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Abstract

Microbial communities play key roles across diverse environments. Predicting their function and
dynamics is a key goal of microbial ecology, but detailed microscopic descriptions of these systems
can be prohibitively complex. One approach to deal with this complexity is to resort to coarser
representations. Several approaches have sought to identify useful groupings of microbial species in
a data~driven way. Of these, recent work has claimed some empirical success at de novo discovery of
coarse representations predictive of a given function using methods as simple as a linear regression,
against multiple groups of species or even a single such group (the ensemble quotient optimization
(EQO) approach of Shan et al. [1]). Modeling community function as a linear combination of
individual species’ contributions appears simplistic. However, the task of identifying a predictive
coarsening of an ecosystem is distinct from the task of predicting the function well, and it is
conceivable that the former could be accomplished by a simpler methodology than the latter. Here,
we use the resource competition framework to design a model where the “correct” grouping to be
discovered is well-defined, and use synthetic data to evaluate and compare three regression-based
methods, namely, two proposed previously and one we introduce. We find that regression-based
methods can recover the groupings even when the function is manifestly nonlinear; that multi-group
methods offer an advantage over a single-group EQO; and crucially, that simpler (linear) methods
can outperform more complex ones.

Author summary

Natural microbial communities are highly complex, making predictive modeling difficult. One
appealing approach is to make their description less detailed, rendering modeling more tractable
while hopefully still retaining some predictive power. The Tree of Life naturally provides one
possible method for building coarser descriptions (instead of thousands of strains, we could think
about hundreds of species; or dozens of families). However, it is known that useful descriptions need
not be taxonomically coherent, as illustrated, for example, by the so-called functional guilds. This
prompted the development of computational methods seeking to propose candidate groupings in a
data-driven manner. In this computational study, we examine one class of such methods, recently
proposed in the microbial context. Quantitatively testing their performance can be difficult, as
the answer they “should” recover is often unknown. Here, we overcome this difficulty by testing
these methods on synthetic data from a model where the ground truth is known by construction.
Curiously, we demonstrate that simpler approaches, rather than suffering from this simplicity, can
in fact be more robust.
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Introduction

Microbial communities play key roles in global climate [2—4], food safety [5—7], and human health [8—
11], but are highly complex [11-16]. To tackle this complexity, a key goal in ecology has been to
derive methods of coarsening, e.g., functional groups or guilds [17,18]. Such coarsened representa-
tions can be more reproducible than the microscopic characterization while still being predictive of
properties of interest [18-24].

Over the years, multiple network-based algorithms for identifying biologically meaningful groups
of organisms have been proposed [25,26]. However, such approaches typically require extensive
knowledge of species-species interactions, which is usually unavailable in microbial communities with
a large number of species. Recently, Shan et al. [1] demonstrated the promise of a surprisingly simple
methodology, ensemble quotient optimization (EQO), which can identify a “functional group” with
respect to a specified property of interest (which we will call “function” for simplicity). For a
continuous-valued function, the EQO algorithm is equivalent to a Boolean least square regression
seeking to identify a subset of species whose combined abundance best correlates with the function
while keeping the number of species in the group as small as possible (see Materials and methods,
EQO for details). Moran et al. [27] used an approach that can be seen as a multi-group generalization
of EQO. Compared to most modern applications of machine learning, EQO requires very little data.
Further, in contrast to other methods of functional group identification, it only requires species
abundances and the value of the function as input. This simplicity makes EQO highly appealing
for microbial applications where such data is comparatively easy to collect. However, its empirical
success is somewhat puzzling, as it amounts to modeling ecological function with a simple linear
regression.

Realizing the promise of such methodology, and improving on its performance, requires under-
standing when and why EQO-like methods can succeed. Currently, validating the ability of such
methods to discover biologically or mechanistically meaningful groups remains an open question.
Of the three examples used in Shan et al. [1], only one (the data from [23]) had an indepen-
dently established grouping against which the output could be compared (previously investigated
in Ref. [28]). This issue is more general [25,26,29]. Empirical validation of grouping methods
often relies on researchers’ intuition, evaluating whether the groups “make biological sense.” Such
intuition-based validation can be compelling (e.g., Shan et al. [1] found that, when applied to the
TARA Oceans [20,30] dataset with nitrate as the observable of interest, EQO appropriately grouped
aerobic and anaerobic ammonia oxidizers). However, to systematically compare or improve such
methods, a quantitative assessment of their performance is required. This requires a context with
a known “ground truth,” against which the algorithm output can be compared.

Doing this in empirical datasets is difficult. Few empirical examples allow for the unambiguous
delineation of the “true” functional groups [17,29]; as a result, assessing the quality of a grouping is
often qualitative and subjective. Here, we circumvent this limitation by adopting a model-based ap-
proach, evaluating algorithm performance on synthetic data from a model where the correct answer
is, by construction, unambiguous. Of course, extrapolating model-based validation to applicability
to real datasets requires caution. Such analysis can nevertheless provide useful insight in comparing
algorithms and identifying their limitations. After all, an algorithm that fails to perform in the
“clean” world of a model is unlikely to succeed in real life.

Specifically, we use a resource competition model with species catalyzing one of the steps of a
degradation pathway with a specified topology. We take one of the degradation products (e.g. the
final product) as the only quantity being measured (the “property of interest”). By construction,
our model defines a unique “correct” grouping of species, namely, the grouping by reaction step
performed. We use synthetic data from this model to compare the performance of three grouping
algorithms: the single-group EQO of Ref. [1]; its multi-group generalization [27]; and a new algo-
rithm we propose here, based on a Metropolis-like [31] search of the space of candidate groupings
of species.

We find that, first, these algorithms can recover the expected groupings even when the function
is manifestly nonlinear. Next, we show that multi-group methods can offer an advantage over the
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Figure 1: Using synthetic data to test group-searching algorithms in a context where
the correct grouping of species is known and uniquely defined. (A) We adopt a resource
competition model with cross-feeding. The reaction network is assumed to form a linear degradation
chain 1 — 2 — -+ — N with the end-product concentration (metabolite N, orange) taken as the
function of interest (shown with N = 3 as an example). Species can perform at most one reaction of
the linear chain, which naturally groups them into N groups (N — 1 groups consuming metabolite
1,...,N — 1, and a group not involved in the chain). The model also includes H other resources
for species to compete over, which create additional variability (not shown, see text). (B) The
synthetic dataset is generated by repeatedly selecting a random subset of 15 species and allowing
the community to equilibrate (see Eq. la-c). The final abundances and function (concentration
of resource N) are corrupted with Gaussian noise of relative strength e emulating “measurement
noise,” and the resulting values are recorded as a “sample” in the dataset. (C) We use the synthetic
data as input for three families of regression-based algorithms: the EQO of Ref. [1] (which groups
species into two groups), and two families we call K-means and Metropolis (see text), which can
return any specified number of groups. The panel shows representative outputs of these algorithms
for N = 3 metabolites and for the number of groups indicated at the top. Species assigned to the
same group are shown in the same color. Outputs are quantitatively scored (see text) based on the
similarity to the “ground-truth” grouping hard-coded into the model (left-most row). Higher score
is better; a score of 1 corresponds to a perfect matching.

single-group EQO and, under some conditions, can correctly recover not only the group contributing
to the function directly (in our model, the species producing the metabolite of interest), but also
some information about the upstream groups whose influence is indirect. Finally, we present results
indicating that on limited-size datasets with moderate measurement noise, simpler (linear) methods
can outperform more complex ones.

Results

A consumer-resource model and the three methods for identifying groups

To evaluate the regression-based methods in a simplest model setting, we adopt a chemostat
consumer-resource model with cross-feeding, where the metabolism is designed so that there is an
evident way to group species. The model includes S microbial species whose abundances are denoted
by n, (p=1,...,5) and N metabolites whose concentrations are denoted by m; (i =1,...,N).
These N metabolites are designed to form a linear degradation chain 1 — 2 — --- — N. The
linear pathway topology is a convenient place to start, since intuitively, it is one where a linear-
regression-like approach is most likely to succeed. More complex pathway topologies, and various
other ways to challenge the approach, will be discussed later. Species are designed to catalyze at
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most one reaction of the chain, which naturally classifies them into N groups (Fig. 1). Specifically,
species in group ¢ (i < N — 1) feed on metabolite ¢ and transfer a fraction w; of it into resource
1+ 1, while species in group N are not involved in the chain. The concentration of the end product
my is taken as the function of interest. We termed the last group in the chain (group N — 1) “the
group of direct producers”.

Besides these N metabolites m;, we assume there are H other generalised depletable resources
for species to exploit, which create additional variability and competition; all resources are assumed
to be substitutable for simplicity [32-34]. The availability h, (a = 1,..., H) of generalised resource
a is assumed to be a monotonically decreasing function of the total exploitation; for simplicity, we
follow Ref. [24] and assume this dependence to take a simple hyperbolic form. Putting this together,
the dynamics is described by the following equations:

dn 2 :

7; =y Z,- (1= wi) Tuimi + - Tpalia = Xp (1a)

dmy

T Ry —my EM TNy — dimay (1b)
ZZZ = Wi—1Mj—1 ZH Tp,i—1Mp = My - Tpily — dim; (for i >1) (Lc)

hg
14+ ovany /Ko

ha - ha ({Uya}a {nu}) - (1d)

Of the metabolites in the chain, only the first is supplied externally (at rate Ry); for i > 1,
the only source of metabolite m; is secretion by species consuming metabolite m;_;. Thus, the
function (concentration of my) is naturally nonlinear: producing the final product requires all
N — 1 groups to be present. The quantity w; is the transfer ratio of each reaction; d; is the decay
rate of metabolite i. The generalized resources are described by parameters h{ (the highest benefit
the resource can provide) and K, (the exploitation level at which this benefit is depleted by half).

A species p is defined by its role in the metabolic chain (7,; € {0,1} equals 1 if the species
can consume metabolite ¢ and 0 otherwise), its utilization strategy of other generalized resources
(0ua € {0,1} equals 1 if it can exploit resource a and 0 otherwise), and its maintenance cost x,.

Here, we pick
Xp = Z(l — w;) TW'—FZO'MG—I-SJ)M, (2)
K2 a

where ¢ is a small quantity (taken to be 0.01 in this paper) and z,, is a Gaussian random number
with mean zero and variance one. This choice follows the convention of Ref. [32], so that species
able to benefit from more resources also have a larger cost, and neither generalists nor specialists
are obviously favored. (At equilibirum, we expect m; ~ 1, hy = 1. Eq. (2) sets the cost x,
to approximately match the expected benefit, whatever the species’ strategy. As a result, the
winners and losers of the competition are determined by the luck of the draw of the small random
contribution z,,).

The model makes many simplifications (perfect conversion efficiency, substitutable resources,
ignoring Liebig’s law...) adopted for simplicity, following previous work [32-34] to minimize the
number of model parameters. However, for our purposes, two assumptions are especially worth
highlighting. The binary 7,; correspond to species that are contributing to at most one reaction of
the chain (no promiscuity), making the grouping unambiguous. Within each group, species differ
in their utilization of the generalized resources, but the contributions to the reaction of interest are
assumed to be the same (no heterogeneity). The role of these two assumptions will be examined
shortly.

Species abundances determine the reaction fluxes and thus the value of the functional property
of interest my (the concentration of metabolite N). With the model defined above, it can be shown
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(see S1 Text and Figures Section 1) that at equilibrium,

_ Ry wnTy woly wy 1Ty (3)
knTi+di To+dy Ty—1+dn’

where T; = Zu Tuiny, is the total abundance of the functional group i € {1,..., N —1}. Thus, the
individual species n,, affect the value of the function only via the combined group abundances 7;,
but the relationship between function and group abundances is manifestly nonlinear in this model.

In this paper, we set the parameters as follows. The metabolite transfer ratios w; and the decay
rates d; are the same for all i: w; = w = 0.5 and d; = d = 1. The supply rate Ry is set to
Ry = HZV:_II w;l = w~ V=1 compensating for the losses at each reaction to ensure that, if we
change N, the value of the function my remains of the same order. Finally, the H generalized
resources are selected to be identical for simplicity, with AS = hg = 3 and K, = K =1 for all a.

We generate the synthetic dataset by first generating a species pool (i.e., generating {o,q} and
{m,}, see Materials and methods), and then repeatedly selecting a random subset of species and
allowing the community to equilibrate according to Egs. la-c. The final species abundances {n,}
and function my are corrupted with Gaussian noise of relative strength € emulating “measurement
noise”, and the resulting values are recorded as a “sample” in the dataset (Fig. 1B).

We use the synthetic data as input for three families of regression-based algorithms (see Materials
and methods for details). The first is the EQO proposed by [1] which we modified to incorporate
the Akaike Information Criterion (AIC) into the optimization process. In the second method, the
coefficients of a multiple linear regression against all species are fed into K-Means clustering for
grouping [27]. We term this method “K-Means,” for simplicity. The third is a new algorithm
we propose. In this approach, the root-mean-square-error (RMSE) of a multiple linear regression
against (candidate) group abundances takes the role of energy, which we seek to minimize while
searching the coarse-graining space with a Metropolis-like [31] algorithm. We term this algorithm
“Metropolis.” All three algorithms are linear-regression-based (but the third can be extended to
include higher-order terms; we will return to this point later). By design, EQO always outputs two
groups (‘functional’ and ‘non-functional’ species); in contrast, K-Means and Metropolis can return
any specified number of groups. Representative examples of the output groupings of each algorithm
(with the ground truth containing N = 3 groups) are shown in Fig. 1C.

To evaluate the quality of such groupings, we use a metric based on Jaccard Similarity. First,
we define the “recovery quality” of a group in the ground truth as the Jaccard Similarity between
this group and its best match in the grouping being evaluated. Then, the overall quality score of a
grouping is defined as the average recovery quality of all the ground-truth groups (see S1 Text and
Figures Section 2 for details). By construction, this score is between 0 and 1, where 1 indicates
perfect matching. Perfect matching can only be expected when the number of groups in output (k)
equals the number of groups in the ground truth (N). If £ < N, then the highest possible score is
k/N, which we call the performance ceiling of a k-group output for k¥ < N (see S1 Text and Figures
Section 2). The quality scores for each of the example groupings in Fig. 1C are shown below them.

myn

Linear-regression-based algorithms perform well, with multi-group algo-
rithms recovering more information

We begin by evaluating the three algorithms on synthetic datasets with N = 3 true groups of 16
species each, for a total of S = 48 species (groups 1 & 2 successively degrade metabolite 1 into
metabolite 3, while group 3 is “nonfunctional”). For our first test, we consider the most favorable
regime with a large number (900) of samples and low noise (10%). We follow the protocol of Fig. 1
to test each of the algorithms on 50 synthetic datasets. The quality scores of all the 2- and 3-group
outputs are summarized in Fig. 2A, B. (The groupings themselves are shown in Fig. S4 of S1 Text
and Figures.)

For 2-group outputs (Fig. 2A), all three algorithms perform substantially better than random,
with K-Means and Metropolis approaching the performance ceiling of 2-group groupings (k/N =
2/3, dashed line). As one might expect, in most cases, the groupings identified by the 2-group
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Figure 2: Linear-regression-based algorithms succeed at identifying the correct func-
tional groups in synthetic data, and multi-group algorithms recover more information.
(A), (B) Algorithm performance, evaluated over 50 simulated datasets generated as described in
Fig. 1 with N = 3 true groups, 900 samples and 10% simulated measurement noise. Performance
scores (i.e., the similarity of result to the 3-group ground truth) are shown as box plots, separately
for the 2-group outputs of all three algorithms (A) and for the 3-group outputs of the K-Means and
Metropolis methods (B). Performance scores of random groupings are shown as controls. Boxes
represent the interquartile range (IQR) between the first and third quartiles; the line inside repre-
sents the median. Whiskers show the lowest and highest values within 1.5 x IQR from the first and
third quartiles, respectively. Points that fall outside of the range of the whiskers (the outliers) are
shown explicitly. Stars mark the mean values. The dashed horizontal line is the theoretical perfor-
mance ceiling of any 2-group grouping when evaluated against the 3-group ground truth (compare
to Fig. 1C); 3-group methods can cross this bound. All three algorithms perform substantially
better than random, with Metropolis scoring the highest. (C) Heatmap shows the performance
of the 3-group Metropolis as a function of the measurement noise magnitude and the number of
samples in the dataset. (D) Heatmap of the performance of the 3-group Metropolis under increasing
intra-group heterogeneity (o) and inter-group promiscuity (£) of species, to show the limitation of
linear-regression-based algorithms under fuzzy ground truth groupings. In (C) and (D), each pixel
is an average over 50 synthetic datasets. The star indicates the parameters used in (A) and (B).

algorithms distinguish direct producers from the rest of the species (see Fig. S4 in S1 Text and
Figures). Note that while EQO groups species into two groups, it assumes that only one of them (the
“functional group”) affects the level of function. However, the “nonfunctional group” may also affect
function through competition with functional species. This may help explain the comparatively
low performance score of this algorithm: for our synthetic data, removing this restriction improves
performance (see S1 Text and Figures Section 3).

For 3-group outputs, both multi-group algorithms cross the performance ceiling of 2-group
methods (Fig. 2B). Examining the output reveals that this is due to resolving not only the group
of direct producers, but also (at least some of) the species that contribute to an upstream reaction
(group 1); see Fig. S3 in S1 Text and Figures. Thus, we confirm that multi-group algorithms can
recover more information on the community structure.

The analysis just described was performed for a particular dataset size and noise magnitude. The
effect of these parameters is presented in Fig. 2C, which shows the average score (over 50 synthetic
datasets) of the 3-group Metropolis. As expected, the difficulty of the task increases if the dataset
is small and/or noisy. One also expects the method to perform less well if the generalized resources
are made to have a larger impact on species growth rates; see Fig. S2C, D. Here and below, we
focus on the Metropolis algorithm for clarity of presentation, as it appears to perform best, at least
on the synthetic data used here. The scores for 2-group outputs and for the other two algorithms
behave similarly, and are presented in Fig. S5 in S1 Text and Figures.

To further challenge the algorithms to detect their limitation, we tweak the model in two ways,
relaxing some of the assumptions to make the ground truth grouping less clear. First, we allow
species in the same group to vary in their contribution to the respective degradation reaction.
Specifically, instead of setting all non-zero terms of 7,; to be the same, we draw them from a
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distribution with width o,; we call this intra-group heterogeneity. Second, we consider species that
are increasingly promiscuous rather than specializing in a single reaction step (in other words, we
let them have a small rate £ for reaction(s) not belonging to its group); we call this inter-group
promiscuity. The details are described in Materials and methods. Fig. 2D presents the heatmap
of Metropolis performance as a function of the heterogeneity and promiscuity parameters (see also
Fig. S6). We see that the algorithm can tolerate some deviations in either direction; however, for
high heterogeneity or promiscuity when the group identity becomes increasingly fuzzy, performance
begins to fall and approaches the score of a random grouping.

Groups affecting the function more directly are easier to recover

The overall quality score defined above and analyzed in Fig. 2 is a summary statistic averaged
over all the groups in the output. However, some groups may be recovered better than others. To
characterize this, we now increase the length of the degradation chain and focus on the recovery
quality of individual groups, measured by the Jaccard Similarity between a given true group and its
closest match in the algorithm output. To make the results otherwise comparable as we increase the
length of the chain, the total number of species is kept as similar as possible under the constraint
that each group contains the same number of species (see Materials and methods for details).
Throughout this analysis, the dataset size is held steady at 900 samples and the noise magnitude
is kept at 10%.

Fig. 3A shows the recovery quality of each of the groups in a degradation chain of length N = 4,
as identified by the Metropolis algorithm for various k. Similarly to the results of the previous
section, at k = 2 (two-group output), the group of direct producers is the only group recovered.
Increasing k& makes it possible to resolve other groups, but the recovery quality drops as groups get
further away in the chain.

To further illustrate this point, Fig. 3B compares the recovery quality of direct producers (group
N — 1) and the most distant upstream group (group 1), as a function of the length of the chain.
(Note that identifying the most distant group requires using k¥ = N, while the direct producers
are best identified by setting k& = 2; see Fig. 3A.) We see that as the chain becomes longer, the
ability to recover the most distant group drops quickly, whereas the direct producers are adequately
recovered (in this example) up to length 5. These results quantitatively confirm the intuition that
groups of species affecting the function more directly are easier to recover, while further illustrating
the ability of multi-group algorithms to recover more information on community structure.

While the ability to recover upstream groups is remarkable, we hypothesized that it is facilitated
by our choice of a particularly simple (linear) topology of the degradation pathway. To test this,
we considered several other reaction topologies, as well as other choices for the quantity of interest
beyond the case of the end-product metabolite of a linear degradation chain. Specifically, we let
the function be an intermediate product of a linear degradation chain; one of the end products in a
degradation chain with a branch; or the common end product of two linear chains. This analysis is
presented in the S1 Text and Figures Section 4. In the first two cases, Metropolis can again identify
all the functional groups, while in the last, it can only recover the groups which directly produce
the metabolite of interest. In summary, our analysis confirms that for a function associated with
multiple groups, the group which affects (correlates with) the function the most will in general be
easiest—and sometimes the only one—to be found.

Finding the right variables can be easier than finding the right model

Given the promising performance of linear-regression-based algorithms, it is natural to ask whether
algorithms based on more complex models could do better. Of note, our Metropolis algorithm can
be generalized to any model of community function that can accept the combined group abundances
as input, and return the RMSE of the prediction. Thus, the Metropolis algorithm can be used to
test different models under the same framework. Here we consider a generalization to a regression
with both linear and quadratic terms, which we term the ‘quadratic Metropolis.” To emphasize
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Figure 3: Identifying the groups becomes harder when the degradation chain is long,
especially for groups catalyzing upstream reactions. (A) The panel shows the ability of the
Metropolis algorithm to recover the true functional groups within a linear degradation chain with
N = 4 metabolites. The recovery quality of a group is defined as the Jaccard Similarity between the
true functional group and its closest match in the algorithm output. Here, the recovery qualities
of each of the true functional groups (groups 1, 2, and 3) are shown as a function of k, the number
of groups requested from the algorithm. Recovery qualities attained by random k-group groupings
are shown as controls (black line with triangle markers). As the number of groups % in the output
increases, the algorithm first finds group 3 (direct producers), then group 2 and group 1, with
ever-decreasing recovery quality. (B) The recovery quality of Metropolis of the most upstream
group (group 1, blue dashed line) and the direct producers (group N — 1, red solid line) in the N-
metabolites degradation chain, shown as a function of N. Recovery quality of group 1 is reported
for N-group algorithm outputs while that of direct producers is for 2-group outputs (see text.)
As controls, the recovery qualities (of arbitrary group) by N-group and 2-group random groupings
are shown as black dashed line and black solid line, respectively. As the chain becomes longer,
the ability to recover the most upstream group drops quickly, whereas the direct producers are
adequately recovered up to length 5. In both panels, shading indicates the standard error of the
mean over 50 synthetic datasets, circles indicate data points for Metropolis while triangles for
random groupings.

this difference, the original version considered above will from now on be referred to as ‘linear
Metropolis.’

To compare these two versions, we evaluate them on the same synthetic datasets with NV = 3
true groups as in Fig. 2. Before comparing their performance, we note that, by construction, each
algorithm constructs fwo objects. First, it returns a set of coarsened wvariables — i.e., the groups.
Second, it also identifies a predictive model that uses these variables to predict the function (see
Eq. 4a & b in Materials and methods)— in our case, the specific instance of the linear or quadratic
regression model. When comparing the performance of the linear and quadratic versions of the
algorithm, it is important to be clear that in this work, our primary focus is on identifying the
variables. In contrast, the prediction error of the model is only a means to an end: we assume, or
hope, that the regression model trained on the correct variables will have a lower RMSE than a
model trained on the wrong variables.

Intuitively, the quadratic model should predict the function better since it has more parameters,
and the true structure-function mapping (Eq. (3)) is nonlinear. This is indeed the case, as demon-
strated in Fig. 4A which shows the difference in out-of-sample R? (Eq. (5), linear minus quadratic,
averaged over 100 datasets) as a function of the number of samples and noise magnitude. (See Ma-
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Figure 4: If datasets are small and/or noisy, linear-regression-based algorithms for
identifying functional groups outperform more complex versions. We compare the perfor-
mance of the linear-regression-based Metropolis algorithm to a more expressive version that includes
quadratic terms. Both versions are evaluated on the same synthetic datasets with a 3-group ground
truth. Each algorithm return a set of coarsened variables (a grouping of species into three groups)
and a model that uses these variables to predict the function. (A) The model identified by the
quadratic Metropolis is often more predictive of the function (blue). The heatmap shows the differ-
ence in out-of-sample coefficient of determination (R?). More specifically, we plot the R? of the best
linear model minus the R? of the best quadratic, where “best” refers to the model identified by the
corresponding Metropolis algorithm over its finite runtime (10000 steps). (B) Nevertheless, even
when the linear algorithm loses in R?, the grouping it identifies can be a better representation of
the underlying ground truth. The heatmap shows the difference in the quality score of the grouping
(linear minus quadratic). The panels highlight that the task of identifying a predictive coarsening
of an ecosystem (B) is distinct from the task of predicting the function well (A), and for small or
noisy datasets, the former is best accomplished by a simpler method. Each pixel is an average over
50 datasets. Dashed lines mark the boundaries between the three regimes discussed in the main
text.

terials and methods for details.) In some of the parameter range, the quadratic model has higher
predictive power. Crucially, however, finding the right variables is distinct from finding the right
model. The heatmap in Fig. 4B uses the same data as panel A, but plots the difference of grouping
quality scores identified by the two algorithms. Putting these two panels together, we distinguish
three regimes, as indicated by dashed lines. In the first regime (many samples, low noise), the
quadratic model is better at both predicting the function and detecting groups. In the second, the
linear version is better at identifying variables, even though the quadratic is better at predicting
the function. In this regime, the higher expressivity of the more complex model appears to hinder
the algorithm’s ability to correctly identify the variables. Finally, in the third (and arguably the
most relevant) regime of few samples and high noise, the quadratic version, somewhat surprisingly,
performs worse at both tasks. This is because at some point, the failure to identify the variables
also limits its ability to predict the function. (Of course, one caveat is that in this region of param-
eter space, the task is especially hard: even for the better-performing linear method, the absolute
quality of group prediction remains relatively poor; see Fig. 2C.)

In conclusion, we find that for small or noisy datasets, the task of identifying a predictive
coarsening of an ecosystem (“finding the right variables”) can be easier than the task of predicting
the function well (“finding the right model”), in the precise sense that—at least in the example
considered here—it is best accomplished by a simpler method.
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Discussion

In this work, we examined the ability of several simple algorithms to recover meaningful “functional
groups” of microbial taxa using only the information on species abundances and a single function of
interest across a collection of samples. For this, we used synthetic data generated from a model for
which the most sensible grouping could be defined unambiguously. This allowed us to quantitatively
assess an algorithm’s performance by comparing its output against the expected “ground truth”.
We found that, first, simple regression-based methods could indeed correctly recover a substantial
amount of information about the underlying community structure, at least in the simplest scenarios
considered in our model. Second, we showed that multi-group algorithms can offer an advantage
over the two-group EQO proposed previously. Finally, and most importantly, our analysis indicates
that under some conditions, particularly for datasets that are small and/or noisy, simpler (linear)
methods can outperform more complex ones.

Our minimal model included many simplifications, and considered only the simplest reaction
topologies. Even in these favorable cases, we have seen that realistic details, such as inhomogeneity
of species contributions to function, reduce performance. Other complications could degrade per-
formance further; for example, the method is unlikely to succeed for functions with non-monotonic
dependence on group abundances, or instances when individual species’ contributions are strongly
context-dependent.

Of the three algorithms evaluated here, the newly proposed Metropolis algorithm performed
best. However, it is clear that the findings of a model-based evaluation such as ours should be
interpreted with caution. Whether the Metropolis-based algorithm would retain this relative ad-
vantage in real-world applications remains to be established.

MATLAB code (Mathworks, Inc.) reproducing all figures from scratch is available as Supple-
mentary File 1. We thank A. Goyal, X. Shan, C. Holmes, J. Moran, F. Yu and Q. Wang for useful
discussions. This work was supported in part by the National Science Foundation grant PHY-
2310746 to MT and OXC, as well as grants No. PHY-1748958 and the Gordon and Betty Moore
Foundation Grant No. 2919.02 to the Kavli Institute for Theoretical Physics (KITP).

Materials and methods

Linear-regression-based algorithms

In this work, we test three linear-regression-based algorithms, termed “EQO,” “K-Means,” and
“Metropolis.” For all three algorithms, the input is an abundance table (matrix) A,, and a column
vector Y, of the values of the functional property in each sample (here and below, row index a
labels samples, column index p labels species). The output is a grouping of species into k& groups
for one or several k. This section presents the technical details of these algorithms. The algorithm
for generating random k-group groupings with given k, which serves as control, is also presented
here.

EQO

The EQO algorithm was proposed by Ref. [1]. For a continuous function, this algorithm is equivalent
to a Boolean least square regression which selects from the community a subset of species (the
“functional group”) whose combined abundance correlates with the function of interest [1]. As
such, it constructs a 2-group grouping of species: those included in the functional group, and those
that are not.

Each candidate grouping can be represented by a column Boolean vector & = {x,} of length
S (the total number of species), where the species included / not included in the functional group
are encoded by setting z, = 1 and z, = 0, respectively. The EQO algorithm executes a search in
the space of such Boolean vectors. For a given candidate I, we first calculate the abundance of the
functional group (in each sample) f, = > u Aqpxy, then perform a 1-dimensional linear regression
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(with an intercept), with Y, as response and f, as predictors. We then calculate the Akaike
Information Criterion (AIC) of this regression as AIC = 2k + nlog(RSS/n), where & is the size of
the functional group (the number of nonzero components in ) and n is the number of samples. RSS
is the residual sum of squares of the regression. Thus, with A,, and Y, given, AIC is a function of
Z. We use the MATLAB built-in function ga to find the optimal & which minimizes the function
AIC(Z) using a genetic algorithm. We set the options of ga as follows: FunctionTolerance=1e-9,
MaxStallGenerations=500, MaxGenerations=10000 and PopulationSize=100.

Of note, this implementation is slightly different from the protocol of Ref. [1], where RSS is
first minimized for a range of (fixed) s values, after which the AIC is calculated and the lowest
value is selected. For our application, we found that the constraint of holding s fixed slows down
optimization significantly, so we chose to combine the two successive steps into a single optimization
process.

Note that although EQO groups species into two groups, only one of them is assumed to affect
the function. To explore the effect of this assumption, for our testing we also considered a variant
of EQO where this constraint is relaxed (EQO-2g; see S1 Text and Figures Section 3). For our
synthetic data, we found that removing this restriction improves performance.

K-Means

In this method, one first performs an S-dimensional linear regression (with intercept), using the
function Y, as response and the abundances of each species A, as predictors. Then the coefficients
of all species are fed into the K-Means clustering algorithm (performed by the MATLAB built-in
function kmeans) which groups the coefficients (and thus species) into k groups for the specified
k < S. This heuristic approach is very naive, to the point that it is rather surprising it can be as
successful as it is (cf. Fig. 2). When it does succeed, it offers the advantage of being incomparably
faster than either of the other methods.

Metropolis

The aim of this algorithm is to find a set of k4, optimal groupings P* = {P}, P3,..., P} } where
P; is the optimal k-group grouping which gives the lowest RMSE through a linear regression. The
approach, briefly, is to keep in memory a list of best current candidates P and the associated RMS
error values £ = {&;}. We then perform M steps trying new groupings (by splitting or merging
groups of the groupings already in P), updating the list as better groupings are found, and then
assume the candidates are good enough, setting P* = P.

More specifically, the algorithm proceeds as follows:

1. Initialization. The list of candidates P = {P1,P2,...,Ps,,... ; is initialized by randomly
generating a series of k-group groupings Py (see Section “Random grouping” below). For each
Pr, we then calculate the combined abundance of each group and perform a k-dimensional
linear regression (with intercept) with function Y, as response and group abundances as
predictors. The RMSE of this regression is recorded as &.

2. Main loop

(a) Construct a new candidate: Randomly choose one of the groupings Py from the
current list P. If 1 < k < Kz, randomly split one of the groups in Py into two (with
probability p = 0.5), or randomly merge two groups into one (with probability 1 — p),
thus obtaining a new grouping Py, with a different number of groups k' # k. If k =1
or k = kyaz, only one of these operations is possible (respectively, only splitting or only
merging), and is performed with probability 1.

(b) Evaluate the new candidate: Calculate the combined abundance of each group in
the new grouping Py/; perform a k’-dimensional linear regression (with intercept) with

function Y, as response and group abundances as predictors; and record its RMSE as
Ey.
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(c) Update the P list: Compare Ej to & (the RMSE of the k’-group grouping Py cur-
rently stored in P). With probability min{exp(—8(Ex — &), 1}, replace the currently
stored grouping with Py .

3. Repeat the main loop M = 10000 times, then return the current list of candidate groupings
P as the best guess of the optimal list P*.

In practice, we found 8 = oo to perform best, so we set 5 = oo for all the tests in this paper.
This “zero-temperature” regime is usually undesirable, as it can cause optimization to become stuck
in a local optimum. However, for our application, we have not observed this to occur: our approach
of storing the list of candidate groupings for all k always maintained a large number of accessible
moves.

Empirically, we found that a sufficiently large k4. is required for a good performance, even if
we are ultimately only interested in output groupings with small k. Throughout our analysis, we
set kmar = 20. With this k4., 8 = 0 was always found to perform best in our testing.

For the quadratic Metropolis introduced in Fig. 4, we replace the linear regression with a re-
gression with both linear terms and quadratic terms (which includes both T? terms and the T;T}
cross-product terms, with 7; the combined abundance of group ), as well as an intercept like before.
Everything else is identical for both versions. Note that the number of coefficients in this regression
model is quadratic in & (the number of groups), not S (the number of species). Thus, for all the
figures shown, the model coefficients were well-constrained even with the lowest dataset size assayed
(100 samples).

Random grouping

We generate a random k-group grouping of all S species as follows. First, randomly permute the S
species (represented by S integers from 1 to S). If we think of this reordered set as a list of integers,
with § — 1 “gaps” between them, then selecting a random partitioning into k£ non-empty groups is
equivalent to randomly selecting & — 1 of these “gaps” as the locations of group boundaries.

Simulation details

To generate the datasets, we first generate a pool of S species, which means randomly generating
the matrix {o,q} as a sparse binary matrix with density 0.3 (i.e., each entry o,, is independently
set to 1 with probability 0.3, and 0 otherwise) and generating the maintenance cost x, of each
species according to Eq. 2. The number of generalised resources H is set to be 15 except in panel
D of Fig. S2, where it is set to 30. The total number of species S is set to 48, with each group
containing S/N species. The one exception is the N =5 case of Fig. 3: since 48 is not divisible by
5, we instead set S = 50 (so each group contains 10 species). Other parameters have been stated
in the main text.

For a dataset consisting of n samples, for each sample we randomly select 15 out of all S
species, whose initial abundances are set to 1 (while those of the remaining species are set to 0).
The initial values of all m;’s are set to 1. We use the MATLAB built-in function ode45 to simulate
Eq. 1 to approximate equilibrium. We then record the final abundances of all species n,, and the
concentration of the functional molecule mpy. We repeat this procedure n times to obtain n samples.
We then multiply each element of the abundance table and function by an i.i.d. random variable
drawn from a normal distribution with mean 1 and width e. Negative values are set to 0. The
magnitude to € tunes the strength of measurement noise.

Intra-group heterogeneity and inter-group promiscuity

Here we describe the operation details of analysis in Fig. 2D. As mentioned in the main text,
originally the degradation rate 7,,; equals 0 or 1 with each species degrading at most one metabolite
of the chain. We first add inter-group reaction promiscuity by replacing each zero 7,,; for i < N —1
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ws  (the last metabolite cannot be degraded) with a small value € so that each species is endowed with
ws a small catalytic activity for all reactions, not just the one defining its group identity. We let &
w7 take a series of values from 0 to 0.3 to model different degrees of promiscuity. We then add species
us  heterogeneity within a group as follows: for each species we draw an i.i.d. random number 7,
wo  from lognormal distribution with parameter p, =In1 fixed and o, varying from 0 to 0.3 to model
w0 gradually increasing heterogeneity. We then scale all reaction rates 7,; of a given species u by n,
s as a global factor. This rescaling can be understood as the uncertainty in counting abundances in
s2  practice (e.g., due to the species carrying a different number of copies of the 16S RNA).

« Comparison of abilities to predict function of linear and quadratic Metropo-
454 liS

s Here we describe the detailed protocol of the comparison of abilities to predict function of linear
a6 and quadratic Metropolis shown in Fig. 4A. As mentioned in the main text, besides the groups
w7 (variables) these versions of Metropolis also identify two models for predicting the function:

}A/L = bL + Z CZLTZ‘, (48“)

Yo =00+ 1+ diTTy, (4b)

%]

s where T is the combined abundance of group ¢, and Y, and )A/Q are the function predicted by linear
w0 and quadratic model, respectively. The two models are uniquely determined by their regression
w coefficients, {bL,cF} for linear model and {bQ,cZQ,dg} for quadratic model. In Fig. 4A we are
w1 comparing the predictive power of these two models.
462 To do so, for each generated pool of species (see Simulation details), we now generate 2 datasets
w3 consisting of the same number of samples. One of them is used as the training set, while the other
e one is set aside as the testing set. The training set is fed into the two versions of Metropolis, which
w5 are now required to output not only the optimal groupings they find, but also the coefficients of the
ws corresponding models (Egs. 4a & b) trained on the training set. (Specifically for Fig. 4, we only
s ask for the 3-group grouping and its regression coefficients.) We then test their abilities to predict
ws the function in the testing set. The out-of-sample R? is calculated as

, > (Ve — Vo)
R S 5
out—of—sample Z (Ya — Y)2 ( )

s where Y, is the predicted value of function (for sample a), Y, is the true value, and Y = +3Y,
a

o is the average of Y,. The differences of out-of-sample R? of the two versions of Metropolis (linear
1 minus quadratic) are shown in Fig. 4A.
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