

1 **Asynchronous effects of heat stress on growth rates of massive corals and damselfish in the**
2 **Red Sea**

3

4

5 Fiza Zahid^{1*}, Laura Gajdzik^{2,3}, Keith E. Korsmeyer¹, Jordyn D. Cotton¹, Daren J. Coker³,
6 Michael L. Berumen³, Thomas M. DeCarlo^{1,4}

7

8 ¹ College of Natural and Computational Sciences, Hawai‘i Pacific University, Honolulu, HI,
9 USA

10 ² Cooperative Institute for Marine and Atmospheric Research, University of Hawai‘i, Honolulu,
11 HI, USA

12 ³ Red Sea Research Center, Division of Biological and Environmental Science and Engineering,
13 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

14 ⁴Tulane University, Department of Earth and Environmental Sciences, New Orleans, LA, USA

15

16 *Present address: Chesapeake Bay Foundation, Annapolis, MD, 21403

17

18

19

20 *In prep for submission to PLOS One*

21

22 **Abstract**

23

24 Climate change is imposing multiple stressors on marine life, leading to a restructuring of

25 ecological communities as species exhibit differential sensitivities to these stressors. With the

26 ocean warming and wind patterns shifting, processes that drive thermal variations in coastal

27 regions, such as marine heatwaves and upwelling events, can change in frequency, timing,

28 duration, and severity. These changes in environmental parameters can physiologically impact

29 organisms residing in these habitats. Here, we investigate the synchrony of coral and reef fish

30 responses to environmental disturbance in the Red Sea, including an unprecedented combination

31 of heat stress and upwelling that led to mass coral bleaching in 2015. We developed cross-dated

32 growth chronologies from otoliths of 156 individuals of two planktivorous damselfish species,

33 *Pomacentrus sulfureus* and *Amblyglyphidodon flavilatus*, and from skeletal cores of 48 *Porites*

34 spp. coral colonies. During and immediately after the 2015 upwelling and bleaching event,

35 damselfishes exhibited a positive growth anomaly but corals displayed reduced growth. Yet,

36 after 2015-2016, these patterns were reversed with damselfishes showing a decline in growth and

37 corals rebounding to pre-disturbance growth rates. Our results reveal an asynchronous response

38 between corals and reef fish, with corals succumbing to the direct effects of heat stress, and then

39 quickly recovering when the heat stress subsided—at least, for those corals that survived the

40 bleaching event. Conversely, damselfish growth temporarily benefited from the events of 2015,

41 potentially due to the increased metabolic demand from increased temperature and increased

42 food supply from the upwelling event, before declining over four years, possibly related to

43 indirect effects associated with habitat degradation following coral mortality. Overall, our study

44 highlights the increasingly complex, often asynchronous, ecological ramifications of climate

45 extremes on the diverse species assemblages of coral reefs.

46

47 1. Introduction

48

49 Anthropogenic climate change is becoming an increasingly important stressor for many
50 ecosystems, including coral reefs(1–3) . The excess anthropogenic carbon in the atmosphere,
51 along with additional greenhouse gases, causes global warming, which in turn, increases the
52 frequency of marine heatwaves, the primary driver of coral “bleaching” events(4,5). During
53 bleaching, corals become stressed and expel their pigmented symbiotic algae (Symbiodiniceae),
54 turning white in color(6). After the stressor subsides, corals that are still alive may recover from
55 bleaching by acquiring new, or re-establishing existing, symbiotic algae populations(7).
56 However, prolonged bleaching often leads to mass coral mortality, which can negatively impact
57 coral reef structural habitat and diversity (8–10).

58 Coral bleaching and subsequent mortality, resulting from a lack of symbiotic algae
59 population, impacts the environment not only by causing phase shifts toward algae-dominated
60 habitat and reduced structural complexity (5,11), but also by changing the composition of
61 assemblages that rely on live coral habitats. The general trend is that densities of live coral-
62 dwelling and coral-feeding fish species, including but not limited to damselfishes and
63 butterflyfishes, tend to decrease after severe coral loss, while other groups (especially herbivores
64 such as parrotfishes and surgeonfishes) tend to respond positively by increasing abundance and
65 biomass (10,12–14). For example, densities of adult lemon damselfish (*Pomacentrus*
66 *moluccensis*) were shown to decline in bleached-coral sites in the southern Great Barrier Reef
67 (15), potentially because of a loss in camouflage in bleached corals and refuge spaces within the
68 colonies that makes *P. moluccensis* more vulnerable to predation(16–19). Additionally,
69 metabolic activity in ectotherms has been shown to increase with warmer temperatures, such as
70 during bleaching events, which might suggest a need for a larger food supply or food of higher

71 quality (20–22). For example, the cholesterol metabolism and uptake of oxygen in *P.*
72 *moluccensis* are activated during heat stress (23,24). Similarly, parrotfishes increase their grazing
73 activity on algae under anomalously high temperatures, in turn boosting their growth rate
74 (12,25). Thus, reef fish taxa respond differently to disturbance stemming from variations in their
75 metabolism, habitat requirements and behavior (e.g., live obligate coral dwellers, territorial), and
76 diet preferences (e.g., omnivores, corallivores, herbivores) (10,13).

77 Our study focuses on the synchrony of growth-related impacts between massive corals
78 and damselfish during and after an upwelling event and a widespread coral bleaching event that
79 occurred within months of each other in the Farasan Banks region of the Red Sea (Fig. 1). While
80 damselfish do not often reside on massive *Porites* corals, the inclusion of the widespread *Porites*
81 spp. colonies in this study allows observations of how different taxa in the ecosystem are
82 impacted after environmental disturbances. The first evidence of coral bleaching in the Farasan
83 Banks during 2015 was from a single site in the northern Farasan Banks that showed nearly the
84 entire coral community was bleached during October 2015 (26), and in some areas the bleaching
85 persisted into the beginning of 2016 (27). Additionally, a broad comparison of benthic surveys
86 conducted before and after 2015, but not during bleaching, revealed that coral cover decreased
87 from $25 \pm 17\%$ to $14 \pm 12\%$ (mean \pm standard deviation) at the Farasan Banks, between the years
88 2014 and 2019 (28). Finally, coral skeletal cores collected from long-lived *Porites* spp. colonies
89 in 2019 presented clear evidence of widespread bleaching in the Farasan Banks during 2015, as
90 indicated by anomalous high-density “stress bands” that form during bleaching (29). These cores
91 also demonstrated that the coral bleaching response was disproportionately high relative to the
92 coral sensitivity to prior heatwaves, likely due to the combined stress in 2015 of high nutrients
93 from upwelling followed by rapid heating (29). Together, the skeletal-core and benthic-survey

94 data indicate that the 2015 bleaching event in the Farasan Banks (i) was unprecedented in
95 severity over recent decades and (ii) caused widespread mortality of corals. The 2015 bleaching
96 event not only impacted the Farasan Banks, but also other reefs across the tropics. The extremely
97 high temperatures during 2015 to 2016 triggered catastrophic bleaching events around the globe,
98 including the Great Barrier Reef where the reefs underwent a higher bleaching response
99 compared to earlier bleaching events (5). The coral loss that occurred in the Farasan Banks during
100 2015 and the 55% increase in algal cover in the following years (28) appears to be of sufficient
101 extent and severity to have potentially impacted reef-associated fish (10).

102 Despite the documented coral bleaching effects on reef fish at an assemblage level (e.g.,
103 declines in abundance and diversity; (10,15,30)), the effects on an individual level—especially
104 related to growth rate—remain largely unexplored. Additionally, while many studies have
105 separately investigated either coral or reef-fish growth responses to disturbance events (e.g.,
106 (12,31)), no study has addressed the synchrony between the two *in situ*. Here, we examine
107 growth rates recorded in the banding patterns of ear bones, or otoliths, and in coral cores, to
108 measure the effect of the 2015 bleaching event in the Red Sea on massive *Porites* spp. corals and
109 two damselfish species: *Pomacentrus sulfureus* and *Amblyglyphidodon flavilatus* (family
110 Pomacentridae). These two fish species were chosen due to their common presence throughout
111 the Farasan Banks and the representation of two different feeding guilds and habitat
112 specializations that may influence their response to the bleaching and coral mortality. *P.*
113 *sulfureus* is either considered to be a benthic feeder (strictly grazing on algae) or an intermediate
114 feeder (feeding on both animal and algae throughout the benthic-pelagic compartment) (32–34).
115 Although *P. sulfureus* has been observed to occupy large territory on coral rubble at an adult
116 stage (32,33), this species is also commonly referred to as an obligate live-coral dweller (>80%

117 reliance on corals; (35)), probably because juveniles favor branching coral habitats. In contrast,
118 *A. flavilatus* primarily feeds on zooplankton in the water column and has no documented obligate
119 dependence on corals (32,33,35). This characteristic potentially makes the species less likely to
120 be vulnerable to variations in live coral cover and habitat degradation compared to *P. sulfureus*.
121 In addition to reef-associated fish species, our study focused on massive *Porites* spp. colonies
122 because they are long-lived and have clear annual density bands, which captures valuable climate
123 information (29), and they record bleaching histories in their skeletons via anomalous annual
124 density bands that are generally representative of coral community-level bleaching responses
125 (36,37). We compare growth trends of the *Porites* spp. coral and the two fish species to address
126 the synchrony of responses to—and recovery from—environmental disturbances, such as
127 upwelling, heat stress, and coral mortality, to demonstrate how climate change impacts different
128 aspects of a coral reef ecosystem. While growth rates of the different taxa have been observed in
129 separate studies, they have not been observed simultaneously in one study in which responses to
130 the same environmental drivers can be compared. Fish otoliths and coral cores offer valuable
131 information on biological responses to environmental variability, and our study offers a rare
132 opportunity to quantify interannual, multi-taxa impacts of a marine heatwave in a coral reef
133 ecosystem.

134

135 **2. Methods**

136

137

138 2.1 Environmental setting and species sampled

139

140 The Red Sea, a semi-enclosed basin, is home to diverse and unique coral reefs that host
141 many endemic species (38,39). These reefs exist in a unique range of environmental settings
142 established by the physical processes that occur in the region(38). Due to the distance from the

143 Gulf of Aden, nutrient concentrations and temperature increase from the northern to southern
144 Red Sea while salinity decreases(40,41). There is little terrestrial runoff, so the dominant source
145 of nutrients entering this system comes from the shallow and narrow entrance of the Gulf of
146 Aden (42). In the summer, due to monsoon wind reversals, a subsurface, high-nutrient water
147 mass called the Gulf of Aden Intermediate Water (GAIW) enters the southern Red Sea (42). The
148 summer monsoon winds blowing to the southeast also induce upwelling of GAIW along the
149 eastern shelf of the Red Sea due to Ekman transport directed offshore, including the extensive
150 coral reef area of the Farasan Banks, located in the central-southern Red Sea (42). Maximum
151 temperatures in the Farasan Banks occur after the monsoon winds weaken in late summer and
152 upwelling ceases (43). As a result, the degree of early-summer upwelling (June-July) occurs
153 independently of the late-summer (September or October) peaks in temperature (29,43).

154 The Farasan Banks are composed of hundreds of reefs ranging from inshore to offshore
155 environments, including different reef formations (e.g., fringing reefs around islands to atolls).
156 Sampling in this study was conducted across the shelf, from nearshore turbid reefs with adjacent
157 mangroves, to midshelf reefs, and shelf-edge atolls. Both damselfish and coral cores were
158 collected at the same sites, whenever possible. However, at some reef sites we did not find one or
159 both species of damselfish, and at some other sites we did not find living *Porites* colonies. In
160 total 2 sites contained only damselfishes, 12 sites contained only corals, and 13 sites contained
161 both taxa. Some of the same reefs sampled in the present study were previously monitored with
162 temperature loggers placed to record upwelling-associated cooling events by (43) and where
163 *Porites* spp. coral cores were taken for stress band analysis in 2019 (29), which included several
164 massive-morphology species (*P. lutea*, *P. lobata*, and *P. solida*). These coral cores from (29)
165 were used for analysis in our study. Approximately 60 cores were taken by (29) using an

166 underwater pneumatic drill with a 5 cm diameter diamond-impregnated bit (29). We collected
167 179 *P. sulfureus* and 130 *A. flavilatus* individuals from between 1 and 10 meters depth at 15
168 coral reef locations in the Farasan Banks region of the Saudi Arabian Red Sea between April and
169 May of 2019 (Fig. 1). Standard lengths of *P. sulfureus* ranged from 3.9 to 7.8 cm with an average
170 of 6.1 cm, and for *A. flavilatus* they ranged from 5.5 to 7.5 cm with an average of 6.6 cm. The
171 maximum published lengths for *P. sulfureus* were 11 cm and 10 cm for *A. flavilatus* (44). Otolith
172 analysis revealed an age range of 4-16 years, with a median age of 9, for *P. sulfureus* and a range
173 of 4-10 years, with a median age of 7, for *A. flavilatus*. Sampling for the corals and damselfishes
174 was carried out under approved protocols by both King Abdullah University of Science and
175 Technology's (KAUST) Biosafety and Ethics Committee and IACUC. Fish were rapidly killed
176 by cervical transection using a sharp knife which was inserted caudal to the skull to sever the
177 spinal cord and cervical vertebrae and was followed by pithing to ensure death. This method
178 complies with the American Veterinary Medical Association (AVMA) Guidelines for the
179 Euthanasia of Animals (45) and is considered humane and painless. Research was carried out
180 under the general auspices of KAUST's arrangements for marine research with the Saudi
181 Arabian Coast Guard and the Ministry of Environment, Water and Agriculture.

182

183 2.2 Otolith analysis

184 Otoliths (two for most samples) were extracted with a scalpel and stored in absolute
185 ethanol. Prior to processing, each otolith was rinsed for 10 seconds in a 10% bleach solution and
186 then washed with ethanol to remove any residual organic matter. To view the growth increments,
187 we followed procedures from (12), using a standard grinding technique. The otoliths were
188 attached to a glass slide with thermoplastic cement (Crystal Bond). We manually sanded the

189 otolith with 600 to 7000 grit paper with water to produce a transverse thin section of one otolith
190 from each fish. This transverse section enables visualization of an internal surface of the otolith,
191 where the growth increments are often most clearly defined. The first step of the process
192 involved attaching one otolith with the cement to the edge of the slide, such that the transverse
193 section to be visualized was even with the slide edge while half of the otolith extended beyond
194 the slide, and the sulcal ridge was perpendicular to the slide edge, similar to methods by (12). We
195 then manually ground the half of the otolith extending from the slide edge so that the desired
196 transverse section was exposed. The slide was then reheated to 100 °C to melt the thermoplastic
197 cement, and we flipped the otolith over, such that the newly sanded side was flat on the slide.
198 Finally, we manually ground the remaining half of the otolith until it neared the desired
199 transverse section and clear increments were seen under a microscope. The revealed growth
200 increments were visualized under an Olympus CX31 microscope using 10x magnification. It is
201 assumed that otolith growth is correlated with somatic growth(46,47). Using a OMAX A3580U
202 microscope digital camera, along with the program *ToupLite*, we collected pictures of the fully
203 polished otoliths. Each fish had one otolith analyzed with at least one set of increment
204 measurements, where the most recent five years or more could be seen (Fig. 2). In total, 300
205 samples were processed, but not all otoliths revealed measurable increments.

206

207 Figure 1: Map of the Farasan Banks located in the central-southern Red Sea. The inset map
208 displays all the sample sites where coral (pink), damselfish (yellow) and both taxa (navy blue)
209 were sampled in 2019. The red polygons behind the sample dots outline coral locations in the
210 region. Bathymetry is represented by the grey numbers in meters.

211

212

213

214 Figure 2: Examples of annual growth increments in an otolith (left) and coral core (right). Left:
215 the otolith is a polished sagittal cross-section from *Pomacentrus sulfureus*. The blue line is

216 drawn perpendicular to the growth lines, and parallel with the axis of growth. The black lines
217 mark the annual increments. Right: a computed tomography (CT) scan of a *Porites* spp. coral
218 from the Farasan Banks with one high density stress band (2015), among the annual density
219 bands ranging from approximately 2009 until date of collection in 2019.

220
221 The distances between growth increments were measured using *ImageJ* (version
222 1.53;(48)). These measurements were conducted in a standard way by measuring the distance
223 from the outside edge of one increment to the outside edge of the next perpendicular to the
224 increments. A photo of the scale bar was used to calibrate the distance in *ImageJ* (48).
225 Afterwards, standard cross-dating statistics were used to compare growth rates among the years
226 using the following R packages: stringi, dplR, graphics and utils (49–52). The output (1)
227 indicated potential dating errors for re-inspection, (2) provided among-sample correlation
228 statistics, and (3) produced a “master” chronology time series used to track patterns in the growth
229 rates. Along with the master time series, all individual samples went through an autoregressive
230 detrending model with the dplR package to remove the ontogenetic effect of natural otolith width
231 decline with age. If this effect was not removed, the chronology would show the natural decline
232 of growth with age, instead of showing the effect of environmental variation on the damselfish.
233 While different methods have been used for removing ontogenetic growth trends, this step is
234 commonly applied in most otolith studies (e.g., (12,53)).

235 From the 300 samples processed, 217 samples, with visible increments for at least 5
236 years, proceeded to the cross-dating stage. Some samples were remeasured and some were
237 removed from the dataset if increment counts or measurements were uncertain. From the 217
238 samples, 57 were removed due to having unclear chronology or poor interseries correlations that
239 hindered confidence in the master time series. Many of the remaining samples were remeasured
240 if there were any doubts in increment identification. For most samples, the start of the
241 chronology was lagged by one year from the collection year—the otoliths were collected in 2019

242 but otolith increments do not necessarily align with calendar years, which made it difficult to
243 initially determine if the first complete increment represented our nominal year 2019 or 2018.
244 Thus, final decisions for the year assignment of the outer most ring for each otolith were based
245 on a combination of inspection of the proximity of the final increment measurement to the otolith
246 edge, and whether the interseries correlation was higher with, or without, a lag. An improvement
247 suggested a more accurate time series of both the individual and the species. Rather than
248 remeasuring or lagging multiple samples at once, making it harder to determine which changes
249 were beneficial, one to three samples were adjusted at a time. The master time series was
250 updated with these small, controlled changes and the shift in the correlations (both individual
251 interseries and overall correlations) were recorded. At the end, we retained 156 total otoliths (88
252 from *P. sulfureus* and 68 from *A. flavilatus*) with confident measurements that were used to
253 produce a master time series for each species. This series was standardized so the expected
254 growth rate was centered at 0, rather than 1 to account for individual variation in growth.
255 Negative values of our standardized growth indicate that growth was anomalously slow during
256 that year, while values above 0 are indicators of higher-than-usual growth. Hereafter, the
257 mention of growth rates refers to this standardization.

258

259 2.3 Coral analysis

260 *Porites* coral cores were previously collected from the Farasan Banks region of the Red
261 Sea and scanned via computed tomography (CT) following the methods outlined in (29). Here,
262 annual density bands were identified and measured for extension rate using the program coralCT
263 (54). Briefly, two-dimensional transverse digital slices cut from the full three-dimensional scans
264 were interpreted for alternating high- and low-density bands, a pair of which represents one year

265 of growth (Fig. 2). The coralCT program then traces the growth direction in three dimensions
266 through each core while measuring the growth distance between consecutive bands. Coral
267 growth parameters include extension (cm yr^{-1}), density (g cm^{-3}), and calcification ($\text{g cm}^{-2} \text{ yr}^{-1}$),
268 with calcification being the product of density and extension. We used the extension
269 measurements as these are comparable with otolith increment widths, although calcification data
270 produced similar results (Supplemental Fig. S3), and the choice does not affect our conclusions.
271 Crossdating for the corals using the measurements from coralCT followed the same methodology
272 as the otolith crossdating in R.

273
274 2.4 Statistical analysis
275 A series of linear marginal models were constructed to test for the effects of various factors on
276 the standardized growth rate of the fish species. A marginal model was used to account for the
277 repeated-measures on the fish samples, but because growth rates were standardized, we
278 examined the average population trend and not individual differences that would require random
279 effects (55). The factors examined included standard length, upwelling index, mean annual
280 temperature, distance from shore, mean summer temperature, years since the bleaching event of
281 2015, and degree heating weeks (DHW) to explain the changes in growth rates in damselfishes.
282 Due to missing standard lengths in the dataset, four samples were removed. The years since the
283 bleaching event factor was included to account for longer-term impacts on growth not
284 represented by the environmental factors. Mean annual temperature, along with mean summer
285 temperature and DHW, were calculated with sea surface temperature (SST) data retrieved from
286 the National Oceanic and Atmospheric Administration (NOAA) Optimum Interpolation Sea
287 Surface Temperature product (OI-SSTv2). Upwelling index was defined as the difference
288 between the June maximum and the August minimum SST, based on (29), which provides an

289 indication of the degree of upwelling where higher values relate to stronger upwelling. We
290 calculated the mean summer SST based on July to October because the maximum SST often
291 occurs as late as October in this area (43). Degree heating weeks were defined as hotspots, where
292 SST was greater than 1°C above the maximum monthly mean, over a defined period of time (12
293 weeks) (56). Because the interseries correlation of the combined species data was similar to the
294 correlations of the two individual species (0.544 for *P. sulfureus*, 0.573 for *A. flavilatus*, and
295 0.553 for combined), the species were combined for the linear models. We followed a similar
296 approach to the models created by (12) with the exception that species was not added as a
297 random effect due to the standardization of the growth rates, and thus we did not have mixed
298 effects in our model. A step-up approach was used to build the models, starting with simple
299 models using one factor and expanding to more complicated models with combinations of the
300 significant factors. Akaike's information criterion (AIC) scores using Maximum Likelihood
301 (ML) estimation were compared to identify the best models (55). Along with these models,
302 Pearson correlations were calculated between all quantitative factors (Supplemental Table S1) to
303 determine if any explanatory variables were correlated, which could complicate model
304 interpretations. The marginal models were created using IBM SPSS Statistics (v. 27), with the
305 repeated effect of year with subjects as individual fish samples and first-order autoregressive
306 (AR1) as the covariance structure because it provided the lowest AIC scores. The top two models
307 were rerun with a Restricted Maximum Likelihood (REML) approach to estimate the parameters
308 and significance (55).

309 The coral chronology was treated similarly to the otolith chronologies. Extension rates
310 were standardized to be centered at zero, and graphed with a 95% confidence interval to enable
311 interpretation of years with growth significantly greater or less than the mean. The coral growth

312 rates did not undergo the autoregressive detrending model, as corals have longer lifespans than
313 the damselfishes and generally do not encounter the natural ontogenetic decline in growth. The
314 coral chronologies mostly extended back several decades, but only the time period overlapping
315 with the otolith chronologies (2010-2018) was examined here. From here on, we use the term
316 “coral growth rates” to refer to these standardized growth rates. Similar to the fish growth rate
317 analyses, marginal models of coral growth rates were examined with fixed effects of mean
318 annual temperature, upwelling index, and DHW. The repeated effect was included with
319 individual coral cores as subjects and an unstructured covariance structure for the residuals.

320

321 **3. Results**

322

323

324 *Damselfish growth*

325

326

We started with crossdating for both damselfish species individually. For both *P. sulfureus* (n=90) and *A. flavilatus* (n=70), we found mean interseries correlations of 0.57, which represents the average r value between each individual otolith chronology and the “master” chronology that is effectively the average of all other otoliths. From the cross-dated chronologies, we extracted the time series for each sample that went through the autoregressive detrending model, standardized to center at zero and displayed it graphically with a 95% confidence interval (Figure 3). Both species exhibited a positive growth anomaly during 2015, synchronous with the coral bleaching and upwelling event (Figure 3). In fact, each species’ maximum growth rates occurred in 2015, one of only two years (along with 2013) in which both species had growth rates significantly greater than zero (Figure 3). After 2015, growth rates steadily declined, with the most recent two years (2018 and 2019) being the only years in which both species’ growth rates were significantly less than zero (Figure 3).

338
339 Figure 3: Damselfish growth and environmental variations in the Farasan Banks. (A) Master
340 chronology of growth anomalies for both species, *Pomacentrus sulfureus* (blue) and
341 *Amblyglyphidodon flavilatus* (red), normalized at zero. The growth rates are standardized with
342 units of z-scores. Shaded region represents the 95% confidence interval over the years where
343 multiple fish samples were analyzed. (B) The mean annual temperature (°C), the maximum
344 degree heating weeks (DHW), and the upwelling index for the same time range as the
345 damselfishes at the Farasan Banks.

346
347
348 Marginal models were created to account for the repeated measures of having multiple
349 growth measurements on each individual otolith (Table 1). We present the two best (lowest AIC,
350 Table S2) models for comparison, because the Δ AIC between them was very small (1.8). In both
351 models, positive growth was best explained by DHW and years since bleaching. In the second-
352 best model the upwelling index was included as an additional factor. Other factors such as
353 distance from shore and standard length of fish did not improve model fit. DHW had a positive
354 impact on growth (Model 1, $F_{1,1104}=46.7$, $p<0.001$), while years since bleaching had a negative
355 effect (Model 1, $F_{1,647}=183.5$, $p<0.001$) (Table 1). The addition of upwelling had a small and not
356 statistically significant effect (Model 2, $F_{1,783}=0.20$, $p=0.66$) and removing it from the model
357 resulted in only a negligible reduction in AIC, but we present this model in Table 1 for
358 comparison to show the extent of its effect on growth.

359
360 Table 1: Estimates of fixed effects from the two best Marginal Models of the damselfishes'
361 standardized growth rate. The factors include degree heating weeks (DHW), the upwelling index
362 and years since the 2015 bleaching event.

Model	Parameter	Estimate	SE	df	t	p-value
1	Intercept	1.08	0.016	666.3	69.4	< 0.001
	DHW	0.058	0.009	1104	6.83	< 0.001
	Years Since Bleaching	-0.099	0.007	647.3	-13.5	< 0.001

2	Intercept	1.07	0.031	1048	34.9	<0.001
	DHW	0.057	0.009	1054	6.14	<0.001
	Years Since Bleaching	-0.098	0.007	684.0	-13.2	<0.001
	Upwelling	0.011	0.025	782.6	0.442	0.66

363
364

365 *Coral growth*

366 The final mean interseries correlation for the *Porites* spp. corals after crossdating was 0.167
367 (n=48). The negative growth anomaly occurred in 2016, when growth rate was significantly
368 below zero. The year 2016 was the only year the corals displayed a significant growth anomaly
369 in the entire time series (Figure 4). The best linear marginal model (lowest AIC score) for
370 explaining negative coral growth rates had only DHW as a fixed effect ($F_{1,39.9}=4.13$, $p=0.049$)
371 (Table 2). Since the only significant change in growth occurred one year after the bleaching
372 event of 2015, the measured growth responses may not have correlated precisely with the
373 environmental drivers that led to the coral bleaching. Indeed, most of the models were
374 comparable in fit with AIC differences of less than 2 (Supplemental Table S2). This result means
375 that we could not conclusively distinguish among the models with various environmental factors
376 as explanatory variables. In the model with only DHW as an explanatory variable, the effect of
377 DHW on coral growth was negative but small (-0.021, SE 0.01).

378

379

380 Figure 4: Master chronology of standardized *Porites* coral growth rates from Farasan Banks
381 between 2009 and 2018. The shaded region represents the 95% confidence interval.
382

383 Table 2: Estimates of fixed effects from the best Marginal Model of the corals' standardized
 384 growth rate. The only factor included is degree heating weeks (DHW).

Parameter	Estimate	SE	df	t	p-value
Intercept	-0.037	0.043	47.864	-0.861	0.393
DHW	-0.021	0.01	39.906	-2.033	0.049

385

386 **4.Discussion**

387

388 We combined growth-rate time series for long-lived corals (*Porites* spp.) and two reef
 389 fish species (*P. sulfureus* and *A. flavilatus*) to investigate the synchrony in the response to heat
 390 stress between these disparate taxa. Both damselfish species displayed positive growth anomalies
 391 in the year 2015 during the heat stress and upwelling event, and then growth declined after 2015
 392 (Fig. 3). Our results are consistent with (12)'s study whose results revealed that parrotfishes
 393 showed a 35% increase in the growth index during the bleaching year (12). In our data, growth
 394 during the bleaching and upwelling year (2015) was also significantly faster than expected,
 395 although the damselfish growth rates steadily declined after 2015 to levels significantly lower
 396 than expected, in contrast to (12). The parrotfishes benefited from new growth of algae on the
 397 surface of corals that died from bleaching (12,26), while our damselfishes might have benefited
 398 from increased food sources—including both algae cover and plankton availability—resulting
 399 from the nutrient-rich waters upwelled during 2015.

400 Additionally, we tested if environmental variables could explain the patterns observed in
 401 the chronologies of damselfishes, which confirmed that DHW had a significant positive impact
 402 on growth (Table 1). Additionally, years that followed the 2015 bleaching event also had a
 403 significant negative effect, suggesting that a downward trend of growth rate occurred after 2015.
 404 The year 2015 was unusual for this region due to the anomalously strong upwelling event in the

405 early summer, followed by the heat stress event in late summer that sparked coral bleaching and
406 eventually caused a reduction of live coral cover by 44% (29,30). Several hypotheses could
407 explain why the damselfish responded with the short-term positive growth anomaly in 2015 and
408 then steadily declined in the years afterwards. As ectotherms, the higher temperatures will raise
409 metabolic rates in reef fishes, which will require a larger food intake (21,22) which can also
410 accelerate growth rates (57,58). Although the model did not find that upwelling had a significant
411 overall effect on growth rates, with the upwelling event in early summer, the damselfish may
412 have accessed an increase in available food, and possibly an increase in food quality, at a time
413 when food demand and the capacity for growth was elevated by the heating event. Upwelling
414 brings nutrient-rich water from greater depths up to the surface, along with inorganic nutrients
415 that increase primary productivity (42,59), and could lead to higher abundances of zooplankton
416 and other damselfish prey (60). In other regions of the world, upwelling events have been
417 reported to increase planktivorous reef fish abundances (61). While upwelling may benefit reef
418 fish, the upwelling event at the Farasan Banks in 2015 was implicated in exacerbating the effect
419 of the late-summer heatwaves on the corals leading to mass bleaching and mortality (29).
420 Therefore, the increase of potential food supply from the upwelling event might have provided
421 enough energy to support higher metabolic demands of damselfishes during the anomalously
422 warm temperatures in the late summer. This change would result in a temporary increase in
423 growth during 2015, as seen in our results (Figure 3).

424 Similar to the notion that food supply could modulate growth responses, we expected that
425 larger fish, with presumably lower mass-specific metabolic rates, would prove more resilient to
426 disturbance than smaller conspecifics (22). Although the length of the damselfish did not
427 improve our model's AIC values, studies have shown that size can impact metabolism, and in

428 return growth rates of coral fish (22). Larger fish may also be more susceptible to the effects of
429 increased temperatures on metabolic capacity. For example, larger coral trout (*Plectropomus*
430 *leopardus*) appear to be more limited in increasing maximal aerobic metabolism with increases
431 in temperature, which could lead to reduced activity levels or energy invested in growth (22).
432 Additionally, increased feeding rates are required to meet basal metabolic demands at warmer
433 temperatures (21). If the need for greater food intake is not consistently met, this could explain
434 the lack of a size effect in our study. While individual size was not a significant factor in our
435 study, it could impact metabolic rates, and consequentially growth rates, in reef fish communities
436 in general. For instance, a summer with just a high temperature bleaching event but not
437 upwelling might result in limited food, potentially leading to a more pronounced effect of size on
438 the response of the damselfishes to the heat stress. Thus, the potential for different growth
439 responses to marine heatwaves among size classes of reef fish remains an intriguing hypothesis
440 worthy of future study.

441 Damselfish growth steadily declined after 2015 (Fig. 3), despite the initial positive impact
442 of DHW, which may be due to the long-term effects of coral mortality in the region. (28)
443 observed an overall increase in algal cover and a decrease in live coral cover between 2014 and
444 2019 at the Farasan Banks. As live coral habitat decreased in the region, it is possible that the
445 damselfish encountered higher than normal inter- and intra-specific competition for the
446 remaining habitat, as observed for others species of damselfish (62,63). This increase in
447 competition might deplete the damselfish energy stores, leaving less for growth. Predation
448 pressure has also been shown to decrease damselfish abundances after bleaching events due to
449 disruption of chemical cues that signal predator avoidance behavior (16). Furthermore, as the
450 corals initially turn white from bleaching, damselfish temporarily lose their camouflage

451 advantage (19). Reef fish with yellow coloring such as *P. sulfureus* and *A. flavilatus* are able to
452 blend into live coral habitat but stand out against bleached-white and algal-covered coral,
453 increasing stress levels (17,18). Branching corals, which is the habitat damselfishes prefer (32–
454 35), exhibited extensive mortality following the 2015 bleaching event (28). Moreover, with an
455 increasing algae presence in areas of these bleached or dead branching corals, damselfishes have
456 a diminished ability to hide between the branches for shelter (8). These stressors related to coral
457 loss could account for the decline in damselfish growth after 2015. After the damselfish initially
458 benefited from the higher temperature and upwelling events of 2015, long-term negative effects
459 of their degrading coral habitat could have diverted their energies more towards finding new
460 shelter, avoiding competition, and predators, than feeding, hence decreasing their growth.

461 In contrast to the positive growth anomaly in damselfishes, we observed a decline in
462 coral growth rates after the height of the bleaching event in 2015, mainly manifesting during
463 2016 (Fig. 4). Previous investigations of coral growth anomalies following the major 1998 global
464 bleaching event have shown mixed results. In the Caribbean, growth rate of *Orbicella faveolata*
465 (family, Merulinidae) declined dramatically during the 1998 mass bleaching event [31].
466 Conversely, in Palau, there were no clear changes in *Porites* growth during the 1998 or 2010
467 bleaching events (36). Finally, *Porites* growth rates declined during 1998 at some, but not all,
468 sites studied by (31) on the Great Barrier Reef. Our data show a significant negative anomaly in
469 growth only during 2016, the year after bleaching, in large part due to missing bands. For 15% of
470 cores, there were only two complete high-low density band pairs visible between the 2015 stress
471 band and the collection time in early 2019, indicating the absence of an entire annual density
472 band. Since the 2015 stress band was visible, and this likely formed during heat stress that
473 peaked in October 2015, we assumed calcification ceased during and after heat stress, with the

474 growth ceasing mainly during calendar year 2016. Regardless of whether the missing years were
475 assigned to 2015 or 2016, our data clearly indicate a perturbation toward anomalously low
476 growth during and immediately after the bleaching event, followed by a return to typical growth
477 rates after two years (Fig. 4). That we observed a clearer growth rate response to bleaching in
478 *Porites* spp. corals compared to previous studies (31,36) may reflect a more severe bleaching
479 event, consistent with the remarkably prominent stress bands found in the corals that survived
480 this event (Figure 3;(29)).

481 Our study reveals that corals and reef fishes can be asynchronously impacted by marine
482 heatwaves and other environmental disturbances. In this case, the damselfishes initially benefited
483 from the high temperatures, and possibly concurrent upwelling, that occurred in 2015, at the
484 same time that heat stress caused mass bleaching and mortality of corals (27–29). The negative
485 effects of the heat stress were recorded in the high-density stress bands of *Porites* corals, and the
486 corals almost immediately encountered lower growth rates but then quickly recovered by 2017.
487 In contrast, damselfish growth steadily declined in the years after coral mortality, suggesting that
488 these fish species were negatively impacted by the long-term effects of habitat degradation,
489 unlike *Porites* corals. With climate change increasing the frequency and severity of bleaching
490 events (4), damselfishes might not be able to acclimatize to environmental disturbance despite
491 temporary boosts in growth. These negative changes might not be immediately visible in the
492 damselfishes as in the bleached corals but our study shows the complexity of different time
493 scales in the response to environmental disturbances within an ecosystem. Climate change will
494 likely have cascading consequences on not just individuals, but entire coral reef ecosystems like
495 the Farasan Banks, where environmental disturbances such as marine heatwaves and upwelling
496 can impact corals and reef fishes asynchronously.

497 **Acknowledgements**

498 We would like to acknowledge KAUST for funding the project where the samples came from.

499 We are also grateful to the crew of the vessel Dream Master for providing logistical support.

500 Additionally, we would like to thank Amr Gusti and Claire Shellem for helping collect fish and

501 extract their otoliths and Caitlyn Ogbækwe, Susan Jones, and Gabriella Korf for helping grind

502 otoliths in the lab.

503

504 **References**

505

506 1. (PDF) A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef:
507 Spatial correlation, patterns, and predictions [Internet]. [cited 2023 Feb 22]. Available from:
508 https://www.researchgate.net/publication/227190658_A_comparison_of_the_1998_and_2002_coral_bleaching_events_on_the_Great_BARRIER_Reef_Spatial_correlation_patterns_and_predictions

510

511 2. Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, et
512 al. Global warming and recurrent mass bleaching of corals. *Nature*. 2017 Mar
513 16;543(7645):373–7.

514 3. Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, et al. Spatial and
515 temporal patterns of mass bleaching of corals in the Anthropocene. *Science*. 2018 Jan
516 5;359(6371):80–3.

517 4. Guan Y, Hohn S, Wild C, Merico A. Vulnerability of global coral reef habitat suitability to
518 ocean warming, acidification and eutrophication. *Global Change Biology*.
519 2020;26(10):5646–60.

520 5. Glynn PW. Coral reef bleaching: ecological perspectives. *Coral Reefs*. 1993 Mar 1;12(1):1–
521 17.

522 6. Baker A, Glynn P, Riegl B. Climate change and coral reef bleaching: An ecological
523 assessment of long-term impacts, recovery trends and future outlook. *Estuarine, Coastal and
524 Shelf Science*. 2008 Dec 1;80:435–71.

525 7. Montano S, Seveso D, Galli P, Obura DO. Assessing coral bleaching and recovery with a
526 colour reference card in Watamu Marine Park, Kenya. *Hydrobiologia*. 2010 Nov;655(1):99–
527 108.

528 8. Coker DJ, Wilson SK, Pratchett MS. Importance of live coral habitat for reef fishes. *Rev
529 Fish Biol Fisheries*. 2014 Mar;24(1):89–126.

530 9. Cole AJ, Pratchett MS, Jones GP. Diversity and functional importance of coral-feeding
531 fishes on tropical coral reefs. *Fish and Fisheries*. 2008;9(3):286–307.

532 10. Pratchett MS, Hoey AS, Wilson SK, Messmer V, Graham NAJ. Changes in Biodiversity and
533 Functioning of Reef Fish Assemblages following Coral Bleaching and Coral Loss. *Diversity*.
534 2011 Aug 12;3(3):424–52.

535 11. McManus J. Coral reef fishing and coral-algal phase shifts: implications for global reef
536 status. *ICES Journal of Marine Science*. 2000 Jun;57(3):572–8.

537 12. Taylor BM, Benkwitt CE, Choat H, Clements KD, Graham NAJ, Meekan MG. Synchronous
538 biological feedbacks in parrotfishes associated with pantropical coral bleaching. *Glob
539 Change Biol*. 2020 Mar;26(3):1285–94.

540 13. Wilson SK, Graham N a. J, Pratchett MS, Jones GP, Polunin NVC. Multiple disturbances
541 and the global degradation of coral reefs: are reef fishes at risk or resilient? *Global Change
542 Biology*. 2006;12(11):2220–34.

543 14. Pratchett MS, Munday PL, Wilson SK, Graham NAJ, Cinner JE, Bellwood DR, et al. Effects
544 of climate-induced coral bleaching on coral-reef fishes - ecological and economic
545 consequences. *Oceanography and Marine Biology: an annual review*. 2008;46:251–96.

546 15. Booth D, Beretta G. Changes in a fish assemblage after a coral bleaching event. *Mar Ecol
547 Prog Ser*. 2002;245:205–12.

548 16. Boström-Einarsson L, Bonin MC, Munday PL, Jones GP. Loss of live coral compromises
549 predator-avoidance behaviour in coral reef damselfish. *Sci Rep*. 2018 Dec;8(1):7795.

550 17. Marshall NJ. Communication and camouflage with the same “bright” colours in reef fishes.
551 *Philos Trans R Soc Lond B Biol Sci*. 2000 Sep 29;355(1401):1243–8.

552 18. McCormick MI. Behaviourally Mediated Phenotypic Selection in a Disturbed Coral Reef
553 Environment. Trussell GC, editor. *PLoS ONE*. 2009 Sep 18;4(9):e7096.

554 19. Coker DJ, Pratchett MS, Munday PL. Coral bleaching and habitat degradation increase
555 susceptibility to predation for coral-dwelling fishes. *Behavioral Ecology*. 2009;20(6):1204–
556 10.

557 20. Munday P, Crawley N, Nilsson G. Interacting effects of elevated temperature and ocean
558 acidification on the aerobic performance of coral reef fishes. *Mar Ecol Prog Ser*. 2009 Aug
559 19;388:235–42.

560 21. Johansen JL, Pratchett MS, Messmer V, Coker DJ, Tobin AJ, Hoey AS. Large predatory
561 coral trout species unlikely to meet increasing energetic demands in a warming ocean. *Sci
562 Rep*. 2015 Sep 8;5:13830.

563 22. Messmer V, Pratchett MS, Hoey AS, Tobin AJ, Coker DJ, Cooke SJ, et al. Global warming
564 may disproportionately affect larger adults in a predatory coral reef fish. *Glob Chang Biol*.
565 2017 Jun;23(6):2230–40.

566 23. Bernal MA, Schunter C, Lehmann R, Lightfoot DJ, Allan BJM, Veilleux HD, et al. Species-
567 specific molecular responses of wild coral reef fishes during a marine heatwave. *Sci Adv*.
568 2020 Mar 20;6(12):eaay3423.

569 24. Kassahn KS, Crozier RH, Ward AC, Stone G, Caley MJ. From transcriptome to biological
570 function: environmental stress in an ectothermic vertebrate, the coral reef fish *Pomacentrus
571 moluccensis*. *BMC Genomics*. 2007 Oct 5;8(1):358.

572 25. Clements KD, German DP, Piché J, Tribollet A, Choat JH. Integrating ecological roles and
573 trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as
574 microphages. *Biol J Linn Soc [Internet]*. 2016 Nov [cited 2022 Jan 24]; Available from:
575 <http://doi.wiley.com/10.1111/bij.12914>

576 26. Osman E, Smith D, Ziegler M, Kürten B, Conrad C, El-Haddad K, et al. Thermal refugia
577 against coral bleaching throughout the northern Red Sea. *Global Change Biology*. 2017 Oct
578 17;24:n/a-n/a.

579 27. Lozano-Cortés D, Robitzch V, Abdulkader K, Kattan Y, Elyas A, Berumen M. Coral
580 bleaching in Saudi Arabia affecting both the Red Sea and Arabian Gulf. *Reef Encounter*.
581 2016;31:50–1.

582 28. Anton A, Randle JL, Garcia FC, Rossbach S, Ellis JI, Weinzierl M, et al. Differential thermal
583 tolerance between algae and corals may trigger the proliferation of algae in coral reefs. *Glob
584 Change Biol*. 2020 Aug;26(8):4316–27.

585 29. DeCarlo TM, Gajdzik L, Ellis J, Coker DJ, Roberts MB, Hammerman NM, et al. Nutrient-
586 supplying ocean currents modulate coral bleaching susceptibility. *Sci Adv*. 2020
587 Aug;6(34):eabc5493.

588 30. Carilli JE, Norris RD, Black BA, Walsh SM, McField M. Local Stressors Reduce Coral
589 Resilience to Bleaching. *PLOS ONE*. 2009 Jul 22;4(7):e6324.

590 31. Cantin NE, Lough JM. Surviving Coral Bleaching Events: Porites Growth Anomalies on the
591 Great Barrier Reef. *PLOS ONE*. 2014 Feb 19;9(2):e88720.

592 32. Allen GR. Damselfishes of the world [Internet]. Melle, Germany; Mentor, Ohio: Mergus ;
593 Aquarium Systems [distributor; 1991 [cited 2022 Feb 21]. Available from:
594 <http://catalog.hathitrust.org/api/volumes/oclc/24436027.html>

595 33. Frederich B, Parmentier E. *Biology of Damselfishes*. 2016.

596 34. Bergman KC, Öhman MC, Svensson S. Influence of Habitat Structure on *Pomacentrus
597 sulfureus*, A Western Indian Ocean Reef Fish. *Environmental Biology of Fishes*. 2000
598 Nov;59(3):243–52.

599 35. Pratchett MS, Hoey AS, Wilson SK, Hobbs JPA, Allen GR. Habitat-use and specialisation
600 among coral reef damselfishes. In: Frederich B, Parmentier E, editors. *Biology of
601 Damselfishes*. Florida, USA: CRC Press; 2016. p. 84–121.

602 36. Barkley HC, Cohen AL. Skeletal records of community-level bleaching in *Porites* corals
603 from Palau. *Coral Reefs*. 2016;35(4):1407–17.

604 37. Mollica NR, Cohen AL, Alpert AE, Barkley HC, Brainard RE, Carilli JE, et al. Skeletal
605 records of bleaching reveal different thermal thresholds of Pacific coral reef assemblages.
606 *Coral Reefs* [Internet]. 2019 Aug [cited 2022 Mar 30];38(4). Available from:
607 [https://par.nsf.gov/biblio/10132003-skeletal-records-bleaching-reveal-different-thermal-
608 thresholds-pacific-coral-reef-assemblages](https://par.nsf.gov/biblio/10132003-skeletal-records-bleaching-reveal-different-thermal-
608 thresholds-pacific-coral-reef-assemblages)

609 38. Qian PY, Wang Y, Lee OO, Lau SCK, Yang J, Lafi FF, et al. Vertical stratification of
610 microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing. *ISME J*. 2011
611 Mar;5(3):507–18.

612 39. DiBattista JD, Roberts MB, Bouwmeester J, Bowen BW, Coker DJ, Lozano-Cortés DF, et al.
613 A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea.
614 *Journal of Biogeography*. 2016;43(3):423–39.

615 40. Kürten B, Zarokanellos ND, Devassy RP, El-Sherbiny MM, Struck U, Capone DG, et al.
616 Seasonal modulation of mesoscale processes alters nutrient availability and plankton
617 communities in the Red Sea. *Progress in Oceanography*. 2019 Apr 1;173:238–55.

618 41. Pearman JK, Ellis J, Irigoien X, Sarma YVB, Jones BH, Carvalho S. Microbial planktonic
619 communities in the Red Sea: high levels of spatial and temporal variability shaped by
620 nutrient availability and turbulence. *Sci Rep*. 2017 Dec;7(1):6611.

621 42. Churchill JH, Bower AS, McCorkle DC, Abualnaja Y. The transport of nutrient-rich Indian
622 Ocean water through the Red Sea and into coastal reef systems. *J Mar Res*. 2014 May
623 1;72(3):165–81.

624 43. DeCarlo TM, Carvalho S, Gajdzik L, Hardenstine RS, Tanabe LK, Villalobos R, et al.
625 Patterns, Drivers, and Ecological Implications of Upwelling in Coral Reef Habitats of the
626 Southern Red Sea. *J Geophys Res Oceans* [Internet]. 2021 Feb [cited 2022 Jan 24];126(2).
627 Available from: <https://onlinelibrary.wiley.com/doi/10.1029/2020JC016493>

628 44. Reference Summary - Lieske, E. and R. Myers, 1994 [Internet]. [cited 2023 May 24].
629 Available from: <https://fishbase.mnhn.fr/references/FBRefSummary.php?ID=9710>

630 45. American Veterinary Medical Association [Internet]. [cited 2023 Jul 3]. AVMA guidelines
631 for the euthanasia of animals. Available from: <https://www.avma.org/resources-tools/avma->
632 [avma-guidelines-euthanasia-animals](https://www.avma.org/resources-tools/avma-policies/avma-guidelines-euthanasia-animals)

633 46. Campana SE. Chemistry and composition of fish otoliths: pathways, mechanisms and
634 applications. *Marine Ecology Progress Series*. 1999 Nov 3;188:263–97.

635 47. Kingsford MJ, Patterson HM, Flood MJ. The influence of elemental chemistry on the widths
636 of otolith increments in the neon damselfish (*Pomacentrus coelestis*). *Fishery Bulletin*.
637 2008;106:135–42.

638 48. ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA | Semantic Scholar
639 [Internet]. [cited 2024 Oct 5]. Available from:
640 <https://www.semanticscholar.org/paper/ImageJ%2C-U.S.-National-Institutes-of-Health%2C->
641 [USA-Rasband/034dbc2e4c735500c519183180f8cf6033fcb28d](https://www.semanticscholar.org/paper/034dbc2e4c735500c519183180f8cf6033fcb28d)

642 49. R: The R Project for Statistical Computing [Internet]. [cited 2024 Oct 5]. Available from:
643 <https://www.r-project.org/>

644 50. Gagolewski M. stringi: Fast and Portable Character String Processing in R. *Journal of*
645 *Statistical Software*. 2022 Jul 11;103:1–59.

646 51. Bunn AG. A dendrochronology program library in R (dplR) - ScienceDirect [Internet]. [cited
647 2024 Oct 5]. Available from:
648 <https://www.sciencedirect.com/science/article/abs/pii/S1125786508000350?via%3Dihub>

649 52. Bunn AG. Statistical and visual crossdating in R using the dplR library. *Dendrochronologia*.
650 2010 Jan 1;28(4):251–8.

651 53. D'Agostino D, Burt JA, Santinelli V, Vaughan GO, Fowler AM, Reader T, et al. Growth
652 impacts in a changing ocean: insights from two coral reef fishes in an extreme environment.
653 *Coral Reefs*. 2021 Apr;40(2):433–46.

654 54. DeCarlo TM, Cohen AL. Dissepiments, density bands and signatures of thermal stress in
655 Porites skeletons. *Coral Reefs*. 2017 Sep;36(3):749–61.

656 55. West BT, Welch KB, Galecki AT. *Linear Mixed Models : A Practical Guide Using*
657 *Statistical Software, Second Edition* [Internet]. Chapman and Hall/CRC; 2014 [cited 2024
658 Oct 5]. Available from: <https://www.taylorfrancis.com/books/mono/10.1201/b17198/linear-mixed-models-brady-west-kathleen-welch-andrzej-galecki>

660 56. Liu G, Strong AE, Skirving W. Remote sensing of sea surface temperatures during 2002
661 Barrier Reef coral bleaching. *Eos, Transactions American Geophysical Union*.
662 2003;84(15):137–41.

663 57. Huey RB, Kingsolver JG. Climate Warming, Resource Availability, and the Metabolic
664 Meltdown of Ectotherms. *The American Naturalist*. 2019 Dec;194(6):E140–50.

665 58. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL. Effects of Size and Temperature
666 on Metabolic Rate. *Science*. 2001 Sep 21;293(5538):2248–51.

667 59. Furnas MJ. Upwelling and Coral Reefs. In: Hopley D, editor. *Encyclopedia of Modern Coral*
668 *Reefs: Structure, Form and Process* [Internet]. Dordrecht: Springer Netherlands; 2011 [cited
669 2022 Feb 28]. p. 1125–8. Available from: https://doi.org/10.1007/978-90-481-2639-2_160

670 60. Stuhldreier I, Sánchez-Noguera C, Rixen T, Cortés J, Morales A, Wild C. Effects of
671 Seasonal Upwelling on Inorganic and Organic Matter Dynamics in the Water Column of
672 Eastern Pacific Coral Reefs. *PLOS ONE*. 2015 Nov 11;10(11):e0142681.

673 61. Eisele MH, Madrigal-Mora S, Espinoza M. Drivers of reef fish assemblages in an upwelling
674 region from the Eastern Tropical Pacific Ocean. *J Fish Biol*. 2021 Apr;98(4):1074–90.

675 62. Boström-Einarsson L, Bonin MC, Munday PL, Jones GP. Habitat degradation modifies the
676 strength of interspecific competition in coral dwelling damselfishes. *Ecology*. 2014
677 Nov;95(11):3056–67.

678 63. Darren J. Coker, Pratchett MS, Munday PL. Influence of coral bleaching, coral mortality and
679 conspecific aggression on movement and distribution of coral-dwelling fish. *Journal of*
680 *Experimental Marine Biology and Ecology*. 2012 Mar;414–415:62–8.

