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A parametric variation of height and wavelength of distributed sinusoidal roughness is

carried out to study their individual effect on the stability of a Mach 5.35 flat plate flow. Four

different cases are considered with a relative roughness amplitude between 10 and 44 percent of

the boundary layer height to examine the effect of varying roughness height. Another four cases

are chosen to investigate the effects of the roughness wavelength which varies between roughly

0.44 to 3.55 times the second mode wavelength. The presence of the surface roughness led to

strong variations in the mean flow quantities compared to the smooth wall case causing local

acceleration and deceleration of the flow. The steady mean flow field showed supersonic wave

patterns generated by the roughness elements emanating into the freestream. The disturbance

flow analysis in the frequency domain based on wall pressure data showed that the flow

was destabilized for the fixed wavelength cases with variable roughness heights. The shortest

wavelength case from the fixed roughness height cases was the only one that showed a stabilization

of the flow. For the range of wavelengths considered, the level of destabilization was found to be

a strong function of the roughness wavelength. For all roughness cases, a shift towards lower

frequencies was observed in the pressure amplitude plots. For the higher roughness height

and larger wavelength cases, a second region of amplified modes at higher frequencies was

noted which may suggest destabilization of a higher Mach mode or the occurrence of a different

instability mechanism. To gain insight into the energy transfer mechanisms from the mean flow

to the disturbance flow, an energy budget analysis is also performed.

I. Introduction

The thermal protection system (TPS) in hypersonic-cruise and atmospheric-entry vehicles can be designed to

pyrolyze and ablate when subjected to an intense aerothermal heating environment during their operation to protect

the underlying structure and the payload. Gaseous species are released due to the internal decomposition of the solid

during pyrolysis and recession generates surface roughness at the heat-shield surface. Both of these processes can have

a dramatic impact on the laminar to the turbulent transition process [1, 2].

The effect of surface roughness and ablation are often coupled and to develop nose-tips for slender military reentry

vehicles, this complex problem was extensively researched in the 1960s and 1970s. Schneider presented an extensive

review of experimental results summarizing the effects of of isolated and distributed surface roughness on hypersonic

blunt-body transition in Ref. [2]. A significant amount of work has been carried out to analyze how surface roughness

affects the boundary layer transition both for isolated roughness elements [3, 4] as well as for distributed roughness [5–7].

Marxen et al. [8] reported that for a Mach 4.8 flat plate boundary layer flow, the stability characteristics are significantly

altered by the presence of roughness with increased amplification and damping depending on the disturbance frequency.

Egorov et al. [9] numerically studied the stabilization of supersonic boundary layer flows over a shallow grooved wavy

plate at Mach 5.9. It was found that the wavy wall can damp the perturbation in a wide frequency range. In another

study, Duan et al. [10] applied a third-order cut-cell method to simulate roughness-induced receptivity for a hypersonic

flow over a flat plate with a blowing and suction slot placed near the leading edge. They inferred that by placing the

2-D roughness element downstream of the synchronization location of the slow and the fast mode, the disturbances

can be damped considerably. In a similar work, Duan et al. [11] noted that a roughness element with a height equal

to half of the boundary layer thickness placed at the right location can delay the transition process. Fong et al. [12]

investigated the effect of two-dimensional roughness on perturbation growth over a Mach 5.92 flat plate boundary

∗Postdoctoral Researcher and AIAA Member.
†Assistant Professor and AIAA Member.

1

D
o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

ty
 o

f 
M

ar
y
la

n
d
 o

n
 A

p
ri

l 
4
, 
2
0
2
5
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
2
2
-1

2
1
2
 

 AIAA SCITECH 2022 Forum 

 January 3-7, 2022, San Diego, CA & Virtual 

 10.2514/6.2022-1212 

 Copyright © 2022 by Authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 AIAA SciTech Forum 



layer. They mentioned that if a roughness element is placed downstream of the synchronization point, perturbations at

frequencies higher than the synchronization frequency are damped and perturbations at lower frequencies are amplified.

They also revealed that if the roughness height is smaller than the local boundary layer thickness, the placement of

the roughness element determines if amplification or damping will occur. In a recent work carried out using direct

numerical simulation (DNS) and parabolized stability equations (PSE), Fong and Zhong [13] commented that the effect

of roughness on Mack’s second mode is a result of the alteration of the mean flow and, the synchronization location is

an important parameter which determines the effect of the roughness. Fong et al. [14] also performed a parametric

variation of roughness parameters including roughness height, width, and spacing between roughness elements. They

showed that when the spacing between the roughness elements is ten times the roughness width, the amplification rate of

the second mode reduces for a large range of disturbance frequencies. Zhou et al. [15] examined the effects of wavy-wall

wave number, depth, and streamwise location on the Mach 6 hypersonic boundary-layer stability. They reported that

the wavy wall with multiple wavenumbers can suppress the second-mode growth significantly through the presence of

multiple separation regions as opposed to the case of a wavy wall with a single wave number which amplifies the second

mode which they attributed to a shorter recirculation region. The influence of different wavy surface shapes such as arc,

saw-tooth, and triangular elements was studied for a Mach 5.95 flow by Poplavskaya and Kirilovskiy [16].

Recently, Giovanni & Stemmer [17, 18] investigated the development of unsteady disturbance in a Mach 20 flow

over a capsule-like hemispherical geometry with pseudo-random distributed roughness. The largest amplification of the

disturbance was observed for a crossflow-type vortex developing in the wake of the highest skewed protuberance of the

roughness patch. They also studied the influence of high-temperature gas effects on the laminar-turbulent transition

induced by a patch of distributed roughness. Iyer et al. [6] conducted direct numerical simulations for a Mach 2.9 flow

past a flat plate with distributed roughness. They noted that the cumulative effect of multiple roughness elements is to

decelerate the near-wall fluid, and set up inflectional velocity profiles. Recently, Shrestha & Candler [7] compared

the instability mechanisms of a Mach 5.65 laminar boundary layer tripped by an isolated and span-wise array of

diamond-shaped trips using direct numerical simulations. The source of instability was attributed to the interaction

between the shear layers and the counter-rotating stream wise vortices downstream of both trip configurations.

In addition to the numerical studies, various experiments were conducted to understand the effects of roughness

on flow transition. Holloway and Sterrett [19] studied the effects of controlled three-dimensional surface roughness

(spheres) on the boundary-layer transition at Mach 6. It was reported that surface roughness of height less than the

boundary-layer thickness can delay the transition process. The experimental data also predicted that to trip the boundary

layer flow fully, roughness heights of approximately twice the boundary-layer thickness at the roughness location are

required. Recently, Fujii [20] carried out an experimental investigation at the JAXA 0.5 m hypersonic wind tunnel

using a 5 degree half-angle sharp cone at a freestream Mach number of 7.1 and a wide range of stagnation conditions.

He mentioned that a wavy wall with a wavelength of twice the boundary layer thickness located well upstream of the

breakdown region can delay transition.

The aforementioned studies were mostly focused on the regular roughness shapes, whereas ablation can create

random irregular surface patterns. The effect of irregular roughness shapes on the transition process is largely unknown.

The flight tests and the experiments can rarely provide a thorough understanding of physical mechanisms by decoupling

the coexisting physical phenomena. Therefore to understand the role of distributed roughness on flow stability, we

will conduct a numerical investigation by varying the roughness height and the wavelength. Isolating one roughness

parameter from another will provide a thorough understanding of how different lengths and heights of the roughness

elements can affect the transition process at high-Mach number conditions. For this, a Mach 5.35 flow over a wavy flat

plate will be simulated and by comparing with a smooth flat plate at the same conditions, we will study the effect of

varying roughness height and the wavelength.

The organization of the paper is as follows. The governing equations for the mean flow and for the small-amplitude

disturbances are introduced in section II. The test cases constructed to study the effects of roughness parameters are

discussed in section III. The effects of varying the roughness amplitude on the mean flow and the disturbance flow

field is analyzed in section IV. The next section V addresses the effects of a variation in the roughness wavelength. A

summary of this work is provided in section VI.

II. Governing Equations

The mean flow field is computed by solving the compressible Navier-Stokes equations, which can be written as,

ÿU

ÿý
+
ÿFi

ÿýÿ
+
ÿFvi

ÿýÿ
= 0; (1)
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(b) Disturbance pressure

Fig. 1 (a) Variation of the stream wise velocity and mean flow temperature along the wall-normal direction

extracted at x=1 m of the smooth flat plate, with the blue dashed line indicating the boundary layer thickness. (b)

Line plot of surface pressure along the wall and contours of disturbance pressure visualizing the second mode

dominated wave-packet above the flat plate at Mach 5.35.

where,

U =

þÿÿÿÿÿÿÿø

ÿ

ÿÿ

ÿÿ

ý

ùúúúúúúúû

; F =

þÿÿÿÿÿÿÿø

ÿÿÿ

ÿÿÿÿ + ÿÿ1ÿ

ÿÿÿÿ + ÿÿ2ÿ

(ý + ÿ)ÿÿ

ùúúúúúúúû

; Fv =

þÿÿÿÿÿÿÿø

0

2ÿ1ÿ

2ÿ2ÿ

2ÿ ÿÿ
ÿýÿ

2 ÿÿ ÿÿ ÿ

ùúúúúúúúû

.

Here, U is the solution vector of the conservative variables, F and Fv are the inviscid and viscous fluxes, respectively.

The first row in (1) corresponds to the continuity equation. The next two rows of (1) correspond to the momentum

equations in the x- and y-directions. ÿ, ÿ, ÿ, and ÿÿ ÿ are the x- and y-velocity, thermodynamic pressure, and components

of stress tensor, respectively. The total energy equation is listed in the last row of (1) where ý consists of internal energy

and the kinetic energy of the gas. The heat conduction is evaluated by using Fourier’s law of heat conduction, where ÿ

represents the thermal conductivity.

In this work, only small disturbances introduced into a perfect gas flow are considered. The equations to be solved

are the linear disturbance equations (LDE), and to derive them we first recast the conservative form of the Navier-Stokes

equations (1) into a primitive variable form by using a conservative to a primitive transformation matrix (ÿŨ/ÿQ̃). The

instantaneous state vector of the primitive variables Q = [ÿ, ÿ, ÿ, ÿ]ÿ is decomposed into a steady mean flow Q̄ and an

unsteady disturbance quantity Q̃. Since the mean flow satisfies the Navier-Stokes equations, it can be subtracted from

the instantaneous state vector Q to obtain the governing equations for the disturbances. After neglecting the higher order

terms in the disturbances, the governing equation for the linear disturbances can be written as,

ÿŨ

ÿQ̃

ÿQ̃

ÿý
+
ÿF̃i

ÿýÿ
+
ÿF̃vi

ÿýÿ
= 0; (2)

Ũ =

þÿÿÿÿÿÿÿø

ÿ̃

ÿ̃ÿ̄ + ÿ̄ÿ̃

ÿ̃ÿ̄ + ÿ̄ÿ̃

ý̃

ùúúúúúúúû

; F̃ =

þÿÿÿÿÿÿÿø

ÿ̃ÿ̄ + ÿ̄ÿ̃

ÿ̄ÿ̄ÿ̃ÿ + ÿ̄ÿ̄ÿ ÿ̃ + ÿ̃ÿ̄ÿ̄ÿ + ÿ̃ÿ1ÿ

ÿ̄ÿ̄ÿ̃ÿ + ÿ̄ÿ̄ÿ ÿ̃ + ÿ̃ÿ̄ÿ̄ÿ + ÿ̃ÿ2ÿ

(ý̄ + ÿ̄) ÿ̃ÿ + (ý̃ + ÿ̃) ÿ̄ÿ

ùúúúúúúúû

; F̃v =

þÿÿÿÿÿÿÿø

0

2ÿ̃1ÿ

2ÿ̃2ÿ

2ÿ̃ ÿÿ̄
ÿýÿ

2 ÿ̄ ÿÿ̃
ÿýÿ

2 ÿ̃ÿ ÿ ÿ̄ ÿ 2 ÿ̄ÿ ÿ ÿ̃ ÿ

ùúúúúúúúû

.

The primitive state vector used here to represent the disturbance flow is Q2
= [ý2, ÿ2, ÿ2, ÿ 2]ÿ with tilde denotes the

disturbance quantities and the overbar is used for the mean flow. The total energy of the disturbance can be written as
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Cases Wavelength (m) Percent of 2ÿý mode wavelength Amplitude (m) Percent of boundary layer height

W2A1 8 × 1023 88.9 4.8 × 1024 10.4

W2A2 8 × 1023 88.9 9.6 × 1024 20.9

W2A3 8 × 1023 88.9 1.5 × 1023 32.6

W2A4 8 × 1023 88.9 2 × 1023 43.5

Table 1 Cases constructed to study the effects of varying roughness amplitude with fixed wavelength.

ý̃ = ÿ̄ÿÿÿ̃ + ÿ̃ÿÿÿ̄ + ÿ̄ÿ̄ÿ̃ + ÿ̄ÿ̄ÿ̃ + 0.5ÿ̃(ÿ̄2 + ÿ̄2). The specific heat and the specific gas constant are represented by ÿÿ

and ý, respectively. For a more detailed description of the linear disturbance equations refer to Brown et. al. [21, 22].

III. Test cases

The test cases considered in this work to study the effect of a parametric variation of distributed roughness are

designed based on the boundary layer thickness and the second mode wavelength at the end of the computational domain

of a 1 m smooth flat plate. For this, we first computed a Mach 5.35 flow over a smooth flat plate with a free-stream

temperature of 64.316 K and a unit Reynolds number of 14.356 × 106 m21. The steady mean flow field is computed by

solving the compressible Navier-Stokes equations presented in Eq. 1. The convective fluxes are calculated using a 5ý/

order weighted essentially non-oscillatory (WENO) scheme [23], with Rusanov flux splitting and the viscous fluxes are

computed by a second-order central difference method. A first-order backward-difference scheme is used to advance the

governing equations in pseudo-time until the steady-state is reached. At the inflow boundary, a self-similarity boundary

layer profile is imposed, and no-slip and adiabatic boundary conditions are applied at the surface of the flat plate. An

extrapolation boundary condition is applied at the outflow as well as on the top boundary of the domain.

The mean flow velocity and temperature profiles extracted at ý = 0.4 m corresponding to the smooth flat plate are

plotted along the boundary layer in Fig. 1(a). The dashed blue line in the figure marks the boundary layer thickness

which is around ÿ0.99 = 0.0046 m. The amplitude of the roughness elements is chosen based on this value, and four

different test cases are designed by varying the roughness height but with a fixed wavelength to investigate the effect of

variation of the roughness amplitude, which are mentioned in Table 1.

Next, to obtain the wavelength of the second mode corresponding to a smooth flat plate, we computed the disturbance

flow field by solving the linear disturbance equations (2). The time-integration has been carried out using a 2ÿý order

Runge-Kutta scheme. Similar to the mean flow field, an extrapolation boundary condition is applied at the outflow and

on the top boundary. At the inlet, Dirichlet boundary conditions are imposed on the primitive variables. At the wall,

no-slip, isothermal, and no penetration conditions are applied, except at the forcing location. The forcing location spans

between ý = [0.02 2 0.026] m in the steam-wise direction, where a broadband pulse is introduced into the flow field via

wall-forcing through the wall-normal velocity component in terms of a boundary condition. The pulse is centered at 100

kHz to ensure that a second-mode dominated wave packet can be generated with pulse forcing. The wall-forcing term is

composed of a spatial and a temporal component which can be written as,

ÿ (ý, ý) =

{
ýcos(ÿxh)

3sin(2 2ÿt
Tf

); ý f ÿ ÿ ,

0; ý > ÿ ÿ .
(3)

ý/ =
ý 2 0.5(ýý + ýÿ)

ýÿ 2 ýý
.

Here, ýý and ýÿ represent the start and end location of the pulse in the stream wise direction. The amplitude of the pulse

is denoted by ý, ÿ ÿ is the disturbance period and ý is the time.

A snapshot of the instantaneous disturbance flow field over the smooth flat plate is presented in Fig. 1(b) showing

pressure contours, with the red and blue contours denoting the positive and negative values of ÿ̃, respectively. The

pulse with a forcing frequency centered around 100 kHz excites the second mode instability in the flow which is

identified from the two-cell structures near the wall. The variation of the disturbance pressure is plotted at the end of the
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Cases Wavelength (m) Percent of 2ÿý mode wavelength Amplitude (m) Percent of boundary layer height

W1A2 4 × 1023 44.4 9.6 × 1024 20.9

W2A2 8 × 1023 88.9 9.6 × 1024 20.9

W3A2 16 × 1023 177.8 9.6 × 1024 20.9

W4A2 32 × 1023 355.6 9.6 × 1024 20.9

Table 2 Cases constructed to study the effects of varying roughness wavelength with fixed amplitude.

computational domain in the top panel of Fig. 1(b). From the figure, it can be inferred that the dominant second mode

attains a wavelength of around ÿ = 0.009 m at the end of the flat plate. The test cases presented in Table 1 are designed

x (m)

y
 (

m
)

0.02 0.03 0.04 0.05 0.06
-0.002

0.007

0.016

0.025

0.034

Fig. 2 Computational grid for the wavy wall

case W2A2.

to have a fixed wavelength of around 89% of the second mode

wavelength. Next, to study the effect of a change in the roughness

wavelength, we have considered four test cases in Table 2, where the

wavelength of the distributed roughness is varied as a function of the

second mode wavelength (= 0.009 m), keeping the roughness height

fixed at ý = 0.00096 m.

To introduce the roughness at the surface of the smooth flat plate,

we have used the following analytical expression,

ÿwavy = ÿsmooth +0.25 max(ý2 ÿsmooth, 0) cos(
2ÿ(ý 2 ýý)

ÿ
) 20.25ý,

where ÿwavy and ÿsmooth denote the wall-normal distance for the

flat plate with and without roughness respectively. The roughness

elements begin at ýý = 0.026 m and end at 0.978 m, whereas the

computational domain spans between ý = [0.01, 1] m. The top

boundary is located at ÿ = 0.26 m and the lower boundary is a

function of the roughness height. After a thorough grid convergence

study, the stream wise and the wall-normal directions are discretized

with 8000 and 500 grid points, respectively. Grid points are uniform in the stream wise direction, whereas in the

wall-normal direction, points are clustered near the wall, with a minimum wall-normal spacing of �ÿý = 5 × 1026 m. A

schematic of the wavy wall grid W2A2 is displayed in Fig. 2, after skipping five grid points in both the directions. In

the next section, we will discuss the effects of varying the roughness amplitude on the mean flow field.

IV. Effects of variation of roughness height

In the case of hypersonic flows, it was reported that very large roughness heights are required to affect the transition

process [24]. Duan et al. [11] found that a roughness element with a height equal to half of the boundary layer

thickness might delay the transition process. However, if the roughness height is much less than the local boundary

layer thickness, the placement of the roughness element, whether it is upstream or downstream of the synchronization

point will determine if amplification or damping will occur [12]. The experiments conducted by Holloway and Sterrett

[19] at Mach 6 also confirmed that to trip the boundary layer flow fully, roughness heights of approximately twice the

boundary-layer thickness at the roughness location are required. Although the effect of a single roughness is easily

perceived, more physical insight is still required to understand the effects of distributed roughness. Therefore, in this

section we will vary the amplitude of the distributed roughness elements from 10.4% to 43.5% of the boundary layer

thickness and study its affect on the mean and the disturbance flow field.

A. Simulation of the mean flow field

The steady mean flow field corresponding to the four test cases presented in Table 1 is obtained by solving the

compressible Navier-Stokes equations. A sub domain of the simulated pressure flow field is shown in Fig. 3. When the

supersonic flow reaches the first roughness element at ý = 0.026 m, due to a smooth increase in the flow area, expansion
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(a) W2A1 (b) W2A2 (c) W2A3

(d) W2A4
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1080
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(e) Mean flow pressure along the x-direction

x (m)
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(f) Stream wise gradient of pressure

Fig. 3 (a)-(d) Contours of pressure showing the effects of varying the roughness amplitude on the mean flow

field. Variation of (e) mean flow pressure and (f) its stream wise gradient above the first two roughness elements

extracted at y=0 m.

fans are created. Across the expansion fan, flow accelerates, while reducing the temperature and the static pressure of

the flow and the lowest values of these two quantities are observed in the dark black region. As the amplitude of the

roughness elements is increased, the strength of the expansion fan becomes mildly stronger, which can be seen from

a small reduction in the peak value of ÿ̄ at around ý = 0.0261 m in Fig. 3(e). The variation of mean flow pressure

along the stream wise direction is shown in Fig. 3(e) for the first two roughness elements at ÿ = 0 m. Moving across a

single roughness element, pressure and the temperature slowly increase over the constricted area which can be identified

from the change of contour colors from red to white. The highest values of these two quantities are observed slightly

downstream of the crest of the roughness elements, where flow compression creates compression waves. The largest

roughness height leads to the highest pressure recovery which can be seen around ý = 0.033 m for the first roughness

element (see Fig. 3(e)). Compared to the smooth wall case, the presence of expansion and compression waves leads to a

strong variation of pressure in the wavy wall cases. The variation of the stream wise gradient of mean flow pressure in

Fig. 3(f) shows the presence of adverse pressure gradient inside the roughness elements for the amplitude varying cases.

This leads to separated flow inside the cavities, which is shown by the blue streamlines in Fig. 4. For all the amplitude

varying cases considered here, the separation region extends throughout the entire length of the roughness elements

similar to what is typically classified as d-type roughness. The red contours in Fig. 4 represent the zero contours of the

inflectional profile ( ÿ
ÿÿ

(ÿ ÿý
ÿÿ

) = 0), which is an indication of the presence of inviscid instability in the flow field for all

the amplitude varying cases.

A comparison of the boundary layer profiles between the smooth wall case and the amplitude varying wavy wall

cases is presented in Fig. 5. For the smooth flat plate (FP), the data is extracted at ý = 0.4 m, whereas, the profiles for

the rough wall cases are shown after averaging over a roughness wavelength between ý = 0.396 m and 0.404 m. Since
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(d) W2A4

Fig. 4 Streamlines visualizing regions of flow separation and zero contours of inflectional profile ÿ
ÿÿ

( ÿ̄ ÿÿ̄
ÿÿ

) for

the four amplitude varying cases from Table 1.
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(a) stream wise velocity
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(b) Temperature

Fig. 5 Comparison of (a) velocity and (b) temperature profiles averaged over a roughness wavelength for the

four amplitude varying cases compared with the smooth wall data extracted at x=0.4 m.

the boundary layer profiles corresponding to the wavy wall cases are extracted above the separation bubble starting at

ÿ = 0 m, none of the mean flow velocity profiles in Fig. 5(a) shows negative values. Compared to the smooth wall case,

all the wavy wall cases display a slightly higher velocity throughout the boundary layer, however, there is no noticeable

difference in the boundary layer thickness. A comparison of mean flow temperature profiles in Fig. 5(b) shows that the
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(a) W2A1 (b) W2A2

(c) W2A3 (d) W2A4

Fig. 6 Disturbance pressure flow field for the four wavy wall cases from Table 1.

smooth wall attains slightly higher temperature at ÿ = 0 m compared to the amplitude varying cases.

B. Simulation of the disturbance flow field

Using the steady mean flow, next we computed the disturbance flow field corresponding to the amplitude varying

cases and a snapshot of the disturbance pressure is shown in Fig. 6. Similar to the smooth wall case, a 100 kHz pulse is

introduced through the same forcing location and it can be seen that near the wall, the disturbance structure is similar to

the smooth flat plate case, where the second mode is the dominant instability (see Fig. 1(b)). Compared to the smooth

wall case, all of the wavy wall cases show higher values of disturbance pressure. A plausible explanation for the pressure

disturbances appearing on top of the second mode dominated wave packet is interactions of the wave packet with

supersonic wave patterns of the baseflow generated by the rough surface. Because of this, disturbance pressure decays

very slowly outside the boundary layer as compared to the smooth wall case. As the roughness height is increased, the

interaction between the disturbances near the wall and the Mach waves becomes stronger, which leads to a more intense

streaky structure. A further increase in the roughness height from 32.6% to 43.5% results in a slight reduction in the

disturbance pressure at this location ý = [0.35 2 0.47] m as can be seen from comparing Fig. 6(d) with 6(c).

For a detailed analysis of the disturbance flow field, we have performed a fast Fourier transform (FFT) of the

wall-pressure signal, and the amplitude distribution is presented in Fig. 7 as a function of stream wise location and

frequency. For the wavy wall cases, the amplitude values are plotted after taking an average over each roughness

wavelength throughout the domain. Comparing Fig. 7(b) with Fig. 7(a) we notice that introducing roughness at the

flat plate surface, with a roughness height which corresponds to only 10.4% of the boundary layer thickness, slightly

amplifies the disturbance amplitude and increases the region of disturbance growth in the frequency and x-plane. A

further increase in the roughness amplitude to 21% enhances the high amplitude region significantly (see Fig. 7(c)),

indicating a higher amplification of disturbance amplitude at the end of the domain. Increasing the roughness height to

32.6% leads to a significantly increase in the pressure amplitude, which is slightly reduced as the roughness height is

further increased to 43.5%. It can also be observed that as the roughness height is increased, the high amplitude region

shifted to lower disturbance frequencies, which suggests that the peak growth rate of the dominant second mode might

shift to a lower frequency. Moreover, while the first region shifts to lower frequencies there seems to appear a second

region at high frequencies. The second region becomes clearly visible when the roughness height is further increased to

32.6% (Fig. 7(d)) and 43.5% (Fig. 7(e)) of the boundary layer thickness.
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(a) FP (b) W2A1 (c) W2A2

(d) W2A3 (e) W2A4

Fig. 7 Contours of Fourier transformed disturbance pressure amplitude as a function of frequency and stream

wise distance showing the effect of a change in the roughness amplitude.

To get a better understanding about the instability mechanisms and identify the unstable regions in frequency, we

next computed the growth rate (2ÿÿ =
ÿ
ÿý

(log |ÿ̃ý |)) based on the wall-pressure amplitude |ÿ̃ý | and plotted it in

Fig. 8(a) at ý = 0.4 m. The region above the black dashed line with 2ÿÿ > 0 is the unstable region. The maximum

amplification of the second mode corresponding to the smooth flat plate is observed at 116 kHz, whereas the presence

of roughness at the wall reduces the growth rate of this mode at this location. As the roughness height is increased, the

peak value of the second mode shifts to a lower disturbance frequency with a lower magnitude. However, the unstable

region increases in frequency range since the second mode appears at a lower frequency and it is hypothesized that

another instability mode appears at a higher frequency for the cases with roughness height greater than or equal to 21%

of the boundary layer thickness as observed in Fig. 7. This additional mode that appears around 150 kHz for the W2A2

case becomes more amplified and shifts to a lower disturbance frequency as the roughness amplitude is increased.

Figure 8(b) compares the amplification rates along the stream wise direction of the smooth plate with the amplitude

varying wavy wall cases at frequencies corresponding to the peak growth rate of the second mode obtained from Fig. 8(a).

Although the flat plate shows the highest amplification at ý = 0.4 m corresponding to ý = 116 kHz, the growth rate of

the second mode drops significantly after attaining the maximum growth and becomes stable after ý = 0.54 m. The

lower amplitude roughness case also shows a similar trend and becomes stable slightly downstream (ý = 0.68 m) of

the smooth wall location. The effect of increasing the roughness height is clearly observed for the remaining three

amplitude varying cases, where the maximum amplification rate is lower, however, the unstable region is longer leading

to larger amplitudes at the end of the domain (see Fig. 7). The highest roughness case leads to the largest growth of the

second mode at the end of the flat plate as can be observed from Fig. 8(b).

Next, the N-factor (N = log(A/Ao)) curves are generated to gain more information about the amplification rates at
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(a) Growth rate as a function of frequency
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(b) Growth rate along the surface

Fig. 8 (a) Comparison of the averaged growth rate over a roughness wavelength centered at x=0.4 m for the four

amplitude varying cases compared with the smooth wall data at varying frequencies. (b) Comparison of the

growth rate plotted along the surface of the plate.

x (m)

N

0.2 0.3925 0.585 0.7775 0.97
0

1.8

3.6

5.4

7.2

9

10.8

(a) FP

x (m)

N

0.2 0.3925 0.585 0.7775 0.97
0

1.8

3.6

5.4

7.2

9

10.8

(b) W2A1

x (m)

N

0.2 0.3925 0.585 0.7775 0.97
0

1.8

3.6

5.4

7.2

9

10.8

(c) W2A2

x (m)

N

0.2 0.3925 0.585 0.7775 0.97
0

1.8

3.6

5.4

7.2

9

10.8

(d) W2A3
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Fig. 9 Effect of variation of roughness amplitude on the N-factor for a range of disturbance frequency plotted

as a function of steam-wise distance with a step of 2 kHz. The red line indicating the frequency leading to the

maximum N-factor at the end of the domain.
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each downstream location for a wide range of frequencies with increments of �ý = 2 kHz and plotted in Fig. 9. The

green and purple lines denote the starting and the ending frequency, respectively, for each case. The red line corresponds

to the disturbance frequency leading to the maximum N-factor at the end of the computational domain. A maximum

N-factor of approximately 8.35 is reached at the end of the domain for the smooth flat plate (see Fig. 9(a)), whereas

the smallest roughness amplitude case W2A1 shown in Fig. 9(b) leads to a slightly higher N-factor of 8.5 at the same

location. The frequency corresponding to the maximum N-factor reduces from 84 kHz for the smooth wall case to 78

kHz for the wavy wall case. Increasing the roughness height to 21% increases the maximum N-factor to around 9.22,

corresponding to a disturbance frequency of 72 kHz. The remaining two larger roughness amplitude cases W2A3 and

W2A4 cause more amplification of the initial disturbance amplitude ýý and lead to N-factor values of 9.97 and 10.68

at the end of the plate, respectively corresponding to a frequency of 70 kHz and 64 kHz. Therefore, the addition of

distributed roughness of a small height which is around 10% of the boundary layer thickness can also destabilize the

flow in comparison to a smooth wall case at the same conditions. This is an interesting finding since previous works

have reported that large roughness heights are required to affect the transition process. Also, compared to a smooth

flat plate, the wavy geometry with higher roughness amplitudes will lead to transition at a much lower disturbance

frequency, as can be seen from Figs. 9(d) and 9(e). A detailed discussion on the energy transfer mechanisms leading to

the amplification of disturbances is provided in the next subsection.

C. Energy analysis for the wavy wall cases with varying roughness height

To gain further insight into the physical mechanisms causing the disturbances to amplify or decay, we derived an

energy balance equation based on the linear disturbance equations (2). The total energy transfer equation (4) is obtained

by multiplying the x-momentum (6), y-momentum (7), energy equation (8), and the continuity equation (9) by the

coefficients of the Chu’s energy norm [25], which are ÿ̃, ÿ̃, ÿ̃/ÿ̄ , and (ýÿ̄ ÿ̃)/ÿ̄, respectively.

TE = ÿ̄
ÿý̃

ÿý
+ ÿ̄

ÿý̃

ÿÿ
= Ptot + Dtot + Ftot; (4)

ý̃ = 0.5(
ÿ̄

ÿ̄2
ÿ̃ ÿ̃7 + ÿ̄ÿ̃ÿ ÿ̃

7
ÿ +

ÿ̄ý

(ÿ 2 1)ÿ̄
ÿ̃ÿ̃7).

Here, ý̃ represents the total energy contained in the disturbance. The rate of change of total disturbance energy TE is

decomposed into the total production term Ptot, total dissipation term Dtot, and the total flux term Ftot. Each of these

terms contain the following components:

Ptot = PRS + PMom + PEntropy + PPW + PConv + PDila + PIE + PTP;

Dtot = DCond + DSW;

Ftot = FTP + FHF + FPW + FSW.

The total production term Ptot consists of the contributions from the Reynolds stress PRS, convective stress PConv,

momentum stress PMom due to the convection of the disturbance momentum, entropy stress PEntropy because of entropy

spottiness, stress related to pressure work PPW, and the stress generated due to the non-zero divergence field PDila. In

addition, the variation of transport properties gives rise to the production term PTP, and the spatial variation of the

internal energy leads to the production term PIE. The total dissipation term mainly consists of two terms i.e., shear-work

generated dissipation DSW, and the heat-flux related term DCond. The flux terms redistribute energy throughout the

domain and they are considered as a volume contribution in this work. FPW and FSW correspond to the flux generated

due to pressure work and shear work, respectively, whereas the flux arising due to transport property variation and heat

transfer are denoted by FTP and FHF, respectively. A detailed description of these terms is provided in Appendix A.

To calculate the energy budget terms, we simulated the disturbance flow field by using a continuous time-periodic

volume forcing. The volume forcing term is added to the right-hand side of the y-momentum equation (Eq. (7)). This

will impose only a single frequency, and the frequency is selected such that that it leads to the maximum amplification of

the second mode, which was determined from the previous pulse simulations. The forcing function can be expressed as,

ÿ (ý, ÿ, ý) = ýsin
(2ÿ(x 2 xs)

�xw

)

exp
(

2
(y 2 yo)

2

ÿ2
f

)

sin(2ÿFt); (5)

�ýý = ýÿ 2 ýý is the width of the forcing slot and the disturbance is introduced at ÿý in the wall-normal direction. The

imposed frequency is ý and ÿ ÿ is the standard deviation of the distribution.
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Fig. 10 Effect of variation of roughness amplitude

on the total energy transfer rate plotted as a function

of the wall-normal direction at x=0.4 m.

The total energy transfer term from Eq. (4) is presented

in Fig. 10 after averaging over one forcing period, which

corresponds to the frequency leading to the maximum second

mode growth in Fig. 8(a) at ý = 0.4 m. For the wavy wall

cases, the energy transfer terms are also averaged over the

roughness wavelength between ý = [0.396 2 0.404] m. All

the energy transfer terms plotted in this work are normalized

by
+ ÿ=0.04

ÿ=0
2ÿ̄ý̃ýÿ, which is proportional to the term ÿ̄ ÿý̃

ÿý
, that

appears on the LHS of the total energy transfer equation (4).

The inset in the figure shows that close to the wall and until the

critical layer, the disturbance gains more energy in the smooth

flat plate case in comparison to the rough wall cases. It can

also be observed that as the height of the roughness elements

increases, the disturbances loose energy at a faster rate away

from the wall. The smooth flat plate shows the highest peak in

the TE term in the critical layer. The first peak in TE increases

as the roughness height is increased, however, as the roughness

height reaches around 43% of the boundary layer thickness,

the peak value reduces. The second peak is largest for the

smallest roughness case W2A1, compensating the reduction

in the first peak and leading to the largest amplification of the second mode among the wavy wall cases at ý = 0.4

m. The presence of large fluctuations of energy is noticed outside the boundary layer for the wavy wall cases. The

integrated value of TE along the boundary layer reduces as the roughness height is increased which explains the lower

amplification rate of the second mode observed in Fig. 8 at ý = 0.4 m with increasing roughness amplitude.

V. Effects of variation of roughness wavelength

This wavy-wall stabilization (WWS) concept suggests replacing the long separation bubbles with a sequence of small

ones to avoid any detrimental acoustic resonances within the bubbles. It is believed that the second mode is damped due

to the stabilizing effect of a relatively long free shear layer formed near a streamlined surface [26]. This concept was

verified by the numerical investigation of Zhou et al. [15], which showed that a wavy wall with multiple wavenumbers

can suppress the second-mode growth significantly as compared to a wavy wall with a single wave number. This was

attributed to the multiple separation regions as opposed to a shorter re-circulation region corresponding to a single

roughness element. This highlights the stabilizing role of distributed roughness compared to an isolated roughness

element. The importance of the size of the roughness wavelength was demonstrated by Fujii [20], which conducted an

experimental investigation on a 5 degree half-angle sharp cone at Mach 7.1. His work showed that a wavy wall with a

wavelength of twice the boundary layer thickness located well upstream of the breakdown region can delay the transition

process. In this section, we will review the wavy-wall stabilization concept using sinusoidal roughness elements with

shorter to longer wavelengths scaled as a function of the second mode wavelength with a fixed roughness height which

is around 21% of the boundary layer thickness corresponding to a smooth flat plate at ý = 1 m.

A. Effect of varying roughness wavelength on mean flow field

To analyze the effect of a change in the roughness wavelength on the mean flow, we have constructed four test

cases which are listed in Table 2. The steady mean flow fields corresponding to these wavelength varying cases are

presented in Fig. 11 in terms of pressure contours. The stream wise domain shown in the figure includes two roughness

wavelengths corresponding to the highest wavelength case W4A2. Similar to the amplitude varying cases discussed in

the previous section, the roughness elements start at ý = 0.026 m, where the first expansion fan is observed, marked by

the dark black pressure contours. The flow fields appear similar to the amplitude varying wavy wall cases presented

in Fig. 3 in terms of the expansion and compression waves generated at the surface. The main effect of increasing

the roughness wavelength is to increase the strength of expansion and compression waves generated by the roughness

elements. This can be visualized from a change of contour colors from light yellow in Fig. 11(a) for the smallest

roughness wavelength case to a dark red color in Fig. 11(d) corresponding to the largest wavelength case. A comparison

of the mean flow pressure extracted at ÿ = 0 m for all four cases is shown in Fig.11(e) along with the smooth wall data.
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(a) W1A2 (b) W2A2 (c) W3A2

(d) W4A2
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(e) Mean flow pressure along the x-direction
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(f) stream wise gradient of pressure

Fig. 11 (a)-(d) Contours of pressure showing the effect of varying the roughness wavelength on the mean flow

field. Variation of (e) mean flow pressure and (f) its stream wise gradient above the first roughness element

corresponding to the largest wavelength case W4A2 extracted at y=0 m.

Compared to the smooth flat plate case, all the wavy wall cases cause large variations in the mean flow quantities, which

becomes more severe when the roughness wavelength is increased. The plot of stream wise pressure gradient along

the surface of the plate in Fig. 11(f) indicates that the smallest wavelength case W1A2 leads to the largest pressure

gradients. The d-type behavior can be noticed for all the wavelength varying cases except the largest case W4A2

(see Fig. 12(d)). Increasing the roughness wavelength causes a smoother change of pressure gradient with a reduced

magnitude, which can be clearly seen for the largest wavelength case W4A2 in Fig. 11(f), leading to a smaller separation

bubble (see Fig. 12(d)). This also causes the shear layer to bend inwards, moving closer to the wall, as opposed to a

parallel shear layer corresponding to the smaller wavelength cases, where the shear layer smoothly connects the crests of

the neighboring roughness elements.

The variation of stream wise velocity and temperature is plotted along the boundary layer in Fig. 13 after averaging

over a roughness wavelength centered at ý = 0.4 m for the wavy-wall cases. Although all the rough wall cases in

Fig. 12 show separation, it is not evident from the velocity profiles presented in Fig. 13(a). This is because the profiles

are extracted above the separation bubble, starting from ÿ = 0 m to keep the lower bound the same as the smooth

plate surface. As the roughness wavelength is increased, ÿ̄ attains a higher value at ÿ = 0 m. The smallest roughness

wavelength case W1A2 quickly follows the smooth wall data away from the wall, however, the other three cases align

with the smooth wall data only at the boundary layer edge. All the wavelength varying cases except the smallest

wavelength case lead to a lower temperature in the boundary layer compared to the smooth wall data (see Fig. 13(b)).

The highest temperature is observed at the flat plate surface due to imposed adiabatic boundary conditions. Although

the W1A2 case attains a lower temperature at ÿ = 0 m compared to the smooth flat plate case, it shows a slightly higher

temperature away from the wall and leads to a slightly higher thermal boundary layer thickness compared to the other
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Fig. 12 Zero contours of inflectional profile ÿ
ÿÿ

( ÿ̄ ÿÿ̄
ÿÿ

) demonstrating the regions of separated flow over a

roughness wavelength for the four wavelength varying cases from Table 2.

cases.

B. Effects of varying roughness wavelength on disturbance flow field

Using the steady base flows presented in the previous section, next we computed the disturbance flow fields for the

wavelength varying cases by introducing a 100 kHz pulse as discussed in Section III. To visualize the disturbance flow

field, we have plotted the pressure contours corresponding to each of these cases from Table 2 in Fig. 14. Since the

contour legend is kept at the same range as that of the smooth flat plate case presented in Fig. 1(b), the wavy wall with

half of the second mode wavelength seem to slightly reduce the disturbance pressure values, with a shorter wave packet

(see Fig. 14(a)). The interaction of the second mode disturbance with the Mach waves does not lead to any amplification

of the disturbance amplitude in this case. When the roughness wavelength approaches the second mode wavelength, an

intense amplification of the pressure amplitude is observed as can be seen from Fig. 14(b). A resonance mechanism

might be set up when both the wavelengths are of the same order, causing the growth of disturbance quantities. The

streaky structures created on top of the roughness elements also intensify. Increasing the roughness wavelength to

around twice the second mode wavelength causes a slight reduction in the pressure amplitude, however, the interaction

between the second mode and the Mach waves extends to a broader region in the wall-normal direction (see Fig. 14(c)).

A further increase in the roughness wavelength causes less interaction of the near-wall disturbances with the Mach
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Fig. 13 Comparison of (a) velocity and (b) temperature profiles averaged over a roughness wavelength for the

four wavelength varying cases compared with the smooth wall data extracted at x=0.4 m.

waves, leading to a significant reduction in the streaky structure and the pressure amplitude away from the wall. As

the roughness wavelength is increased further, the stability characteristics will behave similarly to a smooth flat plate

geometry. This is expected since the surface of the smooth flat plate can be assumed as a single roughness element with

a wavelength of the infinite radius of curvature.

To determine the range of frequencies leading to the maximum growth of near-wall disturbances for the wavelength

varying cases, we performed a fast Fourier transform of the wall-pressure data. The FFT pressure amplitude obtained

after averaging over each roughness wavelength is plotted in Fig. 15 as a function of frequency and stream wise distance.

Compared to the smooth wall case shown in Fig. 15(a), the lowest wavelength case shifts the large amplitude region

downstream and also to a lower disturbance frequency (see Fig. 15(b)). A comparison of the two cases is shown as a

function of frequency in Fig. 16(a) after extracting the pressure amplitude at ý = 0.4 m. The wavy wall case W1A2

has a much lower amplitude than the smooth wall case as can be seen from the figure. It also shows a much earlier

amplification of the disturbance starting from around 30 kHz and leads to a broader peak in pressure amplitude spanning

between 30 2 150 kHz. Compared to W1A2 case, the smooth flat plate causes a delayed amplification of pressure (j 98

kHz) and the peak value appears around 130 kHz. The amplitude data plotted at the end of the domain in Fig. 16(b)

shows a large increase in the pressure amplitude and the smallest wavelength case attains a comparable amplitude as

that of the smooth wall data, however at a much lower frequency. Increasing the roughness wavelength from ÿ = 0.004

m to 0.008 m enhances the pressure amplitude significantly as can be seen from Fig. 15(c). It also leads to a shift in the

amplitude loop to a lower stream wise location, while including a wider range of disturbance frequencies. At ý = 0.4 m,

the W2A2 case which has a comparable roughness wavelength as that of the second mode leads to the highest increase in

the pressure amplitude. However, the wavy-wall case W3A2 with ÿ = 0.016 m leads to the maximum amplitude growth

at the end of the domain (see Fig. 16(b)). The variation of pressure in Fig. 16(a) indicates that there might be another

instability mode around 132 kHz in addition to the second mode appearing at 102 kHz for the wavy wall case W3A2. As

the roughness wavelength is increased further, the second peak in pressure attains a slightly higher magnitude compared

to the first peak at ý = 0.4 m, however, both the peaks have a much smaller amplitude than the two wavy wall cases

W2A2 and W3A2, but still higher than the smooth wall data. This highest wavelength case W4A2 attains a similar

magnitude of pressure as that of the W2A2 case at the end of the wavy surface (see Fig. 16(b)), with the first peak

having a higher amplitude than the second one. It can be observed that at both the x-locations, the first peak in pressure

appears at a much lower disturbance frequency for the four wavelength varying cases compared to the smooth wall case.

Next, we computed the amplification rates based on the averaged wall pressure amplitude to identify the unstable

regions along the plate at varying frequencies. The growth rate extracted at ý = 0.4 m is plotted in Fig. 17 as a function

of disturbance frequency. Among all the cases, the smooth flat plate leads to the largest growth of the second mode at

this x-location. As observed in Fig. 16(a), the unstable region is shifted to a higher frequency range compared to the

four wavelength varying cases, with the peak growth rate appearing at ý = 116 kHz. The smallest wavelength case

W1A2 shows the smallest amplification of the second mode and the unstable region covers a frequency range between

15

D
o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

ty
 o

f 
M

ar
y
la

n
d
 o

n
 A

p
ri

l 
4
, 
2
0
2
5
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
2
2
-1

2
1
2
 



(a) W1A2 (b) W2A2

(c) W3A2 (d) W4A2

Fig. 14 Effect of variation of roughness wavelength on the disturbance pressure flow field for the four wavy wall

cases from Table 2.

50 2 118 kHz. The lowest amplification corresponding to this case is expected since it has the largest thermal boundary

layer thickness (see Fig. 13(b)). Increasing the roughness wavelength to 0.008 m causes a significant increase in the

growth rate, with the peak value shifted to a slightly higher frequency compared to the lowest wavelength case. This

case W2A2 is unstable over all the frequency range considered in this plot. A slight reduction in the amplification rate

is noticed at ý = 0.4 m as the roughness wavelength is increased further to 0.016 m. The frequency corresponding

to the maximum second mode growth is shifted further to 89 kHz compared to the previous two-wavelength varying

cases. As observed in the FFT diagram in Fig. 15(d), another unstable mode is observed around 129 kHz for the W3A2

case. Although the frequency corresponding to the peak second mode growth is shifted slightly to a lower value, the

highest wavelength case W4A2 leads to a similar amplification of the second mode as that of the wavy-wall case W2A2.

However, it also shows two other instability peaks at higher frequencies, which is not observed in the W2A2 case.

The frequency corresponding to the second peak observed in the W4A2 case is shifted to a lower value compared to

the W3A2 case, but with a higher magnitude. Similar to the effect of increasing roughness height observed in Fig. 8,

multiple instability modes appear in the flow field as the roughness wavelength is increased and the higher modes move

to a lower disturbance frequency with an increase in the roughness wavelength.

To identify the unstable regions above the plate, we plotted the amplification rates at frequencies corresponding to

the peak growth rate of the second mode at ý = 0.4 m in Fig. 17(b). Although the smooth flat plate becomes stable after

ý = 0.53 m, all the wavelength varying cases are unstable throughout the entire computational domain. After attaining

the maximum growth rate at ý = 0.4 m, all the wavy wall cases except the largest wavelength case show a gradual

decrease in the disturbance growth. The wavy wall case W4A2 shows another peak in growth rate around ý = 0.8 m

corresponding to a frequency of 83 kHz. Based on these growth rates, we next computed the N factors at multiple

frequencies to determine how much disturbance has amplified over the computational domain. Compared to the N-factor

of 8.35 for the smooth flat plate, the lowest wavelength case W1A2 leads to a slightly lower N-factor (= 7.9) at the end

of the domain. The red line in Fig. 18 corresponds to the frequency leading to the maximum N-factor at the end of the

plate. Adding a small roughness wavelength ÿ = 0.004 m to the surface of the flat plate reduces this frequency from 84

kHz in the smooth wall case to 66 kHz in the W1A2 case, which can be seen by comparing Fig. 18(b) with 18(a). When

the roughness wavelength approaches the second mode wavelength, a significant increase in the N-factor (= 9.22) is

observed at ý = 0.97 m compared to the smallest roughness case. Figure 18(c) shows that frequency corresponding
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(a) FP (b) W1A2 (c) W2A2

(d) W3A2 (e) W4A2

Fig. 15 Fourier transformed disturbance pressure amplitude for different roughness wavelength cases.
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(a) Averaged amplitude as a function of frequency
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Fig. 16 Comparison of the averaged pressure amplitude extracted at (a) x=0.4 m and (b) x=0.97 m plotted as a

function of disturbance frequency.

to the maximum N-factor for this case 72 kHz. Increasing the roughness wavelength further increases the maximum

N-factor value to 10.1 corresponding to a disturbance frequency of 76 kHz for the W3A2 case (see Fig. 18(d)). The
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(a) Growth rate as a function of frequency
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(b) Growth rate along the surface

Fig. 17 Comparison of the averaged growth rate (a) over a roughness wavelength centered at x=0.4 m for the

four wavelength varying cases compared with the smooth flat plate case as a function of frequency and (b) along

the wall corresponding to the frequencies leading to the maximum second mode growth rate in (a).

x (m)

N

0.2 0.3925 0.585 0.7775 0.97
0

1.8

3.6

5.4

7.2

9

10.8

(a) FP

x (m)

N

0.2 0.3925 0.585 0.7775 0.97
0

1.8

3.6

5.4

7.2

9

10.8

(b) W1A2

x (m)

N

0.2 0.3925 0.585 0.7775 0.97
0

1.8

3.6

5.4

7.2

9

10.8

(c) W2A2

x (m)

N

0.2 0.3925 0.585 0.7775 0.97
0

1.8

3.6

5.4

7.2

9

10.8

(d) W3A2

x (m)

N

0.2 0.3925 0.585 0.7775 0.97
0

1.8

3.6

5.4

7.2

9

10.8

(e) W4A2

Fig. 18 Effect of variation of roughness wavelength on the N-factor for a range of disturbance frequency plotted

as a function of steam-wise distance with a step of 2 kHz. The red line indicating the frequency leading to the

maximum N-factor at the end of the domain.
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largest wavelength case W4A2 amplifies the disturbances slightly more than the W3A2 case, with the N-factor reaching

a value of 10.14 at a much lower frequency of 68 kHz. Therefore, shorter wavelength roughness elements can delay the

transition process compared to a smooth flat plate. However, increasing the roughness wavelength can lead to transition

faster and at a much lower disturbance frequency than the smooth wall case.

Next, to conduct an energy analysis of the disturbance flow, we computed the disturbance flow fields for the

wavelength varying cases by using continuous forcing at forcing frequencies leading to the maximum second mode

growth at ý = 0.4 m shown in Fig. 17. The energy budget terms provided in Eq. 4 are calculated after averaging over

y (m)
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E
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Fig. 19 Effect of variation of roughness wave-

length on the total energy transfer term plotted as

a function of the wall-normal direction at x=0.4 m,

normalized by
+

ÿ=0.04

ÿ=0
2ÿ̄ý̃ýÿ.

one period of the disturbance corresponding to each of these

frequencies. The terms are also averaged over one roughness

wavelength centered at ý = 0.4 m and normalized by the
+

ÿ=0.04

ÿ=0
2ÿ̄ý̃ýÿ term. A comparison of the total energy transfer

term in Eq. (4) is shown in Fig. 19 as a function of the wall-

normal distance. A close-up view of the near-wall variation of

TE is shown in the inset. It shows that, in the near wall region,

the disturbance flow field gains the largest amount of energy

for the smooth wall case, whereas two shortest wavelength

cases W1A2 and W2A2 dissipate disturbance energy until the

critical layer. The amount of energy lost near the wall is reduced

as the roughness wavelength is increased further. Although

disturbance flow field gains energy at the two extrema of the

shear layer, energy is also dissipated around ÿ = 0.003 m inside

the shear layer for the shortest roughness case W1A2. The

integrated value of TE along the boundary layer is smallest for

this case among all the cases presented in Fig. 19. Therefore, the

smallest wavelength case W1A2 shows the lowest amplification

of the second mode compared to the other wavelength varying

cases. The highest growth rate is observed for the smooth wall

case at ý = 0.4 m in Fig. 17 and it can be attributed to the largest

peak in TE as well as the larger energy transfer in the near-wall

region as can be seen from Fig. 19. Among the wavy wall cases,

the highest peak in TE is observed for the W2A2 case, making it more unstable than the higher wavelength case W3A2.

Although the peak value of TE is lower in the largest wavelength case W4A2, the energy is transferred over a wider

region in the boundary layer, making this case as unstable as the W2A2 case (see Fig. 17).

VI. Conclusion

The stability of a high-speed boundary layer flow over smooth and rough surfaces was investigated using numerical

simulations. A well-defined study was performed to isolate the effects of roughness wavelength and height. The test

cases to investigate the effects of roughness height used roughness heights between 10 and 44 percent of the boundary

layer height measured at the end of a 1 m long smooth flat plate. The wavelength varying cases were chosen to be

between 0.44 and 3.55 of the second mode wavelength. For all roughness cases, a strong effect on the pressure field

was noted with a supersonic wave pattern emanating away from the rough surface. Increasing the roughness height

and roughness wavelength enhances the strength of these wave patterns that interact with the disturbance flow field.

For all but the largest wavelength case, the separation regions filled essentially the entire cavities between consecutive

roughness elements.

The disturbance flow field was obtained by solving the linear disturbance flow equations. A pulse disturbance

centered around a frequency of around 100 kHz was introduced in the smooth wall section ahead of the roughness

elements to generate a second mode dominated wave-packet. The disturbance flow field for the wavy wall cases

looked similar near the wall to the smooth wall flat plate case displaying a typical two-cell structure representing the

second mode. However, away from the wall, the interaction between the second mode dominated wave-packet and the

waves emanating from the rough surface generated acoustic-like disturbances in the freestream. When the roughness

wavelength was comparable to the second mode wavelength and the roughness heights were greater than or equal to

20% of the boundary layer thickness the interaction appears to be enhanced. The stability of the flow was investigated
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by considering the Fourier transformed wall pressure signal and energy budget transfer term. For the cases with a fixed

roughness wavelength, a destabilization of the flow was noticed for all roughness heights. However, for the shortest

roughness wavelength case considered as part of the fixed roughness height cases a weak stabilization of the flow to

second mode disturbances could be noticed. All distributed roughness cases with a wavelength comparable to the

second mode wavelength or higher showed a destabilization of the flow. For all roughness cases, the frequency range

where the disturbance flow field displayed the largest amplification shifted to lower frequencies in comparison to the

smooth wall case.

Lastly, the energy budget transfer terms were computed to obtain some insight about the energy transfer mechanisms

from the mean flow to the disturbance flow field. The plot of the total energy transfer terms looked very similar for

the smooth and rough wall cases, where most of the energy transfer occurred close to the boundary layer edge. The

main peak in the total energy transfer term was reduced for all roughness cases in comparison to the smooth wall and

additional peaks appeared in the distributions for the roughness cases. For the wavy wall cases with larger roughness

height, a significant amount of energy transfer is also observed outside the boundary layer due to the strong interaction

between the disturbance flow field with the wave pattern generated by the rough surface. In general, the integrated value

of the total energy transfer term for the roughness cases was lower than for the smooth wall case suggesting a lower

amplification rate. However, the unstable flow region for the roughness cases was enlarged for most of the roughness

cases which then led to larger overall N-factors at the end of the computational domain.
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Appendix A

The x-momentum (6), y-momentum (7), energy equation (8), and the continuity equation (9) for the disturbance

flow are mentioned below.
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(9)

The heat flux and shear stress tensor components are given below.
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)

.
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The components of each energy transfer mechanism are mentioned below.

PRS = 2 ÿ̄

(

ÿ̃ÿ̃
ÿÿ̄

ÿý
+ ÿ̃ÿ̃

ÿÿ̄

ÿÿ
+ ÿ̃ÿ̃

ÿÿ̄

ÿý
+ ÿ̃ÿ̃

ÿÿ̄

ÿÿ

)

;

PConv = 2

[

ÿ̄ÿ̄

(

ÿ̃
ÿÿ̃

ÿý
+ ÿ̃

ÿÿ̃

ÿý

)

+ ÿ̄ÿ̄

(

ÿ̃
ÿÿ̃

ÿÿ
+ ÿ̃

ÿÿ̃

ÿÿ

)

+
ÿ̄ÿ̃

(ÿ 2 1)ÿ̄2

(

ÿ̄
ÿÿ̃

ÿý
+ ÿ̄

ÿÿ̃

ÿÿ

)

+
ÿ̄ÿ̃

ÿ̄2

(

ÿ̄
ÿ ÿ̃

ÿý
+ ÿ̄

ÿ ÿ̃

ÿÿ

)

]

;

PMom = 2

[

ÿ̃ÿ̃

(

ÿ̄
ÿÿ̄

ÿý
+ ÿ̄

ÿÿ̄

ÿÿ

)

+ ÿ̃ÿ̃

(

ÿ̄
ÿÿ̄

ÿý
+ ÿ̄

ÿÿ̄

ÿÿ

)

]

;

PEntropy = 2

[

ÿ̄ý

(

ÿ̃

(ÿ 2 1)ÿ̄
2

ÿ̃

ÿ̄

) (

ÿ̃
ÿÿ̄

ÿý
+ ÿ̃

ÿÿ̄

ÿÿ

)

]

;

PPW = 2
ÿ̃

ÿ̄

(

ÿ̃
ÿÿ̄

ÿý
+ ÿ̃

ÿÿ̄

ÿÿ

)

;

PIE = 2
ÿ̃ÿÿÿ̃

ÿ̄

(

ÿ̄
ÿÿ̄

ÿý
+ ÿ̄

ÿÿ̄

ÿÿ

)

;

PTP =

[

(

2ÿ̄ 2
dÿ̄

dÿ̄
ÿ̄

) [

ÿÿ̄

ÿý

(

ÿÿ̃

ÿÿ
+
ÿÿ̃

ÿý

)

+
ÿÿ̄

ÿÿ

(

ÿÿ̃

ÿÿ
+
ÿÿ̃

ÿý

)

+ 2
ÿÿ̄

ÿý

ÿÿ̃

ÿý
+ 2

ÿÿ̄

ÿÿ

ÿÿ̃

ÿÿ

]

+

(

2ÿ̄ 2
dÿ̄

dÿ̄
ÿ̄

) (

ÿÿ̄

ÿÿ
+
ÿÿ̄

ÿý

) (

ÿÿ̃

ÿý
+
ÿÿ̃

ÿÿ

)

+ ÿ̃
dÿ̄

dÿ̄

[

2

(

ÿÿ̄

ÿý

)2

+ 2

(

ÿÿ̄

ÿÿ

)2

+

(

ÿÿ̄

ÿý

)2

+

(

ÿÿ̄

ÿÿ

)2

+ 2
ÿÿ̄

ÿÿ

ÿÿ̄

ÿý

]

+

dÿ̄

dÿ̄
ÿ̃

[

(

ÿÿ̄

ÿý

)2

+

(

ÿÿ̄

ÿÿ

)2

+ 2
ÿÿ̄

ÿý

ÿÿ̄

ÿÿ

]

+
ý̄

ÿ̄

(

ÿÿ̄

ÿý

ÿÿ̃

ÿý
+
ÿÿ̄

ÿÿ

ÿÿ̃

ÿÿ

)

+

[

ÿ

ÿý

(

ÿ̃
dý̄

dÿ̄

ÿÿ̄

ÿý

)

+
ÿ

ÿÿ

(

ÿ̃
dý̄

dÿ̄

ÿÿ̄

ÿÿ

)]

]

ÿ̃

ÿ̄
;

PDila = 2

(

ÿ̃ÿ̃

ÿ̄
+
ÿ̄ÿ̃2

ÿ̄2

) (

ÿÿ̄

ÿý
+
ÿÿ̄

ÿÿ

)

;

DSW = 2

[

ÿ̃ýý1

ÿÿ̃

ÿý
+ ÿ̃ÿÿ1

ÿÿ̃

ÿÿ
+ ÿ̃ýÿ1

(

ÿÿ̃

ÿý
+
ÿÿ̃

ÿÿ

)

]

;

DCond = 2

(

ÿ̃ý1

ÿÿ̃

ÿý
+ ÿ̃ÿ1

ÿÿ̃

ÿÿ

)

;

FTP = 2

[

2
ÿ

ÿý

(

ÿ̃ÿ̃
ÿÿ̄

ÿý

)

+
ÿ

ÿý

(

ÿ̃ÿ̃
ÿÿ̄

ÿý

)

+
ÿ

ÿý

(

ÿ̃ÿ̃
ÿÿ̄

ÿý

)

+
ÿ

ÿÿ

(

ÿ̃ÿ̃
ÿÿ̄

ÿÿ

)

+
ÿ

ÿý

(

ÿ̃ÿ̃
ÿÿ̄

ÿÿ

)

+
ÿ

ÿý

(

ÿ̃ÿ̃
ÿÿ̄

ÿÿ

)

+
ÿ

ÿÿ

(

ÿ̃ÿ̃
ÿÿ̄

ÿÿ

)

+ 2
ÿ

ÿÿ

(

ÿ̃ÿ̃
ÿÿ̄

ÿÿ

)

+
ÿ

ÿÿ

(

ÿ̃ÿ̃
ÿÿ̄

ÿý

)

+
ÿ

ÿÿ

(

ÿ̃ÿ̃
ÿÿ̄

ÿý

)

]

;

FPW = 2

[

ÿ̃

(

ÿÿ̃

ÿý
+
ÿÿ̃

ÿÿ

)

+ ÿ̃
ÿÿ̃

ÿý
+ ÿ̃

ÿÿ̃

ÿÿ

]

;

FHF = 2

[

ÿ

ÿý

(

ý̄ÿ̃

ÿ̄

ÿÿ̃

ÿý

)

+
ÿ

ÿÿ

(

ý̄ÿ̃

ÿ̄

ÿÿ̃

ÿÿ

)

]

;

FSW =

ÿ

ÿý

(

ÿ̃ÿ̃ýý1

)

+
ÿ

ÿÿ

(

ÿ̃ÿ̃ÿÿ1

)

+
ÿ

ÿý

(

ÿ̃ÿ̃ýÿ1

)

+
ÿ

ÿÿ

(

ÿ̃ÿ̃ýÿ1

)

.

The heat flux and stress tensor can be written as,

ÿ̃ý1
= 2ý̄

ÿÿ̃

ÿý
; ÿ̃ÿ1

= 2ý̄
ÿÿ̃

ÿÿ
.

ÿ̃ýý1
= (2ÿ̄ + ÿ̄)

ÿÿ̃

ÿý
+ ÿ̄

ÿÿ̃

ÿÿ
;
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ÿ̃ÿÿ1
= (2ÿ̄ + ÿ̄)

ÿÿ̃

ÿÿ
+ ÿ̄

ÿÿ̃

ÿý
;

ÿ̃ýÿ1
= ÿ̄

(

ÿÿ̃

ÿÿ
+
ÿÿ̃

ÿý

)

.
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