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Stability analysis of Mach 5.35 boundary layer flow over a flat plate with two- and three-

dimensional sinusoidal roughness is performed and presented. The impact of the distributed

roughness amplitude is shown for the second Mack mode, which is the dominant instability

for this flow condition. It is found for all roughness heights examined that the second Mack

mode is appreciably destabilized relative to the smooth wall flat plate. An energy budget

analysis was performed for a selected roughness case and compared with the smooth wall. It

was shown that the primary mechanism for destabilization of the second mode in the roughness

case is heightened Reynolds stress energy production owing to the compression-expansion

shock wave system formed by the roughness elements peaks. Decreased (relative to the smooth

wall) disturbance energy dissipation via heat conduction caused by the separated flow over the

roughness trough combined to contributed to the destabilization as well. Finally, the same 2-D

roughness surface when extended into 3-D showed even larger destabilization of 2-D waves.

I. Introduction

B
oundary transition (BLT) from laminar flow to turbulence at high speeds persists as a state-of-the-art fluid dynamics

research problem. Its importance stems from the nearly order of magnitude increase in heat flux imparted on

a vehicle’s surface when subjected to turbulent rather than laminar flow [1]. Being able to predict where this stark

difference occurs over the vehicle is very important to vehicle designers. Making matters worse, the highly nonlinear

regime of boundary layer transition preceding turbulence has been shown to introduce heating overshoots that are

significantly higher than those predicted in the turbulent regime [2]. Of the many challenges associated with predicting

and understanding BLT, surface roughness presents one of the largest spaces of unknowns. Many numerical studies have

previously been performed considering high-speed flow over isolated/discrete roughness elements, a small sampling of

which include Refs. 3,4,5, 6. Counter-rotating vortices form downstream of the isolated roughness elements when the

roughness element height is comparable with the local boundary layer height and result in velocity streaks. Without

subsequent roughness elements downstream, the streaks are able to cleanly evolve over the smooth wall. These effect

the stability of the boundary layer two ways: (1) through the modification of the dominant boundary layer mode of

the otherwise smooth wall flow, and (2) through the generation (given sufficient roughness element height) of wake

instability modes. Since the wake modes behind the discrete roughness element derive energy from the wall-normal

and/or spanwise shear introduced by the velocity streaks, the type and growth rate of the wake modes are highly

dependent on the roughness element’s geometry and orientation [7].

In many applications, however, the roughness elements cover the entire vehicle’s surface. Much less is known about

BLT in this case. Numerical solution becomes prohibitively expensive if all roughness scales are to be resolved. Thus,

approximations to the typically randomly distributed surface topology are necessary. A popular roughness approximation

taken by several previous works is to use sinusoidal distributions for roughness elements [8, 9]. Governing parameters

for the sinusoidal shape (amplitude and wavelength) were varied parametrically for the case of two-dimensional (2-D)

flat plate boundary layer flow at Mach 5.35 in Refs. 10,11,12. While not completely distributed, Chou et al. [13]

looked at a 3-D sinusoidal roughness patch on a flat plate in Mach 3.5 flow. Similar to the isolated roughness cases,

the effects of the roughness were mainly in the wake of the patch. Recently, Braga et al. [14] simulated distributed

sinusoidal roughness over the surface of a cylinder at Mach 6. The results qualitatively resembled the experiments

performed by Hollis [15] and highlighted that the most amplified convective mode was two-dimensional, bearing a strong

resemblance to a Tollmien-Schliching wave. The exact mechanism governing the transition process proved allusive

given the complicated roughness element-wake interactions, accelerating flow, and possibility of global instabilities.
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Thus, in the view of the authors, it appears the proper means by which realistic surface roughness can be incorporated

into tractable numerical solutions and physics-based engineering tools remains largely unknown.

Recent work [16] analyzed two-dimensional surface roughness effects on second Mack mode growth and serves as

the basis for this paper. This manuscript is organized in the following way. First, the numerical approach for solution is

presented in Section II, followed by the simulation setup including flow conditions and roughness generation in Section

III. Next, key differences between the rough and smooth wall mean and disturbance flow fields are highlighted in Sections

IV and V, respectively. An energy budget analysis is then performed in Section VI to better understand the different

mechanisms governing disturbance growth for the 2-D cases. Finally, steps are taken to include three-dimensionality in

the analysis in Section VII. Conclusions are presented last.

II. Numerical Method
The dynamics of a single species, Newtonian, perfect gas are known to be governed by the Navier-Stokes equations

(NSE) given below in Eq. 1 written in the Cartesian coordinate system (G, H, I).

mW

mC
=

mE

mG
+ mF

mH
+ mG

mI
(1)

The conserved state vector along with the flux vectors are defined below in Eq. 2.

W =



d

dD

dE

dF

d�Ī



,E =



dD

dD2 + ? − gĮĮ

dDE − gĮį

dDF − gĮİ

(d�Ī + ?)D − DgĮĮ − EgĮį − FgĮİ + @Į



,

F =



dE

dDE − gĮį

dE2 + ? − gįį

dEF − gįİ

(d�Ī + ?)E − DgĮį − Egįį − Fgįİ + @į



,G =



dF

dDF − gĮİ

dEF − gįİ

dF2 + ? − gİİ

(d�Ī + ?)F − DgĮİ − Egįİ − Fgİİ + @İ



(2)

The variables d, D, E, F, ?, and �Ī are the density, velocity components in the Cartesian coordinate system, pressure, and

total specific energy, respectively. Total specific energy is the summation of internal and kinetic energy: �Ī = 4 + DğDğ/2,

using repeated index notation to denote summation. The shear-stress tensor, g, has components

gĮĮ =
2Ć

3

(
2
ĉī
ĉĮ

− ĉĬ
ĉį

− ĉĭ
ĉİ

)

gįį =
2Ć

3

(
2
ĉĬ
ĉį

− ĉī
ĉĮ

− ĉĭ
ĉİ

)

gİİ =
2Ć

3

(
2
ĉĭ
ĉİ

− ĉī
ĉĮ

− ĉĬ
ĉį

)

gĮį = `
(
ĉī
ĉį

+ ĉĬ
ĉĮ

)

gĮİ = `
(
ĉī
ĉİ

+ ĉĭ
ĉĮ

)

gįİ = `
(
ĉĬ
ĉİ

+ ĉĭ
ĉį

)

(3)

and the heat-flux vector has components

@Į = −^ ĉĐ
ĉĮ

@į = −^ ĉĐ
ĉį

@İ = −^ ĉĐ
ĉİ

. (4)

The dynamic viscosity, `, of the gas is modeled with Sutherland’s law, and the thermal conductivity, ^, is computed,

assuming a constant Prandtl number of %A = 0.72, as

^ =
`'ĝėĩW

%A (W − 1) (5)
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The system is closed with the perfect gas equations of state (% = d'ĝėĩ)).

Given the low disturbance amplitudes assumed for natural transition, early stages of BLT can be studied by solving

the linearized Navier-Stokes equations (LNSE), whereby a disturbance field of flow variables superimposed on an

underlying mean flow that satisfies the full NSE is solved for. Thus, the total state vector W, is assumed to be the

summation of a mean, W̄, and a fluctuating state, W
′. Substituting this decomposition into Eq. 1 and subtracting out

the mean flow (assumed to identically satisfy the NSE), the LNSE equations are obtained.

mW
′

mC
=

mE
′

mG
+ mF

′

mH
+ mG

′

mI
(6)

The convective portion of this linear flux in the G-direction, for example, is given below in Eq. 7

E
′
c =



d̄D′ + d′D̄

2d̄D̄D′ + d′D̄2 + ?′

d̄ (D̄E′ + D′Ē) + d′D̄Ē

d̄ (D̄F′ + D′F̄) + d′D̄F̄
(
d′�̄Ī + d̄� ′

Ī + ?′
)
D̄ +

(
d̄�̄Ī + ?̄

)
D′



, (7)

where all products of fluctuating quantities have been assumed to be negligibly small. Disturbances can be introduced to

the field through a source term, S, making Eq. 6 take the form

mW
′

mC
= R

′ + S (8)

where the spatial derivatives have been grouped into the LNSE right-hand-side vector, R
′. The LNSE were solved in the

generalized curvilinear coordinate system following [17]. For the sake of brevity, the equations above were written in

the Cartesian frame. The reader is directed to Ref. 18, 19 for more details on the LNSE solver solving the disturbance

flow equations both in the time and frequency domains.

III. Simulation Setup

A. Flow Condition

The steady, mean field is computed for a Mach 5.35 flow over an adiabatic flat plate at a free stream temperature of

64.316 K and a unit Reynolds number of 14.356 × 10
6 1/m. This flow condition produces a boundary layer with edge

quantities very similar to those of the 7-degree sharp cone used in the Boeing/AFOSR Mach 6 quiet-flow Ludwieg Tube

at Purdue University.

B. Roughness Generation

Roughness is introduced at the wall using the following equation:

HĨĥīĝℎ = HĩģĥĥĥĪℎ − � 5 (G)6(G, I). (9)

where

5 (G) = 1

2

[
2>B

(
2c(G − Gĩ)

_Į

)
− 1

]
(10)

and

6(G, I) =
{

1

2

[
2>B

(
2ÿİ
ąĮ

+ qĨ (G)
)
− 1

]
if W = W(G, H, I)

1 if W = W(G, H)
(11)

The shape function in G-direction was identical to the form used in Ref. 16, except for the 3-D calculations where the

mesh was perturbed upward (i.e., � → −�) rather than downward like for the 2-D calculations. The dependence of

the solution on this choice appears minimal in terms of disturbance growth rate, however, the receptivity process is

noticeably altered (see Appendix VIII.B). Perturbing the mesh upward allowed a larger initial time step size to be taken

and decreased computational resources consumed by 3-D calculations. The starting location of the roughness, Gĩ , was
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set to Gĩ = 0.026 m. The shape function in the I-(span-) direction is of a similar functional form with the addition of a

random variable q(G) applied to randomize the distribution of roughness element peaks. The random variable is written

as a continuous function of G, but was implemented by binning the randomized phase precisely by _Į such that the

surface topology remained in �1. Previous work [11] swept the amplitude (�) space listed in Table 1. The parameters

for the case W2A3 are the focus of the majority of the analysis presented here, namely a _Į = 8 mm and � = 1.5 mm.

Each roughness element was resolved with 64 cells in the stream-wise direction and an initial wall spacing of �Hĭ = 8

`m was used. This mesh resolution was verified in Appendix VIII.A to be sufficient for 2-D disturbance calculations.

These parameters were also utilized in the 3-D calculations.

Cases Wavelength, _Į (mm) _Į /_2ĤĚ Amplitude, � (mm)

W1A2 4 0.44 0.96

W2A2 8 0.89 0.96

W3A2 16 1.78 0.96

W4A2 32 3.56 0.96

Table 1 Test cases from Ref. 16 constructed to study the effects of varying 2-D roughness height on second

mode instability growth.

IV. Steady Field
The steady flow field (sometimes referred to as "mean") over the 2-D flat plates with sinusoidal roughness

were computed using a first-order backward differentiation formula (BDF) implicit scheme to drive the residual of

the compressible Navier-Stokes equations toward zero over the domain of interest.[20] For the convective terms a

fifth-order accurate blended WENO scheme[21] and a second-order centered scheme for the viscous terms were

chosen. Convergence was obtained once the maximum residual of the energy equation dropped below a threshold

criteria inside the boundary layer, here taken as 10
−6. Previous work [11] showed that the roughness elements are of

sufficient height as to generate a compression (expansion) shock system in the vicinity of the roughness windward

(leeward) peak. In addition, the combination of the compression shock’s adverse pressure gradient and the turning

curvature of the wavy wall causes the boundary layer to separate from the wall over the trough of the roughness element.

Roughness-element averaged mean field wall-normal profiles (nondimensionalized using the local viscous length scale

[ = H/�, � = [(`∞G)/(d∞D∞)]1/2) shown in Figure 1 highlight the velocity profiles becoming increasingly inflectional

(height where mD̄/mH changes sign increases) as the extent and strength of the flow separation increases with roughness

element height. The temperature profiles obtained in the same way shown in Figure 1 portray less of an effect. There

is a slight increase in adiabatic wall temperature accompanying the increase in roughness element height. The most

noticeable effect is the increase in effective boundary layer height with increasing roughness height. Measured from

H = 0, the boundary layer height, X99, where D̄/D∞ = 0.99, remains nearly the same in all cases. Averaging over a

roughness wavelength where the H coordinate dips below zero increases the X99 at each location, which in turn increases

the value emerging from the average. This difference becomes important for how disturbances propagate and grow in

the boundary layer, especially for the most amplified second Mack mode that is tuned to the local value of X99.

V. Disturbance Field
With a steady state solution obtained, a Gaussian (in time) pulse disturbance in the wall-normal momentum equation

was introduced upstream of the beginning of the roughness over a stream-wise width of G ∈ [0.02, 0.023] m. The

linearized Navier-Stokes equations (LNSE) were then used to propagate the pulse in time and space. Once the pulse

disturbance had fully propagated through the domain, the pressure disturbance signal at the wall (%ĭ) was projected

onto the temporal Fourier basis using the fast Fourier Transform (FFT). Performing this projection for each stream-wise

location allows one to visualize the disturbance spectra development as shown in Figure 3. Beginning with the smooth

wall case, hereafter referred to as "FP", one can see that disturbances within a particular frequency band experience

downstream amplification. At these free-stream conditions and Mach number, this family of disturbances is referred to

as Mack’s second mode [22]. Visuals of the pressure field as shown in the right of Figure 2 confirm it is the second

mode given the classic "two-cell" structure. The interpretation of this disturbance wave as a resonating acoustic wave
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22.5
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(b)

Fig. 1 Streamwise velocity (a) and temperature (b) wall-normal profile comparison between smooth and 2-D

rough wall.

trapped in the acoustic impedance well formed by the wall and sonic line means that the most amplified frequency

follows roughly twice the local boundary layer thickness [23]. For a smooth wall flat plate boundary layer, the boundary

layer edge height grows proportionally to the square root of the stream-wise location (X99 ∝
√
G). The effect of this

is shown in Figure 3a where the lower neutral curve (barrier between white and color at the bottom of the unstable

frequency band) seems to follow inversely proportion to
√
G.

0.285 0.29 0.295
-1.5

0

5
10

-3

0.435 0.44 0.445

0

2

4

10
-3

-2

0

2

10
-3

Fig. 2 Real part of disturbance pressure field for FP (flat plate) and 2-D roughness case W2A3.

Several important differences arise when roughness is introduced at the wall, which is shown in Figure 3b and Figure

3c for cases W2A1 and W2A3, respectively. For smaller roughness height (W2A1), the frequency band experiencing

instability is slightly enlarged and the maximum amplitude reached in the domain is increased as compared to the

smooth wall. Increasing the roughness height even more results in the emergence of two bands of unstable frequencies

that merge into one in the downstream direction (see Figure 3c). The lower frequency of the two was shown to still be

Mack’s second mode [16], even though a glance at the disturbance field (left of Figure 2) would not immediately convey

this fact. The higher frequency lobe in Figure 3c corresponds to Mack’s third mode. That higher Mack modes can

become destabilized by local flow separation was also seen in the flow field around the cone-cylinder-flare geometry

[24]. While it is interesting to note that roughness can destabilize Mack’s third mode, its even larger destabilizing effect

on the second mode is most important in this case to boundary layer transition since the second mode reaches the highest

amplitude within the domain. The destabilized second modes are also shifted to lower frequency for the roughness

case, which can be attributed to the increased effective boundary layer height mentioned previously. Not only are the

frequencies lower, but the neutral curve for the roughness case varies less strongly with G than the FP case, suggesting

that the effective boundary layer height no longer follows
√
G anymore.
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0

50

100

150

200

10
-3

10
-2

10
-1

10
0

(c)

Fig. 3 Wall pressure disturbance spectra for (a) flat plate, (b) W2A1 and (c) W2A3.

Normalizing the wall pressure amplitude by the wave’s amplitude at the neutral curve (GĤę) yields the commonly

used "N factor" (#) for evaluating relative growth of disturbances in the boundary layer: # = ;= [%ĭ (G)/%ĭ (G = GĤę)].
These # factors, plotted in Figure 4 for the unstable frequency band previously highlighted in the spectra, give a more

detailed view of the disturbance amplification. Among the range of unstable frequencies for the FP case (see Figure

4a), the one that reaches its peak by the end of the domain in consideration (G = 0.5) is 5 = 116 kHz and results in an

appreciable # ≈ 6 (transition historically predicted to occur when # reaches 9 [25]). Similarly, N factor curves for

the band of unstable frequencies for roughness case W2A3 are shown in Figure 4b. Here the previously mentioned

downward shift in frequency of the most unstable second mode can be seen with a frequency 5 = 78 kHz corresponding

to the maximum N factor reached in the domain. At # ≈ 7.2, it is clear that the second mode has been destabilized

by nearly 20%. If one’s transition criteria were # = 6, then the transition location (GĪĨ ) for case W2A3 would be

GĪĨ = 0.375 m, a 25% percent decrease from GĪĨ = 0.5 for the FP case. Destabilization of the second mode was obtained

for the other roughness height cases as well (W2A1, W2A2, W2A4) and their N factor envelopes (taking max # over all

5 for each G) are plotted along with cases FP and W2A3 in Figure 4c. Using this # = 6 transition criteria again just for

example, one would conclude that transition would occur most upstream for the lowest amplitude case W2A1 and each

successive roughness height would transition later than the previous, followed lastly by the smooth wall case (FP).

0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

(a)

0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

(b)

0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

(c)

Fig. 4 N factor development in the stream-wise direction for (a) smooth wall and (b) W2A3, and (c) envelope

comparison between the cases.

The LST code of Tumin [26] was used in Ref. 16 to help show the disturbances propagating over the roughness wall

were indeed second mode. It is clear to the authors that the fundamental assumption underlying LST, quasi-parallel

boundary layer flow, is severely violated for boundary layer flow over the roughness considered here. Despite this, LST

proved useful not only for modal classification but also for identifying length scales to collapse growth rate distributions

in the dimensionless frequency space. Nondimensionalizing frequency using the local boundary layer height (X99)

provided a good collapse for some but not all locations analyzed along the roughness element wavelength. Trying the

local sonic line height only slightly improve the scaling. It was shown that the correct length scale to collapse the data

was the wavelength of the maximum amplification second mode at each location. Using this length scale, Figure 5a for

case W2A3 shows how the peaks corresponding to both the second and third mode all occur at the same dimensionless

frequency �ą = 5 D∞/_2ĤĚ,ģėĮ . The G locations of G = 0.3980 m and G = 0.3992 m correspond to roughness troughs,
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whereas the G = 0.4016 m location is on a roughness peak. Such a scaling is important for providing estimates of peak

amplification frequencies over rough walls, analogous to the rule of thumb that the second mode frequency roughly

follows 52ĤĚ ≈ 0.9D∞/(2X99) for the smooth wall case. In addition, the growth rate output from performing LST

calculations at each wall-normal location, when averaged over a roughness element wavelength _Į , compare surprisingly

well with the wavelength-averaged growth rate obtained by solving the full LNSE. This (at least qualitatively) decent

agreement for both the second and third mode peaks in growth rate-frequency space are shown at G = 0.4 m for the

W2A3 case in Figure 5b. Such agreement suggest that, even if the intermediate stages of disturbance development over a

roughness element wavelength are not perfectly captured by LST, LST might be able capture the average developments.

Using LST outside of its domain of applicability is taken one step further in Figure 5c. Here, the wavelength-averaged

mean field wall-normal profiles (previously highlighted in Figure 1) are used to compute the LST and linear parabolized

stability equations [27] growth rates using the LASTRAC software [28]. Past the receptivity region (G ∈ [0.02, 0.4] m),

the growth rate from the LNSE calculation compares surprisingly "well" with those predicted by LST and LPSE, with

slightly better agreement being found with LST than LPSE, which is probably for the wrong reasons. A result like this,

though, suggests that the wavelength-averaged flow field is sufficient to get roughly the correct amplification rate for

second mode disturbances over 2-D roughness. The advantage of using LST or LPSE is, of course, the tremendously

lower computational resources required to solve the problem than using the LNSE.

0.14 0.89 1.64 2.39 3.14
-14

-2

10

22

34

(a)

20 65 110 155 200
-13

-3.25

6.5

16.25

26

(b)

0.02 0.265 0.51 0.755 1
-1

5.75

12.5

19.25

26

(c)

Fig. 5 (a) Second mode growth rate plotted versus nondimensionalized frequency using second mode wavelength

(W2A3), (b) Averaged LST over roughness wavelength compared to LNSE growth rate at G = 0.4 m (W2A3), and

(c) growth rate stream-wise development comparison for local analysis versus LNSE (W2A1) for 5 = 78 kHz.

VI. Energy Budget Analysis
This section seeks to understand why the 2-D roughness introduced at the wall destabilizes the second mode

compared to the smooth wall case. To do this, an energy budget analysis is performed the same way as in Montero &

Pinna [3] and Russo et al. [29]. This approach uses the Chu energy norm [30] to derive the equation governing the

growth rate of disturbance energy in the stream-wise direction. In Ref. 29 this type of analysis was able to explain

why the second mode was more unstable when presented with CO2 injection gas rather than air. It was shown the

destabilization mechanism stems from a reduction in dissipation (caused by lower thermal conductivity for CO2) rather

than a notable increase in energy production — an unexpected result that might have been overlooked by studies

primarily focusing on energy production mechanisms.

It is well-know and has been highlighted in various prior works that Chu’s energy norm is not consistent for the

spatial problem [31]. The reader is referred to Ref. 29 for all the energy budget terms since only the necessary ones are

presented here for the sake of brevity. Following Russo et al. [29], the total growth rate of disturbance energy Uğ,ā at

each stream-wise location can be computed by

Uğ,ā (G) =

+ į→∞
į=0

Ptot (G, H) + Ftot (G, H) + Dtot (G, H) 3H
+ į→∞
į=0

−2D̄(G, H)� ′ (G, H) 3H
. (12)

In Eq. 12, the terms Ptot,Ftot, and Dtot represent the total disturbance energy production, flux (redistribution), and

dissipation terms. The disturbance energy as defined by Chu [30] is given by
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� ′
=

1

2

(
%̄

d̄2
d′d′∗ + d̄D′ğD

′∗
ğ + %̄

(W − 1))̄2
) ′) ′∗

)
(13)

where (.)∗ denotes complex conjugate and subscript (.)ğ denotes the velocity component in the x,y directions. Repeated

indices indicate summation. In what follows the total disturbance energy growth rate is referred to as RHS and the

constituents are reported normalized by the denominator in Eq. 12 such that at any given G location RHS = Ptot+Ftot+Dtot.

Russo et al. [29] showed that extra terms pop out of using the spatial framework for the energy budget analysis but are

negligibly small and the simpler Eq. 12 may be used.

A. Total Energy Budgets

0.02 0.135 0.25 0.365 0.48
-40

-20

0

20

40

60

Fig. 6 Total energy budget terms for cases FP (flat plate) and W2A3. Open circles have been added to the

curves for the W2A3 results to distinguish them from the FP results.

The production, flux, and dissipation terms were computed for both the FP and W2A3 cases corresponding to their

maximum N factor second mode frequencies of 5 ≈ 120 kHz and 5 ≈ 78 kHz, respectively. Along with the constituents,

the total RHS is also plotted in Figure 6. From here onward, unless otherwise stated, all stream-wise curves have

been obtained by roughness wavelength (_Į) averaging the quantities of interest. As a sanity check, the growth rate

derived based only on the pressure disturbance amplitude at the wall (Uğ) is also included in the plot to verify that the

disturbance energy growth rate derived from the energy budget is correct. One can see that for both cases the curves

corresponding to Uğ (black) and RHS (light blue) are close over the entire stream-wise extent of the domain. Also, this

shows another case where the extra terms arising from the spatial framework for energy budget analysis are negligibly

small and can be omitted in the present analysis. Several trends jump out immediately from Figure 6, the first being that

the total disturbance energy growth rate has a lower (in maximum), broader distribution in the roughness case than the

smooth wall. The smooth wall has lower energy growth rate except towards the end of the domain where it surpasses

that of the W2A3. We already saw from the N factor curves in Figure 4 that the broadness of the growth rate in the

W2A3 case leads to a higher integral N-factor than the shorter taller distribution from the smooth wall case. Since the

flux terms (orange) are negligibly small throughout the entire domain considered, the primary cause of second mode

destabilization is presumably originating from heightened energy production combined with diminished dissipation

over wider spatial extent than the smooth wall case. The plots that follow seek to understand the driving mechanisms of

these macroscopic observations.

B. Sub-term Energy Budgets

Before discussing the results of looking at the subtotal energy budget terms, they are briefly enumerated here. First,

the production term is comprised of

Ptot = PRS + Pmom + PEn + PPW + PDila + PIE + PTP, (14)
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where the terms on the right-hand side are production due to work done by disturbance Reynolds stresses on mean

velocity gradients, convection of disturbance momentum across mean flow velocity shear, entropy spottiness across

temperature shear layer, pressure work, dilatation, internal energy, and transport property variation, respectively. The

flux term is comprised of

Ftot = FTP + FHF + FPW + FSW, (15)

where the terms on the right-hand side cause energy flux (or redistribution) via transport property variation, heat

conduction, pressure work, and shear work, respectively. Lastly, the total dissipation term is comprised of

Dtot = DHF + DSW, (16)

where the terms on the right-hand side dissipate energy through heat conduction and shear work, respectively.

Figure 7 shows the most important of these constituent terms for production, flux, and dissipation. Beginning with

the production sub terms (see Figure 7a), the Reynolds stress and entropy energy production terms dominate the total.

These terms mathematically read

PRS = −d̄
(
D′D′

mD̄

mG
+ D′E′

mD̄

mH
+ D′E′

mĒ

mG
+ E′E′

mĒ

mH

)
, (17)

and

PEn = −
[
d̄'ĝėĩ

(
) ′

(W − 1))̄
− d′

d̄

) (
D′
m)̄

mG
+ E′

m)̄

mH

)]
. (18)

All other terms (shown in gray lines) are much smaller than the Reynolds stress and entropy terms. The significant

0.02 0.135 0.25 0.365 0.48
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(a)

0.02 0.135 0.25 0.365 0.48
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0
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15

(b)
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-40
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-20

-10

0

10

(c)

Fig. 7 Sub-budget terms compared between flat plate (FP) and W2A3 roughness for disturbance energy (a)

production, (b) flux, and (c) dissipation.

Reynolds stress production for the W2A3 case occurs over nearly the entire domain and is roughly the same magnitude

as the entropy term, demonstrating nearly equal contributions from both to the total. The smooth wall case on the

other hand has negligibly small Reynolds stress over most of the domain and the dominating production term is always

entropy term. The Reynolds stress does pickup towards the end of the domain for the smooth wall where the peak

in energy growth rate is achieved. Since both cases have comparable entropy production, it appears already that the

destabilization in the roughness case may be caused by a Reynolds stress augmentation introduced somehow through

the roughness elements. Moving to the flux sub terms shown in Figure 7b, both cases have energy redistribution mainly

contributed by the pressure work mechanism exclusively. This term reads

FPW = −
[
m (D′%′)

mG
+ m (E′%′)

mH

]
. (19)

While the total flux remains low throughout the entire domain for the W2A3 case, the smooth wall has positive flux

contributions in the most unstable region that are only about 50% lower than the Reynolds stress production term. As

was seen before, the total energy growth rate due to dissipation remains lower (in magnitude, still negative) in the W2A3

case than the FP. These terms are calculated using the following expressions

DSW = −
[
g′ĮĮ

mD′

mG
+ g′įį

mE′

mH
+ g′Įį

(
mE′

mG
+ mD′

mH

)]
, (20)
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and

DHF =
1

)̄

(
@′Į

m) ′

mG
+ @′į

m) ′

mH

)
. (21)

The sub-terms not defined here can be found in the Appendix VIII.C. Plotted alongside its constituents, Figure 7c

illustrates the fact the dissipation due to heat conduction contributes significantly more to the total dissipation in both

cases. While the shear work is slightly more powerful in dissipating energy away in the roughness case (perhaps due to

flow separation), the main difference lies in the diminished heat conduction dissipation in the W2A3 case. Thus far, it

appears that increased Reynolds stresses and diminished dissipation due to heat conduction play the largest role in the

second mode destabilization due to the 2-D roughness. The following section seeks one more level analysis to see why

these terms are behaving the way they are.

C. Disturbance Energy Distributions

Through the analyses of the preceding sections we were able to see that the elevated Reynolds stress causes an

increase in disturbance energy production over a broad spatial extent for the roughness case. This combined with the

diminished dissipation (compared to the smooth wall case) leads to overall higher energy growth. What still is not

clear is why these trends occur. To help shed some light on this, the distributions of the dominant terms in energy

production and dissipation are shown over two roughness wavelengths of spatial extent. The location selected for

consideration corresponded to where the peak total disturbance energy growth occurred for each case, namely G ≈ 0.29

m and G ≈ 0.44 m, for the rough and smooth walls, respectively.
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Fig. 8 Spatial distributions of disturbance energy production due to (a) Reynolds stresses and (b) entropy

spottiness, and (c) disturbance energy dissipation due to heat conduction, for both W2A3 roughness (top) and

smooth wall (bottom).

Starting with the Reynolds stress distributions shown in Figure 8a, a marked difference can be observed between the

rough and smooth wall cases. The smooth wall exhibits a nearly uniform distribution in Reynolds stress from low in the

boundary layer all the way up to the edge which is expected due to small variation of the flow in streamwise direction.

The roughness case, on the other hand, shows a more complicated distribution with much larger peaks in Reynolds

stress energy production present at the windward shoulder of the roughness element peaks. Ever so slight negative

contributions ensue slightly past the roughness peak, but they cannot cancel out the preceding positive contribution, and

the wavelength-averaged growth rate comes out to much larger than the smooth wall case. The main difference between

the two flow fields is the presence of the compression-expansion shock wave system occurring over each roughness

element peak (illustrated in later figures). This may be causing the elevated Reynolds stress production.

Moving to the entropy production term in Figure 8b, it is evident that the entropy terms are predominantly active

within a very narrow region surrounding the critical layer. Again it can be seen that the wavy wall case has a spottier

distribution than the smooth wall case. The reader should take note of the varying minimum and maximum values for the

color contours. It is about 600% larger than the Reynolds stress plot previously discussed. This was done to appreciate

the massive overshoots in entropy production occurring for the wavy wall case near the boundary layer edge over the

tops of the roughness peaks. The smooth wall too possess the peak in entropy production near the boundary layer

edge, but it is over a shorter wall-normal extent and varies imperceptibly in the stream-wise direction. Heat conduction

dissipation shows interesting distributions as well (Figure 8c). Considering that conduction is a much slower physical
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process than convection of momentum and thermal fluctuations the �ĄĂ term appears to be less affected. The smooth

wall case shows peak dissipation at the wall that is significantly larger than the lower peak near the boundary layer edge.

Similarly, the W2A3 roughness distribution possesses these two peaks, however, the stream-wise variation is similarly

modulated in streamwise direction as the previously discussed production terms. In the roughness case, the dissipation

does peak at the wall, but it is restricted to the windward roughness trough and only makes it about half way up the

roughness element before diminishing. This combined with the cancellations present near the boundary layer edge result

in the integrated decrease in dissipation seen in the previous plots. The cause of this is likely the separation bubble

where slow moving fluid over the majority of the roughness wall reduces the near wall flow gradients and the energy

dissipation mechanisms there. Other portions of the wall (near the peak) have enhanced shear, however, they occur over

a lesser stream-wise extent and the average over the wavelength results in lower dissipation than the smooth wall.
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Fig. 9 Spatial distributions of disturbance energy production due to (a) Reynolds stresses, and the products of

disturbance velocity real parts (b) and imaginary parts (c), for W2A3 (top) and smooth wall (bottom).

Given that the main difference in energy production between the smooth wall and roughness case lies in the Reynolds

stress term, a closer look is taken to help understand why this difference arises. To do this, first recall the terms that

comprise the Reynolds stress shown in Eq. 17. The most dominant of the four terms (comparison not shown here) was

found to be the second one, denoted RS2, which contributed almost entirely to the total PRS. Given that this term should

be real valued RS2 = −d̄D′E′ ĉī̄
ĉį

, yet the complex product D′ and E′ yields a complex number (except when D′ = E′∗), we

consider only the real part in the energy budget analysis. Thus, the RS2 term produces disturbance energy only when

D′ĨE
′
Ĩ + D′ğE

′
ğ < 0, or the phase difference between the two velocities is ±c. Here, the subscript "r" and "i" denote real and

imaginary parts of a complex number, respectively. To see where in the flow field these two parts of the summation

interfere to become negative/positive or net zero, Figure 9 plots again the Reynolds stress distributions for the W2A3

and smooth case for quick reference. Newly featured are the fields of D′ĨE
′
Ĩ (Figure 9b) and D′ğE

′
ğ (Figure 9c) that contain

the outline of the high pressure front formed by the compression wave shown as dashed lines for the wavy case. Only

a vertical reference line at the same G location is provided for the smooth wall case given the minimal stream-wise

variation in Reynolds stress. By inspection of the velocity product fields for the smooth wall case, even though the peaks

are more saturated in the plot, they cancel each other out to a large extent and the result is the more mild Reynolds stress

seen on the left. This is verified by considering the largely negative D′ğE
′
ğ near the vertical dashed line in Figure 9c and

the smaller (magnitude) positive lobe at the same dashed line in Figure 9b for D′ĨE
′
Ĩ , thus yields a small negative number

and a small positive Reynolds stress production term. On the other hand, the rough wall fields exhibit smaller extrema in

D′ĨE
′
Ĩ and D′ğE

′
ğ , but in regions sloping up the windward side of a roughness element they are very nearly out of phase and

contribute largely to the Reynolds stress. The main flow field structure that could cause this increase in phase shift is the

compression-expansion shock wave system present for the wavy wall. Thus, it can be concluded that the Reynolds stress

energy production is increased in the rough wall case due to compression waves emanating from the roughness elements.

VII. Extension to 3-D
Up until this point, all calculations discussed have been performed in two spatial dimensions (G,H) using 2-D

sinusoidal roughness shapes. This can be thought of a special case of the real-world situation faced by hypersonic

vehicles where surface roughness varies both in the stream- and span-wise directions (presumably randomly as well).

The preliminary work presented here seeks to incorporate some of these realities in the simulation by utilizing a 3-D
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sinusoidal roughness distribution with random phasing in span.

A. Steady Flow Field

Using again the roughness parameters defined for the W2A3 case, first a steady solution was obtained over the flat

plate with 3-D surface roughness. Similar as in 2-D for the stream-wise direction, 20 cells were used to resolve each

roughness element in the span, which extended six wavelengths (i.e., I ∈ [0, 6_Į]). Figure 10 visualizes the steady

flow field computed over the flat plate with 3-D roughness. Cross-plane slices near the end of the domain (G ≈ 0.4) of

stream-wise velocity shown on the left illustrate the dramatic effects of including span-wise varying surface roughness

on the steady solution. The momentum deficit created by the increased pressure on the roughness element windward

side results in the lower velocity fluid that gets transported upward by the lift-up effect [32]. These oscillations of high

and low speed fluid in the span-wise direction are commonly referred to as velocity "streaks." It is interesting to note

that the peaks of these streaks, while still exhibiting the wavelength of the roughness elements, wanders to the right as

one follows them from cross-plane to cross-plane in the downstream direction. This indicates that while the phasing

applied to the roughness elements are randomized, the distribution is such that it favors slightly the introduction of

span-wise velocity to the right. This is confirmed by the cross-plane contours of span-wise velocity shown to the right in

Figure 10 where even though negative and positive span-wise velocity lobes straddle the roughness elements close to the

wall (as fluids gets parted by the obstacle), farther away from the wall shows positive (red) span-wise velocity causing

the wandering of the streaks previously noted. This net cross-flow vortex system is reminiscent of that obtained by

Stemmer et al. [33] when simulating a pseudo-randomized roughness patch on the surface of a blunt body at hypersonic

speeds. Such strong span-wise gradients in stream-wise velocity provide ripe conditions for wake instabilities of the

(a) (b)

Fig. 10 Steady flow field visualization for case W2A3 with randomized surface roughness phasing in 3-D.

Surface and G-H plane colored by pressure and cross-plane (I-H) colored by stream-wise velocity (a) and span-wise

velocity (b).

type shown for isolated roughness and the relevance of second mode instability in this case may come into question.

The next subsection investigates this question.

B. Pulse Simulation Results

Given that the flow field becomes highly three-dimensional once the surface roughness is allowed to vary in the

span-wise direction, again a pulse disturbance was introduced into the steady field to assess whether or not the second

mode is still relevant for transition in this case. This pulse was two-dimensional (with no span-wise variation) to keep

the comparison with the aforementioned pulse simulations performed in two spatial dimensions as fair as possible. It

will be the subject of future work to analyze the response to a 3-D pulse like the one used in Ref. [18].

Probes distributed over the wall recorded the temporal signal and then were used to project the disturbances onto the

span-wise wavenumber-temporal frequency domain. Looking at this space at select G locations, as is done in Figure 11,

one can gain insight into the spatial and temporal length scales being amplified in the wave packet. At G = 0.15 m (Figure

11a) the spectra shows the 2-D modes (V/Vġ = 0) has the highest disturbance amplitude in the range 5 ∈ [25, 50] kHz.

This frequency range is also excited for the span-wise wavenumber introduced by the roughness elements, Vġ , and their

harmonics but to a lesser extent. Moving downstream to G = 0.25 m (Figure 11b) one can see that the 2-D modes are
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Fig. 11 Wall pressure frequency-spanwise wavenumber spectra at (a) G = 0.15 m, (b) G = 0.025 m, and (c)

G = 0.30 m, obtained from the 3-D W2A3 pusle simulation.

still dominating the flow field despite it’s high three-dimensionality. Highest amplitude frequencies remain between

5 = 25 kHz and 5 = 60 kHz, but the modulated streaks are seeing amplification as well (e.g., ( 5 , V/Vġ) = (50kHz, 1)).
The interaction of 2-D modes with 3-D streaks has also been observed in simulations of 3-D roughness on a cylinder

surface under subsonic post-shock conditions, as reported by Braga et al. [14]. Additionally, these cylinder simulations

also showed the emergence of spottiness in the spectra, which was attributed to phase randomization between the rows

of roughness elements in the spanwise direction. The spectra showed much more coherent structures are present for

perfectly staggered or aligned roughness elements. Finally, by G = 0.30 m, the spectrum fills up and the flow appears

to be well on its way to turbulence. These trends are more easily visualized in Figure 12 where the N factor for each

mode is plotted as they evolve in the downstream direction. Only the ( 5 , V/Vġ) = (25kHz, 0) mode from the 3-D

calculation is plotted in color (light blue) since this one was shown to be dominant in the V − 5 spectra. Other gray lines

intermittently surpass this frequency’s N factor but also belong to the 2-D modes within the frequency range highlighted

in the spectra. Also plotted are the N factor envelopes obtained from the 2-D LNSE calculations highlighted previously.

In this way, it is evident that the 3-D roughness destabilizes the flow even more than the 2-D roughness at the same

roughness parameters (W2A3). Indeed, it is destabilized more than any of the 2-D rough walls analyzed, but the initial

growth rate is not incredibly higher than that of case W2A1 for G < 0.2 m. It should also be noted that the amplified

frequency band became even more broad, a trend that is a continuation from 2-D (see spectra in Figure 3). Seeing 2-D

(V − 0) modes achieving similar growth rates in a 3-D calculation (over some spatial extent) gives merit to the idea of

possibly being able to find a 2-D equivalent surface roughness for which stability calculations could be performed at

significant fractions of the computational cost. Future work will introduce a pulse disturbance with a range of spatial

length scales to determine whether the 2-D modes seen here remain most amplified. Furthermore, we will examine

the amplitude distributions corresponding to various frequency and wavenumber pairs to gain deeper insights into the

distinct instability mechanisms that are excited.

VIII. Conclusions
This work examined 2-D and 3-D effects of distributed sinusoidal roughness on the boundary layer stability at

Mach 5.35 over a flat plate. For 2-D, the introduction of roughness elements with increasing height resulted in more

significant flow separation in the roughness troughs, as well as stronger compression-expansion shock systems to form

in the steady state flow field. Disturbances introduced to this boundary layer flow were analyzed to investigate how

the distributed surface roughness destabilized the dominant Mack second mode across an increasingly broad range of

frequencies. In addition to the second mode, Mack’s third mode became destabilized in the case of larger roughness

height. LST used in previous work for mode identification [16] was again utilized and found to predict the growth

rate of disturbances over the rough wall fairly well. An energy budget analysis revealed significant differences in the

disturbance energy production for the rough wall case W2A3, namely a marked increase in Reynolds stress energy

production at the same time as milder heat conduction disturbance energy dissipation. The decrease in dissipation was

attributed to the significant flow separation over the roughness troughs, and the increase in Reynolds stresses were seen

to arise from the compression-expansion shock system that forms over the peaks of the roughness elements. Simulations

were then performed over randomly phased (in span) distributed sinusoidal roughness in 3-D to investigate whether

trends observed in 2-D were applicable to the more realistic scenario of 3-D roughness. The steady flow field over

this roughness pattern exhibited very strong velocity streaks that seemed to follow an induced span-wise velocity to
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Fig. 12 N factor curves for W2A3 roughness in 3-D, and N factor envelopes for all 2-D cases considered.

the right. 2-D pulse simulation on this steady flow field revealed higher and broader frequency amplification than the

corresponding 2-D roughness case. Future work aims to more closely examine the mechanism responsible for the

heightened amplification when moving from 2-D to 3-D roughness.

Appendix

A. Grid Convergence

The initial wall-normal grid spacing was decreased from the nominal �Hĭ = 8 `m to �Hĭ = 5 `m at the same time

as the wall-normal cell count was increased from 400 to 500. Figure 13 below demonstrates the results for second mode

growth at 78 kHz for the W2A3 case remain very similar. Growth rate shows minor differences toward the end of the

domain.
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Fig. 13 Amplitude (a) and growth rate (b) shown for 5 = 78 kHz disturbances using variable wall spacing and

cell count.
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B. Roughness Invariance

The following plots verify the previously made claim that the growth rate of second mode disturbances over the

distributed roughness is invariant to whether the roughness elements are generated by displacing the wall downward or

upward. The amplitude on the other hand is not invariant, which can be seen in Figure 14 where the roughness displaced

upward achieves a lower amplitude at the position of neutral stability (G ≈ 0.05 m) as compared to the solution obtained

on the roughness elements displaced downward. This result is likely caused by the separation bubble formed at the

beginning of the first roughness element. Note, these results are for 2-D roughness elements.
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Fig. 14 Amplitude (a) and growth rate (b) shown for 5 = 78 kHz disturbances using roughness displaced

upward (HĨĥīĝℎ > 0) and downward (HĨĥīĝℎ < 0).

C. Addition Energy Dissipation Terms

These terms are present in the energy dissipation equation due to shear work and heat conduction but their definition

was saved until now for the sake of brevity. Note, _ = − 2

3
` following Stoke’s hypothesis.

@′Į = − ¯̂
m) ′

mG
@′į = − ¯̂

m) ′

mH

g′ĮĮ = (2 ¯̀ + _̄) mD
′

mG
+ _̄

mE′

mH
gįį = (2 ¯̀ + _̄) mE

′

mH
+ _̄

mD′

mG

gĮį = ¯̀

(
mD′

mH
+ mE′

mG

)
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