

¹ Linear-regression-based algorithms can succeed at identifying
² microbial functional groups despite the nonlinearity of ecological
³ function

⁵
⁶ Yuanchen Zhao¹, Otto X. Cordero², Mikhail Tikhonov^{3*},

⁷ **1** School of Physics, Nanjing University, Nanjing, China

⁸ **2** Department of Civil and Environmental Engineering, Massachusetts Institute of Technology,
⁹ Cambridge, Massachusetts, United States of America

¹⁰ **3** Department of Physics, Washington University in St. Louis, St. Louis, Missouri, United States
¹¹ of America

¹² * tikhonov@wustl.edu

¹³ **Abstract**

¹⁴ Microbial communities play key roles across diverse environments. Predicting their function and
¹⁵ dynamics is a key goal of microbial ecology, but detailed microscopic descriptions of these systems
¹⁶ can be prohibitively complex. One approach to deal with this complexity is to resort to coarser
¹⁷ representations. Several approaches have sought to identify useful groupings of microbial species in
¹⁸ a data-driven way. Of these, recent work has claimed some empirical success at *de novo* discovery of
¹⁹ coarse representations predictive of a given function using methods as simple as a linear regression,
²⁰ against multiple groups of species or even a single such group (the ensemble quotient optimization
²¹ (EQO) approach of Shan *et al.* [1]). Modeling community function as a linear combination of
²² individual species' contributions appears simplistic. However, the task of identifying a predictive
²³ coarsening of an ecosystem is distinct from the task of predicting the function well, and it is
²⁴ conceivable that the former could be accomplished by a simpler methodology than the latter. Here,
²⁵ we use the resource competition framework to design a model where the “correct” grouping to be
²⁶ discovered is well-defined, and use synthetic data to evaluate and compare three regression-based
²⁷ methods, namely, two proposed previously and one we introduce. We find that regression-based
²⁸ methods can recover the groupings even when the function is manifestly nonlinear; that multi-group
²⁹ methods offer an advantage over a single-group EQO; and crucially, that simpler (linear) methods
³⁰ can outperform more complex ones.

³¹ **Author summary**

³² Natural microbial communities are highly complex, making predictive modeling difficult. One
³³ appealing approach is to make their description less detailed, rendering modeling more tractable
³⁴ while hopefully still retaining some predictive power. The Tree of Life naturally provides one
³⁵ possible method for building coarser descriptions (instead of thousands of strains, we could think
³⁶ about hundreds of species; or dozens of families). However, it is known that useful descriptions need
³⁷ not be taxonomically coherent, as illustrated, for example, by the so-called functional guilds. This
³⁸ prompted the development of computational methods seeking to propose candidate groupings in a
³⁹ data-driven manner. In this computational study, we examine one class of such methods, recently
⁴⁰ proposed in the microbial context. Quantitatively testing their performance can be difficult, as
⁴¹ the answer they “should” recover is often unknown. Here, we overcome this difficulty by testing
⁴² these methods on synthetic data from a model where the ground truth is known by construction.
⁴³ Curiously, we demonstrate that simpler approaches, rather than suffering from this simplicity, can
⁴⁴ in fact be more robust.

45 Introduction

46 Microbial communities play key roles in global climate [2–4], food safety [5–7], and human health [8–
47 11], but are highly complex [11–16]. To tackle this complexity, a key goal in ecology has been to
48 derive methods of coarsening, e.g., functional groups or guilds [17, 18]. Such coarsened representa-
49 tions can be more reproducible than the microscopic characterization while still being predictive of
50 properties of interest [18–24].

51 Over the years, multiple network-based algorithms for identifying biologically meaningful groups
52 of organisms have been proposed [25, 26]. However, such approaches typically require extensive
53 knowledge of species-species interactions, which is usually unavailable in microbial communities with
54 a large number of species. Recently, Shan *et al.* [1] demonstrated the promise of a surprisingly simple
55 methodology, ensemble quotient optimization (EQO), which can identify a “functional group” with
56 respect to a specified property of interest (which we will call “function” for simplicity). For a
57 continuous-valued function, the EQO algorithm is equivalent to a Boolean least square regression
58 seeking to identify a subset of species whose combined abundance best correlates with the function
59 while keeping the number of species in the group as small as possible (see Materials and methods,
60 EQO for details). Moran *et al.* [27] used an approach that can be seen as a multi-group generalization
61 of EQO. Compared to most modern applications of machine learning, EQO requires very little data.
62 Further, in contrast to other methods of functional group identification, it only requires species
63 abundances and the value of the function as input. This simplicity makes EQO highly appealing
64 for microbial applications where such data is comparatively easy to collect. However, its empirical
65 success is somewhat puzzling, as it amounts to modeling ecological function with a simple linear
66 regression.

67 Realizing the promise of such methodology, and improving on its performance, requires under-
68 standing when and why EQO-like methods can succeed. Currently, validating the ability of such
69 methods to discover biologically or mechanistically meaningful groups remains an open question.
70 Of the three examples used in Shan *et al.* [1], only one (the data from [23]) had an indepen-
71 dently established grouping against which the output could be compared (previously investigated
72 in Ref. [28]). This issue is more general [25, 26, 29]. Empirical validation of grouping methods
73 often relies on researchers’ intuition, evaluating whether the groups “make biological sense.” Such
74 intuition-based validation can be compelling (e.g., Shan *et al.* [1] found that, when applied to the
75 TARA Oceans [20,30] dataset with nitrate as the observable of interest, EQO appropriately grouped
76 aerobic and anaerobic ammonia oxidizers). However, to systematically compare or improve such
77 methods, a quantitative assessment of their performance is required. This requires a context with
78 a known “ground truth,” against which the algorithm output can be compared.

79 Doing this in empirical datasets is difficult. Few empirical examples allow for the unambiguous
80 delineation of the “true” functional groups [17,29]; as a result, assessing the quality of a grouping is
81 often qualitative and subjective. Here, we circumvent this limitation by adopting a model-based ap-
82 proach, evaluating algorithm performance on synthetic data from a model where the correct answer
83 is, by construction, unambiguous. Of course, extrapolating model-based validation to applicability
84 to real datasets requires caution. Such analysis can nevertheless provide useful insight in comparing
85 algorithms and identifying their limitations. After all, an algorithm that fails to perform in the
86 “clean” world of a model is unlikely to succeed in real life.

87 Specifically, we use a resource competition model with species catalyzing one of the steps of a
88 degradation pathway with a specified topology. We take one of the degradation products (e.g. the
89 final product) as the only quantity being measured (the “property of interest”). By construction,
90 our model defines a unique “correct” grouping of species, namely, the grouping by reaction step
91 performed. We use synthetic data from this model to compare the performance of three grouping
92 algorithms: the single-group EQO of Ref. [1]; its multi-group generalization [27]; and a new algo-
93 rithm we propose here, based on a Metropolis-like [31] search of the space of candidate groupings
94 of species.

95 We find that, first, these algorithms can recover the expected groupings even when the function
96 is manifestly nonlinear. Next, we show that multi-group methods can offer an advantage over the

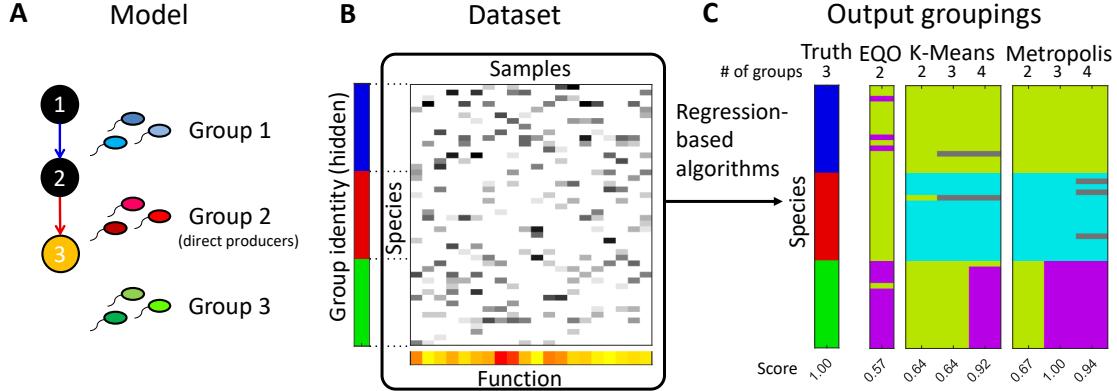


Figure 1: **Using synthetic data to test group-searching algorithms in a context where the correct grouping of species is known and uniquely defined.** (A) We adopt a resource competition model with cross-feeding. The reaction network is assumed to form a linear degradation chain $1 \rightarrow 2 \rightarrow \dots \rightarrow N$ with the end-product concentration (metabolite N , orange) taken as the function of interest (shown with $N = 3$ as an example). Species can perform at most one reaction of the linear chain, which naturally groups them into N groups ($N - 1$ groups consuming metabolite $1, \dots, N - 1$, and a group not involved in the chain). The model also includes H other resources for species to compete over, which create additional variability (not shown, see text). (B) The synthetic dataset is generated by repeatedly selecting a random subset of 15 species and allowing the community to equilibrate (see Eq. 1a-c). The final abundances and function (concentration of resource N) are corrupted with Gaussian noise of relative strength ϵ emulating “measurement noise,” and the resulting values are recorded as a “sample” in the dataset. (C) We use the synthetic data as input for three families of regression-based algorithms: the EQO of Ref. [1] (which groups species into two groups), and two families we call K-means and Metropolis (see text), which can return any specified number of groups. The panel shows representative outputs of these algorithms for $N = 3$ metabolites and for the number of groups indicated at the top. Species assigned to the same group are shown in the same color. Outputs are quantitatively scored (see text) based on the similarity to the “ground-truth” grouping hard-coded into the model (left-most row). Higher score is better; a score of 1 corresponds to a perfect matching.

97 single-group EQO and, under some conditions, can correctly recover not only the group contributing
 98 to the function directly (in our model, the species producing the metabolite of interest), but also
 99 some information about the upstream groups whose influence is indirect. Finally, we present results
 100 indicating that on limited-size datasets with moderate measurement noise, simpler (linear) methods
 101 can outperform more complex ones.

102 Results

103 A consumer-resource model and the three methods for identifying groups

104 To evaluate the regression-based methods in a simplest model setting, we adopt a chemostat
 105 consumer-resource model with cross-feeding, where the metabolism is designed so that there is an
 106 evident way to group species. The model includes S microbial species whose abundances are denoted
 107 by n_μ ($\mu = 1, \dots, S$) and N metabolites whose concentrations are denoted by m_i ($i = 1, \dots, N$).
 108 These N metabolites are designed to form a linear degradation chain $1 \rightarrow 2 \rightarrow \dots \rightarrow N$. The
 109 linear pathway topology is a convenient place to start, since intuitively, it is one where a linear-
 110 regression-like approach is most likely to succeed. More complex pathway topologies, and various
 111 other ways to challenge the approach, will be discussed later. Species are designed to catalyze at

most one reaction of the chain, which naturally classifies them into N groups (Fig. 1). Specifically, species in group i ($i \leq N - 1$) feed on metabolite i and transfer a fraction w_i of it into resource $i + 1$, while species in group N are not involved in the chain. The concentration of the end product m_N is taken as the function of interest. We termed the last group in the chain (group $N - 1$) “the group of direct producers”.

Besides these N metabolites m_i , we assume there are H other generalised depletable resources for species to exploit, which create additional variability and competition; all resources are assumed to be substitutable for simplicity [32–34]. The availability h_a ($a = 1, \dots, H$) of generalised resource a is assumed to be a monotonically decreasing function of the total exploitation; for simplicity, we follow Ref. [24] and assume this dependence to take a simple hyperbolic form. Putting this together, the dynamics is described by the following equations:

$$\frac{dn_\mu}{dt} = n_\mu \left[\sum_i (1 - w_i) \tau_{\mu i} m_i + \sum_a \sigma_{\mu a} h_a - \chi_\mu \right] \quad (1a)$$

$$\frac{dm_1}{dt} = R_1 - m_1 \sum_\mu \tau_{\mu,1} n_\mu - d_1 m_1 \quad (1b)$$

$$\frac{dm_i}{dt} = w_{i-1} m_{i-1} \sum_\mu \tau_{\mu,i-1} n_\mu - m_i \sum_\mu \tau_{\mu i} n_\mu - d_i m_i \quad (\text{for } i > 1) \quad (1c)$$

$$h_a = h_a (\{\sigma_{\nu a}\}, \{n_\nu\}) = \frac{h_0^a}{1 + \sum_\nu \sigma_{\nu a} n_\nu / K_a}. \quad (1d)$$

Of the metabolites in the chain, only the first is supplied externally (at rate R_1); for $i > 1$, the only source of metabolite m_i is secretion by species consuming metabolite m_{i-1} . Thus, the function (concentration of m_N) is naturally nonlinear: producing the final product requires all $N - 1$ groups to be present. The quantity w_i is the transfer ratio of each reaction; d_i is the decay rate of metabolite i . The generalized resources are described by parameters h_0^a (the highest benefit the resource can provide) and K_a (the exploitation level at which this benefit is depleted by half).

A species μ is defined by its role in the metabolic chain ($\tau_{\mu i} \in \{0, 1\}$ equals 1 if the species can consume metabolite i and 0 otherwise), its utilization strategy of other generalized resources ($\sigma_{\mu a} \in \{0, 1\}$ equals 1 if it can exploit resource a and 0 otherwise), and its maintenance cost χ_μ . Here, we pick

$$\chi_\mu = \sum_i (1 - w_i) \tau_{\mu i} + \sum_a \sigma_{\mu a} + \varepsilon x_\mu, \quad (2)$$

where ε is a small quantity (taken to be 0.01 in this paper) and x_μ is a Gaussian random number with mean zero and variance one. This choice follows the convention of Ref. [32], so that species able to benefit from more resources also have a larger cost, and neither generalists nor specialists are obviously favored. (At equilibrium, we expect $m_i \approx 1$, $h_a \approx 1$. Eq. (2) sets the cost χ_μ to approximately match the expected benefit, whatever the species’ strategy. As a result, the winners and losers of the competition are determined by the luck of the draw of the small random contribution x_μ).

The model makes many simplifications (perfect conversion efficiency, substitutable resources, ignoring Liebig’s law...) adopted for simplicity, following previous work [32–34] to minimize the number of model parameters. However, for our purposes, two assumptions are especially worth highlighting. The binary $\tau_{\mu i}$ correspond to species that are contributing to at most one reaction of the chain (no promiscuity), making the grouping unambiguous. Within each group, species differ in their utilization of the generalized resources, but the contributions to the reaction of interest are assumed to be the same (no heterogeneity). The role of these two assumptions will be examined shortly.

Species abundances determine the reaction fluxes and thus the value of the functional property of interest m_N (the concentration of metabolite N). With the model defined above, it can be shown

150 (see S1 Text and Figures Section 1) that at equilibrium,

$$m_N = \frac{R_1}{k_N} \frac{w_1 T_1}{T_1 + d_1} \frac{w_2 T_2}{T_2 + d_2} \dots \frac{w_{N-1} T_{N-1}}{T_{N-1} + d_N}, \quad (3)$$

151 where $T_i = \sum_{\mu} \tau_{\mu i} n_{\mu}$ is the total abundance of the functional group $i \in \{1, \dots, N-1\}$. Thus, the
152 individual species n_{μ} affect the value of the function only via the combined group abundances T_i ,
153 but the relationship between function and group abundances is manifestly nonlinear in this model.

154 In this paper, we set the parameters as follows. The metabolite transfer ratios w_i and the decay
155 rates d_i are the same for all i : $w_i \equiv w = 0.5$ and $d_i \equiv d = 1$. The supply rate R_1 is set to
156 $R_1 = \prod_{i=1}^{N-1} w_i^{-1} = w^{-(N-1)}$, compensating for the losses at each reaction to ensure that, if we
157 change N , the value of the function m_N remains of the same order. Finally, the H generalized
158 resources are selected to be identical for simplicity, with $h_0^a \equiv h_0 = 3$ and $K_a \equiv K = 1$ for all a .

159 We generate the synthetic dataset by first generating a species pool (i.e., generating $\{\sigma_{\mu a}\}$ and
160 $\{m_{\mu}\}$, see Materials and methods), and then repeatedly selecting a random subset of species and
161 allowing the community to equilibrate according to Eqs. 1a-c. The final species abundances $\{n_{\mu}\}$
162 and function m_N are corrupted with Gaussian noise of relative strength ϵ emulating “measurement
163 noise”, and the resulting values are recorded as a “sample” in the dataset (Fig. 1B).

164 We use the synthetic data as input for three families of regression-based algorithms (see Materials
165 and methods for details). The first is the EQO proposed by [1] which we modified to incorporate
166 the Akaike Information Criterion (AIC) into the optimization process. In the second method, the
167 coefficients of a multiple linear regression against all species are fed into K-Means clustering for
168 grouping [27]. We term this method “K-Means,” for simplicity. The third is a new algorithm
169 we propose. In this approach, the root-mean-square-error (RMSE) of a multiple linear regression
170 against (candidate) group abundances takes the role of energy, which we seek to minimize while
171 searching the coarse-graining space with a Metropolis-like [31] algorithm. We term this algorithm
172 “Metropolis.” All three algorithms are linear-regression-based (but the third can be extended to
173 include higher-order terms; we will return to this point later). By design, EQO always outputs two
174 groups (‘functional’ and ‘non-functional’ species); in contrast, K-Means and Metropolis can return
175 any specified number of groups. Representative examples of the output groupings of each algorithm
176 (with the ground truth containing $N = 3$ groups) are shown in Fig. 1C.

177 To evaluate the quality of such groupings, we use a metric based on Jaccard Similarity. First,
178 we define the “recovery quality” of a group in the ground truth as the Jaccard Similarity between
179 this group and its best match in the grouping being evaluated. Then, the overall quality score of a
180 grouping is defined as the average recovery quality of all the ground-truth groups (see S1 Text and
181 Figures Section 2 for details). By construction, this score is between 0 and 1, where 1 indicates
182 perfect matching. Perfect matching can only be expected when the number of groups in output (k)
183 equals the number of groups in the ground truth (N). If $k < N$, then the highest possible score is
184 k/N , which we call the performance ceiling of a k -group output for $k \leq N$ (see S1 Text and Figures
185 Section 2). The quality scores for each of the example groupings in Fig. 1C are shown below them.

186 **Linear-regression-based algorithms perform well, with multi-group algo- 187 rithms recovering more information**

188 We begin by evaluating the three algorithms on synthetic datasets with $N = 3$ true groups of 16
189 species each, for a total of $S = 48$ species (groups 1 & 2 successively degrade metabolite 1 into
190 metabolite 3, while group 3 is “nonfunctional”). For our first test, we consider the most favorable
191 regime with a large number (900) of samples and low noise (10%). We follow the protocol of Fig. 1
192 to test each of the algorithms on 50 synthetic datasets. The quality scores of all the 2- and 3-group
193 outputs are summarized in Fig. 2A, B. (The groupings themselves are shown in Fig. S4 of S1 Text
194 and Figures.)

195 For 2-group outputs (Fig. 2A), all three algorithms perform substantially better than random,
196 with K-Means and Metropolis approaching the performance ceiling of 2-group groupings ($k/N =$
197 $2/3$, dashed line). As one might expect, in most cases, the groupings identified by the 2-group

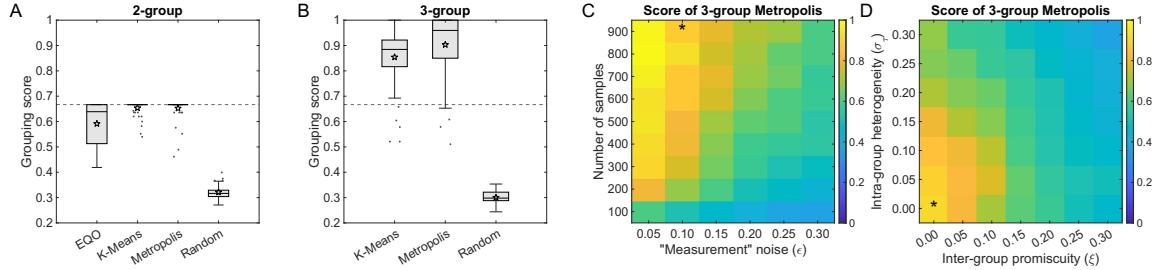


Figure 2: Linear-regression-based algorithms succeed at identifying the correct functional groups in synthetic data, and multi-group algorithms recover more information. (A), (B) Algorithm performance, evaluated over 50 simulated datasets generated as described in Fig. 1 with $N = 3$ true groups, 900 samples and 10% simulated measurement noise. Performance scores (i.e., the similarity of result to the 3-group ground truth) are shown as box plots, separately for the 2-group outputs of all three algorithms (A) and for the 3-group outputs of the K-Means and Metropolis methods (B). Performance scores of random groupings are shown as controls. Boxes represent the interquartile range (IQR) between the first and third quartiles; the line inside represents the median. Whiskers show the lowest and highest values within $1.5 \times IQR$ from the first and third quartiles, respectively. Points that fall outside of the range of the whiskers (the outliers) are shown explicitly. Stars mark the mean values. The dashed horizontal line is the theoretical performance ceiling of any 2-group grouping when evaluated against the 3-group ground truth (compare to Fig. 1C); 3-group methods can cross this bound. All three algorithms perform substantially better than random, with Metropolis scoring the highest. (C) Heatmap shows the performance of the 3-group Metropolis as a function of the measurement noise magnitude and the number of samples in the dataset. (D) Heatmap of the performance of the 3-group Metropolis under increasing intra-group heterogeneity (σ_τ) and inter-group promiscuity (ξ) of species, to show the limitation of linear-regression-based algorithms under fuzzy ground truth groupings. In (C) and (D), each pixel is an average over 50 synthetic datasets. The star indicates the parameters used in (A) and (B).

198 algorithms distinguish direct producers from the rest of the species (see Fig. S4 in S1 Text and
 199 Figures). Note that while EQO groups species into two groups, it assumes that only one of them (the
 200 “functional group”) affects the level of function. However, the “nonfunctional group” may also affect
 201 function through competition with functional species. This may help explain the comparatively
 202 low performance score of this algorithm: for our synthetic data, removing this restriction improves
 203 performance (see S1 Text and Figures Section 3).

204 For 3-group outputs, both multi-group algorithms cross the performance ceiling of 2-group
 205 methods (Fig. 2B). Examining the output reveals that this is due to resolving not only the group
 206 of direct producers, but also (at least some of) the species that contribute to an upstream reaction
 207 (group 1); see Fig. S3 in S1 Text and Figures. Thus, we confirm that multi-group algorithms can
 208 recover more information on the community structure.

209 The analysis just described was performed for a particular dataset size and noise magnitude. The
 210 effect of these parameters is presented in Fig. 2C, which shows the average score (over 50 synthetic
 211 datasets) of the 3-group Metropolis. As expected, the difficulty of the task increases if the dataset
 212 is small and/or noisy. One also expects the method to perform less well if the generalized resources
 213 are made to have a larger impact on species growth rates; see Fig. S2C, D. Here and below, we
 214 focus on the Metropolis algorithm for clarity of presentation, as it appears to perform best, at least
 215 on the synthetic data used here. The scores for 2-group outputs and for the other two algorithms
 216 behave similarly, and are presented in Fig. S5 in S1 Text and Figures.

217 To further challenge the algorithms to detect their limitation, we tweak the model in two ways,
 218 relaxing some of the assumptions to make the ground truth grouping less clear. First, we allow
 219 species in the same group to vary in their contribution to the respective degradation reaction.
 220 Specifically, instead of setting all non-zero terms of $\tau_{\mu i}$ to be the same, we draw them from a

221 distribution with width σ_τ ; we call this intra-group heterogeneity. Second, we consider species that
222 are increasingly promiscuous rather than specializing in a single reaction step (in other words, we
223 let them have a small rate ξ for reaction(s) not belonging to its group); we call this inter-group
224 promiscuity. The details are described in Materials and methods. Fig. 2D presents the heatmap
225 of Metropolis performance as a function of the heterogeneity and promiscuity parameters (see also
226 Fig. S6). We see that the algorithm can tolerate some deviations in either direction; however, for
227 high heterogeneity or promiscuity when the group identity becomes increasingly fuzzy, performance
228 begins to fall and approaches the score of a random grouping.

229 **Groups affecting the function more directly are easier to recover**

230 The overall quality score defined above and analyzed in Fig. 2 is a summary statistic averaged
231 over all the groups in the output. However, some groups may be recovered better than others. To
232 characterize this, we now increase the length of the degradation chain and focus on the recovery
233 quality of individual groups, measured by the Jaccard Similarity between a given true group and its
234 closest match in the algorithm output. To make the results otherwise comparable as we increase the
235 length of the chain, the total number of species is kept as similar as possible under the constraint
236 that each group contains the same number of species (see Materials and methods for details).
237 Throughout this analysis, the dataset size is held steady at 900 samples and the noise magnitude
238 is kept at 10%.

239 Fig. 3A shows the recovery quality of each of the groups in a degradation chain of length $N = 4$,
240 as identified by the Metropolis algorithm for various k . Similarly to the results of the previous
241 section, at $k = 2$ (two-group output), the group of direct producers is the only group recovered.
242 Increasing k makes it possible to resolve other groups, but the recovery quality drops as groups get
243 further away in the chain.

244 To further illustrate this point, Fig. 3B compares the recovery quality of direct producers (group
245 $N - 1$) and the most distant upstream group (group 1), as a function of the length of the chain.
246 (Note that identifying the most distant group requires using $k = N$, while the direct producers
247 are best identified by setting $k = 2$; see Fig. 3A.) We see that as the chain becomes longer, the
248 ability to recover the most distant group drops quickly, whereas the direct producers are adequately
249 recovered (in this example) up to length 5. These results quantitatively confirm the intuition that
250 groups of species affecting the function more directly are easier to recover, while further illustrating
251 the ability of multi-group algorithms to recover more information on community structure.

252 While the ability to recover upstream groups is remarkable, we hypothesized that it is facilitated
253 by our choice of a particularly simple (linear) topology of the degradation pathway. To test this,
254 we considered several other reaction topologies, as well as other choices for the quantity of interest
255 beyond the case of the end-product metabolite of a linear degradation chain. Specifically, we let
256 the function be an intermediate product of a linear degradation chain; one of the end products in a
257 degradation chain with a branch; or the common end product of two linear chains. This analysis is
258 presented in the S1 Text and Figures Section 4. In the first two cases, Metropolis can again identify
259 all the functional groups, while in the last, it can only recover the groups which directly produce
260 the metabolite of interest. In summary, our analysis confirms that for a function associated with
261 multiple groups, the group which affects (correlates with) the function the most will in general be
262 easiest—and sometimes the only one—to be found.

263 **Finding the right variables can be easier than finding the right model**

264 Given the promising performance of linear-regression-based algorithms, it is natural to ask whether
265 algorithms based on more complex models could do better. Of note, our Metropolis algorithm can
266 be generalized to any model of community function that can accept the combined group abundances
267 as input, and return the RMSE of the prediction. Thus, the Metropolis algorithm can be used to
268 test different models under the same framework. Here we consider a generalization to a regression
269 with both linear and quadratic terms, which we term the ‘quadratic Metropolis.’ To emphasize

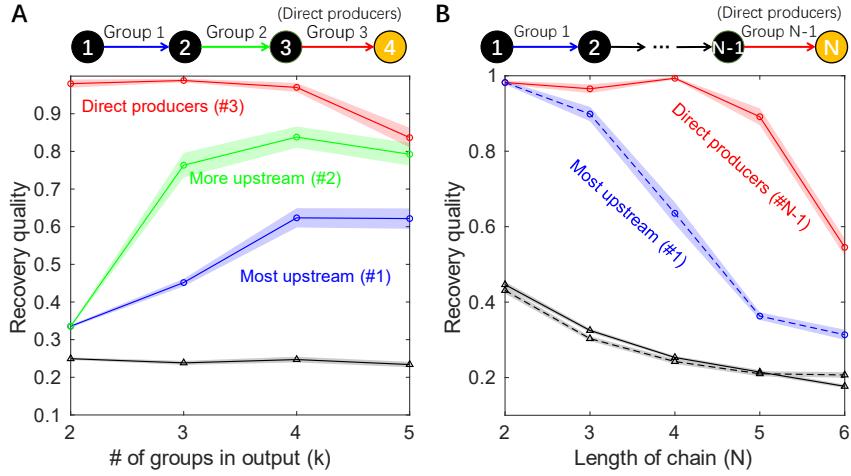


Figure 3: Identifying the groups becomes harder when the degradation chain is long, especially for groups catalyzing upstream reactions. (A) The panel shows the ability of the Metropolis algorithm to recover the true functional groups within a linear degradation chain with $N = 4$ metabolites. The recovery quality of a group is defined as the Jaccard Similarity between the true functional group and its closest match in the algorithm output. Here, the recovery qualities of each of the true functional groups (groups 1, 2, and 3) are shown as a function of k , the number of groups requested from the algorithm. Recovery qualities attained by random k -group groupings are shown as controls (black line with triangle markers). As the number of groups k in the output increases, the algorithm first finds group 3 (direct producers), then group 2 and group 1, with ever-decreasing recovery quality. (B) The recovery quality of Metropolis of the most upstream group (group 1, blue dashed line) and the direct producers (group $N - 1$, red solid line) in the N -metabolites degradation chain, shown as a function of N . Recovery quality of group 1 is reported for N -group algorithm outputs while that of direct producers is for 2-group outputs (see text.) As controls, the recovery qualities (of arbitrary group) by N -group and 2-group random groupings are shown as black dashed line and black solid line, respectively. As the chain becomes longer, the ability to recover the most upstream group drops quickly, whereas the direct producers are adequately recovered up to length 5. In both panels, shading indicates the standard error of the mean over 50 synthetic datasets, circles indicate data points for Metropolis while triangles for random groupings.

270 this difference, the original version considered above will from now on be referred to as ‘linear
271 Metropolis.’

272 To compare these two versions, we evaluate them on the same synthetic datasets with $N = 3$
273 true groups as in Fig. 2. Before comparing their performance, we note that, by construction, each
274 algorithm constructs *two* objects. First, it returns a set of coarsened *variables* — i.e., the groups.
275 Second, it also identifies a predictive *model* that uses these variables to predict the function (see
276 Eq. 4a & b in Materials and methods) — in our case, the specific instance of the linear or quadratic
277 regression model. When comparing the performance of the linear and quadratic versions of the
278 algorithm, it is important to be clear that in this work, our primary focus is on identifying the
279 variables. In contrast, the prediction error of the model is only a means to an end: we assume, or
280 hope, that the regression model trained on the correct variables will have a lower RMSE than a
281 model trained on the wrong variables.

282 Intuitively, the quadratic model should predict the function better since it has more parameters,
283 and the true structure-function mapping (Eq. (3)) is nonlinear. This is indeed the case, as demon-
284 strated in Fig. 4A which shows the difference in out-of-sample R^2 (Eq. (5), linear minus quadratic,
285 averaged over 100 datasets) as a function of the number of samples and noise magnitude. (See Ma-

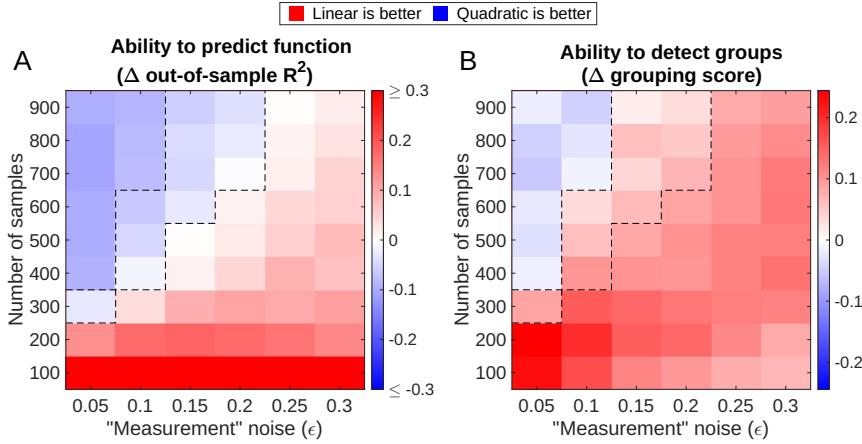


Figure 4: **If datasets are small and/or noisy, linear-regression-based algorithms for identifying functional groups outperform more complex versions.** We compare the performance of the linear-regression-based Metropolis algorithm to a more expressive version that includes quadratic terms. Both versions are evaluated on the same synthetic datasets with a 3-group ground truth. Each algorithm return a set of coarsened *variables* (a grouping of species into three groups) and a *model* that uses these variables to predict the function. (A) The model identified by the quadratic Metropolis is often more predictive of the function (blue). The heatmap shows the difference in out-of-sample coefficient of determination (R^2). More specifically, we plot the R^2 of the best linear model minus the R^2 of the best quadratic, where “best” refers to the model identified by the corresponding Metropolis algorithm over its finite runtime (10000 steps). (B) Nevertheless, even when the linear algorithm loses in R^2 , the grouping it identifies can be a better representation of the underlying ground truth. The heatmap shows the difference in the quality score of the grouping (linear minus quadratic). The panels highlight that the task of identifying a predictive coarsening of an ecosystem (B) is distinct from the task of predicting the function well (A), and for small or noisy datasets, the former is best accomplished by a simpler method. Each pixel is an average over 50 datasets. Dashed lines mark the boundaries between the three regimes discussed in the main text.

286 terials and methods for details.) In some of the parameter range, the quadratic model has higher
 287 predictive power. Crucially, however, finding the right *variables* is distinct from finding the right
 288 *model*. The heatmap in Fig. 4B uses the same data as panel A, but plots the difference of grouping
 289 quality scores identified by the two algorithms. Putting these two panels together, we distinguish
 290 three regimes, as indicated by dashed lines. In the first regime (many samples, low noise), the
 291 quadratic model is better at both predicting the function and detecting groups. In the second, the
 292 linear version is better at identifying variables, even though the quadratic is better at predicting
 293 the function. In this regime, the higher expressivity of the more complex model appears to hinder
 294 the algorithm’s ability to correctly identify the variables. Finally, in the third (and arguably the
 295 most relevant) regime of few samples and high noise, the quadratic version, somewhat surprisingly,
 296 performs worse at both tasks. This is because at some point, the failure to identify the variables
 297 also limits its ability to predict the function. (Of course, one caveat is that in this region of parameter
 298 space, the task is especially hard: even for the better-performing linear method, the absolute
 299 quality of group prediction remains relatively poor; see Fig. 2C.)

300 In conclusion, we find that for small or noisy datasets, the task of identifying a predictive
 301 coarsening of an ecosystem (“finding the right variables”) can be easier than the task of predicting
 302 the function well (“finding the right model”), in the precise sense that—at least in the example
 303 considered here—it is best accomplished by a simpler method.

304 Discussion

305 In this work, we examined the ability of several simple algorithms to recover meaningful “functional
306 groups” of microbial taxa using only the information on species abundances and a single function of
307 interest across a collection of samples. For this, we used synthetic data generated from a model for
308 which the most sensible grouping could be defined unambiguously. This allowed us to quantitatively
309 assess an algorithm’s performance by comparing its output against the expected “ground truth”.
310 We found that, first, simple regression-based methods could indeed correctly recover a substantial
311 amount of information about the underlying community structure, at least in the simplest scenarios
312 considered in our model. Second, we showed that multi-group algorithms can offer an advantage
313 over the two-group EQO proposed previously. Finally, and most importantly, our analysis indicates
314 that under some conditions, particularly for datasets that are small and/or noisy, simpler (linear)
315 methods can outperform more complex ones.

316 Our minimal model included many simplifications, and considered only the simplest reaction
317 topologies. Even in these favorable cases, we have seen that realistic details, such as inhomogeneity
318 of species contributions to function, reduce performance. Other complications could degrade per-
319 formance further; for example, the method is unlikely to succeed for functions with non-monotonic
320 dependence on group abundances, or instances when individual species’ contributions are strongly
321 context-dependent.

322 Of the three algorithms evaluated here, the newly proposed Metropolis algorithm performed
323 best. However, it is clear that the findings of a model-based evaluation such as ours should be
324 interpreted with caution. Whether the Metropolis-based algorithm would retain this relative ad-
325 vantage in real-world applications remains to be established.

326 MATLAB code (Mathworks, Inc.) reproducing all figures from scratch is available as Supple-
327 mentary File 1. We thank A. Goyal, X. Shan, C. Holmes, J. Moran, F. Yu and Q. Wang for useful
328 discussions. This work was supported in part by the National Science Foundation grant PHY-
329 2310746 to MT and OXC, as well as grants No. PHY-1748958 and the Gordon and Betty Moore
330 Foundation Grant No. 2919.02 to the Kavli Institute for Theoretical Physics (KITP).

331 Materials and methods

332 Linear-regression-based algorithms

333 In this work, we test three linear-regression-based algorithms, termed “EQO,” “K-Means,” and
334 “Metropolis.” For all three algorithms, the input is an abundance table (matrix) $A_{a\mu}$ and a column
335 vector Y_a of the values of the functional property in each sample (here and below, row index a
336 labels samples, column index μ labels species). The output is a grouping of species into k groups
337 for one or several k . This section presents the technical details of these algorithms. The algorithm
338 for generating random k -group groupings with given k , which serves as control, is also presented
339 here.

340 EQO

341 The EQO algorithm was proposed by Ref. [1]. For a continuous function, this algorithm is equivalent
342 to a Boolean least square regression which selects from the community a subset of species (the
343 “functional group”) whose combined abundance correlates with the function of interest [1]. As
344 such, it constructs a 2-group grouping of species: those included in the functional group, and those
345 that are not.

346 Each candidate grouping can be represented by a column Boolean vector $\vec{x} \equiv \{x_\mu\}$ of length
347 S (the total number of species), where the species included / not included in the functional group
348 are encoded by setting $x_\mu = 1$ and $x_\mu = 0$, respectively. The EQO algorithm executes a search in
349 the space of such Boolean vectors. For a given candidate \vec{x} , we first calculate the abundance of the
350 functional group (in each sample) $f_a = \sum_\mu A_{a\mu} x_\mu$, then perform a 1-dimensional linear regression

(with an intercept), with Y_a as response and f_a as predictors. We then calculate the Akaike Information Criterion (AIC) of this regression as $\text{AIC} = 2\kappa + n \log(\text{RSS}/n)$, where κ is the size of the functional group (the number of nonzero components in \vec{x}) and n is the number of samples. RSS is the residual sum of squares of the regression. Thus, with $A_{a\mu}$ and Y_a given, AIC is a function of \vec{x} . We use the MATLAB built-in function `ga` to find the optimal \vec{x} which minimizes the function $\text{AIC}(\vec{x})$ using a genetic algorithm. We set the options of `ga` as follows: `FunctionTolerance=1e-9`, `MaxStallGenerations=500`, `MaxGenerations=10000` and `PopulationSize=100`.

Of note, this implementation is slightly different from the protocol of Ref. [1], where RSS is first minimized for a range of (fixed) κ values, after which the AIC is calculated and the lowest value is selected. For our application, we found that the constraint of holding κ fixed slows down optimization significantly, so we chose to combine the two successive steps into a single optimization process.

Note that although EQO groups species into two groups, only one of them is assumed to affect the function. To explore the effect of this assumption, for our testing we also considered a variant of EQO where this constraint is relaxed (EQO-2g; see S1 Text and Figures Section 3). For our synthetic data, we found that removing this restriction improves performance.

367 K-Means

In this method, one first performs an S -dimensional linear regression (with intercept), using the function Y_a as response and the abundances of each species $A_{a\mu}$ as predictors. Then the coefficients of all species are fed into the K-Means clustering algorithm (performed by the MATLAB built-in function `kmeans`) which groups the coefficients (and thus species) into k groups for the specified $k < S$. This heuristic approach is very naive, to the point that it is rather surprising it can be as successful as it is (cf. Fig. 2). When it does succeed, it offers the advantage of being incomparably faster than either of the other methods.

375 Metropolis

The aim of this algorithm is to find a set of k_{max} optimal groupings $\mathcal{P}^* = \{\mathcal{P}_1^*, \mathcal{P}_2^*, \dots, \mathcal{P}_{k_{max}}^*\}$ where \mathcal{P}_k^* is the optimal k -group grouping which gives the lowest RMSE through a linear regression. The approach, briefly, is to keep in memory a list of best current candidates \mathcal{P} and the associated RMS error values $\mathcal{E} = \{\mathcal{E}_k\}$. We then perform M steps trying new groupings (by splitting or merging groups of the groupings already in \mathcal{P}), updating the list as better groupings are found, and then assume the candidates are good enough, setting $\mathcal{P}^* = \mathcal{P}$.

More specifically, the algorithm proceeds as follows:

1. **Initialization.** The list of candidates $\mathcal{P} = \{\mathcal{P}_1, \mathcal{P}_2, \dots, \mathcal{P}_{k_{max}}\}$ is initialized by randomly generating a series of k -group groupings \mathcal{P}_k (see Section ‘‘Random grouping’’ below). For each \mathcal{P}_k , we then calculate the combined abundance of each group and perform a k -dimensional linear regression (with intercept) with function Y_a as response and group abundances as predictors. The RMSE of this regression is recorded as \mathcal{E}_k .

388 2. Main loop

(a) **Construct a new candidate:** Randomly choose one of the groupings \mathcal{P}_k from the current list \mathcal{P} . If $1 < k < k_{max}$, randomly split one of the groups in \mathcal{P}_k into two (with probability $p = 0.5$), or randomly merge two groups into one (with probability $1 - p$), thus obtaining a new grouping $\mathcal{P}_{k'}$ with a different number of groups $k' \neq k$. If $k = 1$ or $k = k_{max}$, only one of these operations is possible (respectively, only splitting or only merging), and is performed with probability 1.

(b) **Evaluate the new candidate:** Calculate the combined abundance of each group in the new grouping $\mathcal{P}_{k'}$; perform a k' -dimensional linear regression (with intercept) with function Y_a as response and group abundances as predictors; and record its RMSE as $\mathcal{E}_{k'}$.

399 (c) **Update the \mathcal{P} list:** Compare $E_{k'}$ to $\mathcal{E}_{k'}$ (the RMSE of the k' -group grouping $\mathcal{P}_{k'}$ currently stored in \mathcal{P}). With probability $\min\{\exp(-\beta(E_{k'} - \mathcal{E}_{k'})), 1\}$, replace the currently stored grouping with $P_{k'}$.

402 3. Repeat the main loop $M = 10000$ times, then return the current list of candidate groupings
403 \mathcal{P} as the best guess of the optimal list \mathcal{P}^* .

404 In practice, we found $\beta = \infty$ to perform best, so we set $\beta = \infty$ for all the tests in this paper.
405 This “zero-temperature” regime is usually undesirable, as it can cause optimization to become stuck
406 in a local optimum. However, for our application, we have not observed this to occur: our approach
407 of storing the list of candidate groupings for all k always maintained a large number of accessible
408 moves.

409 Empirically, we found that a sufficiently large k_{max} is required for a good performance, even if
410 we are ultimately only interested in output groupings with small k . Throughout our analysis, we
411 set $k_{max} = 20$. With this k_{max} , $\beta = 0$ was always found to perform best in our testing.

412 For the quadratic Metropolis introduced in Fig. 4, we replace the linear regression with a re-
413 gression with both linear terms and quadratic terms (which includes both T_i^2 terms and the $T_i T_j$
414 cross-product terms, with T_i the combined abundance of group i), as well as an intercept like before.
415 Everything else is identical for both versions. Note that the number of coefficients in this regression
416 model is quadratic in k (the number of groups), not S (the number of species). Thus, for all the
417 figures shown, the model coefficients were well-constrained even with the lowest dataset size assayed
418 (100 samples).

419 Random grouping

420 We generate a random k -group grouping of all S species as follows. First, randomly permute the S
421 species (represented by S integers from 1 to S). If we think of this reordered set as a list of integers,
422 with $S - 1$ “gaps” between them, then selecting a random partitioning into k non-empty groups is
423 equivalent to randomly selecting $k - 1$ of these “gaps” as the locations of group boundaries.

424 Simulation details

425 To generate the datasets, we first generate a pool of S species, which means randomly generating
426 the matrix $\{\sigma_{\mu a}\}$ as a sparse binary matrix with density 0.3 (i.e., each entry $\sigma_{\mu a}$ is independently
427 set to 1 with probability 0.3, and 0 otherwise) and generating the maintenance cost χ_μ of each
428 species according to Eq. 2. The number of generalised resources H is set to be 15 except in panel
429 D of Fig. S2, where it is set to 30. The total number of species S is set to 48, with each group
430 containing S/N species. The one exception is the $N = 5$ case of Fig. 3: since 48 is not divisible by
431 5, we instead set $S = 50$ (so each group contains 10 species). Other parameters have been stated
432 in the main text.

433 For a dataset consisting of n samples, for each sample we randomly select 15 out of all S
434 species, whose initial abundances are set to 1 (while those of the remaining species are set to 0).
435 The initial values of all m_i ’s are set to 1. We use the MATLAB built-in function `ode45` to simulate
436 Eq. 1 to approximate equilibrium. We then record the final abundances of all species n_μ and the
437 concentration of the functional molecule m_N . We repeat this procedure n times to obtain n samples.
438 We then multiply each element of the abundance table and function by an i.i.d. random variable
439 drawn from a normal distribution with mean 1 and width ϵ . Negative values are set to 0. The
440 magnitude to ϵ tunes the strength of measurement noise.

441 Intra-group heterogeneity and inter-group promiscuity

442 Here we describe the operation details of analysis in Fig. 2D. As mentioned in the main text,
443 originally the degradation rate $\tau_{\mu i}$ equals 0 or 1 with each species degrading at most one metabolite
444 of the chain. We first add inter-group reaction promiscuity by replacing each zero $\tau_{\mu i}$ for $i \leq N - 1$

445 (the last metabolite cannot be degraded) with a small value ξ so that each species is endowed with
 446 a small catalytic activity for all reactions, not just the one defining its group identity. We let ξ
 447 take a series of values from 0 to 0.3 to model different degrees of promiscuity. We then add species
 448 heterogeneity within a group as follows: for each species we draw an i.i.d. random number η_μ
 449 from lognormal distribution with parameter $\mu_\tau = \ln 1$ fixed and σ_τ varying from 0 to 0.3 to model
 450 gradually increasing heterogeneity. We then scale all reaction rates $\tau_{\mu i}$ of a given species μ by η_μ
 451 as a global factor. This rescaling can be understood as the uncertainty in counting abundances in
 452 practice (e.g., due to the species carrying a different number of copies of the 16S RNA).

453 Comparison of abilities to predict function of linear and quadratic Metropo- 454 lis

455 Here we describe the detailed protocol of the comparison of abilities to predict function of linear
 456 and quadratic Metropolis shown in Fig. 4A. As mentioned in the main text, besides the groups
 457 (*variables*) these versions of Metropolis also identify two *models* for predicting the function:

$$\hat{Y}_L = b^L + \sum_i c_i^L T_i, \quad (4a)$$

$$\hat{Y}_Q = b^Q + \sum_i c_i^Q T_i + \sum_{i,j} d_{ij}^Q T_i T_j, \quad (4b)$$

458 where T_i is the combined abundance of group i , and \hat{Y}_L and \hat{Y}_Q are the function predicted by linear
 459 and quadratic model, respectively. The two models are uniquely determined by their regression
 460 coefficients, $\{b^L, c_i^L\}$ for linear model and $\{b^Q, c_i^Q, d_{ij}^Q\}$ for quadratic model. In Fig. 4A we are
 461 comparing the predictive power of these two models.

462 To do so, for each generated pool of species (see Simulation details), we now generate 2 datasets
 463 consisting of the same number of samples. One of them is used as the training set, while the other
 464 one is set aside as the testing set. The training set is fed into the two versions of Metropolis, which
 465 are now required to output not only the optimal groupings they find, but also the coefficients of the
 466 corresponding models (Eqs. 4a & b) trained on the training set. (Specifically for Fig. 4, we only
 467 ask for the 3-group grouping and its regression coefficients.) We then test their abilities to predict
 468 the function in the testing set. The out-of-sample R^2 is calculated as

$$R^2_{out-of-sample} = 1 - \frac{\sum_a (Y_a - \hat{Y}_a)^2}{\sum_a (Y_a - \bar{Y})^2}, \quad (5)$$

469 where \hat{Y}_a is the predicted value of function (for sample a), Y_a is the true value, and $\bar{Y} = \frac{1}{N} \sum_a Y_a$
 470 is the average of Y_a . The differences of out-of-sample R^2 of the two versions of Metropolis (linear
 471 minus quadratic) are shown in Fig. 4A.

472 References

- 473 [1] Shan X, Goyal A, Gregor R, Cordero OX. Annotation-free discovery of functional groups in
 474 microbial communities. *Nat Ecol Evol*. 2023;7(5):716–724.
- 475 [2] Singh BK, Bardgett RD, Smith P, Reay DS. Microorganisms and climate change: terres-
 476 trial feedbacks and mitigation options. *Nature Reviews Microbiology*. 2010;8(11):779–790.
 477 doi:10.1038/nrmicro2439.
- 478 [3] Jansson JK. Microorganisms, climate change, and the Sustainable Development
 479 Goals: progress and challenges. *Nature Reviews Microbiology*. 2023;21(10):622–623.
 480 doi:10.1038/s41579-023-00953-8.

481 [4] Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists'
482 warning to humanity: microorganisms and climate change. *Nature Reviews Microbiology*.
483 2019;17(9):569–586. doi:10.1038/s41579-019-0222-5.

484 [5] Zdolec N, Lorenzo JM, Ray RC. Use of Microbes for Improving Food Safety and Quality.
485 BioMed Research International. 2018;2018:1–2. doi:10.1155/2018/3902698.

486 [6] Ibrahim SA, Ayivi RD, Zimmerman T, Siddiqui SA, Altemimi AB, Fidan H, et al. Lactic acid
487 bacteria as antimicrobial agents: Food safety and microbial food spoilage prevention. *Foods*.
488 2021;10(12):3131.

489 [7] Odeyemi OA, Alegbeleye OO, Strateva M, Stratev D. Understanding spoilage microbial com-
490 munity and spoilage mechanisms in foods of animal origin. *Comprehensive reviews in food*
491 *science and food safety*. 2020;19(2):311–331.

492 [8] Kundu P, Blacher E, Elinav E, Pettersson S. Our gut microbiome: The evolving inner self.
493 *Cell*. 2017;171(7):1481–1493.

494 [9] Belkaid Y, Hand TW. Role of the Microbiota in immunity and inflammation. *Cell*.
495 2014;157(1):121–141.

496 [10] Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M,
497 et al. The Microbiota-Gut-Brain Axis. *Physiological Reviews*. 2019;99(4):1877–2013.
498 doi:10.1152/physrev.00018.2018.

499 [11] Baker JL, Mark Welch JL, Kauffman KM, McLean JS, He X. The oral microbiome: diversity,
500 biogeography and human health. *Nature Reviews Microbiology*. 2023;doi:10.1038/s41579-023-
501 00963-6.

502 [12] Van Rossum T, Ferretti P, Maistrenko OM, Bork P. Diversity within species: interpreting
503 strains in microbiomes. *Nat Rev Microbiol*. 2020;18(9):491–506.

504 [13] Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG. Diversity, ecology
505 and evolution of Archaea. *Nat Microbiol*. 2020;5(7):887–900.

506 [14] Ma B, Wang Y, Ye S, Liu S, Stirling E, Gilbert JA, et al. Earth microbial co-occurrence
507 network reveals interconnection pattern across microbiomes. *Microbiome*. 2020;8(1):82.

508 [15] Skwara A, Gowda K, Yousef M, Diaz-Colunga J, Raman AS, Sanchez A, et al. Learning the
509 functional landscape of microbial communities. *bioRxiv*. 2023;.

510 [16] Sanchez-Gorostiaga A, Bajić D, Osborne ML, Poyatos JF, Sanchez A. High-order interactions
511 distort the functional landscape of microbial consortia. *PLoS Biol*. 2019;17(12):e3000550.

512 [17] Blondel J. Guilds or functional groups: does it matter? *Oikos*. 2003;100(2):223–231.

513 [18] Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O'Connor MI, et al. Function and
514 functional redundancy in microbial systems. *Nat Ecol Evol*. 2018;2(6):936–943.

515 [19] Louca S, Jacques SMS, Pires APF, Leal JS, Srivastava DS, Parfrey LW, et al. High taxonomic
516 variability despite stable functional structure across microbial communities. *Nat Ecol Evol*.
517 2016;1(1):15.

518 [20] Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean
519 microbiome. *Science*. 2016;353(6305):1272–1277.

520 [21] Nelson MB, Martiny AC, Martiny JBH. Global biogeography of microbial nitrogen-cycling
521 traits in soil. *Proc Natl Acad Sci U S A*. 2016;113(29):8033–8040.

522 [22] Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T. Bacterial community assembly based
523 on functional genes rather than species. *Proc Natl Acad Sci U S A.* 2011;108(34):14288–14293.

524 [23] Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent
525 simplicity in microbial community assembly. *Science.* 2018;361(6401):469–474.

526 [24] Moran J, Tikhonov M. Defining Coarse-Grainability in a Model of Structured Microbial Ecosys-
527 tems. *Physical Review X.* 2022;12(2). doi:10.1103/physrevx.12.021038.

528 [25] Allesina S, Pascual M. Food web models: a plea for groups. *Ecol Lett.* 2009;12(7):652–662.

529 [26] Pascual-García A, Bell T. functionInk: An efficient method to detect functional groups in
530 multidimensional networks reveals the hidden structure of ecological communities. *Methods Ecol Evol.* 2020;11(7):804–817.

532 [27] Moran J, Tikhonov M. Emergent predictability in microbial ecosystems; 2024. Available from:
533 <http://arxiv.org/abs/2403.19372>.

534 [28] Estrela S, Vila JCC, Lu N, Bajić D, Rebollo-Gómez M, Chang CY, et al. Functional attrac-
535 tors in microbial community assembly. *Cell Syst.* 2022;13(1):29–42.e7.

536 [29] Simberloff D, Dayan T. The Guild Concept and the Structure of Ecologi-
537 cal Communities. *Annual Review of Ecology and Systematics.* 1991;22(1):115–143.
538 doi:10.1146/annurev.es.22.110191.000555.

539 [30] Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and
540 function of the global ocean microbiome. *Science.* 2015;348(6237):1261359.

541 [31] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of State Calcula-
542 tions by Fast Computing Machines. *The Journal of Chemical Physics.* 1953;21(6):1087–1092.
543 doi:10.1063/1.1699114.

544 [32] Tikhonov M, Monasson R. Collective Phase in Resource Competition in a Highly Diverse
545 Ecosystem. *Physical Review Letters.* 2017;118(4). doi:10.1103/physrevlett.118.048103.

546 [33] Good BH, Martis S, Hallatschek O. Adaptation limits ecological diversification and promotes
547 ecological tinkering during the competition for substitutable resources. *Proc Natl Acad Sci U
548 S A.* 2018;115(44):E10407–E10416.

549 [34] Marsland R 3rd, Cui W, Mehta P. A minimal model for microbial biodiversity can reproduce
550 experimentally observed ecological patterns. *Sci Rep.* 2020;10(1):3308.

551 **Supporting information**

552 **S1 File. Simulation Scripts And Data.** MATLAB simulation code and scripts generating
553 Fig. 2-4 and supplementary figures S2-S6 from scratch, as well as data used for these figures shown
554 in the current manuscript.

555 **S1 Text and Figures. Supplementary information text with supplementary figures
556 S1-S6 inserted.**