

1 **Calcification trends in long-lived corals across the Indo-Pacific during the industrial era**

2

3

4 Thomas M. DeCarlo^{1*}, Jordyn Cotton^{2*}, Allyndaire Whelehan², Madison Gramse², Michael L.
5 Berumen³, Hugo B. Harrison⁴, Malcolm M. McCulloch^{5,6}, Hannah V. Whitaker^{2,5}, Tori Falk²,
6 Ellen Groenvall², and Kathleen Matthews²

7

8 ¹Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA, USA

9 ²Hawai‘i Pacific University, Honolulu, Hawai‘i, USA

10 ³Red Sea Research Center, Division of Biological and Environmental Science and Engineering,

11 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

12 ⁴School of Biological Sciences, University of Bristol, Bristol, England

13 ⁵The University of Western Australia, Perth, Western Australia, Australia

14 ⁶Honorary Professor, The University of Queensland, School of Environment, St Lucia,
15 Queensland, Australia

16

17 Keywords: coral growth, calcification, climate change

18

19 Correspondence to tdecarlo@tulane.edu

20

21 *These authors contributed equally

22

23 **Abstract**

24 Skeletal cores from massive, long-lived coral colonies provide a unique approach to investigating
25 the chronic effects of climate change on coral calcification across decadal to centennial timescales.
26 Here, we show an overall decline in calcification rates during the industrial era, broadly consistent
27 with other studies, based on 148 skeletal cores from ten reef locations throughout the Indo-Pacific.
28 However, these declines are region-specific, modulated by the opposing influences of density and
29 linear extension (the product of which equals calcification), and superimposed on multi-decadal
30 oscillations. The main drivers of declines in calcification were recent marine heatwaves that
31 induced reductions in linear extension, rather than decreasing skeletal density. Our findings
32 contrast with some regional studies that show growth declines beginning only in recent decades,
33 which in some cases may be the most recent troughs of multi-decadal oscillations in calcification.

34 **Introduction**

35 Coral calcification—the formation of CaCO_3 skeletons from seawater constituents—underpins the
36 creation of geologic reef structures and their capacity to keep pace with rising sea levels. Existing
37 only within a narrow range of environmental conditions¹, reef-building corals are thought to be
38 highly sensitive to climate change, although current understanding of their calcification sensitivity
39 comes primarily from acute exposures in laboratory experiments². Ecologically, the complex
40 three-dimensional structures created by corals harbor immense biodiversity, while economically,
41 these coastal environments support tourism and fishing industries and protect shoreline
42 communities by dampening incoming waves³. Despite the immense human dependence on corals,
43 anthropogenic carbon emissions pose threats to the survival of corals and maintenance of reef
44 structures via increased sea surface temperature (SST) and CO_2 -driven ocean acidification.
45 Massive, reef-building (hermatypic) corals record changes in their ambient environment—and
46 their physiological responses to those changes—within their skeletons in two parameters⁴: upward
47 growth (“extension”; length per unit time) and skeletal density (mass per unit volume)⁵. Short term
48 laboratory experiments are commonly used to investigate the sensitivity of coral calcification to
49 temperature and acidification^{2,6}, but these experiments do not accurately simulate the pace of
50 climate change in the surface ocean over decades to centuries. Rather, the only way to reconstruct
51 climate impacts on reef-building coral colonies prior to the 21st century is by extracting
52 information from long-lived skeletal cores.

53

54 Coral growth reconstructions have been conducted on a regional basis at several locations
55 throughout the tropics, including across Australia^{7–9}, Southeast Asia¹⁰, remote Pacific islands and
56 atolls¹¹, the South China Sea^{12–14}, and the western Atlantic^{15–19}. However, these studies have

57 reported differing patterns over time: declining growth rates^{7,8,20}, stable growth rates over time⁹,
58 and even initial increases in calcification with rising SST^{12,21,22}. In addition, differences in
59 methodology have limited the reproducibility of some results²³, especially when compounded with
60 low replication (<10 cores in some cases^{20,24}) and inaccuracies in accounting for the complex three-
61 dimensional geometry of skeletal growth^{20,25}. These methodological issues and overall lack of
62 consensus regarding regional calcification trends limit our understanding of the long-term, chronic
63 impacts of climate change on coral growth across the tropics.

64

65 Here, we present the most comprehensive multi-regional reconstruction of coral growth to date,
66 with cores from across the Indo-Pacific. We use advanced, state-of-the-art software to accurately
67 identify and measure coral growth rates in three dimensions (3D) to capture even subtle changes
68 in skeletal extension and density since the start of the industrial era. Our novel core collection
69 includes 148 *Porites* spp. skeletal cores from ten locations spanning 40 degrees of latitude and
70 nearly 120 degrees of longitude, including the Coral Sea off the coast of Australia, the Great
71 Barrier Reef (GBR), the Red Sea, South China Sea, Taiwan, Hawai‘i, and the Solomon Islands
72 (Fig. 1; Supplemental Table S1). Three-dimensionally scanned computed tomography (CT)
73 images were used to identify annual density bands, and using CoralCT²⁶, we measured linear
74 extension in 3D to capture the complex geometry of coral growth (Supplemental Fig. S1). We
75 modeled growth parameters (linear extension, skeletal density, and calcification), separately, as
76 functions of several factors including time, mean annual SST, max annual SST, and atmospheric
77 CO₂ (Supplemental Table S3). Along with these environmental conditions, we also examined the
78 impacts of reef proximity to human population centers using the human “gravity” metric²⁷
79 (Supplemental Tables S2 and S4). Models incorporated various combinations of core- or location-

80 specific intercepts and slopes, and were constructed both with and without periodic components
81 and autocorrelation structures. The rationale behind testing if periodic components improved
82 model fit includes (i) many skeletal growth records contain decadal+ variability, (ii) linear trends
83 do not capture this variability and can be biased depending on the phase at the ends of time series,
84 and (iii) while we did test temperature as a model predictor, coral responses can be lagged and of
85 lower frequency than climate drivers, so periodic components enable a model fit to approximate
86 decadal+ variability in growth even if there is not a strong correlation to an environmental
87 parameter on a year-by-year basis.

88

89 **Results and Discussion**

90 Our analysis reveals that *Porites* coral calcification has, overall, significantly declined in the Indo-
91 Pacific over recent decades to centuries despite high interannual and decadal variability.
92 Calcification, the product of linear extension and skeletal density, is ultimately the most important
93 growth parameter in terms of the construction of CaCO₃ building blocks that form reef structures.
94 We first tested, but ultimately eliminated, models containing environmental conditions and the
95 “gravity” metric as they did not produce the best fits to the data (Supplemental Tables S3 and S4).
96 Rather, in a model with all cores, calcification was best described by a model with a periodic
97 component of 21 years, with core-specific temporal trends and y-intercepts reflecting inherent
98 growth variability between individual coral colonies (Supplemental Table S5). A model fit to all
99 cores had a significant negative calcification trend ($p < 0.001$), while in a model with core-specific
100 trends, 17.6% (26/148) of cores had a significant negative calcification trend compared to only
101 2.7% (4/148) with a significant positive trend (Table 1). Further analysis revealed four reef

102 locations where calcification declined significantly (Fig. 2): central Red Sea ($p < 0.001$), southern
103 Red Sea ($p < 0.001$), Lizard Island GBR ($p = 0.0056$), and Dongsha Atoll ($p < 0.001$). Cores from
104 all other locations showed a nonsignificant decline in calcification, with the exception of the
105 Solomon Islands and Yonge Reef (GBR), which experienced nonsignificant positive calcification
106 trends (Table 1). These regional differences could arise from human impacts or exposure to
107 different oceanographic or climatic regimes. However, the human “gravity” metric did not
108 improve performance (*i.e.*, growth trends were not modulated by local human impacts). The
109 greatest calcification declines were observed in the Red Sea, the surface of which has warmed
110 more rapidly than much of the rest of the ocean, especially in recent decades²⁸. Conversely, Lizard
111 Island and Yonge reef are located only 20 km apart yet showed opposing long-term calcification
112 trends.

113

114 The prominence of linear extension versus skeletal density as the main driver of the calcification
115 declines was also regionally variable. For example, the significant negative trend in calcification
116 at Dongsha Atoll in the South China Sea was due to the significant negative trend in skeletal
117 density. Conversely, calcification at Lizard Island in the GBR and both Red Sea locations was
118 regulated by the significant negative trends in linear extension despite the significant positive trend
119 in skeletal density ($p < 0.001$) in the southern Red Sea. This inverse relation between density and
120 extension was not unique to the southern Red Sea, as we found a weak but significant ($r = 0.18$, p
121 < 0.001) inverse relationship in extension and density anomalies across our entire dataset (Fig. 3a),
122 a finding which is broadly consistent with previous studies²⁹. The models fit to data pooled across
123 all locations showed multi-decadal oscillations in skeletal density and extension of nearly opposite

124 phase (Fig. 3b), a pattern that was also found in specific regions including Dongsha Atoll, Yonge
125 Reef, and the southern Red Sea (Supplemental Figs. S4-5).

126

127 We performed similar analyses on linear extension and skeletal density separately to diagnose
128 which aspect of calcification drove the observed long-term declines. Linear extension across our
129 full 204-year time series was best explained by a model with a periodic component of 21 years and
130 core-specific intercepts and slopes. More than twice as many individual cores showed a significant
131 decline in linear extension (21/148 or 14.2%) than a significant increase (8/148 or 5.4%). As with
132 calcification, we found that in a pooled model fit with a single slope, linear extension significantly
133 declined over time ($p < 0.001$). Superimposed on extension trends were multi-decadal oscillations
134 (Fig. 3b). To place the strength of these oscillations in context, the magnitude of extension decline
135 over the past century (0.068 cm yr^{-1}) was similar to the amplitude of the 21-year oscillation in the
136 model fit (0.065 cm yr^{-1}) (Fig. 3b). Significant regional declines were apparent in linear extension
137 datasets in both Red Sea locations and at Lizard Island, GBR across the entire time series (but with
138 a nonsignificant positive trend from 1950 onward) (Table S1).

139

140 Previous field, laboratory, and modeling studies have suggested that density is the growth
141 parameter most impacted by ocean acidification³⁰⁻³². However, our results show that skeletal
142 density remained more stable than extension during the industrial era (Fig. 3b; Supplemental Figs.
143 S2-3). For instance, 18.9% (28/148) and 10.8% (16/148) of the individual cores displayed
144 significant negative and positive trends in density, respectively, when fit by a model across the
145 entire time series with core-specific slopes and intercepts and a periodic component of 17 years
146 (Table 1). Examining density results by reef location revealed significant negative trends in three

147 of the ten locations: Coral Sea ($p < 0.001$), Dongsha Atoll ($p < 0.001$), and Xiaoliuqiu ($p = 0.0334$),
148 while a significant positive trend was found for the southern Red Sea ($p < 0.001$). Across the entire
149 dataset, though, the overall decline in skeletal density was $1.7 \times 10^{-4} \text{ g cm}^{-3} \text{ yr}^{-1}$, whereas the
150 decline in extension was $6.8 \times 10^{-4} \text{ cm yr}^{-2}$. Given that calcification is the product of density and
151 extension, the discrepancy in the magnitude of decline indicates that density contributed only 20%
152 to the declining calcification observed in our study (Fig. 3b).

153

154 Our cores from the Great Barrier Reef and Coral Sea also provided an opportunity to evaluate the
155 continuation of trends identified in previous studies. De'ath *et al.*⁷ reported declining calcification
156 over an approximately 15-year period (1990–2005) on the Great Barrier Reef based on 189 cores.
157 They reported an initial increase in calcification (1900 to 1930) followed by steady growth until
158 1990, and then a sharp decline in linear extension and calcification after 1990, suggesting that a
159 “tipping point” for coral growth had been reached. Our cores from the northern Great Barrier Reef
160 and offshore in the Coral Sea were collected in 2017, providing an additional 12 years of growth
161 to determine if the declining trend continued, albeit at a smaller number of sites than the original
162 study. To facilitate comparison of our study to that of De'ath *et al.*⁷, we reexamined our linear
163 extension dataset post-1990. The GBR and adjacent Coral Sea location were among the least
164 sensitive regions (*i.e.*, shallowest trends) across both the entire 204-year time series, as well as
165 from 1990 onward. A negative trend in linear extension ($p = 0.031$, which would be non-significant
166 when applying a Bonferroni correction) was identified at Lizard Island across the entire time series,
167 but a non-significant positive trend was found when examining this same location post-1990
168 (Table 1). A similar (but opposite) phenomenon was found in the Coral Sea: a nonsignificant
169 positive trend across the entire time series followed by a nonsignificant negative trend in the post-

170 1990 subset. Yonge Reef had non-significant positive trends during both time periods (full dataset
171 and post-1990). Similarly, only Lizard Island had a significant negative calcification trend over
172 the full 204-year time series ($p = 0.0056$), and no significant trend in calcification post-1990 (Table
173 1). The inconsistency in the trends from our study suggest that massive *Porites* corals on the Great
174 Barrier Reef, at least at our coring sites, may not have crossed a climate-driven tipping point in
175 calcification.

176

177 In some cases, differences between our findings and previous works may be due to multi-decadal
178 variability. Our best-fitting models for each growth parameter all included periodic components
179 ranging from 12 to 34 years. The substantial amplitude (Figs. 2-3) of these periodic components
180 in our models points to real cycles in growth amidst larger interannual variability. The origin of
181 these cycles could be related to El Niño Southern Oscillation (ENSO), the Pacific Decadal
182 Oscillation (PDO), the related Interdecadal Pacific Oscillation (IPO)³³, or low-frequency coral
183 responses to these or other climate cycles. These naturally-occurring fluctuations in the atmosphere
184 and ocean impact temperature, precipitation, cloud cover, and ocean circulation. Most pronounced
185 are anomalies in SST and changes in currents in the Pacific Ocean basin associated with the 2–7
186 year periodicity of ENSO. However, because corals in our study displayed longer period
187 oscillations than ENSO—and some authors have argued that the IPO and PDO largely represent
188 “reddened” or lower-frequency versions of ENSO^{33,34}—we compared our observed coral-growth
189 oscillations to the IPO index (Fig. 4; see Supplemental Fig. S6 for comparison to PDO). Despite
190 being of similar periodicity, our observed growth oscillations did not align well with the IPO
191 throughout much of the 20th century. However, we found some consistency between various reef
192 locations in recent years (Fig. 4). In particular, troughs in the merged-location model fits for both

193 the extension and calcification datasets generally correspond with two major El Niño events (and
194 thus positive IPO anomalies) in 1997/1998 and 2015/2016 (Fig. 4). Additionally, we found that
195 maximum annual SST improved model performance, but only in the post-1950 extension rate
196 dataset (Supplemental Table S2). The periodic components in our models may broadly capture
197 low-frequency or extended coral responses to acute thermal stress, even if the models predict
198 smoother sinusoidal patterns than the observed time series. In other words, the general
199 correspondence of troughs in growth rates with recent large El Niño events does not mean
200 calcification declines precede El Niño, but rather that strong El Niño events may be contributing—
201 potentially alongside other factors—to temporary growth declines that lead to troughs in the model
202 fits.

203

204 Despite the overall correspondence of recent El Niño events with temporary coral growth
205 reductions across the Indo-Pacific, regional variations exist both in terms of sensitivity and
206 correspondence with longer-term growth trends. For example, even though calcification troughs
207 aligned with recent El Niño events at both GBR locations, these cores lack consistent long-term
208 calcification declines. Conversely, El Niño-driven growth declines at both Red Sea locations
209 appear strong enough to contribute to long-term declines, consistent with a previous report²⁰. The
210 inclusion of multi-decadal variability in statistical models may also help explain differences among
211 studies in the apparent existence of growth declines over only recent decades. Had multi-decadal
212 variability not been accounted for, statistical models could indicate an apparent trend in short
213 reconstructions and, potentially, apparent declines at the end of the time series. For example, in
214 our dataset, mean annual temperature had a significant effect ($p < 0.001$) on extension rate in a
215 post-1950 analysis without a periodic component; however, when a periodic component was

216 added, temperature became a nonsignificant factor. Thus, these apparent declines in recent years
217 at some locations may not necessarily represent a trend or a “tipping point,” but rather one part of
218 a fluctuation that is likely to swing back in the other direction over decadal timescales. However,
219 if the magnitude of high-temperature anomalies continues to increase as El Niño events are
220 superimposed onto greenhouse gas-driven warming, more and more regions may shift into
221 declining coral calcification trends.

222

223 Our Indo-Pacific-wide collection of cores, spanning up to 204 years and including 6,336 total
224 annual growth measurements, paints a unique picture of the sensitivity of corals to the chronic
225 effects of climate change. Recently, a systematic review of laboratory experiments indicated future
226 pH and temperature changes would lead to declines in coral calcification², and while our data seem
227 to support this prediction globally, our results suggest these declines are region-specific and
228 strongly modulated by multi-decadal variability. The drivers of the regional variability in long-
229 term trends remains enigmatic, necessitating continued efforts in compiling growth rate time series
230 from more cores across the tropics to increase the sample size and variance across human-
231 disturbance and environmental gradients. We find that in at least a few cases, such as on the Great
232 Barrier Reef, corals appear more tolerant of ocean warming and acidification than expected from
233 laboratory experiments, potentially due to longer-term acclimation in the wild than can be
234 adequately simulated with acute stressors in the lab. Other coral taxa present within the reef
235 community may be less tolerant of environmental change than the massive-morphology and
236 “stress-tolerant” life history strategy³⁵ of long-lived *Porites* colonies, so it is possible that Indo-
237 Pacific reefs will experience a shift in their overall species composition favoring these massive
238 and relatively slow-growing *Porites* colonies. *Porites* may therefore become an increasingly

239 important contributor to reef formation. Yet, our findings show that even the stress-tolerant
240 strategy of *Porites* is reaching its limits across the Indo-Pacific during recent El Niño events. As
241 global warming accelerates³⁶ and today's ENSO-driven heat extremes become commonplace,
242 *Porites* acclimation is unlikely to keep pace. Our results suggest that this will lead to Indo-Pacific-
243 wide declines in *Porites* calcification. Novel approaches to measuring coral growth rates over time
244 from repeated 3D photogrammetry will be essential for extending these findings to the broad array
245 of coral growth morphologies^{37,38}.

246

247

248 **Methods**

249 *1. Core collection*

250 *Porites* coral cores were collected from June 2013 through July 2022 via pneumatic drills
251 between 0.5 to 20-meter depths from the reef flat to the fore reef environments. Cores were then
252 CT scanned with either a Siemens Volume Zoom Spiral CT scanner at Woods Hole
253 Oceanographic Institution²⁵, a Skyscan 1176 Bruker-microCT scanner³⁹ at Harry Perkins
254 Institute of Medical Research, General Electric BrightSpeed CT scanners⁴⁰ at King Abdullah
255 University of Science and Technology (KAUST) and Adventist Health Castle in Kailua,
256 Hawai'i, or the Philips Ingenuity CT scanner at Taiwan Instrument Research Institute depending
257 on collection site location. In all cases, density was calibrated against coral skeleton cylinders of
258 known mass/volume following DeCarlo *et al.*²⁵. While the various CT scanners generate
259 different resolution images, there is no effect on measured growth parameters because extension
260 measurements are based on distance, which is calibrated for each scanner, and density is based

261 on our external calibration.

262

263 *2. Band Identification*

264 Annual extension was measured from successive pairs of high- and low-density bands (Fig. S1)

265 using CoralCT, a purpose-built program designed to analyze CT scans of coral skeletal cores²⁶.

266 The three-dimensionally scanned images of the coral skeletons were displayed in two dimensions

267 as slabs cut digitally along the vertical growth axis to visualize the annual banding patterns. Within

268 each slab, annual density bands were identified at multiple locations across the width and down

269 the length of the slab. CoralCT then traces simulated corallites (the skeletal tubes constructed by

270 each coral polyp) perpendicular to the identified growth bands in three dimensions to measure the

271 annual extension, or upward growth of the coral, as well as the annual density of the bands²⁶.

272

273 *3. Cross-dating and quality control*

274 Following growth band measurements of all coral cores, the Dendrochronology Program Library

275 in R (dplR) package was used to cross-date the cores in order to evaluate correlations among the

276 growth rate time series. Developed for dendrochronology, the dplR package assesses variability in

277 ring-width, or linear extension in our case, then quantifies any common signals in growth rate

278 variations⁴¹. Cores that lack this signal may indicate an error in the way the growth bands were

279 identified, and these cores were reassessed with particular focus on any “marker years” that are

280 consistently high- or low-growth years among correlated cores. Cross-dating was mainly used to

281 reduce the uncertainty in defining the first calendar year of each core because density bands do not

282 necessarily represent January-December and depending on the collection month, there can be

283 observer interpretation of which calendar year should be assigned to the top-most band²⁶. An

284 adjustment of one calendar year to the first band was made if it met the following criteria: (i) the
285 change was plausible based on the appearance of the top of the core and the collection month, (ii)
286 the assigned year was not later than the collection year, and (iii) the interseries correlation was
287 improved. The interseries correlation is the correlation between an individual core's detrended
288 times series and the "master chronology", which is the mean of the detrended time series from all
289 cores being considered (*i.e.*, per reef location). We used pre-whitening in the dplR toolbox,
290 meaning that the interseries correlation represents year-to-year variability across time series, but
291 low-frequency (multiple-year periodicity) is removed while calculating interseries correlations.
292 Therefore, interseries correlations indicate the high-frequency (year-to-year) correlation across
293 growth time series, but do not capture low-frequency (multi-annual) variability common among
294 cores. In other words, interseries correlations are a tool to help ensure time series alignment, but
295 are not a representation of the total common signal in a set of cores. Supplemental Table S2 shows
296 the final interseries correlations for all reef locations.

297
298 As part of this process, we also excluded cores for which we were not entirely confident in the
299 banding pattern. Initially, we attempted to interpret and measure growth parameters on all cores.
300 During the crossdating step, which involves revisiting the image analysis of each core, we made a
301 final assessment of whether there was reasonable confidence in the banding pattern for each core,
302 and excluded cores for which there were multiple instances of ambiguity in whether density
303 variations represented annual bands (*i.e.*, overcounting due to sub-annual density variations or
304 undercounting due to weak banding patterns). The interseries correlations from crossdating
305 contributed to identifying cores to focus on during this step, in that a low correlation to the master
306 chronology suggests possible miscounting of bands. However, we did not exclude cores merely

307 for a low correlation to the master chronology, but rather based on confidence in the ability to
308 measure growth parameters accurately. A total of 19 cores were excluded based on unclear
309 banding. Final numbers of replicates per reef location were as follows: Coral Sea ($n = 28$), Dongsha
310 Atoll, South China Sea ($n = 15$), Green Island, Taiwan ($n = 8$), Lizard Island, Great Barrier Reef
311 ($n = 15$), Oahu, Hawai‘i ($n = 10$), central Red Sea ($n = 17$), southern Red Sea ($n = 40$), Solomon
312 Islands ($n = 3$), Xiaoliuqiu, Taiwan ($n = 2$); Yonge Reef, Great Barrier Reef ($n = 10$).

313

314 *4. Statistical analyses*

315 After cross-dating, 148 *Porites* cores were deemed suitable for statistical analysis. We initially
316 conducted three versions of the statistical analyses: (1) linear extension across the entire time
317 series, (2) linear extension from 1950 onward, and (3) density across the entire time series. These
318 analyses were conducted in RStudio version 2023.09.1+494 following methods modified from
319 Castillo *et al.*¹⁶. A series of linear models were created to test for temporal trends of *Porites* coral
320 growth parameters, as well as relationships between growth parameters and several environmental
321 factors. Specifically, linear extension and density were modeled as functions of SST (annual mean
322 and max) and atmospheric carbon dioxide (CO₂) (Supplemental Tables S3-4). Temperature data
323 were obtained from the HadISST dataset. CO₂ data were obtained from the Scripps CO₂ program,
324 which combines direct measurements on Mauna Loa (from 1958 onwards) and ice-core data from
325 1815 to 1957. We recognize that coral reefs can have distinct pH environments from the
326 surrounding open ocean and that they do not necessarily track atmospheric CO₂, especially on sub-
327 annual timescales. Nevertheless, there are not sufficient *in situ* data from all reef locations,
328 especially going back multiple decades, and atmospheric CO₂ should impose similar acidification
329 trends across these reefs even if they have different mean pH and substantial diurnal to seasonality

330 variability superimposed on the long-term trend. We did not explicitly test the effect of depth for
331 two reasons. First, only nine cores, all from the Coral Sea, were collected deeper than 10 meters,
332 leaving a narrow test bed of depths to evaluate. Second, while depth is well known to affect mean
333 growth rates, there is little evidence that it affects variability across our sampling range. Our
334 models included core-specific y-intercepts, so differences in mean growth rates do not contribute
335 to any of the conclusions regarding growth rate trends. Additionally, initial models that did include
336 depth as a factor modulating growth rate trends did not produce significant effects of depth, so
337 subsequent models excluded depth as a factor.

338

339 Location-specific annual average and maximum SST time series were used in various models for
340 each reef location, while a single annual CO₂ time series was assigned across all locations. To test
341 the effects of direct human impact on coral growth, some models included a site-specific “gravity”
342 value, which is a metric that relates population size of nearby communities inversely with travel
343 time to coral reefs²⁷. Acting as a continuous variable, gravity values correlate positively with
344 human impact (Supplemental Table S2). We used Akaike information criterion (AIC) for model
345 selection because it quantifies the model fit to the data while penalizing for additional explanatory
346 variables that by definition can only improve the model correlation to the data. Thus, AIC helps to
347 prevent overfitting via the inclusion of variables with near-negligible model improvement. The
348 absolute value of AIC is generally not meaningful, but rather differences in AIC among models
349 applied to the same dataset indicate the best model as the lowest AIC value. However, differences
350 in AIC of less than 2 are generally considered not to be a meaningful difference in model
351 performance. Each growth parameter (extension, density, calcification) was modeled separately.
352 Following Castillo *et al.*¹⁶, we considered six approaches to modeling cores and reef locations: (1)

353 all data share a common slope and intercept, (2) slopes and intercepts vary by reef location, (3)
354 intercepts vary by individual core while slopes vary by reef location, (4) both slopes and intercepts
355 vary by individual core, (5) a singular slope applies to the entire dataset but intercepts vary by
356 individual core, and (6) no slope ($m = 0$) but intercepts vary by individual core.

357

358 The first set of linear models examined coral growth as a function of time and several
359 environmental conditions (mean annual SST, maximum annual SST, detrended SST, and
360 atmospheric CO₂) with location-specific slopes and core-specific intercepts. In other words, all
361 cores from one location would have the same slope for each growth parameter, but each core would
362 have its own intercept (to account for differences in mean growth rate). Here, slope means the
363 sensitivity to an explanatory variable, whether it be time or an environmental factor that varies
364 with time. Model parameters and AIC values can be found in Supplemental Table S3. Time and
365 atmospheric CO₂ were highly correlated ($r > 0.9$), which precluded us from definitively separating
366 time and CO₂ in our analysis. We continued with time as the explanatory variable, noting that CO₂-
367 driven ocean acidification is a potential mechanism for the temporal trends observed here. Both
368 extension and density across the entire 204-year time series were best fit by time, but this was not
369 the case for the post-1950 subset of the extension data, in which annual mean or maximum SST
370 improved model performance (relative to a model with only a linear trend over time).

371

372 These same models were then repeated, but including gravity as a modulating factor of slopes
373 (Supplemental Table S4). In other words, reef locations with greater gravity values could have
374 steeper or shallower slopes than locations with lesser gravity values. Overall, the inclusion of the
375 gravity factor did not improve AIC values and the models achieved nearly the same rankings as in

376 the set of models without gravity: that is, extension and density across the full dataset were best fit
377 to just time, and the inclusion of annual temperatures improved the post-1950 extension model fit.

378

379 Because time appeared to be the overarching explanatory variable amongst the growth parameters,
380 we created a new set of linear models exploring the impacts of time on coral growth (Supplemental
381 Table S5), with the six possible ways of treating slopes and intercepts by location and core. In
382 addition to the three datasets we used previously (extension across the entire time series, density
383 across the entire time series, and extension post-1950), we added an additional subset of the
384 extension data (1990 onward) to assess recent trends in linear extension and to compare with the
385 results of De'ath *et al.* (2009). Following this, we removed the models with (1) a common intercept
386 and slope, and (2) with slopes and intercepts varying by reef location, as neither were found to best
387 fit the datasets. We continued with the remaining four models.

388

389 Next, we tested whether the addition of autocorrelation structures and periodic components
390 improved fits in generalized least squares (GLS) models (Supplementary Table S6).
391 Autocorrelation means that each datapoint is not independent of its neighbors, and if so, the
392 effective number of degrees of freedom would be reduced. Autocorrelation was apparent on short
393 (1-year) and longer (17–22-year) timescales based on partial autocorrelation plots. To address the
394 multidecadal cyclicity, we added a periodic component to each model through an iterative process
395 of running the model with sines and cosines of various periods (*i.e.*, 10 years, 11 years, etc.), and
396 then we chose the period (T) with the lowest AIC. Additionally, we fit each the models with an
397 Autoregressive Moving Average (ARMA) component to address any remaining shorter-term (*i.e.*,
398 year-to-year) autocorrelation in the datasets. The addition of both the periodic component and first-

399 order autocorrelation structure improved the model fit. For these analyses, we also created models
400 analyzing calcification (the product of extension and density). No periodic component was
401 included when modeling the extension dataset from 1990 onward due to the short timeframe, so it
402 is not included in Supplemental Table S6.

403

404 Table 1 summarizes the significance of trends across a range of models. The best models (lowest
405 AIC) for both extension and density included core-specific intercepts and core-specific trends
406 (Supplemental Table S6). For these models, we report the number of cores that had significant
407 (based on $p < 0.05$) positive and negative trends (Table 1). While models that included location-
408 specific trends had higher AICs, the results of significant trends per location are easier to interpret
409 than core-specific trends, and thus are also reported in Table 1. Finally, single trends fit to all cores
410 provides a broadbrush view of whether each growth parameter overall increased or decreased over
411 time (Table 1), even though the model fits were not as good as trends specific to cores or location
412 (Supplemental Table S6). We also tested an additional subset of our linear extension dataset (1990-
413 2017 in the Great Barrier Reef region) for comparison to De'ath *et al.*⁷ (Table 1).

414

415

416 **References:**

417 1. Frieler, K. *et al.* Limiting global warming to 2 C is unlikely to save most coral reefs. *Nature*
418 *Climate Change* **3**, 165–170 (2012).

419 2. Cornwall, C. E. *et al.* Global declines in coral reef calcium carbonate production under ocean
420 acidification and warming. *Proceedings of the National Academy of Sciences* **118**, (2021).

421 3. Costanza, R. *et al.* Changes in the global value of ecosystem services. *Global Environmental*
422 *Change* **26**, 152–158 (2014).

423 4. Dodge, R. E. & Vaisnys, J. R. Hermatypic coral growth banding as environmental recorder.
424 *Nature* **258**, 706–708 (1975).

425 5. Barnes, D. J. & Lough, J. M. On the nature and causes of density banding in massive coral
426 skeletons. *J. Exp. Mar. Biol. Ecol.* **167**, 91–108 (1993).

427 6. Chan, N. C. S. & Connolly, S. R. Sensitivity of coral calcification to ocean acidification: a
428 meta-analysis. *Global Change Biology* **19**, 282–290 (2013).

429 7. De'ath, G., Lough, J. M. & Fabricius, K. E. Declining coral calcification on the Great Barrier
430 Reef. *Science* **323**, 116 (2009).

431 8. Cooper, T. F., De'ath, G., Fabricius, K. E. & Lough, J. M. Declining coral calcification in
432 massive Porites in two nearshore regions of the northern Great Barrier Reef. *Global Change*
433 *Biology* **14**, 529–538 (2008).

434 9. Cooper, T. F., O'Leary, R. A. & Lough, J. M. Growth of Western Australian corals in the
435 anthropocene. *Science (New York, N.Y.)* **335**, 593–6 (2012).

436 10. Tanzil, J. T. I. *et al.* Regional decline in growth rates of massive Porites corals in Southeast
437 Asia. *Global Change Biology* **19**, 3011–3023 (2013).

438 11. Carilli, J. E. *et al.* Porites coral response to an oceanographic and human impact gradient in
439 the Line Islands. *Limnology and Oceanography* **62**, 2850–2863 (2017).

440 12. Nie, B. *et al.* Relationship between coral growth rate and sea surface temperature in the
441 northern part of South China Sea during the past 100 a. *Science in China Series D: Earth*
442 *Sciences* **40**, 173–182 (1997).

443 13. Yan, H. *et al.* Regional coral growth responses to seawater warming in the South China Sea.

444 *Science of The Total Environment* **670**, 595–605 (2019).

445 14. Su, R., Lough, J. & Sun, D. Variations in massive Porites growth rates at Hainan Island,

446 northern South China Sea. *Marine Ecology Progress Series* **546**, 47–60 (2016).

447 15. Baumann, J. H. *et al.* Nearshore coral growth declining on the Mesoamerican Barrier Reef

448 System. *Global Change Biology* **25**, 3932–3945 (2019).

449 16. Castillo, K. D., Ries, J. B., Weiss, J. M. & Lima, F. P. Decline of forereef corals in response

450 to recent warming linked to history of thermal exposure. *Nature Climate Change* **2**, 756–760

451 (2012).

452 17. Saenger, C., Cohen, A. L., Oppo, D. W., Halley, R. B. & Carilli, J. E. Surface-temperature

453 trends and variability in the low-latitude North Atlantic since 1552. *Nature Geoscience* **2**,

454 492–495 (2009).

455 18. Carilli, J. E., Norris, R. D., Black, B., Walsh, S. M. & McField, M. Century-scale records of

456 coral growth rates indicate that local stressors reduce coral thermal tolerance threshold. *Glob.*

457 *Change Biol.* **16**, 1247–1257 (2009).

458 19. Hudson, J. H. Growth rates in Montastraea annularis: a record of environmental change in

459 Key Largo Coral Reef Marine Sanctuary, Florida. *Bulletin of Marine Science* **31**, 444–459

460 (1981).

461 20. Cantin, N. E., Cohen, A. L., Karnauskas, K. B., Tarrant, A. M. & McCorkle, D. C. Ocean

462 warming slows coral growth in the central Red Sea. *Science* **329**, 322 (2010).

463 21. Bessat, F. & Buiques, D. Two centuries of variation in coral growth in a massive Porites

464 colony from Moorea (French Polynesia): a response of ocean-atmosphere variability from

465 south central Pacific. *Palaeogeography, Palaeoclimatology, Palaeoecology* **175**, 381–392
466 (2001).

467 22. Lough, J. M. & Barnes, D. Environmental controls on growth of the massive coral Porites.

468 *Journal of Experimental Marine Biology and Ecology* **245**, 225–243 (2000).

469 23. D’Olivo, J. P., McCulloch, M. T. & Judd, K. Long-term records of coral calcification across
470 the central Great Barrier Reef: assessing the impacts of river runoff and climate change.

471 *Coral Reefs* **32**, 999–1012 (2013).

472 24. Lizcano-Sandoval, L. D., Marulanda-Gómez, Á., López-Victoria, M. & Rodriguez-Ramirez,
473 A. Climate change and Atlantic multidecadal oscillation as drivers of recent declines in coral
474 growth rates in the Southwestern Caribbean. *Frontiers in Marine Science* **6**, 38 (2019).

475 25. DeCarlo, T. M. *et al.* Coral macrobioerosion is accelerated by ocean acidification and
476 nutrients. *Geology* **43**, 7–10 (2015).

477 26. DeCarlo, T. M., Whelehan, A., Hedger, B., Perry, D. & Pompei, M. CoralCT: a platform for
478 standardized analyses of growth parameters in coral skeletal cores. (2024).

479 27. Cinner, J. E. *et al.* Gravity of human impacts mediates coral reef conservation gains.

480 *Proceedings of the National Academy of Sciences of the United States of America* **115**,
481 E6116–E6125 (2018).

482 28. Chaidez, V., Dreano, D., Agusti, S., Duarte, C. M. & Hoteit, I. Decadal trends in Red Sea
483 maximum surface temperature. *Sci Rep* **7**, 8144 (2017).

484 29. Lough, J. M. & Cooper, T. F. New insights from coral growth band studies in an era of rapid
485 environmental change. *Earth-Science Reviews* **108**, 170–184 (2011).

486 30. Guo, W. *et al.* Ocean Acidification Has Impacted Coral Growth on the Great Barrier Reef.

487 *Geophysical Research Letters* **47**, e2019GL086761 (2020).

488 31. Mollica, N. R. *et al.* Ocean acidification affects coral growth by reducing skeletal density.

489 *Proceedings of the National Academy of Sciences of the United States of America* 201712806

490 (2018) doi:10.1073/pnas.1712806115.

491 32. Tambutté, E. *et al.* Morphological plasticity of the coral skeleton under CO₂-driven seawater

492 acidification. *Nature Communications* **6**, 7368 (2015).

493 33. Henley, B. J. *et al.* A Tripole Index for the Interdecadal Pacific Oscillation. *Clim Dyn* **45**,

494 3077–3090 (2015).

495 34. Rudnick, D. L. & Davis, R. E. Red noise and regime shifts. *Deep Sea Research Part I: Oceanographic Research Papers* **50**, 691–699 (2003).

496

497 35. Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating

498 life-history strategies of reef corals from species traits. *Ecology Letters* **15**, 1378–1386

499 (2012).

500 36. Hansen, J. E. *et al.* Global warming in the pipeline. *Oxford Open Climate Change* **3**,

501 kgad008 (2023).

502 37. Ferrari, R. *et al.* 3D photogrammetry quantifies growth and external erosion of individual

503 coral colonies and skeletons. *Sci Rep* **7**, 16737 (2017).

504 38. Lange, I. D. & Perry, C. T. A quick, easy and non-invasive method to quantify coral growth

505 rates using photogrammetry and 3D model comparisons. *Methods in Ecology and Evolution*

506 **11**, 714–726 (2020).

507 39. DeCarlo, T. M. *et al.* Acclimatization of massive reef-building corals to consecutive

508 heatwaves. *Proceedings of the Royal Society B: Biological Sciences* **286**, 20190235 (2019).

509 40. DeCarlo, T. M. *et al.* Nutrient-supplying ocean currents modulate coral bleaching

510 susceptibility. *Science Advances* **6**, eabc5493 (2020).

511 41. Bunn, A. G. Statistical and visual crossdating in R using the dplR library. *Dendrochronologia*
512 **28**, 251–258 (2010).

513

514

515 **Acknowledgements.** This study was funded in part by National Science Foundation award NSF-
516 OCE-2236852. Dr. Pat Lohmann, Dr. Laura Gajdzik, Dr. Lyndsey Tanabe, Sanna Persson, and
517 Jessica Hankins assisted with coral coring fieldwork. We also thank Kristen Polenz at Adventist
518 Health Castle for helping CT scan core samples from Hawai‘i. Coral skeletal cores were
519 collected in the Coral Sea under permit AU-COM-2017-386 from Parks Australia, on the Great
520 Barrier Reef under permit G39589.1 from the Great Barrier Reef Marine Park Authority, in
521 Hawai‘i under Special Activity Permit 2023-07 from the state Division of Aquatic Resources,
522 and in the Red Sea under permissions from the King Abdullah University of Science and
523 Technology and the Saudi Arabian Ministry of Environment, Water and Agriculture.

524

525 **Author contributions.** Thomas DeCarlo designed the study, conducted fieldwork, contributed to
526 data collection, and co-wrote the manuscript. Jordyn Cotton conducted fieldwork, contributed to
527 data collection, and co-wrote the manuscript. Allyndaire Whelehan, Madison Gramse, Hannah
528 Whitaker, Tori Falk, Ellen Groenvall, and Kathleen Matthews contributed to data collection and
529 manuscript editing. Michael Berumen, Hugo Harrison, Malcolm McCulloch, and Hannah
530 Whitaker contributed to fieldwork, data interpretation, and manuscript editing.

531

532 **Competing Interests.** The authors declare no competing interests.

533

534 **Data Availability.** Data are available at DeCarlo, T. (2024). Data for "Calcification trends in
535 long-lived corals during the industrial era" [Data set]. Zenodo.

536 <https://doi.org/10.5281/zenodo.13947913>

537

538

539 **Table 1.** *Temporal trends from final models in all five time periods / datasets examined. The first*
540 *set of models show location-specific slopes, with + and – indicating the sign of the growth*
541 *parameter trend and the significance of the trend (p < 0.05 is bolded). Next are core-specific*
542 *models, which are summarized as the number of cores (out of 148) with significant positive or*
543 *negative growth parameter trends. Finally, the last row shows the results of a single model fit to*
544 *all cores and the sign (+ or -) of the growth parameter trend and its significance are shown.*

545

546 **Figure 1. Map of coral core collection sites.** Panel **a** shows the global distribution of sites and all
547 other panels show regions. Colored symbols indicate core collection sites. Land and submerged
548 shallow reefs are in black and n values represent the number of cross-dated cores in the final
549 dataset.

550

551 **Figure 2. Coral calcification rates (g cm⁻² yr⁻¹) over time by reef location.** Each panel represents
552 a different reef location and is colored by region as defined in Figure 1. Thin black lines show
553 individual core time series. Colored curves show model fits with 95% confidence intervals of the
554 curves shown by shading.

555

556 **Figure 3. Relationship between linear extension and skeletal density anomalies. a,** skeletal
557 *density anomalies and linear extension anomalies for all cores. The black line shows a reduced*
558 *major axis regression fit between these parameters and the gray shading shows 95% confidence*
559 *interval of the fit. b, model fits with both monotonic trends and 21-yr periodic components*
560 *applied to the full datasets (all 148 cores) for linear extension (grey) and density (black).*

561

562

563 **Figure 4. Annual extension rate model fits plotted against the Interdecadal Pacific Oscillation**
564 **(IPO) index.** Model fits for each of the ten reef locations are plotted in colors corresponding to
565 *Figure 1, with the global model fit plotted in black. The IPO index is plotted as red and blue*
566 *shading, which represent positive and negative index values, respectively. Both the annual*
567 *(unfiltered) and 13-yr low-pass filtered versions of the IPO³³ are displayed. Two major El Niño*
568 *events are highlighted (1997 and 2015) and approximately correspond with the two most recent*
569 *troughs in the global extension and calcification model fits.*

570