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Abstract13

Microbial communities play key roles across diverse environments. Predicting their function and14

dynamics is a key goal of microbial ecology, but detailed microscopic descriptions of these systems15

can be prohibitively complex. One approach to deal with this complexity is to resort to coarser16

representations. Several approaches have sought to identify useful groupings of microbial species in17

a data-driven way. Of these, recent work has claimed some empirical success at de novo discovery of18

coarse representations predictive of a given function using methods as simple as a linear regression,19

against multiple groups of species or even a single such group (the ensemble quotient optimization20

(EQO) approach of Shan et al. [1]). Modeling community function as a linear combination of21

individual species’ contributions appears simplistic. However, the task of identifying a predictive22

coarsening of an ecosystem is distinct from the task of predicting the function well, and it is23

conceivable that the former could be accomplished by a simpler methodology than the latter. Here,24

we use the resource competition framework to design a model where the “correct” grouping to be25

discovered is well-defined, and use synthetic data to evaluate and compare three regression-based26

methods, namely, two proposed previously and one we introduce. We find that regression-based27

methods can recover the groupings even when the function is manifestly nonlinear; that multi-group28

methods offer an advantage over a single-group EQO; and crucially, that simpler (linear) methods29

can outperform more complex ones.30

Author summary31

Natural microbial communities are highly complex, making predictive modeling difficult. One32

appealing approach is to make their description less detailed, rendering modeling more tractable33

while hopefully still retaining some predictive power. The Tree of Life naturally provides one34

possible method for building coarser descriptions (instead of thousands of strains, we could think35

about hundreds of species; or dozens of families). However, it is known that useful descriptions need36

not be taxonomically coherent, as illustrated, for example, by the so-called functional guilds. This37

prompted the development of computational methods seeking to propose candidate groupings in a38

data-driven manner. In this computational study, we examine one class of such methods, recently39

proposed in the microbial context. Quantitatively testing their performance can be difficult, as40

the answer they “should” recover is often unknown. Here, we overcome this difficulty by testing41

these methods on synthetic data from a model where the ground truth is known by construction.42

Curiously, we demonstrate that simpler approaches, rather than suffering from this simplicity, can43

in fact be more robust.44
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Introduction45

Microbial communities play key roles in global climate [2–4], food safety [5–7], and human health [8–46

11], but are highly complex [11–16]. To tackle this complexity, a key goal in ecology has been to47

derive methods of coarsening, e.g., functional groups or guilds [17, 18]. Such coarsened representa-48

tions can be more reproducible than the microscopic characterization while still being predictive of49

properties of interest [18–24].50

Over the years, multiple network-based algorithms for identifying biologically meaningful groups51

of organisms have been proposed [25, 26]. However, such approaches typically require extensive52

knowledge of species-species interactions, which is usually unavailable in microbial communities with53

a large number of species. Recently, Shan et al. [1] demonstrated the promise of a surprisingly simple54

methodology, ensemble quotient optimization (EQO), which can identify a “functional group” with55

respect to a specified property of interest (which we will call “function” for simplicity). For a56

continuous-valued function, the EQO algorithm is equivalent to a Boolean least square regression57

seeking to identify a subset of species whose combined abundance best correlates with the function58

while keeping the number of species in the group as small as possible (see Materials and methods,59

EQO for details). Moran et al. [27] used an approach that can be seen as a multi-group generalization60

of EQO. Compared to most modern applications of machine learning, EQO requires very little data.61

Further, in contrast to other methods of functional group identification, it only requires species62

abundances and the value of the function as input. This simplicity makes EQO highly appealing63

for microbial applications where such data is comparatively easy to collect. However, its empirical64

success is somewhat puzzling, as it amounts to modeling ecological function with a simple linear65

regression.66

Realizing the promise of such methodology, and improving on its performance, requires under-67

standing when and why EQO-like methods can succeed. Currently, validating the ability of such68

methods to discover biologically or mechanistically meaningful groups remains an open question.69

Of the three examples used in Shan et al. [1], only one (the data from [23]) had an indepen-70

dently established grouping against which the output could be compared (previously investigated71

in Ref. [28]). This issue is more general [25, 26, 29]. Empirical validation of grouping methods72

often relies on researchers’ intuition, evaluating whether the groups “make biological sense.” Such73

intuition-based validation can be compelling (e.g., Shan et al. [1] found that, when applied to the74

TARA Oceans [20,30] dataset with nitrate as the observable of interest, EQO appropriately grouped75

aerobic and anaerobic ammonia oxidizers). However, to systematically compare or improve such76

methods, a quantitative assessment of their performance is required. This requires a context with77

a known “ground truth,” against which the algorithm output can be compared.78

Doing this in empirical datasets is difficult. Few empirical examples allow for the unambiguous79

delineation of the “true” functional groups [17,29]; as a result, assessing the quality of a grouping is80

often qualitative and subjective. Here, we circumvent this limitation by adopting a model-based ap-81

proach, evaluating algorithm performance on synthetic data from a model where the correct answer82

is, by construction, unambiguous. Of course, extrapolating model-based validation to applicability83

to real datasets requires caution. Such analysis can nevertheless provide useful insight in comparing84

algorithms and identifying their limitations. After all, an algorithm that fails to perform in the85

“clean” world of a model is unlikely to succeed in real life.86

Specifically, we use a resource competition model with species catalyzing one of the steps of a87

degradation pathway with a specified topology. We take one of the degradation products (e.g. the88

final product) as the only quantity being measured (the “property of interest”). By construction,89

our model defines a unique “correct” grouping of species, namely, the grouping by reaction step90

performed. We use synthetic data from this model to compare the performance of three grouping91

algorithms: the single-group EQO of Ref. [1]; its multi-group generalization [27]; and a new algo-92

rithm we propose here, based on a Metropolis-like [31] search of the space of candidate groupings93

of species.94

We find that, first, these algorithms can recover the expected groupings even when the function95

is manifestly nonlinear. Next, we show that multi-group methods can offer an advantage over the96
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Figure 1: Using synthetic data to test group-searching algorithms in a context where
the correct grouping of species is known and uniquely defined. (A) We adopt a resource
competition model with cross-feeding. The reaction network is assumed to form a linear degradation
chain 1 → 2 → · · · → N with the end-product concentration (metabolite N , orange) taken as the
function of interest (shown with N = 3 as an example). Species can perform at most one reaction of
the linear chain, which naturally groups them into N groups (N − 1 groups consuming metabolite
1, . . . , N − 1, and a group not involved in the chain). The model also includes H other resources
for species to compete over, which create additional variability (not shown, see text). (B) The
synthetic dataset is generated by repeatedly selecting a random subset of 15 species and allowing
the community to equilibrate (see Eq. 1a-c). The final abundances and function (concentration
of resource N) are corrupted with Gaussian noise of relative strength ϵ emulating “measurement
noise,” and the resulting values are recorded as a “sample” in the dataset. (C) We use the synthetic
data as input for three families of regression-based algorithms: the EQO of Ref. [1] (which groups
species into two groups), and two families we call K-means and Metropolis (see text), which can
return any specified number of groups. The panel shows representative outputs of these algorithms
for N = 3 metabolites and for the number of groups indicated at the top. Species assigned to the
same group are shown in the same color. Outputs are quantitatively scored (see text) based on the
similarity to the “ground-truth” grouping hard-coded into the model (left-most row). Higher score
is better; a score of 1 corresponds to a perfect matching.

single-group EQO and, under some conditions, can correctly recover not only the group contributing97

to the function directly (in our model, the species producing the metabolite of interest), but also98

some information about the upstream groups whose influence is indirect. Finally, we present results99

indicating that on limited-size datasets with moderate measurement noise, simpler (linear) methods100

can outperform more complex ones.101

Results102

A consumer-resource model and the three methods for identifying groups103

To evaluate the regression-based methods in a simplest model setting, we adopt a chemostat104

consumer-resource model with cross-feeding, where the metabolism is designed so that there is an105

evident way to group species. The model includes S microbial species whose abundances are denoted106

by nµ (µ = 1, . . . , S) and N metabolites whose concentrations are denoted by mi (i = 1, . . . , N).107

These N metabolites are designed to form a linear degradation chain 1 → 2 → · · · → N . The108

linear pathway topology is a convenient place to start, since intuitively, it is one where a linear-109

regression-like approach is most likely to succeed. More complex pathway topologies, and various110

other ways to challenge the approach, will be discussed later. Species are designed to catalyze at111
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most one reaction of the chain, which naturally classifies them into N groups (Fig. 1). Specifically,112

species in group i (i ≤ N − 1) feed on metabolite i and transfer a fraction wi of it into resource113

i+1, while species in group N are not involved in the chain. The concentration of the end product114

mN is taken as the function of interest. We termed the last group in the chain (group N − 1) “the115

group of direct producers”.116

Besides these N metabolites mi, we assume there are H other generalised depletable resources117

for species to exploit, which create additional variability and competition; all resources are assumed118

to be substitutable for simplicity [32–34]. The availability ha (a = 1, . . . ,H) of generalised resource119

a is assumed to be a monotonically decreasing function of the total exploitation; for simplicity, we120

follow Ref. [24] and assume this dependence to take a simple hyperbolic form. Putting this together,121

the dynamics is described by the following equations:122

dnµ

dt
= nµ

[∑
i

(1− wi) τµimi +
∑
a

σµaha − χµ

]
(1a)

dm1

dt
= R1 −m1

∑
µ

τµ,1nµ − d1m1 (1b)

dmi

dt
= wi−1mi−1

∑
µ

τµ, i−1nµ −mi

∑
µ

τµinµ − dimi (for i > 1) (1c)

ha = ha ({σνa}, {nν}) =
ha
0

1 +
∑
ν
σνanν/Ka

. (1d)

Of the metabolites in the chain, only the first is supplied externally (at rate R1); for i > 1,123

the only source of metabolite mi is secretion by species consuming metabolite mi−1. Thus, the124

function (concentration of mN ) is naturally nonlinear: producing the final product requires all125

N − 1 groups to be present. The quantity wi is the transfer ratio of each reaction; di is the decay126

rate of metabolite i. The generalized resources are described by parameters ha
0 (the highest benefit127

the resource can provide) and Ka (the exploitation level at which this benefit is depleted by half).128

A species µ is defined by its role in the metabolic chain (τµi ∈ {0, 1} equals 1 if the species129

can consume metabolite i and 0 otherwise), its utilization strategy of other generalized resources130

(σµa ∈ {0, 1} equals 1 if it can exploit resource a and 0 otherwise), and its maintenance cost χµ.131

Here, we pick132

χµ =
∑
i

(1− wi) τµi +
∑
a

σµa + εxµ, (2)

where ε is a small quantity (taken to be 0.01 in this paper) and xµ is a Gaussian random number133

with mean zero and variance one. This choice follows the convention of Ref. [32], so that species134

able to benefit from more resources also have a larger cost, and neither generalists nor specialists135

are obviously favored. (At equilibirum, we expect mi ≈ 1, ha ≈ 1. Eq. (2) sets the cost χµ136

to approximately match the expected benefit, whatever the species’ strategy. As a result, the137

winners and losers of the competition are determined by the luck of the draw of the small random138

contribution xµ).139

The model makes many simplifications (perfect conversion efficiency, substitutable resources,140

ignoring Liebig’s law. . . ) adopted for simplicity, following previous work [32–34] to minimize the141

number of model parameters. However, for our purposes, two assumptions are especially worth142

highlighting. The binary τµi correspond to species that are contributing to at most one reaction of143

the chain (no promiscuity), making the grouping unambiguous. Within each group, species differ144

in their utilization of the generalized resources, but the contributions to the reaction of interest are145

assumed to be the same (no heterogeneity). The role of these two assumptions will be examined146

shortly.147

Species abundances determine the reaction fluxes and thus the value of the functional property148

of interest mN (the concentration of metabolite N). With the model defined above, it can be shown149
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(see S1 Text and Figures Section 1) that at equilibrium,150

mN =
R1

kN

w1T1

T1 + d1

w2T2

T2 + d2
· · · wN−1TN−1

TN−1 + dN
, (3)

where Ti =
∑

µ τµinµ is the total abundance of the functional group i ∈ {1, . . . , N − 1}. Thus, the151

individual species nµ affect the value of the function only via the combined group abundances Ti,152

but the relationship between function and group abundances is manifestly nonlinear in this model.153

In this paper, we set the parameters as follows. The metabolite transfer ratios wi and the decay154

rates di are the same for all i: wi ≡ w = 0.5 and di ≡ d = 1. The supply rate R1 is set to155

R1 =
∏N−1

i=1 w−1
i = w−(N−1), compensating for the losses at each reaction to ensure that, if we156

change N , the value of the function mN remains of the same order. Finally, the H generalized157

resources are selected to be identical for simplicity, with ha
0 ≡ h0 = 3 and Ka ≡ K = 1 for all a.158

We generate the synthetic dataset by first generating a species pool (i.e., generating {σµa} and159

{mµ}, see Materials and methods), and then repeatedly selecting a random subset of species and160

allowing the community to equilibrate according to Eqs. 1a-c. The final species abundances {nµ}161

and function mN are corrupted with Gaussian noise of relative strength ϵ emulating “measurement162

noise”, and the resulting values are recorded as a “sample” in the dataset (Fig. 1B).163

We use the synthetic data as input for three families of regression-based algorithms (see Materials164

and methods for details). The first is the EQO proposed by [1] which we modified to incorporate165

the Akaike Information Criterion (AIC) into the optimization process. In the second method, the166

coefficients of a multiple linear regression against all species are fed into K-Means clustering for167

grouping [27]. We term this method “K-Means,” for simplicity. The third is a new algorithm168

we propose. In this approach, the root-mean-square-error (RMSE) of a multiple linear regression169

against (candidate) group abundances takes the role of energy, which we seek to minimize while170

searching the coarse-graining space with a Metropolis-like [31] algorithm. We term this algorithm171

“Metropolis.” All three algorithms are linear-regression-based (but the third can be extended to172

include higher-order terms; we will return to this point later). By design, EQO always outputs two173

groups (‘functional’ and ‘non-functional’ species); in contrast, K-Means and Metropolis can return174

any specified number of groups. Representative examples of the output groupings of each algorithm175

(with the ground truth containing N = 3 groups) are shown in Fig. 1C.176

To evaluate the quality of such groupings, we use a metric based on Jaccard Similarity. First,177

we define the “recovery quality” of a group in the ground truth as the Jaccard Similarity between178

this group and its best match in the grouping being evaluated. Then, the overall quality score of a179

grouping is defined as the average recovery quality of all the ground-truth groups (see S1 Text and180

Figures Section 2 for details). By construction, this score is between 0 and 1, where 1 indicates181

perfect matching. Perfect matching can only be expected when the number of groups in output (k)182

equals the number of groups in the ground truth (N). If k < N , then the highest possible score is183

k/N , which we call the performance ceiling of a k-group output for k ≤ N (see S1 Text and Figures184

Section 2). The quality scores for each of the example groupings in Fig. 1C are shown below them.185

Linear-regression-based algorithms perform well, with multi-group algo-186

rithms recovering more information187

We begin by evaluating the three algorithms on synthetic datasets with N = 3 true groups of 16188

species each, for a total of S = 48 species (groups 1 & 2 successively degrade metabolite 1 into189

metabolite 3, while group 3 is “nonfunctional”). For our first test, we consider the most favorable190

regime with a large number (900) of samples and low noise (10%). We follow the protocol of Fig. 1191

to test each of the algorithms on 50 synthetic datasets. The quality scores of all the 2- and 3-group192

outputs are summarized in Fig. 2A, B. (The groupings themselves are shown in Fig. S4 of S1 Text193

and Figures.)194

For 2-group outputs (Fig. 2A), all three algorithms perform substantially better than random,195

with K-Means and Metropolis approaching the performance ceiling of 2-group groupings (k/N =196

2/3, dashed line). As one might expect, in most cases, the groupings identified by the 2-group197
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Figure 2: Linear-regression-based algorithms succeed at identifying the correct func-
tional groups in synthetic data, and multi-group algorithms recover more information.
(A), (B) Algorithm performance, evaluated over 50 simulated datasets generated as described in
Fig. 1 with N = 3 true groups, 900 samples and 10% simulated measurement noise. Performance
scores (i.e., the similarity of result to the 3-group ground truth) are shown as box plots, separately
for the 2-group outputs of all three algorithms (A) and for the 3-group outputs of the K-Means and
Metropolis methods (B). Performance scores of random groupings are shown as controls. Boxes
represent the interquartile range (IQR) between the first and third quartiles; the line inside repre-
sents the median. Whiskers show the lowest and highest values within 1.5× IQR from the first and
third quartiles, respectively. Points that fall outside of the range of the whiskers (the outliers) are
shown explicitly. Stars mark the mean values. The dashed horizontal line is the theoretical perfor-
mance ceiling of any 2-group grouping when evaluated against the 3-group ground truth (compare
to Fig. 1C); 3-group methods can cross this bound. All three algorithms perform substantially
better than random, with Metropolis scoring the highest. (C) Heatmap shows the performance
of the 3-group Metropolis as a function of the measurement noise magnitude and the number of
samples in the dataset. (D) Heatmap of the performance of the 3-group Metropolis under increasing
intra-group heterogeneity (στ ) and inter-group promiscuity (ξ) of species, to show the limitation of
linear-regression-based algorithms under fuzzy ground truth groupings. In (C) and (D), each pixel
is an average over 50 synthetic datasets. The star indicates the parameters used in (A) and (B).

algorithms distinguish direct producers from the rest of the species (see Fig. S4 in S1 Text and198

Figures). Note that while EQO groups species into two groups, it assumes that only one of them (the199

“functional group”) affects the level of function. However, the “nonfunctional group” may also affect200

function through competition with functional species. This may help explain the comparatively201

low performance score of this algorithm: for our synthetic data, removing this restriction improves202

performance (see S1 Text and Figures Section 3).203

For 3-group outputs, both multi-group algorithms cross the performance ceiling of 2-group204

methods (Fig. 2B). Examining the output reveals that this is due to resolving not only the group205

of direct producers, but also (at least some of) the species that contribute to an upstream reaction206

(group 1); see Fig. S3 in S1 Text and Figures. Thus, we confirm that multi-group algorithms can207

recover more information on the community structure.208

The analysis just described was performed for a particular dataset size and noise magnitude. The209

effect of these parameters is presented in Fig. 2C, which shows the average score (over 50 synthetic210

datasets) of the 3-group Metropolis. As expected, the difficulty of the task increases if the dataset211

is small and/or noisy. One also expects the method to perform less well if the generalized resources212

are made to have a larger impact on species growth rates; see Fig. S2C, D. Here and below, we213

focus on the Metropolis algorithm for clarity of presentation, as it appears to perform best, at least214

on the synthetic data used here. The scores for 2-group outputs and for the other two algorithms215

behave similarly, and are presented in Fig. S5 in S1 Text and Figures.216

To further challenge the algorithms to detect their limitation, we tweak the model in two ways,217

relaxing some of the assumptions to make the ground truth grouping less clear. First, we allow218

species in the same group to vary in their contribution to the respective degradation reaction.219

Specifically, instead of setting all non-zero terms of τµi to be the same, we draw them from a220
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distribution with width στ ; we call this intra-group heterogeneity. Second, we consider species that221

are increasingly promiscuous rather than specializing in a single reaction step (in other words, we222

let them have a small rate ξ for reaction(s) not belonging to its group); we call this inter-group223

promiscuity. The details are described in Materials and methods. Fig. 2D presents the heatmap224

of Metropolis performance as a function of the heterogeneity and promiscuity parameters (see also225

Fig. S6). We see that the algorithm can tolerate some deviations in either direction; however, for226

high heterogeneity or promiscuity when the group identity becomes increasingly fuzzy, performance227

begins to fall and approaches the score of a random grouping.228

Groups affecting the function more directly are easier to recover229

The overall quality score defined above and analyzed in Fig. 2 is a summary statistic averaged230

over all the groups in the output. However, some groups may be recovered better than others. To231

characterize this, we now increase the length of the degradation chain and focus on the recovery232

quality of individual groups, measured by the Jaccard Similarity between a given true group and its233

closest match in the algorithm output. To make the results otherwise comparable as we increase the234

length of the chain, the total number of species is kept as similar as possible under the constraint235

that each group contains the same number of species (see Materials and methods for details).236

Throughout this analysis, the dataset size is held steady at 900 samples and the noise magnitude237

is kept at 10%.238

Fig. 3A shows the recovery quality of each of the groups in a degradation chain of length N = 4,239

as identified by the Metropolis algorithm for various k. Similarly to the results of the previous240

section, at k = 2 (two-group output), the group of direct producers is the only group recovered.241

Increasing k makes it possible to resolve other groups, but the recovery quality drops as groups get242

further away in the chain.243

To further illustrate this point, Fig. 3B compares the recovery quality of direct producers (group244

N − 1) and the most distant upstream group (group 1), as a function of the length of the chain.245

(Note that identifying the most distant group requires using k = N , while the direct producers246

are best identified by setting k = 2; see Fig. 3A.) We see that as the chain becomes longer, the247

ability to recover the most distant group drops quickly, whereas the direct producers are adequately248

recovered (in this example) up to length 5. These results quantitatively confirm the intuition that249

groups of species affecting the function more directly are easier to recover, while further illustrating250

the ability of multi-group algorithms to recover more information on community structure.251

While the ability to recover upstream groups is remarkable, we hypothesized that it is facilitated252

by our choice of a particularly simple (linear) topology of the degradation pathway. To test this,253

we considered several other reaction topologies, as well as other choices for the quantity of interest254

beyond the case of the end-product metabolite of a linear degradation chain. Specifically, we let255

the function be an intermediate product of a linear degradation chain; one of the end products in a256

degradation chain with a branch; or the common end product of two linear chains. This analysis is257

presented in the S1 Text and Figures Section 4. In the first two cases, Metropolis can again identify258

all the functional groups, while in the last, it can only recover the groups which directly produce259

the metabolite of interest. In summary, our analysis confirms that for a function associated with260

multiple groups, the group which affects (correlates with) the function the most will in general be261

easiest—and sometimes the only one—to be found.262

Finding the right variables can be easier than finding the right model263

Given the promising performance of linear-regression-based algorithms, it is natural to ask whether264

algorithms based on more complex models could do better. Of note, our Metropolis algorithm can265

be generalized to any model of community function that can accept the combined group abundances266

as input, and return the RMSE of the prediction. Thus, the Metropolis algorithm can be used to267

test different models under the same framework. Here we consider a generalization to a regression268

with both linear and quadratic terms, which we term the ‘quadratic Metropolis.’ To emphasize269
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Figure 3: Identifying the groups becomes harder when the degradation chain is long,
especially for groups catalyzing upstream reactions. (A) The panel shows the ability of the
Metropolis algorithm to recover the true functional groups within a linear degradation chain with
N = 4 metabolites. The recovery quality of a group is defined as the Jaccard Similarity between the
true functional group and its closest match in the algorithm output. Here, the recovery qualities
of each of the true functional groups (groups 1, 2, and 3) are shown as a function of k, the number
of groups requested from the algorithm. Recovery qualities attained by random k-group groupings
are shown as controls (black line with triangle markers). As the number of groups k in the output
increases, the algorithm first finds group 3 (direct producers), then group 2 and group 1, with
ever-decreasing recovery quality. (B) The recovery quality of Metropolis of the most upstream
group (group 1, blue dashed line) and the direct producers (group N − 1, red solid line) in the N -
metabolites degradation chain, shown as a function of N . Recovery quality of group 1 is reported
for N -group algorithm outputs while that of direct producers is for 2-group outputs (see text.)
As controls, the recovery qualities (of arbitrary group) by N -group and 2-group random groupings
are shown as black dashed line and black solid line, respectively. As the chain becomes longer,
the ability to recover the most upstream group drops quickly, whereas the direct producers are
adequately recovered up to length 5. In both panels, shading indicates the standard error of the
mean over 50 synthetic datasets, circles indicate data points for Metropolis while triangles for
random groupings.

this difference, the original version considered above will from now on be referred to as ‘linear270

Metropolis.’271

To compare these two versions, we evaluate them on the same synthetic datasets with N = 3272

true groups as in Fig. 2. Before comparing their performance, we note that, by construction, each273

algorithm constructs two objects. First, it returns a set of coarsened variables — i.e., the groups.274

Second, it also identifies a predictive model that uses these variables to predict the function (see275

Eq. 4a & b in Materials and methods)— in our case, the specific instance of the linear or quadratic276

regression model. When comparing the performance of the linear and quadratic versions of the277

algorithm, it is important to be clear that in this work, our primary focus is on identifying the278

variables. In contrast, the prediction error of the model is only a means to an end: we assume, or279

hope, that the regression model trained on the correct variables will have a lower RMSE than a280

model trained on the wrong variables.281

Intuitively, the quadratic model should predict the function better since it has more parameters,282

and the true structure-function mapping (Eq. (3)) is nonlinear. This is indeed the case, as demon-283

strated in Fig. 4A which shows the difference in out-of-sample R2 (Eq. (5), linear minus quadratic,284

averaged over 100 datasets) as a function of the number of samples and noise magnitude. (See Ma-285
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Figure 4: If datasets are small and/or noisy, linear-regression-based algorithms for
identifying functional groups outperform more complex versions. We compare the perfor-
mance of the linear-regression-based Metropolis algorithm to a more expressive version that includes
quadratic terms. Both versions are evaluated on the same synthetic datasets with a 3-group ground
truth. Each algorithm return a set of coarsened variables (a grouping of species into three groups)
and a model that uses these variables to predict the function. (A) The model identified by the
quadratic Metropolis is often more predictive of the function (blue). The heatmap shows the differ-
ence in out-of-sample coefficient of determination (R2). More specifically, we plot the R2 of the best
linear model minus the R2 of the best quadratic, where “best” refers to the model identified by the
corresponding Metropolis algorithm over its finite runtime (10000 steps). (B) Nevertheless, even
when the linear algorithm loses in R2, the grouping it identifies can be a better representation of
the underlying ground truth. The heatmap shows the difference in the quality score of the grouping
(linear minus quadratic). The panels highlight that the task of identifying a predictive coarsening
of an ecosystem (B) is distinct from the task of predicting the function well (A), and for small or
noisy datasets, the former is best accomplished by a simpler method. Each pixel is an average over
50 datasets. Dashed lines mark the boundaries between the three regimes discussed in the main
text.

terials and methods for details.) In some of the parameter range, the quadratic model has higher286

predictive power. Crucially, however, finding the right variables is distinct from finding the right287

model. The heatmap in Fig. 4B uses the same data as panel A, but plots the difference of grouping288

quality scores identified by the two algorithms. Putting these two panels together, we distinguish289

three regimes, as indicated by dashed lines. In the first regime (many samples, low noise), the290

quadratic model is better at both predicting the function and detecting groups. In the second, the291

linear version is better at identifying variables, even though the quadratic is better at predicting292

the function. In this regime, the higher expressivity of the more complex model appears to hinder293

the algorithm’s ability to correctly identify the variables. Finally, in the third (and arguably the294

most relevant) regime of few samples and high noise, the quadratic version, somewhat surprisingly,295

performs worse at both tasks. This is because at some point, the failure to identify the variables296

also limits its ability to predict the function. (Of course, one caveat is that in this region of param-297

eter space, the task is especially hard: even for the better-performing linear method, the absolute298

quality of group prediction remains relatively poor; see Fig. 2C.)299

In conclusion, we find that for small or noisy datasets, the task of identifying a predictive300

coarsening of an ecosystem (“finding the right variables”) can be easier than the task of predicting301

the function well (“finding the right model”), in the precise sense that—at least in the example302

considered here—it is best accomplished by a simpler method.303
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Discussion304

In this work, we examined the ability of several simple algorithms to recover meaningful “functional305

groups” of microbial taxa using only the information on species abundances and a single function of306

interest across a collection of samples. For this, we used synthetic data generated from a model for307

which the most sensible grouping could be defined unambiguously. This allowed us to quantitatively308

assess an algorithm’s performance by comparing its output against the expected “ground truth”.309

We found that, first, simple regression-based methods could indeed correctly recover a substantial310

amount of information about the underlying community structure, at least in the simplest scenarios311

considered in our model. Second, we showed that multi-group algorithms can offer an advantage312

over the two-group EQO proposed previously. Finally, and most importantly, our analysis indicates313

that under some conditions, particularly for datasets that are small and/or noisy, simpler (linear)314

methods can outperform more complex ones.315

Our minimal model included many simplifications, and considered only the simplest reaction316

topologies. Even in these favorable cases, we have seen that realistic details, such as inhomogeneity317

of species contributions to function, reduce performance. Other complications could degrade per-318

formance further; for example, the method is unlikely to succeed for functions with non-monotonic319

dependence on group abundances, or instances when individual species’ contributions are strongly320

context-dependent.321

Of the three algorithms evaluated here, the newly proposed Metropolis algorithm performed322

best. However, it is clear that the findings of a model-based evaluation such as ours should be323

interpreted with caution. Whether the Metropolis-based algorithm would retain this relative ad-324

vantage in real-world applications remains to be established.325

MATLAB code (Mathworks, Inc.) reproducing all figures from scratch is available as Supple-326

mentary File 1. We thank A. Goyal, X. Shan, C. Holmes, J. Moran, F. Yu and Q. Wang for useful327

discussions. This work was supported in part by the National Science Foundation grant PHY-328

2310746 to MT and OXC, as well as grants No. PHY-1748958 and the Gordon and Betty Moore329

Foundation Grant No. 2919.02 to the Kavli Institute for Theoretical Physics (KITP).330

Materials and methods331

Linear-regression-based algorithms332

In this work, we test three linear-regression-based algorithms, termed “EQO,” “K-Means,” and333

“Metropolis.” For all three algorithms, the input is an abundance table (matrix) Aaµ and a column334

vector Ya of the values of the functional property in each sample (here and below, row index a335

labels samples, column index µ labels species). The output is a grouping of species into k groups336

for one or several k. This section presents the technical details of these algorithms. The algorithm337

for generating random k-group groupings with given k, which serves as control, is also presented338

here.339

EQO340

The EQO algorithm was proposed by Ref. [1]. For a continuous function, this algorithm is equivalent341

to a Boolean least square regression which selects from the community a subset of species (the342

“functional group”) whose combined abundance correlates with the function of interest [1]. As343

such, it constructs a 2-group grouping of species: those included in the functional group, and those344

that are not.345

Each candidate grouping can be represented by a column Boolean vector x⃗ ≡ {xµ} of length346

S (the total number of species), where the species included / not included in the functional group347

are encoded by setting xµ = 1 and xµ = 0, respectively. The EQO algorithm executes a search in348

the space of such Boolean vectors. For a given candidate x⃗, we first calculate the abundance of the349

functional group (in each sample) fa =
∑

µ Aaµxµ, then perform a 1-dimensional linear regression350
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(with an intercept), with Ya as response and fa as predictors. We then calculate the Akaike351

Information Criterion (AIC) of this regression as AIC = 2κ+ n log(RSS/n), where κ is the size of352

the functional group (the number of nonzero components in x⃗) and n is the number of samples. RSS353

is the residual sum of squares of the regression. Thus, with Aaµ and Ya given, AIC is a function of354

x⃗. We use the MATLAB built-in function ga to find the optimal x⃗ which minimizes the function355

AIC(x⃗) using a genetic algorithm. We set the options of ga as follows: FunctionTolerance=1e-9,356

MaxStallGenerations=500, MaxGenerations=10000 and PopulationSize=100.357

Of note, this implementation is slightly different from the protocol of Ref. [1], where RSS is358

first minimized for a range of (fixed) κ values, after which the AIC is calculated and the lowest359

value is selected. For our application, we found that the constraint of holding κ fixed slows down360

optimization significantly, so we chose to combine the two successive steps into a single optimization361

process.362

Note that although EQO groups species into two groups, only one of them is assumed to affect363

the function. To explore the effect of this assumption, for our testing we also considered a variant364

of EQO where this constraint is relaxed (EQO-2g; see S1 Text and Figures Section 3). For our365

synthetic data, we found that removing this restriction improves performance.366

K-Means367

In this method, one first performs an S-dimensional linear regression (with intercept), using the368

function Ya as response and the abundances of each species Aaµ as predictors. Then the coefficients369

of all species are fed into the K-Means clustering algorithm (performed by the MATLAB built-in370

function kmeans) which groups the coefficients (and thus species) into k groups for the specified371

k < S. This heuristic approach is very naive, to the point that it is rather surprising it can be as372

successful as it is (cf. Fig. 2). When it does succeed, it offers the advantage of being incomparably373

faster than either of the other methods.374

Metropolis375

The aim of this algorithm is to find a set of kmax optimal groupings P∗ = {P∗
1 ,P∗

2 , . . . ,P∗
kmax

} where376

P∗
k is the optimal k-group grouping which gives the lowest RMSE through a linear regression. The377

approach, briefly, is to keep in memory a list of best current candidates P and the associated RMS378

error values E = {Ek}. We then perform M steps trying new groupings (by splitting or merging379

groups of the groupings already in P), updating the list as better groupings are found, and then380

assume the candidates are good enough, setting P∗ = P.381

More specifically, the algorithm proceeds as follows:382

1. Initialization. The list of candidates P = {P1,P2, . . . ,Pkmax} is initialized by randomly383

generating a series of k-group groupings Pk (see Section “Random grouping” below). For each384

Pk, we then calculate the combined abundance of each group and perform a k-dimensional385

linear regression (with intercept) with function Ya as response and group abundances as386

predictors. The RMSE of this regression is recorded as Ek.387

2. Main loop388

(a) Construct a new candidate: Randomly choose one of the groupings Pk from the389

current list P. If 1 < k < kmax, randomly split one of the groups in Pk into two (with390

probability p = 0.5), or randomly merge two groups into one (with probability 1 − p),391

thus obtaining a new grouping Pk′ with a different number of groups k′ ̸= k. If k = 1392

or k = kmax, only one of these operations is possible (respectively, only splitting or only393

merging), and is performed with probability 1.394

(b) Evaluate the new candidate: Calculate the combined abundance of each group in395

the new grouping Pk′ ; perform a k′-dimensional linear regression (with intercept) with396

function Ya as response and group abundances as predictors; and record its RMSE as397

Ek′ .398
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(c) Update the P list: Compare Ek′ to Ek′ (the RMSE of the k′-group grouping Pk′ cur-399

rently stored in P). With probability min{exp(−β(Ek′ − Ek′)), 1}, replace the currently400

stored grouping with Pk′ .401

3. Repeat the main loop M = 10000 times, then return the current list of candidate groupings402

P as the best guess of the optimal list P∗.403

In practice, we found β = ∞ to perform best, so we set β = ∞ for all the tests in this paper.404

This “zero-temperature” regime is usually undesirable, as it can cause optimization to become stuck405

in a local optimum. However, for our application, we have not observed this to occur: our approach406

of storing the list of candidate groupings for all k always maintained a large number of accessible407

moves.408

Empirically, we found that a sufficiently large kmax is required for a good performance, even if409

we are ultimately only interested in output groupings with small k. Throughout our analysis, we410

set kmax = 20. With this kmax, β = 0 was always found to perform best in our testing.411

For the quadratic Metropolis introduced in Fig. 4, we replace the linear regression with a re-412

gression with both linear terms and quadratic terms (which includes both T 2
i terms and the TiTj413

cross-product terms, with Ti the combined abundance of group i), as well as an intercept like before.414

Everything else is identical for both versions. Note that the number of coefficients in this regression415

model is quadratic in k (the number of groups), not S (the number of species). Thus, for all the416

figures shown, the model coefficients were well-constrained even with the lowest dataset size assayed417

(100 samples).418

Random grouping419

We generate a random k-group grouping of all S species as follows. First, randomly permute the S420

species (represented by S integers from 1 to S). If we think of this reordered set as a list of integers,421

with S − 1 “gaps” between them, then selecting a random partitioning into k non-empty groups is422

equivalent to randomly selecting k − 1 of these “gaps” as the locations of group boundaries.423

Simulation details424

To generate the datasets, we first generate a pool of S species, which means randomly generating425

the matrix {σµa} as a sparse binary matrix with density 0.3 (i.e., each entry σµa is independently426

set to 1 with probability 0.3, and 0 otherwise) and generating the maintenance cost χµ of each427

species according to Eq. 2. The number of generalised resources H is set to be 15 except in panel428

D of Fig. S2, where it is set to 30. The total number of species S is set to 48, with each group429

containing S/N species. The one exception is the N = 5 case of Fig. 3: since 48 is not divisible by430

5, we instead set S = 50 (so each group contains 10 species). Other parameters have been stated431

in the main text.432

For a dataset consisting of n samples, for each sample we randomly select 15 out of all S433

species, whose initial abundances are set to 1 (while those of the remaining species are set to 0).434

The initial values of all mi’s are set to 1. We use the MATLAB built-in function ode45 to simulate435

Eq. 1 to approximate equilibrium. We then record the final abundances of all species nµ and the436

concentration of the functional molecule mN . We repeat this procedure n times to obtain n samples.437

We then multiply each element of the abundance table and function by an i.i.d. random variable438

drawn from a normal distribution with mean 1 and width ϵ. Negative values are set to 0. The439

magnitude to ϵ tunes the strength of measurement noise.440

Intra-group heterogeneity and inter-group promiscuity441

Here we describe the operation details of analysis in Fig. 2D. As mentioned in the main text,442

originally the degradation rate τµi equals 0 or 1 with each species degrading at most one metabolite443

of the chain. We first add inter-group reaction promiscuity by replacing each zero τµi for i ≤ N − 1444
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(the last metabolite cannot be degraded) with a small value ξ so that each species is endowed with445

a small catalytic activity for all reactions, not just the one defining its group identity. We let ξ446

take a series of values from 0 to 0.3 to model different degrees of promiscuity. We then add species447

heterogeneity within a group as follows: for each species we draw an i.i.d. random number ηµ448

from lognormal distribution with parameter µτ = ln 1 fixed and στ varying from 0 to 0.3 to model449

gradually increasing heterogeneity. We then scale all reaction rates τµi of a given species µ by ηµ450

as a global factor. This rescaling can be understood as the uncertainty in counting abundances in451

practice (e.g., due to the species carrying a different number of copies of the 16S RNA).452

Comparison of abilities to predict function of linear and quadratic Metropo-453

lis454

Here we describe the detailed protocol of the comparison of abilities to predict function of linear455

and quadratic Metropolis shown in Fig. 4A. As mentioned in the main text, besides the groups456

(variables) these versions of Metropolis also identify two models for predicting the function:457

ŶL = bL +
∑
i

cLi Ti, (4a)

ŶQ = bQ +
∑
i

cQi Ti +
∑
i,j

dQijTiTj , (4b)

where Ti is the combined abundance of group i, and ŶL and ŶQ are the function predicted by linear458

and quadratic model, respectively. The two models are uniquely determined by their regression459

coefficients, {bL, cLi } for linear model and {bQ, cQi , d
Q
ij} for quadratic model. In Fig. 4A we are460

comparing the predictive power of these two models.461

To do so, for each generated pool of species (see Simulation details), we now generate 2 datasets462

consisting of the same number of samples. One of them is used as the training set, while the other463

one is set aside as the testing set. The training set is fed into the two versions of Metropolis, which464

are now required to output not only the optimal groupings they find, but also the coefficients of the465

corresponding models (Eqs. 4a & b) trained on the training set. (Specifically for Fig. 4, we only466

ask for the 3-group grouping and its regression coefficients.) We then test their abilities to predict467

the function in the testing set. The out-of-sample R2 is calculated as468

R2
out−of−sample = 1−

∑
a
(Ya − Ŷa)

2∑
a
(Ya − Y )2

, (5)

where Ŷa is the predicted value of function (for sample a), Ya is the true value, and Y = 1
N

∑
a
Ya469

is the average of Ya. The differences of out-of-sample R2 of the two versions of Metropolis (linear470

minus quadratic) are shown in Fig. 4A.471
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