
for journal papers

Optimization of 4D Splines for Unmanned Aerial System (UAS)

Trajectories under Obstacle, Kinematic, and Time Constraints

Matthew D. Osburn∗, Cameron K. Peterson‖, and John L. Salmon‰

Unmanned aerial systems (UAS) operating in dynamic environments must ensure safety

for the duration of their ŕight. This paper presents an optimization method for planning safe,

kinematically constrained, and time-constrained UAS trajectories in the presence of static and

dynamic obstacles. Vehicle constraints are applied to a novel 4D 5th-order polynomial spline

formulation and the results are graphed to show meaningful relationships between constraints,

optimality, and feasibility. This 4D 5th-order polynomial spline is shown to be a special subset

of the Bézier spline, which ensures that our approach inherits the advantages and convex hull

properties of Bézier splines. The connection with Bézier splines will allow algorithms designed

for Bézier splines to be used with 4D-polynomial splines in future work. Numerical experiments

show the success of this approach in providing optimal trajectories for UAS navigating dynamic

environments. The experiments further illustrate when gradient descent optimization will

result in feasible trajectories, sub-optimal solutions, or distributions of optimal trajectories.

I. Introduction

The use of unmanned aerial systems (UAS) by governments and commercial entities has increased dramatically in

recent years [1ś3]. This surge in UAS air traffic has raised concerns about potential collisions between UAS and other

aircraft, as well as with obstacles in their surrounding environment [4]. The risk of collisions is apparent in scenarios

such as UAS colliding with vehicles within the same group, UAS with different tasks being directed on trajectories that

pass dangerously close to each other, or UAS navigating through urban environments. Understanding how and when

collisions may occur helps engineers choose the right collision avoidance method for their speciőc application.

Collision avoidance solutions have been well-researched and integrated into all levels of the UAS management and

control systems. In [5], control barrier functions were integrated into the low-level ŕight controller to avoid collisions.

Model predictive control methods were used in [6] to continuously optimize safe trajectories around obstacles. Artiőcial

intelligence was used in [7] to detect other aircraft and avoid them as well as communicate the UAS’s intent through

radio communication. Pre-planned trajectories deőne the desired position of a UAS at every point in time. In [8ś11],

the trajectory that the low-level controller follows was optimized to avoid collisions while minimizing a cost function.

Collision-free trajectories can be generated in several ways. Some methods, like the one proposed in [12], plan

trajectories that avoid the entire geometric space that an obstacle moves through to guarantee that the trajectory is safe

for all time. In [13], an offline genetic algorithm is used to optimize a spline-based trajectory. In [14] and [15], prior

knowledge of the expected movement of other agents and obstacles was leveraged to increase the safety of the planned

trajectory. In [16] spline-based rapidly exploring random trees (RRT) in conjunction with a dynamic model to create



derivatives are deőned so that the trajectory and its derivative functions are associated with physically meaningful units

without any additional bookkeeping.

In the paper by Klinefelter et al., trajectories were optimized with the requirement that the endpoints remain őxed in

space and time. While velocity and acceleration constraints were mentioned, they were not implemented in the numerical

optimization. This is important because many applications require the trajectory to obey certain kinematic constraints so

that a controller can successfully follow the trajectory as in [8ś11]. This paper uses 4D 5th-order polynomial splines to

create feasible trajectories that adhere to kinematic constraints while maintaining the őxed endpoint constraints of [17].

A disadvantage of the 4D 5th-order polynomial implementation is its lack of connection with more commonly used

spline formulations. For example, Bézier splines are often used in UAS path-planning approaches because they provide

collision avoidance guarantees, describe an entire trajectory with a limited number of variables, and are compatible with

many trajectory planning algorithms and methods. We show that 4D 5th-order polynomial splines are a special subset of

Bézier splines. This mathematical equivalence ensures that the advantages inherent in Bézier splines are also assured in

4D polynomial splines.

In summary, this paper provides collision-free trajectories that adhere to time and kinematic constraints in the

presence of static and dynamic obstacles. To achieve this objective we optimize 4D 5th-order splines using a gradient

descent-based optimization and create safe trajectories with őxed endpoints. The optimization method is set to minimize

the UAS’ path length. However, kinematic constraints and obstacles (static and dynamic) may make achieving the true

minimum impossible. We explore the relationship between path minimization and the required constraints with a set of

studies showing how these affect the minimum trajectory distance. To the best of our knowledge, this is the őrst time

that trajectory-level collision avoidance has been achieved when there are both kinematic constraints and constraints on

the time the vehicle must achieve its waypoints.

In this paper, we make the following three claims:

1) 4D 5th-order polynomial spline trajectories with őxed time waypoints and vehicle constraints can be successfully

optimized to avoid collisions.

2) Multi-modal distributions of optimal trajectories may result from gradient-descent optimization when the

environment is dynamic. Many of the resulting trajectories within these distributions can be considered optimal.

3) 4D 5th-order polynomial splines are equivalent to a special subset of Bézier splines.

The remainder of this paper proceeds as follows. Section II provides an overview of the 4D 5th-order splines as well

as its mathematical connection to Bézier splines. In addition to this, the trajectory optimization problem is formulated.

Results are given in Section III, along with an explanation of the experimental design and a discussion of their meaning.

Section IV concludes our paper and suggests some future work items.
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II. Methods

In this section, we utilize 4D splines to provide a trajectory optimization technique with both vehicle and time

constraints. This technique works in environments with both static and dynamic obstacles. The rest of this section

provides details on the 4D splines, the derivation of our cost function and constraints, and the resulting optimization

formulation.

A. 4D Spline Overview

This subsection provides an overview of the 4D splines used in this paper. For more details and applications of this

formulation see [17]. A 4D spline is a piecewise function of position, velocity, and acceleration with respect to time,

between a set of waypoints. Waypoints are the building blocks of 4D splines. They deőne the state that the UAS must

reach at speciőc points in time. Interpolating between waypoints creates piecewise functions of 5th-order polynomials

describing the UAS position, velocity, and acceleration through time.

To construct a 4D spline we őrst deőne the waypoints. Let 𝑤𝑖 = [ ®𝑝𝑖
𝑇
, ®𝑣𝑖

𝑇
, ®𝑎𝑖

𝑇
, 𝑡𝑖]

𝑇 be the 𝑖th spline waypoint and

𝑤𝑖+1 = [ ®𝑝𝑖+1, ®𝑣𝑖+1, ®𝑎𝑖+1, 𝑡𝑖+1] be the connecting 𝑖 + 1 waypoint. The column vectors ®𝑝𝑖 , ®𝑣𝑖 , and ®𝑎𝑖 are the 3D position,

velocity, and acceleration at the 𝑖th waypoint and the scalar 𝑡𝑖 deőnes the time at which the spline passes through state

®𝑝𝑖 , ®𝑣𝑖 , and ®𝑎𝑖 . The normalized time function 𝜏 is deőned as 𝜏𝑖 (𝑡) = (𝑡 − 𝑡𝑖)/𝑇𝑖 so that 𝜏 ∈ [0, 1]. The normalization

coefficient 𝑇𝑖 is the difference between the time of 𝑤𝑖 and 𝑤𝑖+1 such that 𝑇𝑖 = 𝑡𝑖+1 − 𝑡𝑖 . We use two special matrices 𝐵𝑖

and 𝐶 to ensure that the trajectory traverses between waypoints correctly and is twice differentiable. These matrices are

𝐵𝑖 =

[

®𝑝𝑖+1 − ®𝑝𝑖 , ®𝑣𝑖𝑇𝑗 , (®𝑣𝑖+1 + ®𝑣𝑖)𝑇𝑖 , ®𝑎𝑖𝑇
2
𝑖 , ( ®𝑎𝑖+1 − ®𝑎𝑖)𝑇

2
𝑖

]
(1)

and

𝐶 =



0 0 10 −15 6

1 0 −2 1 0

0 0 −4 7 −3

0 1 −2 1 0

0 0 1 −2 1



. (2)

Let ®p𝑖 (𝑡), ®v𝑖 (𝑡) and ®a𝑖 (𝑡) be the vector-valued polynomial functions deőning the position, velocity, and acceleration

between waypoints 𝑤𝑖 and 𝑤𝑖+1 at time 𝑡. The equations describing the trajectory between 𝑤𝑖 and 𝑤𝑖+1 are
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®p𝑖 (𝑡) = ®𝑝𝑖 + 𝐵𝑖𝐶

[

𝜏𝑖 (𝑡), 𝜏𝑖 (𝑡)
2, 𝜏𝑖 (𝑡)

3, 𝜏𝑖 (𝑡)
4, 𝜏𝑖 (𝑡)

5

]𝑇
, (3)

®v𝑖 (𝑡) =
𝑑®p𝑖 (𝑡)

𝑑𝑡
= 𝐵𝑖𝐶

[

1, 2𝜏𝑖 (𝑡), 3𝜏𝑖 (𝑡)
2, 4𝜏𝑖 (𝑡)

3, 5𝜏𝑖 (𝑡)
4

]𝑇
1

𝑇𝑖
, (4)

(5)

and

®a𝑖 (𝑡) =
𝑑®v𝑖 (𝑡)

𝑑𝑡
= 𝐵𝑖𝐶

[

0, 2, 6𝜏𝑖 (𝑡), 12𝜏𝑖 (𝑡)
2, 20𝜏𝑖 (𝑡)

3

]𝑇
1

𝑇2
𝑖

. (6)

Using these equations, we can deőne piecewise functions composed of the 𝑛 − 1 individual polynomials that

interpolate between 𝑛 waypoints. The position over the entire 4D trajectory is

®𝑃(𝑡) =




®p1 (𝑡) if 𝑡1 ≤ 𝑡 < 𝑡2

®p2 (𝑡) if 𝑡2 ≤ 𝑡 < 𝑡3

...

®p𝑛−1 (𝑡) if 𝑡𝑛−1 ≤ 𝑡 ≤ 𝑡𝑛

, (7)

which is a vector-valued piecewise function that contains each equation connecting the spline’s waypoints.

Similarly, the velocity, ®𝑉 (𝑡), and acceleration, ®𝐴(𝑡), are deőned as

®𝑉 (𝑡) =




®v1 (𝑡) if 𝑡1 ≤ 𝑡 < 𝑡2

®v2 (𝑡) if 𝑡2 ≤ 𝑡 < 𝑡3

...

®v𝑛−1 (𝑡) if 𝑡𝑛−1 ≤ 𝑡 ≤ 𝑡𝑛

(8)
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and

®𝐴(𝑡) =




®a1 (𝑡) if 𝑡1 ≤ 𝑡 < 𝑡2

®a2 (𝑡) if 𝑡2 ≤ 𝑡 < 𝑡3

...

®a𝑛−1 (𝑡) if 𝑡𝑛−1 ≤ 𝑡 ≤ 𝑡𝑛

. (9)

B. Connection between 4D splines and Bézier splines

In this subsection, we will show how to convert the trajectory connecting two 4D waypoints into an equivalent set of

5th-order Bézier curve control points. This process will provide the control points for an equivalent piecewise Bézier

spline when applied to each polynomial function in ®𝑃(𝑡). The Bézier spline will also be twice differentiable as is the

original 4D 5th-order polynomial spline.

Expanding Equation (3) and grouping terms to form a polynomial in 𝜏 yields

®p𝑖 (𝜏) = ®𝑝𝑖 (10)

+ (𝑇 ®𝑣𝑖)𝜏

+ (
1

2
®𝑎𝑖𝑇

2)𝜏2

+ (10( ®𝑝𝑖+1 − ®𝑝𝑖) +
1

2
( ®𝑎𝑖+1 − ®𝑎𝑖)𝑇

2 − ®𝑎𝑖𝑇
2 − 2𝑇 ®𝑣𝑖 − 4𝑇 (®𝑣𝑖+1 + ®𝑣𝑖))𝜏

3

+ (−15( ®𝑝𝑖+1 − ®𝑝𝑖) − ( ®𝑎𝑖+1 − ®𝑎𝑖)𝑇
2 +

1

2
®𝑎𝑖𝑇

2 + 𝑇 ®𝑣𝑖 + 7𝑇 (®𝑣𝑖+1 + ®𝑣𝑖))𝜏
4

+ (6( ®𝑝𝑖+1 − ®𝑝𝑖) +
1

2
( ®𝑎𝑖+1 − ®𝑎𝑖)𝑇

2 − 3𝑇 (®𝑣𝑖+1 + ®𝑣𝑖))𝜏
5.

The equation for a 5th-order Bézier curve segment is

®𝐵(𝜏) =

5∑︁

𝑘=0

(
5

𝑘

)
𝜏𝑘 (1 − 𝜏)5−𝑘 ®𝑐𝑘 , 0 ≤ 𝜏 ≤ 1, (11)

where ®𝑐𝑘 is the 𝑘th control point of the curve. Expanding this equation and also grouping terms to form a polynomial in

𝜏 gives
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®𝐵(𝜏) = ®𝑐0 (12)

+ 5( ®𝑐1 − ®𝑐0)𝜏

+ 10( ®𝑐0 − 2®𝑐1 + ®𝑐2)𝜏
2

+ 10(−®𝑐0 + 3®𝑐1 − 3®𝑐2 + ®𝑐3)𝜏
3

+ 5( ®𝑐0 − 4®𝑐1 + 6®𝑐2 − 4®𝑐3 + ®𝑐4)𝜏
4

+ (−®𝑐0 + 5®𝑐1 − 10®𝑐2 + 10®𝑐3 − 5®𝑐4 + ®𝑐5)𝜏
5.

Writing the Bézier spline as a őfth-order polynomial allows us to select control points that yield an equivalent curve

to that of the 4D polynomial. We solve for the six control points that make up a 5th-order Bézier curve by setting

Equation (12) equal to Equation (10) and matching coefficients. This gives the control points

®𝑐0 = ®𝑝𝑖 (13)

®𝑐1 = ®𝑝𝑖 +
1

5
®𝑣𝑖𝑇

®𝑐2 = ®𝑝𝑖 +
2

5
®𝑣𝑖𝑇 +

1

20
®𝑎𝑖𝑇

2

®𝑐3 = ®𝑝𝑖+1 −
2

5
®𝑣𝑖+1𝑇 −

1

20
®𝑎𝑖+1𝑇

2

®𝑐4 = ®𝑝𝑖+1 −
1

5
®𝑣𝑖+1𝑇

®𝑐5 = ®𝑝𝑖+1.

This resulting Bézier curve is a special subset of Bézier curves that shares the same properties of differentiability

as the 4D spline. It is assumed that the Bézier curve’s 𝜏 function is computed in the same ways as the 4D spline’s

𝜏 function. Oftentimes the construction of Bézier splines must be constrained to have those properties, so this is a

convenient way to guarantee they are incorporated into the Bézier spline. The equations for őnding the waypoints of a

4D spline waypoint from a Bézier curve can be derived in a similar way. However, if the Bézier spline has not been

constrained to be twice differentiable, the results will be contradictory and/or discontinuous.

C. Optimization Approach

In our experiments we use the geometric length of the trajectory as the optimization cost function. This cost function

was chosen because reducing energy consumption or effort to get between points is a typical goal for UAS path planning.

Additionally, with this cost function, we can use the geometric shortest distance as an analytical solution to determine if

our optimization results should be classiőed as optimal or sub-optimal.
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The length of a trajectory can be calculated using the 4D spline functions. We do this by breaking the vector valued

position function ®𝑃(𝑡) into its 𝑥, 𝑦, and 𝑧 scalar piecewise polynomial functions 𝑃𝑥 (𝑡), 𝑃𝑦 (𝑡), 𝑃𝑧 (𝑡). Then we integrate

the derivatives of these functions to őnd the total geometric length as

𝐿 =

∫ √︄(
𝑑

𝑑𝑡
𝑃𝑥 (𝑡)

)2

+

(
𝑑

𝑑𝑡
𝑃𝑦 (𝑡)

)2

+

(
𝑑

𝑑𝑡
𝑃𝑧 (𝑡)

)2

𝑑𝑡

=

∫
∥ ®𝑉 (𝑡)∥2 𝑑𝑡. (14)

Equation (14) can be approximated as

𝐿 ≈

𝑁∑︁

𝑘=1







®𝑃(𝑘𝑇𝑠) − ®𝑃((𝑘 − 1)𝑇𝑠)

𝑇𝑠







2

𝑇𝑠 (15)

≈

𝑁∑︁

𝑘=1

∥ ®𝑃(𝑘𝑇𝑠) − ®𝑃((𝑘 − 1)𝑇𝑠)∥2,

where the trajectory is discretized into 𝑁 points and 𝑇𝑠 is the discretization time step.

We constrain the trajectory to limit a vehicle’s velocity and acceleration to 𝑣𝑚𝑎𝑥 and 𝑎𝑚𝑎𝑥 , respectively. The

constraints limit the maximum magnitude, as deőned by the Euclidean norm, of the vector-valued piecewise functions

®𝑉 (𝑡) and ®𝐴(𝑡). For any time 𝑡𝑝 such that 𝑡0 ≤ 𝑡𝑝 ≤ 𝑡 𝑓 , the constraints can be written as ∥ ®𝑉 (𝑡𝑝)∥2 ≤ 𝑣𝑚𝑎𝑥 and

∥ ®𝐴(𝑡𝑝)∥2 ≤ 𝑎𝑚𝑎𝑥 . Additionally, we impose a separation distance between the UAS and any obstacles in the environment.

The vector-valued function of a generic obstacle’s position will be written as ®𝑃𝑜𝑏𝑠 (𝑡) and the minimum distance between

the UAS and an obstacle will be constrained to 𝑑𝑖𝑠𝑡𝑚𝑖𝑛 < ∥ ®𝑃(𝑡) − ®𝑃𝑜𝑏𝑠 (𝑡)∥2.

Combining the cost function (Equation (15)) with the velocity, acceleration, obstacle, and time constraints yields the

optimization problem

arg min
𝑤∈[𝑤0 ,𝑤1 ,...,𝑤𝑛 ]

𝑁∑︁

𝑘=1

∥ ®𝑃(𝑘𝑇𝑠) − ®𝑃((𝑘 − 1)𝑇𝑠)∥2

s.t ∥ ®𝑉 (𝑡𝑝)∥2 < 𝑣𝑚𝑎𝑥 ∀{𝑡𝑝 : 𝑡0 ≤ 𝑡𝑝 ≤ 𝑡 𝑓 }

∥ ®𝐴(𝑡𝑝)∥2 < 𝑎𝑚𝑎𝑥

𝑑𝑖𝑠𝑡𝑚𝑖𝑛 < ∥ ®𝑃(𝑡𝑝) − ®𝑃𝑜𝑏𝑠 (𝑡𝑝)∥2 for all obstacles

𝑤0 = 𝑤𝑖

𝑤𝑛 = 𝑤 𝑓

𝑡𝑤𝑖
remains őxed ∀𝑖 ∈ [0, 1, ..., 𝑛]

(16)

where the variable 𝑤 refers to all the scalars that make up the positions, velocities, and accelerations of the intermediate
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waypoints in the trajectory. While the positions, velocities, and accelerations of the intermediate waypoints are free to

change, the time scalars of all waypoints in the trajectory remain őxed. Additionally, the őrst and last waypoints of the

trajectory are őxed.

III. Results

Each of the following subsections will summarize the results of a different optimization experiment and give the

related plots and analysis. The experiments start with a basic straight-line trajectory (no obstacles) to provide a baseline

for comparison. We then show how the 4D trajectories behave when őnding optimal solutions around static and dynamic

obstacles. Optimization results are categorized as optimal, sub-optimal, or failures. The results are also graphed on

contour plots to provide intuition on the relationship between constraints and results.

In each experiment a single intermediate waypoint is optimized between őxed start and end waypoints. The

intermediat waypoint was initialized with random values for each optimization. There are situations where it may not

be possible to move the desired start and end times (e.g. when an aircraft needs to land within a speciőc window of

time). To show this functionality, all our experiments keep the starting and ending waypoint’s times and states (position,

velocity, and acceleration) őxed.

All code was developed and run using Python on an Intel i7-12th generation processor with 16 gigabytes of RAM.

The optimization problem was solved using the constrained SQP algorithm found in the SciPy Python package. Due to

the tolerance parameters and variable scaling of the sqp algorithm, a result is considered optimal if it is within 0.01% of

the true geometric minimum solution. Each optimization took on average 2.5 seconds to run.

Experiment results are color-coded for easy identiőcation. Red indicates that the optimization failed and the solution

is invalid. Blue indicates that a sub-optimal solution was found. Finally, green indicates that an optimal solution

was found between points A and B. Contour plots follow the same color scheme, where colors are interpolated at the

appropriate scale (i.e. levels that are within the sqp algorithm’stolerance of the true global optimum will be colored

green, levels that are suboptimal are colored blue, and failed optimizations are colored red). Some contour plots appear

to have black regions, but these are simply an artifact of having tightly packed contour levels.

A. Experiment 1: Straight Line, No Obstacle

The őrst experiment illustrates the relationship between the velocity and acceleration constraints and the cost

function when no obstacles are present. A trajectory will be classiőed as optimal if it forms a straight line from point A

to point B without violating velocity or acceleration constraints. This experiment veriőes that 4D 5th-order polynomial

splines can be optimized with constraints on velocity and acceleration and őxed starting and ending waypoints.

Here, we outline the parameters of this experiment. Point A was a őxed waypoint at the origin with the prescribed

velocity and acceleration being zero (the UAS starts at rest). Point B was a őxed waypoint at 𝑡 = 60s, moved 300
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Fig. 1 Straight line from A to B has no obstacles in the way

meters away from point A along the x-axis, with the prescribed őnal velocity and acceleration being at rest. The

őxed initial waypoint can be written as 𝑤𝑖 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]𝑇 and the őxed őnal waypoint can be written as

𝑤 𝑓 = [300𝑚, 0, 0, 0, 0, 0, 0, 0, 0, 60𝑠]𝑇 . An intermediate waypoint at 𝑡 = 30s is optimized with a variety of combinations

of velocity and acceleration constraints. The 𝑣𝑚𝑎𝑥 constraint was chosen to be between 7m/s and 10.5m/s at 0.05m/s

intervals. The 𝑎𝑚𝑎𝑥 constraint was chosen to be between 0.2m/s2 and 2.25m/s2 at 0.05m/s2 intervals. There are no

obstacles between points A and B (see őg. 1).

In this scenario, the distance ŕown between A and B will be perfectly minimized or it will not be possible without

breaking the constraints. If the maximum velocity is too small there isn’t physically enough time to ŕy the distance

between A and B. If the acceleration constraint is not sufficiently large then the velocity needed to ŕy the distance will

not be achieved within the time frame of 60 seconds.

(a) Trajectory Cost Classification (b) Trajectory Cost Contours

Fig. 2 Trajectory Classification

The results of this experiment can be seen in őg. 2. The classiőcation of the combinations of velocity and acceleration

constraints is shown in őg. 2a and the contour plot of the optimal region can be seen in őg. 2b. A sharp cutoff between

invalid and optimal solutions can be seen at 𝑣𝑚𝑎𝑥 ≤ 7.35m/s. As the maximum velocity increases, the maximum

acceleration needed to ŕy an optimal straight path decreases.

Figure 3a shows the trajectories that are classiőed as optimal as a function of position versus time. The lines are

colored green to emphasize that these are only the trajectories that were within 0.01% the length of the geometric

shortest path. The dashed lines represent the maximum and minimum envelope of all optimal trajectories in our dataset.
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(a) Optimal Trajectory Timelines (b) Example Trajectory

Fig. 3 Optimal Trajectories

This őgure shows that trajectories can vary widely in their timing and still result in optimal paths.

An example optimal trajectory is shown in őg. 3b. This trajectory was chosen randomly from the set of optimal

trajectories. The dots indicate the location of a waypoint making up the 4D spline. The waypoint’s timestamp is

displayed next to it to give an idea of how long it would take a UAS to travel between the waypoints.

This experiment successfully minimizes the length of the trajectory between point A and point B, given that the

maximum velocity and acceleration are sufficiently large. The contour plot is ŕat with a sharp cutoff (őg. 2b), indicating

that either an optimal trajectory can be found or no feasible path exists that does not violate the velocity and acceleration

constraints. This intuitively makes sense, because if the UAS cannot average 5m/s over 60 seconds it will not be

able to ŕy the distance between A and B. Because the UAS is starting from rest it would need to reach a max speed

higher than 5m/s to average 5m/s along the trajectory, hence why the cutoff between invalid and optimal solutions is at

𝑣𝑚𝑎𝑥 = 7.35m/s.

A wide range of trajectories can be considered optimal. Because the trajectory length is not related to time there is

no single optimal solution. Some trajectories traverse a small distance in the őrst 30 seconds and then speed up, some

move at a consistent rate, while others move quickly for the őrst 30 seconds and then slow down (see őg. 3a).

B. Static Obstacle

The second experiment (depicted in őg. 4) illustrates how well our optimization approach works when needing

to re-route around a large static obstacle. The resulting trajectories successfully avoid the obstacle while maintaining

the őxed starting and ending waypoint state and time values. However, this experiment also highlights a weakness

in using splines as the trajectory formulation. The splines may not be able to match the shape and curvature of the

obstacle making it impossible to minimize the distance of the trajectory to be the same as the analytical solution. The
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obstacle used in this experiment is a sphere placed exactly halfway between the őrst and last waypoints. While additional

waypoints could be added to better match the sphere’s curvature, this would further increase the optimization complexity

and it is unclear how many waypoints are needed in every situation to ensure an optimal solution. Delving into this

question was left as an item of future work.

Fig. 4 Static Obstacle

In this experiment, point A was a őxed waypoint at the origin with the prescribed velocity and acceleration being at

rest. Point B was a őxed waypoint at 𝑡 = 60s, moved 300 meters away from point A along the x-axis, with the prescribed

őnal velocity and acceleration being at rest. The őxed initial waypoint can be written as 𝑤𝑖 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]𝑇

and the őxed őnal waypoint can be written as 𝑤 𝑓 = [300𝑚, 0, 0, 0, 0, 0, 0, 0, 0, 60𝑠]𝑇 . An intermediate waypoint at

𝑡 = 30s is optimized with various velocity and acceleration constraint combinations. The 𝑣𝑚𝑎𝑥 constraint was chosen

to be between 7m/s and 10.5m/s at 0.05m/s intervals and 𝑎𝑚𝑎𝑥 was chosen to be between 0.25m/s2 and 2.25m/s2

at 0.05m/s2 intervals. The spherical obstacle has a radius of 106.6m. This was chosen so that the radius would be

sufficiently large compared to the resolution of the spline to highlight the spline’s shortcomings. The shortest path

between A and B requires that an optimal trajectory follow the curve of the sphere at exactly one-fourth the way around

the circumference (see őg. 5), something that a 5th-order spline is mathematically incapable of doing.

Fig. 5 Sphere radius requires one-fourth the circumference of the sphere to be followed to minimize distance.

Again, we deőne optimality as being within 0.01% of the geometric minimum distance. In this case, the minimum

geometric distance between A and B is 378.74m. If a trajectory’s length is within 3.7cm of 378.74m it is considered

optimal.

The results of this experiment can be seen in őg. 6. The classiőcation of the combinations of velocity and acceleration

constraints is shown in őg. 6a and the contour plot of the sub-optimal region can be seen in őg. 6b. There are no optimal

solutions in this experiment because the spline cannot perfectly match the curvature of the sphere. Each sub-optimal

trajectory is guaranteed to be safe. An example trajectory is shown in őg. 7. This trajectory does not approach the

sphere at the optimal 45◦ angle required to minimize path length.

This second experiment illustrates the shortcomings of a polynomial spline in minimizing length. Polynomials

cannot perfectly match the curvature of the sphere. Increasing the order of the polynomial, or increasing the number of
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(a) Result Classification (b) Result Contours

Fig. 6 Trajectory Classification

Fig. 7 Example Trajectory

waypoints would help minimize the length of the path but increase computation time. A Dubins path or some other

circular trajectory formulation would be able to exactly minimize the length of the trajectory around this obstacle while

remaining computationally efficient.

C. Dynamic Obstacle

In this őnal experiment, we optimize a 4D trajectory in an environment with a moving obstacle. The results for

this experiment once again show the utility of using 4D waypoints to guarantee successful achievement of the end

waypoint (both in time and state) while maintaining a desired distance from obstacles. The obstacle is a sphere that

moves perpendicular to the straight-line path between A and B (see őg. 8). To successfully minimize the distance

traveled, the trajectory must articulate its velocity and acceleration to miss the obstacle moving across the straight line

between point A and point B.

12



Fig. 8 Dynamic Obstacle

In this experiment, we once again set point A at the origin and point B 300 meters away from point A along the

x-axis. Point B is given a waypoint time of 60s and both points require the UAS to have no acceleration or velocity

at those locations and times. The őxed initial waypoint can be written as 𝑤𝑖 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]𝑇 and the

őxed őnal waypoint can be written as 𝑤 𝑓 = [300𝑚, 0, 0, 0, 0, 0, 0, 0, 0, 60𝑠]𝑇 . An intermediate waypoint at 𝑡 = 30s is

optimized under a variety of combinations of velocity and acceleration constraints. The 𝑣𝑚𝑎𝑥 constraint was chosen

to be between 7m/s and 10.5m/s at 0.05m/s intervals and 𝑎𝑚𝑎𝑥 was chosen to be between 0.25m/s2 and 2.25m/s2 at

0.05m/s2 intervals. The spherical obstacle has a radius of 20m. The object is placed 120m on the 𝑦 axis and 150m on

the 𝑥 axis. It moves in the negative 𝑦 direction at 4m/s. Between 𝑡 = 25s and 𝑡 = 35s, part of the sphere will lie in the

way of the optimal path.

The results of this experiment are shown in őg. 9. The classiőcation of the combinations of velocity and acceleration

constraints is shown in őg. 9a and the contour plot of the optimal region can be seen in őg. 9b. The classiőcation graph

shows that the minimum velocity that every optimal trajectory must achieve is 9.25𝑚/𝑠. The boundary between invalid

and sub-optimal solutions is the same as the boundary between invalid and optimal solutions from Experiment 1. The

contour plot shows a gradually decreasing trajectory length (shown in blue) until the optimal solution can be found

(shown in green). Black regions of the contour graph are regions where the contours are so tightly packed they appear

black.

The trajectories that are classiőed as optimal are shown in őg. 10a. The lines are colored green to emphasize that

these are only the trajectories that were within 0.01% the length of the geometric shortest path. The two different shades

of green indicate that optimal solutions fall into two separate distributions. The dark green trajectories are trajectories

that moved passed the middle of the straight line before the obstacle crossed (see őg. 10b for an example), while the

light green trajectories waited for the obstacle to pass before continuing.

It is interesting to note that in őg. 10a at 𝑡 = 30𝑠 the gap between the minimum envelope of the dark green distribution

and the maximum light green distribution is 40 meters which is the diameter of the sphere. Additionally, the light green

distribution does not cross 𝑥 = 150𝑚 until 𝑡 = 35𝑠, where the sphere has completely passed the straight line between A

and B. The dark green distribution passes 𝑥 = 150𝑚 before 𝑡 = 25𝑠, indicating that this distribution outruns the sphere.
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(a) Result Classification (b) Result Contours

Fig. 9 Trajectory Classification

(a) Optimal Trajectory Timelines (b) Example Trajectory

Fig. 10 Optimal Trajectories

An example of a safe trajectory that outruns the sphere is shown in őg. 10b. Sub-optimal trajectories deviate from the

straight line between point A and point B but do not violate vehicle, safety, and time constraints.

IV. Conclusion

We have shown that 4D 5th-order splines can be optimized using gradient descent-based optimization to create safe

trajectories. The splines are constrained to match the speciőed states and times of the endpoints while operating in

environments with static and moving obstacles. Furthermore, we ensure the full trajectory conforms to constraints on

the vehicle’s velocity and acceleration.

Our studies of the relationships between vehicle kinematic constraints, time constraints, obstacles, and the

minimization of the path distance show that optimal and safe trajectories can be found using 4D 5th-order polynomial

splines. The polynomial splines were also shown to be a speciőc instance of Bézier splines, so they retain the advantages
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inherent in that wider category of splines.

In our experiments, we required that all waypoints remain at őxed times. While this does not affect the trajectory

length, it does affect the velocity and acceleration proőles. In future work, we will add the ability for the optimizer to

shift the time on waypoints that are being optimized and add in new intermediary waypoints. Future work will also

investigate how timing constraints are affected by wind and disturbances, potentially inhibiting a vehicle’s ability to

follow the trajectory, as well as an investigation into the optimal number of waypoints needed to successfully avoid a

collision.
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