential operator L is given by

Ξ(s, x, r, μ) = Γ(s, x, r, μ) + Γ̂(s, x, r, μ), (s, x), (r, μ) ∈ [0, T ] × Rn,

with

Γ(s, x, r, μ) = 1
(4π(r − s)) n

2 (det[a(r, μ)]) 1
2

e− 〈a(r,μ)−1(x−μ),(x−μ)〉
4(r−s) ,

Γ̂(s, x, r, μ) =
r∫

s

∫
Rn

Γx(s, x, τ, η)Υ(τ, η, r, μ)dηdτ,

and Υ is the unique solution to the following Volterra integral equation:

Υ(s, x, r, μ) = LΓ(s, x, r, μ) +
r∫

s

∫
Rn

LΓ(s, x, τ, ν)Υ(τ, ν, r, μ)dτdν.

Moreover, from [21, Chapter 1] we have
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

|Γ(s, x, r, μ)|, |Ξ(s, x, r, μ)| ≤ K
1

(r − s) n
2

e
−λ|x−μ|2

4(r−s) ,

|Γx(s, x, r, μ)|, |Ξx(s, x, r, μ)| ≤ K
1

(r − s) n+1
2

e
−λ|x−μ|2

4(r−s) ,

|Υ(s, x, r, μ)| ≤ K
1

(r − s) n+1+ε
2

e
−λ|x−μ|2

4(r−s) ,

(7.3)

for some 0 < λ < λ0 and some small enough 0 < ε < 1.

Lemma 7.1. Fix a (t, ̃x, y) ∈ [0, T ] ×Rn ×R. Then for any θ ∈ C0,1+α and θ0 ∈ C0,0,α,1+α,2, the PDE (7.1)
admits a unique classical solution (Θ, Θ0(t, ·, ̃x, ·, y)) ∈ C1,2 × C1,2 with the following relationship:

Θ(s, x) =
∫
Rn

Ξ(s, x, T, μ)h(μ)dμ +
T∫

s

∫
Rn

Ξ(s, x, r, μ)

×
[
Θx(r, μ)b̃

(
r, μ; θ, θ0)

+ g̃
(
r, μ; θ, θ0)]

dμdr, (7.4)

Θ0(t, s, x̃, x, y) =
∫
Rn

Ξ(s, x, T, μ)h0(t, x̃, μ, y)dμ +
T∫

s

∫
Rn

Ξ(s, x, r, μ)

×
[
Θ0

x(t, r, x̃, μ, y)b̃
(
r, μ; θ, θ0)

+ g̃0(
t, r, x̃, μ, y; θ, θ0)]

dμdr. (7.5)

Proof. For any fixed θ ∈ C0,1+α and θ0 ∈ C0,0,α,1+α,2, denote

ν1(s, x) = θ(s, x), ν2(s, x) = θx(s, x), ν3(s, x) = θ0(s, s, x, x, θ(s, x)),

ν4(s, x) = θ0
x(s, s, x, x, θ(s, x)), ν5(s, x) = θ0

y(s, s, x, x, θ(s, x)).

Then we have νi ∈ C0,α, for i = 1, ..., 5. Taking (t, ̃x, y) as parameters, by [21, Chapter 1, Theorem 12], we 
get that PDE (7.1) admits a classical solution (Θ̌(·, ·), Θ̌0(t, ·, ̃x, ·, y)) ∈ C1,2, which is given by

Θ̌(s, x) =
∫
Rn

Ξ̌(s, x, T, μ)h(μ)dμ +
T∫

s

∫
Rn

Ξ̌(s, x, r, μ)g̃
(
r, μ; θ, θ0)

dμdr,

Θ̌0(t, s, x̃, x, y) =
∫
Rn

Ξ̌(s, x, T, μ)h0(t, x̃, μ, y)dμ +
T∫

s

∫
Rn

Ξ̌(s, x, r, μ)g̃0(
t, r, x̃, μ, y; θ, θ0)

dμdr,

where Ξ̌ is the fundamental solution associated with the following operator:

Ľϕ(s, x) = ϕs(s, x) + tr [ϕxx(x)a(s, x)] + ϕx(s, x)b̃
(
r, μ; θ, θ0)

, ∀ϕ ∈ C1,2.

Now we consider the following equation with the unknown (Θ, Θ0(t, ·, ̃x, ·, y)):

⎧⎪⎪⎨⎪⎪⎩
LΘ(s, x) + Θ̌x(s, x)b̃

(
s, x; θ, θ0)

+ g̃(s, x; θ, θ0)
= 0,

LΘ0(t, s, x̃, x, y) + Θ̌0
x(t, s, x̃, x, y)b̃

(
s, x; θ, θ0)

+ g̃0(t, s, x̃, x, y; θ, θ0) = 0,

0 0

(7.6)
Θ(T, x) = h(x), Θs(t, T, x̃, x, y) = h (t, x̃, x, y),
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with the operator L is defined by (7.2). By [21, Chapter 1, Theorems 12 and 16], (7.6) admits a unique 
classical solution (Θ, Θ0(t, ·, ̃x, ·, y)) ∈ C1,2, which is given by

Θ(s, x) =
∫
Rn

Ξ(s, x, T, μ)h(μ)dμ +
T∫

s

∫
Rn

Ξ(s, x, r, μ)

×
[
Θ̌x(r, μ)b̃

(
r, μ; θ, θ0)

+ g̃
(
r, μ; θ, θ0)]

dμdr, (7.7)

Θ0(t, s, x̃, x, y) =
∫
Rn

Ξ(s, x, T, μ)h0(t, x̃, μ, y)dμ +
T∫

s

∫
Rn

Ξ(s, x, r, μ)

×
[
Θ̌0

x(t, r, x̃, μ, y)b̃
(
r, μ; θ, θ0)

+ g̃0(
t, r, x̃, μ, y; θ, θ0)]

dμdr. (7.8)

Note that (Θ̌, Θ̌0(t, ·, ̃x, ·, y)) ∈ C1,2 also satisfies (7.6), which, together with the uniqueness of solutions to 
(7.7)– (7.8), implies that (Θ, Θ0) = (Θ̌, Θ̌0). Thus, (7.4) and (7.5) hold. The other results can be obtained 
easily. �

Define

Θ(s, x; T ) :=
∫
Rn

Ξ(s, x, T, μ)h(μ)dμ,

Θ0(t, s, x̃, x, y; T ) :=
∫
Rn

Ξ(s, x, T, μ)h0(t, x̃, μ, y)dμ.

Then (Θ(· ; T ), Θ0(· ; T )) satisfies the following equation:

{
LΘ(s, x; T ) = 0, LΘ0(t, s, x̃, x, y; T ) = 0,

Θ(T, x; T ) = h(x), Θ0
s(t, T, x̃, x, y; T ) = h0(t, x̃, x, y).

(7.9)

Note that (Θ(· ; T ), Θ0(· ; T )) is independent of (θ, θ0) and by taking (t, ̃x, y) as parameters, (7.9) is a 
classical linear parabolic equation. Then by the standard estimates of PDEs (see [33, Chapter IV]), we have 
the following results.

Lemma 7.2. There exists a constant κ > 0 such that

‖Θ(·; T )‖
C1+ α

2 ,2+α + ‖Θ0(·; T )‖
C

α
2 ,1+ α

2 ,α,2+α,2 ≤ κ[‖h‖C2+α + ‖h0‖
C

α
2 ,α,2+α,2 ].

We now establish a (global) C0,1-norm estimate for (Θ, Θ0(t, ·, ̃x, ·, y)).

Lemma 7.3. There exists a constant κ > 0, independent of θ and θ0, such that

‖Θ‖C0,1 + sup
t,x̃,y∈[0,T ]×Rn×R

‖Θ0(t, ·, x̃, ·, y))‖C0,1

≤ κ
[
1 + ‖h‖C2+α + sup

n

‖h0(t, x̃, ·, y)‖C2+α

]
. (7.10)
t,x̃,y∈[0,T ]×R ×R



H. Wang et al. / J. Math. Pures Appl. 190 (2024) 103603 43
Proof. By (7.4), we have

Θx(s, x) = Θx(s, x; T ) +
T∫

s

∫
Rn

Ξx(s, x, r, μ)
[
Θx(r, μ)b̃(r, μ; θ, θ0) + g̃(r, μ; θ, θ0)

]
dμdr. (7.11)

Then by Lemma 7.2 and the estimate (7.3), we get

|Θx(s, x)| ≤ |Θx(s, x; T )| +
T∫

s

∫
Rn

K
1

(r − s) n+1
2

e
−λ|x−η|2

4(r−s) (1 + |Θx(r, μ)|)dμdr

≤ K(1 + ‖h‖C2+α) +
T∫

s

∫
Rn

K
1

(r − s) n+1
2

e
−λ|x−μ|2

4(r−s) |Θx(r, μ)|dμdr.

By Grönwall’s inequality, we obtain

|Θx(s, x)| ≤ K(1 + ‖h‖C2+α), ∀(s, x) ∈ [0, T ] × Rn.

Substituting the above into (7.4) and then by (7.3) again, we have

|Θ(s, x)| ≤ K(1 + ‖h‖C2+α), ∀(s, x) ∈ [0, T ] × Rn.

It follows that

‖Θ‖C0,1 ≤ K(1 + ‖h‖C2+α). (7.12)

By (7.5), we get

Θ0
x(t, s, x̃, x, y) = Θ0

x(t, s, x̃, x, y; T ) +
T∫

s

∫
Rn

Ξx(s, x, r, μ)
[
Θ0

x(t, r, x̃, μ, y)b̃(r, μ; θ, θ0)

+ g̃0(t, r, x̃, μ, y; θ, θ0)
]
dμdr. (7.13)

By the same argument as the above, we get

‖Θ0(t, · , x̃, · , y))‖C0,1 ≤ K sup
t,x̃,y∈[0,T ]×Rn×R

[
1 + ‖h0(t, x̃, · , y)‖C2+α

]
.

Combining the above with (7.12) implies the estimate (7.10) holds. �
The following gives the (local) regularity estimate of Θ0(t, s, ̃x, x, y) with respect to the parameters t, x̃, 

and y.

Lemma 7.4. There exist two constants 0 < ε̃ ≤ T and κ > 0 such for any θ ∈ C0,1+α and θ0 ∈ C
α
2 ,0,α,1+α,2

with

‖θ0‖
C

α
2 ,0,α,1,2([T −ε̃,T ]) ≤ κ

[
1 + ‖h0‖

C
α
2 ,α,2+α,2

]
, (7.14)

the unique solution (Θ, Θ0) of PDE (7.1) satisfies

‖Θ0‖ α ,0,α,1,2 ≤ κ
[
1 + ‖h0‖ α ,α,2+α,2

]
. (7.15)
C 2 ([T −ε̃,T ]) C 2
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Proof. From (7.5) and (7.13), it is easily seen that both Θ0(t, s, ̃x, x, y) and Θ0
x(t, s, ̃x, x, y) are differentiable 

with respect to the parameter y. Moreover, the derivatives are given by

Θ0
y(t, s, x̃, x, y) = Θ0

y(t, s, x̃, x, y; T ) +
T∫

s

∫
Rn

Ξ(s, x, r, μ)
[
Θ0

xy(t, r, x̃, μ, y)b̃(r, μ; θ, θ0)

+ g̃0
p0(t, r, x̃, μ, y; θ, θ0

x)θ0
xy(t, r, x̃, μ, y)

]
dμdr, (7.16)

Θ0
xy(t, s, x̃, x, y) = Θ0

xy(t, s, x̃, x, y; T ) +
T∫

s

∫
Rn

Ξx(s, x, r, μ)
[
Θ0

xy(t, r, x̃, μ, y)b̃(r, μ; θ, θ0)

+ g̃0
p0(t, r, x̃, μ, y; θ, θ0

x)θ0
xy(t, r, x̃, μ, y)

]
dμdr. (7.17)

Applying the arguments employed in the proof of Lemma 7.3, we have

‖Θ0
y‖L∞

[T −ε̃,T ]
+ ‖Θ0

xy‖L∞
[T −ε̃,T ]

≤ K̄
(
1 + ‖h0

y‖C0,0,2+α,0
)

+ K̄
√

ε̃‖θ0
xy‖L∞

[T −ε̃,T ]
. (7.18)

Let κ = 10K̄ + 10 and ε̃ be small enough such that K̄
√

ε̃ ≤ 1
10 , then

‖Θ0
y‖L∞

[T −ε̃,T ]
+ ‖Θ0

xy‖L∞
[T −ε̃,T ]

≤ (2K̄ + 1)
(
1 + ‖h0‖

C
α
2 ,α,2+α,2

)
, (7.19)

for θ0 satisfying (7.14). Note that

Θ0
yy(t, s, x̃, x, y) = Θ0

yy(t, s, x̃, x, y; T ) +
T∫

s

∫
Rn

Ξ(s, x, r, μ)
[
Θ0

xyy(t, r, x̃, μ, y)b̃(r, μ; θ, θ0)

+
〈
g̃0

p0p0(t, r, x̃, μ, y; θ, θ0)θ0
xy(t, r, x̃, μ, y), θ0

xy(t, r, x̃, μ, y)
〉

+ g̃0
p0(t, r, x̃, μ, y; θ, θ0

x)θ0
xyy(t, r, x̃, μ, y)

]
dμdr, (7.20)

Θ0
xyy(t, s, x̃, x, y) = Θ0

xyy(t, s, x̃, x, y; T ) +
T∫

s

∫
Rn

Ξx(s, x, r, μ)
[
Θ0

xyy(t, r, x̃, μ, y)b̃(r, μ; θ, θ0)

+
〈
g̃0

p0p0(t, r, x̃, μ, y; θ, θ0)θ0
xy(t, r, x̃, μ, y), θ0

xy(t, r, x̃, μ, y)
〉

+ g̃0
p0(t, r, x̃, μ, y; θ, θ0

x)θ0
xyy(t, r, x̃, μ, y)

]
dμdr. (7.21)

Then by the arguments employed in the proof of Lemma 7.3 again, we get

‖Θ0
yy‖L∞

[T −ε̃,T ]
+ ‖Θ0

xyy‖L∞
[T −ε̃,T ]

≤ K̄
(
1 + ‖h0

yy‖C0,0,2+α,0
)

+ K̄
√

ε‖θ0
xyy‖L∞

[T −ε̃,T ]
+ K̄

√
ε‖θ0

xy‖2
L∞

[T −ε̃,T ]
,

where K̄ > 0 can be same as that in (7.18). Further, we let ε̃ > 0 be small enough such that K̄
√

ε̃ ≤ 1
40

and K̄
√

ε̃‖θ0
xy‖L∞

[T −ε̃,T ]
≤ K̄

√
ε̃2κ̄(1 + ‖h0‖

C
α
2 ,α,2+α,2) ≤ 1

40 , then

‖Θ0
yy‖L∞

[T −ε̃,T ]
+ ‖Θ0

xyy‖L∞
[T −ε̃,T ]

≤ K̄
(
1 + ‖h0

yy‖C0,0,2+α,0
)

+ 1
40‖θ0

xyy‖L∞
[T −ε̃,T ]

+ 1
40‖θ0

xy‖L∞
[T −ε̃,T ]

≤ (2K̄ + 1)
(
1 + ‖h0‖

C
α
2 ,α,2+α,2

)
.
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For any x̃1, ̃x2 ∈ Rn, denote

δΘ0(t, s, x, y) := Θ0,1(t, s, x, y) − Θ0,2(t, s, x, y),

with Θ0,i(t, s, x, y) := Θ0(t, s, ̃xi, x, y), i = 1, 2. Similarly, we define δθ0 and θ0,i. Then, we have

δΘ0(t, s, x, y) = Θ0(t, s, x̃1, x, y; T ) − Θ0(t, s, x̃2, x, y; T ) +
T∫

s

∫
Rn

Ξ(s, x, r, μ)

×
[
δΘ0

x(t, r, μ, y)b̃(r, μ; θ, θ0) + g̃0(t, r, x̃1, μ, y; θ, θ0, θ0,1)

− g̃0(t, r, x̃2, μ, y; θ, θ0, θ0,2)
]
dμdr, (7.22)

δΘ0
y(t, s, x, y) = Θ0

y(t, s, x̃1, x, y; T ) − Θ0
y(t, s, x̃2, x, y; T ) +

T∫
s

∫
Rn

Ξ(s, x, r, μ)

×
{

δΘ0
xy(t, r, μ, y)b̃(r, μ; θ, θ0) + δθ0

xy(t, r, μ, y)g̃0
p0(t, r, x̃1, μ, y; θ, θ0, θ0,1)

+ θ0,2
xy (t, r, μ, y)

[
g̃0

p0(t, r, x̃1, μ, y; θ, θ0, θ0,1) − g̃0
p0(t, r, x̃2, μ, y; θ, θ0, θ0,2)

]}
dμdr, (7.23)

δΘ0
x(t, s, x, y) = Θ0

x(t, s, x̃1, x, y; T ) − Θ0
x(t, s, x̃2, x, y; T ) +

T∫
s

∫
Rn

Ξx(s, x, r, μ)

×
[
δΘ0

x(t, r, μ, y)b̃(r, μ; θ, θ0) + g̃0(t, r, x̃1, μ, y; θ, θ0, θ0,1)

− g̃0(t, r, x̃2, μ, y; θ, θ0, θ0,2)
]
dμdr, (7.24)

and

δΘ0
xy(t, s, x, y) = Θ0

xy(t, s, x̃1, x, y; T ) − Θ0
xy(t, s, x̃2, x, y; T ) +

T∫
s

∫
Rn

Ξx(s, x, r, μ)

×
{

δΘ0
xy(t, r, μ, y)b̃(r, μ; θ, θ0) + δθ0

xy(t, r, μ, y)g̃0
p0(t, r, x̃1, μ, y; θ, θ0, θ0,1)

+ θ0,2
xy (t, r, μ, y)

[
g̃0

p0(t, r, x̃1, μ, y; θ, θ0, θ0,1) − g̃0
p0(t, r, x̃2, μ, y; θ, θ0, θ0,2)

]}
dμdr. (7.25)

By Lemma 7.2, (7.3), and (7.18), we get

‖δΘ0‖L∞
[T −ε̃,T ]

+ ‖δΘ0
y‖L∞

[T −ε̃,T ]
+ ‖δΘ0

x‖L∞
[T −ε̃,T ]

+ ‖δΘ0
xy‖L∞

[T −ε̃,T ]

≤ K̄
(
1 + ‖h0‖C0,α,2+α,0 + ‖h0

y‖C0,α,2+α,0 + ‖h0
yy‖C0,α,2+α,0

)
|x̃1 − x̃2|α + K̄

√
ε̃‖δθ0

x‖L∞
[T −ε̃,T ]

+ K̄
√

ε̃‖δθ0
xy‖L∞

[T −ε̃,T ]
+ K̄

√
ε̃‖θ0,2

xy ‖L∞
[T −ε̃,T ]

[‖δθ0
x‖L∞

[T −ε̃,T ]
+ |x̃1 − x̃2|α],

which implies that

‖Θ0‖C0,0,α,0,0
[T −ε̃,T ]

+ ‖Θ0
y‖C0,0,α,0,0

[T −ε̃,T ]
+ ‖Θ0

x‖C0,0,α,0,0
[T −ε̃,T ]

+ ‖Θ0
xy‖C0,0,α,0,0

[T −ε̃,T ]

≤ (2K̄ + 1)
(
1 + ‖h0‖C0,α,2+α,1

)
,
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by choosing a proper ε̃ > 0. By continuing the above arguments, we can also have

‖Θ0
yy‖C0,0,α,0,0

[T −ε̃,T ]
+ ‖Θ0

xyy‖C0,0,α,0,0
[T −ε̃,T ]

≤ (2K̄ + 1)
(
1 + ‖h0‖C0,α,2+α,2

)
.

The C
α
2 -estimate for the parameter t can be obtained by the same arguments as above. Combining these 

estimates together, we get (7.15). �
Next, we are going to establish the C1+α-norm estimate for Θ0(t, s, ̃x, ·, y) and Θ(s, ·). To achieve this, 

we need to make some preparations.
By making the transform x − μ = (

√
r − s)μ̃ in the integral term of (7.11)–(7.13), respectively, we have

Θx(s, x) = Θx(s, x; T ) +
T∫

s

∫
Rn

Γ̃x(s, x, r, x −
√

r − sμ̃)
[
Θx(r, x −

√
r − sμ̃)

× b̃(r, x −
√

r − sμ̃; θ, θ0) + g̃(r, x −
√

r − sμ̃; θ, θ0)
]
dμ̃dr

+
T∫

s

∫
Rn

Γ̂x(s, x, r, μ)
[
Θx(r, μ)b̃(r, μ; θ, θ0) + g̃(r, μ; θ, θ0)

]
dμdr, (7.26)

and

Θ0
x(t, s, x̃, x, y) = Θ0

x(t, s, x̃, x, y; T ) +
T∫

s

∫
Rn

Γ̃x(s, x, r, x −
√

r − sμ̃)

×
[
Θ0

x(t, r, x̃, x −
√

r − sμ̃, y)b̃(r, x −
√

r − sμ̃; θ, θ0)

+ g̃0(t, r, x̃, x −
√

r − sμ̃; θ, θ0)
]
dμ̃dr +

T∫
s

∫
Rn

Γ̂x(s, x, r, μ)

×
[
Θ0

x(t, r, x̃, μ, y)b̃(r, μ; θ, θ0) + g̃0(t, r, x̃, μ, y; θ, θ0)
]
dμdr, (7.27)

where

Γ̃x(s, x, r, x −
√

r − sμ̃ := −Γx(s, x, r, x −
√

r − sμ̃)(r − s) n
2

= 1
(4π) n

2 (det[a(r, x −
√

r − sμ̃)]) 1
2

× e− 〈a(r,x−
√

r−sμ̃)−1μ̃,μ̃〉
4

a(r, x −
√

r − sμ̃)−1

2
√

r − s
μ̃. (7.28)

By some straightforward calculations, it is clearly seen that

|Γ̃x(s, x, r, x −
√

r − sμ̃)| ≤ K√
r − s

e−λ|μ̃|2
,

‖Γ̃x(s, ·, r, · −
√

r − sμ̃)‖α ≤ K√
r − s

e−λ|μ̃|2
, (7.29)

for some 0 < λ < λ0. Moreover, by [21, Chapter 1, Lemma 3 and Theorem 7], we have
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|Γ̂x(s, x, r, μ)| ≤ K
e

−λ|x−μ|2
r−s

(r − s) n+ε
2

, |Γ̂x(s, x1, r, μ) − Γ̂x(s, x2, r, μ)| (7.30)

≤ K
[ e

−λ|x1−μ|2
r−s

(r − s) n+ε
2

+ e
−λ|x2−μ|2

r−s

(r − s) n+ε
2

]
|x1 − x2|α, ∀x1, x2 ∈ Rn, (7.31)

for some small enough 0 < ε < 1.

Lemma 7.5. There exist two constants 0 < ε̄ ≤ ε̃ ≤ T and κ̄ > 0 such for any θ ∈ C0,1+α and θ0 ∈
C

α
2 ,0,α,1+α,2 with satisfying (7.14) and

‖θx‖C0,α([T −ε̄,T ]) + ‖θ0
x‖C0,0,0,α,0([T −ε̄,T ]) ≤ 2κ̄

[
1 + ‖h‖C2+α + ‖h0‖C0,0,2+α,0

]
, (7.32)

the unique solution (Θ, Θ0) of PDE (7.1) satisfies

‖Θx‖C0,α([T −ε̄,T ]) + ‖Θ0
x‖C0,0,0,α,0([T −ε̄,T ]) ≤ 2κ̄

[
1 + ‖h‖C2+α + ‖h0‖C0,0,2+α,0

]
. (7.33)

Moreover, there exists a constant κ̂ > 0, which depends on κ̄, such that

‖Θ0
xy‖C0,0,0,α,0([T −ε̄,T ]) ≤ κ̂

[
1 + ‖h‖C2+α + ‖h0‖C0,0,2+α,1

]
. (7.34)

Proof. For any x1, x2 ∈ Rn, from (7.26), by the estimate (7.31) we have

|Θx(s, x1) − Θx(s, x2)|

≤ K‖h‖C2+α |x1 − x2|α +
T∫

s

∫
Rn

K√
r − s

e−λ|μ̃|2
dμ̃dr

[
1 + ‖Θx‖L∞

]
|x1 − x2|α

+
T∫

s

∫
Rn

K√
r − s

e−λ|μ̃|2
[∣∣Θx(r, x1 −

√
r − sμ̃) − Θx(r, x2 −

√
r − sμ̃)

∣∣
+

∣∣b̃(r, x1 −
√

r − sμ̃; θ, θ0) − b̃(r, x2 −
√

r − sμ̃; θ, θ0)
∣∣‖Θx‖L∞

+
∣∣g̃(r, x1 −

√
r − sμ̃; θ, θ0) − g̃(r, x2 −

√
r − sμ̃; θ, θ0)

∣∣]dμ̃dr

+
T∫

s

∫
Rn

[ e
−λ|x1−μ|2

r−s

(r − s) n+ε
2

+ e
−λ|x2−μ|2

r−s

(r − s) n+ε
2

]
dμdr

[
1 + ‖Θx‖L∞

]
|x1 − x2|α. (7.35)

Note that for ϕ̃ = b̃, ̃g,

ϕ̃(r, x1 −
√

r − sμ̃; θ, θ0) − ϕ̃(r, x2 −
√

r − sμ̃; θ, θ0)

= ϕ̃
(

r, x1 −
√

r − sμ̃, θ(r, x1 −
√

r − sμ̃), θx(r, x1 −
√

r − sμ̃),

θ0(r, x1 −
√

r − sμ̃, r, x1 −
√

r − sμ̃, θ(r, x1 −
√

r − sμ̃)),

θ0
x(r, x1 −

√
r − sμ̃, r, x1 −

√
r − sμ̃, θ(r, x1 −

√
r − sμ̃)),

θ0
y(r, x1 −

√
r − sμ̃, r, x1 −

√
r − sμ̃, θ(r, x1 −

√
r − sμ̃))

)
− ϕ̃

(
r, x2 −

√
r − sμ̃, θ(r, x2 −

√
r − sμ̃), θx(r, x2 −

√
r − sμ̃),
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θ0(r, x2 −
√

r − sμ̃, r, x2 −
√

r − sμ̃, θ(r, x2 −
√

r − sμ̃)),

θ0
x(r, x2 −

√
r − sμ̃, r, x2 −

√
r − sμ̃, θ(r, x2 −

√
r − sμ̃)),

θ0
y(r, x2 −

√
r − sμ̃, r, x2 −

√
r − sμ̃, θ(r, x2 −

√
r − sμ̃))

)
.

Then by Lemma 7.4, we get

|ϕ̃(r, x1 −
√

r − sμ̃; θ, θ0) − ϕ̃(r, x2 −
√

r − sμ̃; θ, θ0)|
≤ K

(
1 + ‖θx(r, ·)‖Cα + ‖θ0

x(r, ·, r, ·, ·)‖C0,α,0
)
|x1 − x2|α,

where K > 0 depends on h and h0. Substituting the above into (7.35) and then by Lemma 7.3, we have

|Θx(s, x1) − Θx(s, x2)| ≤ K
(
1 + ‖h‖C2+α

)
|x1 − x2|α +

T∫
s

K√
r − s

[
‖Θx(r, ·)‖α

+ ‖θx(r, ·)‖Cα + ‖θ0
x(r, ·, r, ·, ·)‖C0,α,0

]
dr|x1 − x2|α,

which implies that

‖Θx(s, ·)‖α ≤ K
(
1 + ‖h‖C2+α

)
+

T∫
s

K√
r − s

[
‖Θx(r, ·)‖α

+ ‖θx(r, ·)‖Cα + ‖θ0
x(r, ·, r, ·, ·)‖C0,α,0

]
dr. (7.36)

By the same argument as the above (noting (7.27)), we also have

‖Θ0
x(t, s, x̃, ·, y)‖α ≤ K

(
1 + ‖h0(t, x̃, ·, y)‖C2+α

)
+

T∫
s

K√
r − s

[
‖Θ0

x(t, s, x̃, ·, y)‖α

+ ‖θx(r, ·)‖α + ‖θ0
x(r, ·, r, ·, ·)‖C0,α,0 + ‖θ0

x(t, r, x̃, ·, y)‖α

]
dr, (7.37)

‖Θ0
xy(t, s, x̃, ·, y)‖α ≤ K

(
1 + ‖h0(t, x̃, ·, ·)‖C2+α,1

)
+

T∫
s

K√
r − s

[
‖Θ0

xy(t, s, x̃, ·, y)‖α

+ ‖θx(r, ·)‖α + ‖θ0
x(r, ·, r, ·, ·)‖C0,α,0 + ‖θ0

xy(t, r, x̃, ·, y)‖α

]
dr. (7.38)

Combining (7.36) and (7.37) yields that

‖Θx‖C0,α([T −ε̄,T ]) + ‖Θ0
x‖C0,0,0,α,0([T −ε̄,T ])

≤ κ̄
[
1 + ‖h‖C2+α + ‖h0‖C0,0,2+α,0

]
+ κ̄

√
ε̄
[
‖Θx‖C0,α([T −ε̄,T ])

+ ‖Θ0
x‖C0,0,0,α,0([T −ε̄,T ]) + ‖θx‖C0,α([T −ε̄,T ]) + ‖θ0

x‖C0,0,0,α,0([T −ε̄,T ])
]
, (7.39)

where κ̄ > κ, only depending on (h, ̃g, h0, ̃g0), is a fixed constant. Let 0 < ε̄ ≤ ε̃ be small enough such that 
κ̄

√
ε̄ ≤ 1

4 and

‖θx‖C0,α([T −ε̄,T ]) + ‖θ0
x‖C0,0,0,α,0([T −ε̄,T ]) ≤ 2κ̄

[
1 + ‖h‖C2+α + ‖h0‖C0,0,2+α,0

]
. (7.40)
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Then from (7.39), we get

‖Θx‖C0,α([T −ε̄,T ]) + ‖Θ0
x‖C0,0,0,α,0([T −ε̄,T ]) ≤ 2κ̄

[
1 + ‖h‖C2+α + ‖h0‖C0,0,2+α,0

]
.

Substituting (7.40) into (7.38) also yields (7.34) immediately. The proof is complete. �
The following is concerned with the local solvability of the equilibrium HJB equation (2.16).

Proposition 7.6. There exists a constant ε̂ ∈ (0, ̄ε] such that the equilibrium HJB equation (2.16) admits a 
unique classical solution on the time interval [T − ε̂, T ].

Proof. Denote

Bε̄ =
{

(θ, θ0) ∈ C0,1+α × C
α
2 ,0,α,1+α,2 ∣∣ (θ, θ0) satisfies (7.14) and (7.32)

}
.

For any (θ, θ0) ∈ Bε̄, by Lemma 7.1, PDE (7.1) admits a unique classical solution (Θ, Θ0). Moreover, from 
Lemmas 7.3, 7.4, and 7.5, we know that (Θ, Θ0) ∈ Bε̄. Thus, the mapping Γ : Bε̄ → Bε̄, given by

Γ(θ, θ0) = (Θ, Θ0),

is well-defined. For any (θi, θ0,i) ∈ Bε̄ (i = 1, 2), let

(Θi, Θ0,i) = Γ(θi, θ0,i), i = 1, 2.

Denote

δθ = θ1 − θ2, δΘ = Θ1 − Θ2, δθ0 = θ0,1 − θ0,2, δΘ0 = Θ0,1 − Θ0,2,

and

δϕ̃(s, x) = ϕ̃(s, x; θ1, θ0,1) − ϕ̃(s, x; θ2, θ0,2), for ϕ = b, g,

δg̃0(t, s, x̃, x, y) = g̃0(t, s, x̃, x, y; θ1, θ0,1) − g̃0(t, s, x̃, x, y; θ1, θ0,2).

We hope to show that

‖δΘ‖C0,1+α + ‖δΘ0‖
C

α
2 ,0,α,1+α,2 ≤ 1

2
[
‖δθ‖C0,1+α + ‖δθ0‖

C
α
2 ,0,α,1+α,2

]
, (7.41)

on some time interval [T − ε̂, T ] ⊆ [T − ε̄, T ]. Thus, Γ is a contraction mapping and then it admits a unique 
fixed point (Θ, Θ0) ∈ C0,1+α × C

α
2 ,0,α,1+α,2. By Lemma 7.1, (Θ, Θ0) is the unique classical solution of equi-

librium HJB equation (2.16) on [T − ε̂, T ]. Further, we can show that (Θ, Θ0) ∈ C1+ α
2 ,2+α ×C

α
2 ,1+ α

2 ,α,2+α,2. 
Indeed, with (Θ, Θ0) ∈ C0,1+α × C

α
2 ,0,α,1+α,2, by the classical C

α
2 -estimates for Θx with respect to the 

time variable of linear parabolic equations (see [33, Chapter IV]), we know that (Θ, Θ0) ∈ C
α
2 ,1 × C0, α

2 ,0,1,1

on [T − ε̂, T ]. Combining this with the fact that (Θ, Θ0) ∈ C0,1+α × C
α
2 ,0,α,1+α,2, we get that the values 

Θ(s, x), Θx(s, x) and Θ0(s, s, x, x, Θ(s, x)), Θ0
x(s, x, s, x, Θ(s, x)), Θ0

y(s, x, s, x, Θ(s, x)), Θ0
x(t, s, ̃x, x, y) are 

α
2 -Hölder and α-Hölder continuous with respect to s and x, respectively. It follows [33, Chapter IV] that 
(Θ, Θ0) ∈ C1+ α

2 ,2+α × C
α
2 ,1+ α

2 ,α,2+α,2.
In the following, let us show that (7.41) really holds for some ε̂ > 0.
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Step 1. From (7.4)–(7.5), we have

δΘ(s, x) =
T∫

s

∫
Rn

Ξ(s, x, r, μ)
[
Θ1

x(r, μ)δb̃(r, μ) + δΘx(r, μ)b̃(r, μ; θ2, θ0,2) + δg̃(r, μ)
]
dμdr, (7.42)

δΘ0(t, s, x̃, x, y) =
T∫

s

∫
Rn

Ξ(s, x, r, μ)
[
Θ0,1

x (t, r, x̃, μ, y)δb̃(r, μ)

+ δΘ0
x(t, r, x̃, μ, y)b̃(r, μ; θ2, θ0,2) + δg̃0(t, r, x̃, μ, y)

]
dμdr. (7.43)

By Lemma 7.3 and the estimate (7.3), from (7.42) we get

|δΘ(s, x)| ≤ K

T∫
s

∫
Rn

e− λ|x−μ|2
4(r−s)

(r − s) n
2

[
|δb̃(r, μ)| + |δΘx(r, μ)| + |δg̃(r, μ)|

]
dμdr. (7.44)

For ϕ = b, g, by Lemma 7.4 we have

|δϕ̃(s, x)| ≤ K
[
|δθ(s, x)| + |δθx(s, x)| + |δθ0(s, x, s, x, θ1(s, x))|

+ |δθ0
x(s, x, s, x, θ1(s, x))| + |δθ0

y(s, x, s, x, θ1(s, x))|
]
. (7.45)

Substituting the above into (7.44) yields that

|δΘ(s, x)| ≤ K(T − s)
[
‖δθ‖L∞ + ‖δθx‖L∞ + ‖δθ0‖L∞ + ‖δθ0

x‖L∞ + ‖δθ0
y‖L∞

]
+ K

T∫
s

∫
Rn

e− λ|x−μ|2
4(r−s)

(r − s) n
2

|δΘx(r, μ)|dμdr. (7.46)

Similar to (7.45), using Lemma 7.4 again, we have

|δg̃0(t, s, x̃, x, y)| ≤ K
[
|δθ(s, x)| + |δθx(s, x)| + |δθ0(s, x, s, x, θ1(s, x))|

+ |δθ0
x(s, x, s, x, θ1(s, x))| + |δθ0

y(s, x, s, x, θ1(s, x))|

+ |δθ0
x(t, s, x̃, x, y)|

]
. (7.47)

Substituting the above into (7.43), we get

|δΘ0(t, s, x̃, x, y)| ≤ K(T − s)
[
‖δθ‖L∞ + ‖δθx‖L∞ + ‖δθ0‖L∞ + ‖δθ0

x‖L∞ + ‖δθ0
y‖L∞

]
+ K

T∫
s

∫
Rn

e− λ|x−μ|2
4(r−s)

(r − s) n
2

|δΘ0
x(t, r, x̃, μ, y)|dμdr. (7.48)

From (7.11) and (7.13), we have

δΘx(s, x) =
T∫ ∫

Ξx(s, x, r, μ)
[
Θ1

x(r, μ)δb̃(r, μ) + δΘx(r, μ)b̃(r, μ; θ2, θ0,2) + δg̃(r, μ)
]
dμdr, (7.49)
s Rn
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δΘ0
x(t, s, x̃, x, y) =

T∫
s

∫
Rn

Ξx(s, x, r, μ)
[
Θ0,1

x (t, r, x̃, μ, y)δb̃(r, μ)

+ δΘ0
x(t, r, x̃, μ, y)b̃(r, μ; θ2, θ0,2) + δg̃0(t, r, x̃, μ, y)

]
dμdr. (7.50)

By Lemma 7.3 and the estimates (7.3), (7.45) and (7.47), we get

|δΘx(s, x)| ≤ K
√

T − s
[
‖δθ‖L∞ + ‖δθx‖L∞ + ‖δθ0‖L∞ + ‖δθ0

x‖L∞ + ‖δθ0
y‖L∞

]
+ K

T∫
s

∫
Rn

e− λ|x−μ|2
4(r−s)

(r − s) n+1
2

|δΘx(r, μ)|dμdr, (7.51)

|δΘ0
x(t, s, x̃, x, y)| ≤ K

√
T − s

[
‖δθ‖L∞ + ‖δθx‖L∞ + ‖δθ0‖L∞ + ‖δθ0

x‖L∞ + ‖δθ0
y‖L∞

]
+ K

T∫
s

∫
Rn

e− λ|x−μ|2
4(r−s)

(r − s) n+1
2

|δΘ0
x(t, r, x̃, μ, y)|dμdr. (7.52)

Combining (7.46), (7.48), (7.51) and (7.52) together, and then by the Grönwall’s inequality, we get

‖δΘ‖C0,1([T −ε,T ]) + ‖δΘ0‖C0,0,0,1,0([T −ε,T ])

≤ K
√

ε
[
‖δθ‖C0,1([T −ε,T ]) + ‖δθ0‖C0,0,0,1,1([T −ε,T ])

]
. (7.53)

Step 2. From the proof of Lemma 7.4, by some direct computations, it is easily seen that

δΘ0
y(t, s, x̃, x, y) =

T∫
s

∫
Rn

Ξ(s, x, r, μ)
[
Θ0,1

xy (t, r, x̃, μ, y)δb̃(r, μ)

+ δΘ0
xy(t, r, x̃, μ, y)b̃(r, μ; θ2, θ0,2) + δg̃0

p0(t, r, x̃, μ, y)θ0,1
xy (t, r, x̃, μ, y)

+ g̃0
p0(t, r, x̃, μ, y; θ1, θ0,1, Θ0,1)δθ0

xy(t, r, x̃, μ, y)
]
dμdr,

δΘ0
xy(t, s, x̃, x, y) =

T∫
s

∫
Rn

Ξx(s, x, r, μ)
[
Θ0,1

xy (t, r, x̃, μ, y)δb̃(r, μ)

+ δΘ0
xy(t, r, x̃, μ, y)b̃(r, μ; θ2, θ0,2) + δg̃0

p0(t, r, x̃, μ, y)θ0,1
xy (t, r, x̃, μ, y)

+ g̃0
p0(t, r, x̃, μ, y; θ1, θ0,1, Θ0,1)δθ0

xy(t, r, x̃, μ, y)
]
dμdr,

δΘ0
yy(t, s, x̃, x, y) =

T∫
s

∫
Rn

Ξ(s, x, r, μ)
[
Θ0,1

xyy(t, r, x̃, μ, y)δb̃(r, μ)

+ δΘ0
xyy(t, r, x̃, μ, y)b̃(r, μ; θ2, θ0,2) + δg̃0

p0(t, r, x̃, μ, y)Θ0,1
xyy(t, r, x̃, μ, y)

+ g̃0
p0(t, r, x̃, μ, y; θ1, θ0,1, Θ0,1)δθ0

xyy(t, r, x̃, μ, y)

+ 〈δg̃0
p0p0(t, r, x̃, μ, y)θ0,1

xy (t, r, x̃, μ, y), θ0,1
xy (t, r, x̃, μ, y)〉

+ 〈g̃0
p0p0(t, r, x̃, μ, y; θ2, θ0,2, Θ0,2)δθ0

xy(t, r, x̃, μ, y), θ0,1
xy (t, r, x̃, μ, y)〉

+ 〈g̃0
p0p0(t, r, x̃, μ, y; θ2, θ0,2, Θ0,2)θ0,2

xy (t, r, x̃, μ, y), δθ0
xy(t, r, x̃, μ, y)〉

]
dμdr,
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and

δΘ0
xyy(t, s, x̃, x, y) =

T∫
s

∫
Rn

Ξx(s, x, r, μ)
[
Θ0,1

xyy(t, r, x̃, μ, y)δb̃(r, μ)

+ δΘ0
xyy(t, r, x̃, μ, y)b̃(r, μ; θ2, θ0,2) + δg̃0

p0(t, r, x̃, μ, y)Θ0,1
xyy(t, r, x̃, μ, y)

+ g̃0
p0(t, r, x̃, μ, y; θ1, θ0,1, Θ0,1)δθ0

xyy(t, r, x̃, μ, y)

+ 〈δg̃0
p0p0(t, r, x̃, μ, y)θ0,1

xy (t, r, x̃, μ, y), θ0,1
xy (t, r, x̃, μ, y)〉

+ 〈g̃0
p0p0(t, r, x̃, μ, y; θ2, θ0,2, Θ0,2)δθ0

xy(t, r, x̃, μ, y), θ0,1
xy (t, r, x̃, μ, y)〉

+ 〈g̃0
p0p0(t, r, x̃, μ, y; θ2, θ0,2, Θ0,2)θ0,2

xy (t, r, x̃, μ, y), δθ0
xy(t, r, x̃, μ, y)〉

]
dμdr.

Then by Lemma 7.4 and the estimate (7.3), we get

|δΘ0
y(t, s, x̃, x, y)| ≤ K(T − s)

[
‖δθ‖L∞ + ‖δθx‖L∞ + ‖δθ0‖L∞ + ‖δθ0

x‖L∞ + ‖δθ0
y‖L∞

]
+ K

T∫
s

∫
Rn

e− λ|x−μ|2
4(r−s)

(r − s) n
2

[
|δΘ0

x(t, r, x̃, μ, y)| + |δθ0
xy(t, r, x̃, μ, y)|

]
dμdr,

|δΘ0
xy(t, s, x̃, x, y)| ≤ K

√
T − s

[
‖δθ‖L∞ + ‖δθx‖L∞ + ‖δθ0‖L∞ + ‖δθ0

x‖L∞ + ‖δθ0
y‖L∞

]
+ K

T∫
s

∫
Rn

e− λ|x−μ|2
4(r−s)

(r − s) n+1
2

[
|δΘ0

xy(t, r, x̃, μ, y)| + |δθ0
xy(t, r, x̃, μ, y)|

]
dμdr,

|δΘ0
yy(t, s, x̃, x, y)| ≤ K(T − s)

[
‖δθ‖L∞ + ‖δθx‖L∞ + ‖δθ0‖L∞ + ‖δθ0

x‖L∞ + ‖δθ0
y‖L∞

]
+ K

T∫
s

∫
Rn

e− λ|x−μ|2
4(r−s)

(r − s) n
2

[
|δΘ0

xyy(t, r, x̃, μ, y)| + |δθ0
xy(t, r, x̃, μ, y)|

+ |δθ0
xyy(t, r, x̃, μ, y)|

]
dμdr,

and

|δΘ0
xyy(t, y, x̃, s, x)| ≤ K

√
T − s

[
‖δθ‖L∞ + ‖δθx‖L∞ + ‖δθ0‖L∞ + ‖δθ0

x‖L∞ + ‖δθ0
y‖L∞

]
+ K

T∫
s

∫
Rn

e− λ|x−μ|2
4(r−s)

(r − s) n+1
2

[
|δΘ0

xyy(t, r, x̃, μ, y)| + |δθ0
xy(t, r, x̃, μ, y)|

+ |δθ0
xyy(t, r, x̃, μ, y)|

]
dμdr.

Combining the above with the estimate (7.53) together, by Grönwall’s inequality again we get

‖δΘ‖C0,1([T −ε,T ]) + ‖δΘ0‖C0,0,1,2([T −ε,T ])

≤
√

εK
[
‖δθ‖C0,1([T −ε,T ]) + ‖δθ0‖C0,0,0,1,2([T −ε,T ])

]
.

For any x̃1, ̃x2 ∈ Rn, denote
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δΘ̂0(t, s, x, y) = δΘ0(t, s, x̃1, x, y) − δΘ0(t, s, x̃2, x, y).

Then from (7.50), we have

δΘ̂0
x(t, s, x, y) =

T∫
s

∫
Rn

Ξx(s, x, r, μ)
{

[Θ0,1
x (t, r, x̃1, μ, y) − Θ0,1

x (t, r, x̃2, μ, y)]δb̃(r, μ)

+ δΘ̂0
x(t, r, μ, y)b̃(r, μ; θ2, θ0,2) + δg̃0(t, r, x̃1, μ, y) − δg̃0(t, r, x̃2, μ, y)

}
dμdr.

Note that

|δg̃0(t, r, x̃1, μ, y) − δg̃0(t, r, x̃2, μ, y)|

≤ K|δθ̂0
x(t, s, x, y)| + K|δθ0

x(t, s, x̃1, x, y)|
[
1 + ‖θ0,1

x (t, s, ·, x, y)‖α

+ ‖θ0,2
x (t, s, ·, x, y)‖α

]
|x̃1 − x̃2|α.

Then by the fact that ‖θ0,i
x (t, s, ·, x, y)‖α and ‖Θ0,i

x (t, s, ·, x, y)‖α are bounded over [T −ε̄, T ] (see Lemma 7.4), 
we get

|δΘ̂0
x(t, s, x, y)| ≤ K

T∫
s

∫
Rn

e− λ|x−μ|2
4(r−s)

(r − s) n+1
2

{
|δΘ̂0

x(t, r, μ, y)| + |δθ̂0
x(t, r, μ, y)|

+
[
‖δθ‖L∞ + ‖δθx‖L∞ + ‖δθ0‖L∞ + ‖δθ0

x‖L∞ + ‖δθ0
y‖L∞

]
|x̃1 − x̃2|α

}
dμdr.

It follows that

‖δΘ0‖C0,0,α,1,0([T −ε,T ]) ≤
√

εK
[
‖δθ‖C0,1([T −ε,T ]) + ‖δθ0‖C0,0,α,1,1([T −ε,T ])

]
.

By continuing the above arguments, we have

‖δΘ‖C0,1([T −ε,T ]) + ‖δΘ0‖
C

α
2 ,0,α,1,2([T −ε,T ])

≤
√

εK
[
‖δθ‖C0,1([T −ε,T ]) + ‖δθ0‖

C
α
2 ,0,α,1,1([T −ε,T ])

]
.

Step 3. Recalling (7.26)–(7.27), similar to (7.49)–(7.50), we have

δΘx(s, x) =
T∫

s

∫
Rn

Γ̃x(s, x, r, x −
√

r − sμ)
[
δg̃(r, x −

√
r − sμ)

+ Θ1
x(r, x −

√
r − sμ)δb̃(r, x −

√
r − sμ) + δΘx(r, x −

√
r − sμ)

× b̃(r, x −
√

r − sμ; θ2, θ0,2)
]
dμdr +

T∫
s

∫
Rn

Γ̂x(s, x, r, μ)

×
[
δg̃(r, μ) + Θ1

x(r, μ)δb̃(r, μ) + δΘx(r, μ)b̃(r, μ)
]
dμdr,

δΘ0
x(t, s, x̃, x, y) =

T∫ ∫
Γ̃x(s, x, r, x −

√
r − sμ)

[
δg̃0(t, r, x̃, x −

√
r − sμ, y)
s Rn
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+ Θ0,1
x (t, r, x̃, x −

√
r − sμ, y)δb̃(r, x −

√
r − sμ)

+ δΘ0
x(t, r, x̃, x −

√
r − sμ, y)b̃(r, x −

√
r − sμ; θ2, θ0,2)

]
dμdr

+
T∫

s

∫
Rn

Γ̂x(s, x, r, μ)
[
δg̃0(t, r, x̃, μ, y) + Θ0,1

x (t, r, x̃, μ, y)δb̃(r, μ)

+ δΘ0
x(t, r, x̃, μ, y)b̃(r, μ)

]
dμdr,

where Γ̃ is defined by (7.28). For any x1, x2 ∈ Rn, we have

δΘ0
x(t, s, x̃, x1, y) − δΘ0

x(t, s, x̃, x2, y)

=
T∫

s

∫
Rn

[
Γ̃x(s, x1, r, x1 −

√
r − sμ) − Γ̃x(s, x2, r, x2 −

√
r − sμ)

]
×

[
δg̃0(t, r, x̃, x1 −

√
r − sμ, y) + Θ0,1

x (t, r, x̃, x1 −
√

r − sμ, y)δb̃(r, x1 −
√

r − sμ)

+ δΘ0
x(t, r, x̃, x1 −

√
r − sμ, y)b̃(r, x1 −

√
r − sμ; θ2, θ0,2)

]
dμdr

+
T∫

s

∫
Rn

Γ̃x(s, x2, r, x2 −
√

r − sμ)
{[

δg̃0(t, r, x̃, x1 −
√

r − sμ, y)

− δg̃0(t, r, x̃, x2 −
√

r − sμ, y)
]

+
[
Θ0,1

x (t, r, x̃, x1 −
√

r − sμ, y)

× δb̃(r, x1 −
√

r − sμ) − Θ0,1
x (t, r, x̃, x2 −

√
r − sμ, y)δb̃(r, x2 −

√
r − sμ)

]
+

[
δΘ0

x(t, r, x̃, x1 −
√

r − sμ, y)b̃(r, x1 −
√

r − sμ; θ2, θ0,2)

− δΘ0
x(t, r, x̃, x2 −

√
r − sμ, y)b̃(r, x2 −

√
r − sμ; θ2, θ0,2)

]}
dμdr

+
T∫

s

∫
Rn

[Γ̂x(s, x1, r, μ) − Γ̂x(s, x2, r, μ)]
[
δg̃0(t, r, x̃, μ, y)

+ Θ0,1
x (t, r, x̃, μ, y)δb̃(r, μ) + δΘ0

x(t, r, x̃, μ, y)b̃(r, μ)
]
dμdr. (7.54)

Note that on [T − ε, T ], by Lemmas 7.4 and 7.5 we have∣∣[θ0,1
x (r, x1, r, x1, θ1(r, x1)) − θ0,2

x (r, x1, r, x1, θ2(r, x1))]

− [θ0,1
x (r, x2, r, x2, θ1(r, x2)) − θ0,2

x (r, x2, r, x2, θ2(r, x2))]
∣∣

≤
{

‖δθ0
xy‖L∞‖θ1‖C0,α + ‖δθ0

x‖C0,0,α,α,0 + ‖θ0,2
xy ‖L∞‖δθ‖C0,α

+
[
‖θ0,2

xyy‖L∞(‖θ1‖C0,α + ‖θ2‖C0,α) + ‖θ0,2
xy ‖C0,0,α,α,0

]
‖δθ‖L∞

}
|x1 − x2|α

≤ K
[
‖δθ0

x‖C0,0,α,α,1 + ‖δθ‖C0,α

]
|x1 − x2|α. (7.55)

By the same arguments as the above, we have∣∣[θ0,1(r, x1, r, x1, θ1(r, x1)) − θ0,2(r, x1, r, x1, θ2(r, x1))]

− [θ0,1(r, x2, r, x2, θ1(r, x2)) − θ0,2(r, x2, r, x2, θ2(r, x2))]
∣∣
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≤ K
[
‖δθ0‖C0,0,α,α,1 + ‖δθ‖C0,α

]
|x1 − x2|α, (7.56)

and ∣∣[θ0,1
y (r, x1, r, x1, θ1(r, x1)) − θ0,2

y (r, x1, r, x1, θ2(r, x1))]

− [θ0,1
y (r, x2, r, x2, θ1(r, x2)) − θ0,2

y (r, x2, r, x2, θ2(r, x2))]
∣∣

≤ K
[
‖δθ0

y‖C0,0,α,α,1 + ‖δθ‖C0,α

]
|x1 − x2|α. (7.57)

For any ϕ ∈ C1,2, denote

δϕ(x1) − δϕ(x2) :=
[
ϕ(x1, θ0,1

x (r, x1, r, x1, θ1(r, x1))) − ϕ(x1, θ0,2
x (r, x1, r, x1, θ2(r, x1)))

]
−

[
ϕ(x2, θ0,1

x (r, x2, r, x2, θ1(r, x2))) − ϕ(x2, θ0,2
x (r, x2, r, x2, θ2(r, x2)))

]
.

From (7.55), we have the following estimate:

|δϕ(x1) − δϕ(x2)| ≤ K
[
‖δθ0

x‖C0,0,α,α,1 + ‖δθ‖C0,α

]
|x1 − x2|α,

on [T − ε, T ], where K depends on ‖ϕ‖C0,1 . Thus, by the estimates (7.55)–(7.57), we get

|δg̃0(t, r, x̃, x1, y) − δg̃0(t, r, x̃, x2, y)|
≤ K

[
‖δθ0‖C0,0,α,1+α,2 + ‖δθ‖C0,1+α + ‖δθ0

x(t, r, x̃, ·, y)‖α

]
|x1 − x2|α. (7.58)

Similarly,

|δb̃(r, x1) − δb̃(r, x2)| ≤ K
[
‖δθ0‖C0,0,α,1+α,2 + ‖δθ‖C0,1+α

]
|x1 − x2|α. (7.59)

By (7.29), (7.31), Lemmas 7.3 and 7.5, from (7.54) we obtain

‖δΘ0
x(t, s, x̃, ·, y)‖α ≤

T∫
s

∫
Rn

K√
r − s

e−λ|μ|2
[
|δb̃(r, x −

√
r − sμ)| + |δg̃0(t, r, x̃, x −

√
r − sμ, y)|

+ |δΘ0
x(t, r, x̃, x −

√
r − sμ, y)|

]
dμdr +

T∫
s

∫
Rn

K√
r − s

e−λ|μ|2

×
[
|δb̃(r, x1 −

√
r − sμ)| + ‖δb̃(r, ·)‖α + |δΘ0

x(t, r, x̃, x1 −
√

r − sμ, y)|

+ ‖δΘ0
x(t, r, x̃, ·, y)‖α + ‖δg̃0(t, r, x̃, ·, y)‖α

]
dμdr

+
T∫

s

∫
Rn

[ e
−λ|x1−μ|2

r−s

(r − s) n+ε
2

+ e
−λ|x2−μ|2

r−s

(r − s) n+ε
2

][
δg̃0(t, r, x̃, μ, y)

+ Θ0,1
x (t, r, x̃, μ, y)δb̃(r, μ) + δΘ0

x(t, r, x̃, μ, y)b̃(r, μ)
]
dμdr.

Substituting the estimates (7.45), (7.47), (7.58) and (7.59) into the above, and then by Grönwall’s inequality, 
we get

‖δΘ0
x(t, s, x̃, ·, y)‖α ≤ K

√
ε
[
‖δθ0‖C0,0,α,1+α,2 + ‖δθ‖C0,1+α

]
.
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By the same arguments as the above, we have

‖δΘx(s, ·)‖α ≤ K
√

ε
[
‖δθ0‖C0,0,α,1+α,2 + ‖δθ‖C0,1+α

]
.

By continuing the above arguments, we get

‖δΘx‖C0,α + ‖δΘ0
x‖

C
α
2 ,0,α,α,2 ≤ K

√
ε
[
‖δθ0‖

C
α
2 ,0,α,1+α,2 + ‖δθ‖C0,1+α

]
.

Step 4. Combining the estimates in Steps 1–3 together, we get

‖δΘ‖C0,1+α + ‖δΘ0‖
C

α
2 ,0,α,1+α,2 ≤ K

√
ε
[
‖δθ0‖

C
α
2 ,0,α,1+α,2 + ‖δθ‖C0,1+α

]
.

Then by choosing a 0 < ε̂ ≤ ε̄ small enough, we get that on [T − ε̂, T ],

‖δΘ‖C0,1+α + ‖δΘ0‖
C

α
2 ,0,α,1+α,2 ≤ 1

2
[
‖δθ0‖

C
α
2 ,0,α,1+α,2 + ‖δθ‖C0,1+α

]
.

Thus, (7.41) holds and this completes the proof. �
Complete the proof of Theorem 2.10. We have proved that equilibrium HJB equation (2.16) admits a unique 
classical solution (Θ, Θ0) on [T − ε̂, T ], where ε̂ is given by Proposition 7.6. By a routine argument, we can 
prove that equilibrium HJB equation (2.16) admits a unique classical solution (Θ, Θ0) on [T − ε̄, T ], where 
ε̄ is given by Lemma 7.5. Thus, to extend the solution to the whole time interval [0, T ], it suffices to prove 
a global prior estimate for ‖Θ‖C0,1+α and ‖Θ0‖

C
α
2 ,0,α,1+α,2 .

By (7.16) and (7.17), we have

|Θ0
y(t, s, x̃, x, y)| ≤ K‖h0‖

C
α
2 ,α,2+α,2 + K

T∫
s

‖Θ0
xy(t, r, x̃, ·, y)‖C0dμdr,

|Θ0
xy(t, s, x̃, x, y)| ≤ K‖h0‖

C
α
2 ,α,2+α,2 +

T∫
s

K√
r − s

‖Θ0
xy(t, r, x̃, ·, y)‖C0dμdr,

which implies that

‖Θ0
y‖L∞ + ‖Θ0

xy‖L∞ ≤ K‖h0‖
C

α
2 ,α,2+α,2 . (7.60)

Next, from (7.20) and (7.21), we have

|Θ0
yy(t, s, x̃, x, y)| ≤ K‖h0‖

C
α
2 ,α,2+α,2 + K

T∫
s

[
‖Θ0

xyy(t, r, x̃, ·, y)‖C0

+ ‖Θ0
xy(t, r, x̃, ·, y)‖2

C0

]
dμdr,

|Θ0
xyy(t, s, x̃, x, y)| ≤ K‖h0‖

C
α
2 ,α,2+α,2 +

T∫
s

K√
r − s

[
‖Θ0

xyy(t, r, x̃, ·, y)‖C0

+ ‖Θ0
xy(t, r, x̃, ·, y)‖2

C0

]
dμdr,

which, together with the global prior estimate (7.60), yields that
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‖Θ0
yy‖L∞ + ‖Θ0

xyy‖L∞ ≤ K‖h0‖
C

α
2 ,α,2+α,2 .

By (7.22)–(7.25), we get

‖Θ0(t, s, ·, x, y)‖α ≤ K‖h0‖
C

α
2 ,α,2+α,2 + K

T∫
s

[
‖Θ0

x(t, r, ·, ·, y)‖Cα,0 + 1
]
dr,

‖Θ0
y(t, s, ·, x, y)‖α ≤ K‖h0‖

C
α
2 ,α,2+α,2 + K

T∫
s

[
‖Θ0

xy(t, r, ·, ·, y)‖Cα,0

+ ‖Θ0
xy(t, r, ·, ·, y)‖C0,0(1 + ‖Θ0

x(t, r, ·, ·, y)‖Cα,0)
]
dr,

and

‖Θ0
x(t, s, ·, x, y)‖α ≤ K‖h0‖

C
α
2 ,α,2+α,2 +

T∫
s

K√
r − s

[
‖Θ0

x(t, r, ·, ·, y)‖Cα,0 + 1
]
dr,

‖Θ0
xy(t, s, ·, x, y)‖α ≤ K‖h0‖

C
α
2 ,α,2+α,2 +

T∫
s

K√
r − s

[
‖Θ0

xy(t, r, ·, ·, y)‖Cα,0

+ ‖Θ0
xy(t, r, ·, ·, y)‖C0,0(1 + ‖Θ0

x(t, r, ·, ·, y)‖Cα,0)
]
dr.

With the global estimate (7.60), the above implies that

‖Θ0(t, s, ·, x, y)‖Cα + ‖Θ0
y(t, s, ·, x, y)‖Cα + ‖Θ0

x(t, s, ·, x, y)‖Cα

+ ‖Θ0
xy(t, s, ·, x, y)‖Cα ≤ K(1 + ‖h0‖

C
α
2 ,α,2+α,2).

By continuing the above, we have

‖Θ0‖
C

α
2 ,0,α,1,2 ≤ K(1 + ‖h0‖

C
α
2 ,α,2+α,2). (7.61)

By the arguments employed in the proof of Lemma 7.5 (see (7.36)–(7.37)), with the global estimate (7.61), 
we get

‖Θ0
x(t, s, x̃, ·, y)‖α + ‖Θx(s, ·)‖α

≤ K
[
1 + ‖h‖C2+α + ‖h0‖

C
α
2 ,α,2+α,2

]
+

T∫
s

K√
r − s

[
‖Θ0

x(t, r, x̃, ·, y)‖α + ‖Θx(r, ·)‖α

]
dr.

Thus,

‖Θx‖C0,0,0,α,0 + ‖Θx‖C0,α ≤ K
[
1 + ‖h‖C2+α + ‖h0‖

C
α
2 ,α,2+α,2

]
.

This completes the proof.
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