

¹ Generalized end-product feedback circuit can sense high dimensional environmental
² fluctuations

Fang Yu and Mikhail Tikhonov

Department of Physics, Washington University in St. Louis, St. Louis, Missouri, USA

(Dated: October 29, 2024)

Understanding computational capabilities of simple biological circuits, such as the regulatory circuits of single-cell organisms, remains an active area of research. Recent theoretical work has shown that a simple cross-talk architecture based on end-product inhibition can exhibit predictive behavior by learning fluctuation statistics of one or two environmental parameters. Here we extend this analysis to higher dimensions, i.e., a large number of fluctuating inputs. We show that a generalized version of the cross-talk architecture can learn not only the dominant direction of fluctuations, as shown previously, but also the subdominant modes, orienting its responsiveness spectrum to the fluctuation eigenmodes. We comment on the relevance of our results to living systems at other scales of organization, such as ecosystems of species competing for fluctuating resources.

I. INTRODUCTION

As organisms evolve to better survive in changing environments, they develop adaptations that allow them to respond to change, but also to predict change. Characterizing such predictive (anticipatory [1–3]) behavior in microorganisms, whose regulatory circuits are far less complex than what can be achieved by a neuron-based brain [4], revealed many examples of evolutionary ingenuity attaining complex objectives with minimal ingredients [5, 6] (e.g., robust circadian clocks in photosynthetic algae, which allow them to reorganize their metabolism in preparation for sunrise [7]).

Theoretical computer science has long established that even the simplest building blocks, if used in sufficient numbers, can support complex computations: very simple instruction sets can already be Turing-complete [8–10]. The biologically relevant sister question—how simple of a *circuit* can perform how complex a task?—is understood less well. Some well-studied examples include the chemotaxis circuit achieving perfect adaptation [11, 12], mechanisms of temperature compensation in circadian clocks [7, 13], or the bistable genetic regulatory network storing and retrieving associative memories [14]. Still, understanding the computational capabilities of simple circuits remains an active area of research.

31 Recent theoretical work explored the ability of a simple
 32 circuit to learn complex statistical features of a fluctuating
 33 input [15] (as experienced, for example, by a bacterium faced with a fluctuating environment). Specifically, that work considered the case of two fluctuating
 34 environmental parameters, and demonstrated that their
 35 variances and correlations may, in principle, be both
 36 learned and usefully “recalled” by a simple circuit based
 37 on the end-product inhibition motif [15].

40 Here, we explore a high-dimensional generalization of
 41 this circuit. We ask whether the three ingredients iden-
 42 tified in Ref. [15]—nonlinearity, an excess of regulators,
 43 and cross-talk between them—are sufficient to learn the
 44 fluctuation structure of high-dimensional environments.
 45 This extension is interesting, because the complexity of

⁴⁵ This extension is interesting, because the complexity of

46 the task grows dramatically with dimension. Indeed, in
 47 the two-dimensional problem considered previously [15],
 48 the difficult part of learning the input fluctuation struc-
 49 ture amounted to learning a single number: the direction
 50 of a single “dominant” direction of fluctuation. In con-
 51 trast, in higher dimensions, even the simplest Gaussian-
 52 structured fluctuations include sub-dominant modes, as
 53 explained below. However, the cross-talk architecture
 54 solving the 2d problem is naturally generalizable to arbit-
 55 trary dimension, prompting us to test its performance.

56 We find that, as in the low-dimensional case, the
 57 cross-talk architecture can upregulate its reactivity to
 58 respond faster in epochs when environment fluctuations
 59 are larger. We further show that even a small excess
 60 of regulators already makes the cross-talk architecture
 61 responsive to changes in fluctuation structure, and that
 62 the state adopted by the cross-talk architecture encodes
 63 both the dominant and subdominant fluctuation modes
 64 of environmental parameters.

65 Our analysis demonstrates how a highly complex task
 66 can be approximately solved by a simple circuit. We
 67 are cautious at drawing conclusions pertaining to bio-
 68 logical regulatory circuits, as our abstract model ignores
 69 stochasticity of transcriptional regulation. However, the
 70 circuit ingredients considered here are ubiquitous across
 71 several contexts such as organelle dynamics or ecological
 72 interactions. As a result, our results may be relevant for
 73 appreciating the complexity of the behavior that the col-
 74 lective dynamics of such simple elements may be able to
 75 achieve [16–18].

II. THE MODEL

77 Our approach builds directly on that of Landmann *et al.* [15], but this section provides enough details to be
 78 self-contained.
 79

80 Specific adaptation problems faced by real organisms
 81 are highly diverse. Following Ref. [15], here we distill the
 82 general problem of physiological learning to a minimal
 83 model. Specifically, we consider a scenario where a set

84 of internal quantities $\vec{P} = (P_1, \dots, P_N)$ (which a cell can
 85 regulate) must track a set of fluctuating external factors,
 86 $\vec{D} = (D_1, \dots, D_N)$. For the sake of concreteness, we will
 87 think of this problem in metabolic terms, with P_i repre-
 88 senting the rates of production of metabolites x_i . In our
 89 model, the cell seeks to match these production rates \vec{P}
 90 to the (time-dependent) demands $\vec{D}(t)$ imposed by the
 91 external conditions. As an example, environmental con-
 92 ditions that trigger biofilm formation in bacteria require
 93 a different stoichiometry of synthesis than the condition
 94 of fast planktonic growth.

95 If the fluctuations of demands are slow, the organism
 96 could sense them and directly match \vec{P} to \vec{D} at all times.
 97 But if fluctuations are too fast to be followed precisely,
 98 the organism must instead rely on the “statistical struc-
 99 ture” of $\vec{D}(t)$, such as the mean value or correlations be-
 100 tween its components $D_i(t)$ [15]. If this statistical struc-
 101 ture remains constant over a very long timescale, the op-
 102 timal behavior (given this structure) could be hardwired
 103 into the cross-talk architecture by evolution. But if the
 104 structure itself occasionally changes, the organism would
 105 need to learn it from recent observations via physiologi-
 106 cal mechanisms. This is the regime where this problem
 107 can serve as a minimal model for the task of physiological
 108 learning.

109 There are different levels of statistical structure to be
 110 learned. Under our tracking problem, the simplest form
 111 of learning would be to set the production rates P_i to
 112 match the average demand in the recent past. Beyond
 113 that, the subtler statistics include the variances and cor-
 114 relations among fluctuations. To model $D(t)$ in a way
 115 where both means and correlations can be tuned, we
 116 consider a multi-dimensional random walk in a quadratic
 117 potential [15].

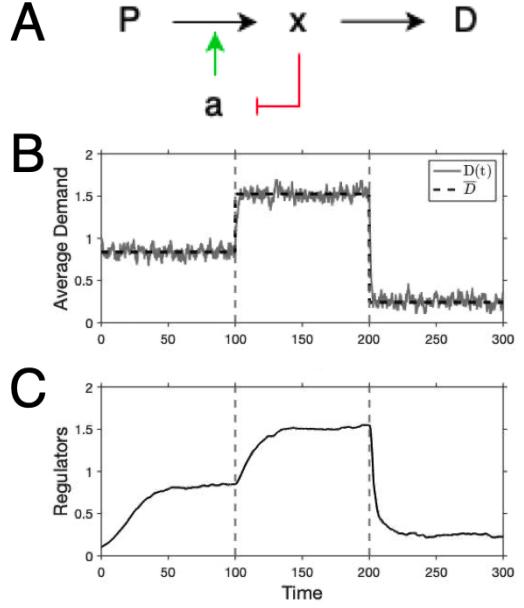
$$\vec{D}(t + \Delta t) = \vec{D}(t) - M \Delta t \cdot (\vec{D}(t) - \langle \vec{D} \rangle) + \sqrt{2\Gamma \Delta t} \vec{\eta} \quad (1)$$

118 Here $\langle \vec{D} \rangle$ denotes the average demand, Γ denotes the fluc-
 119 tuation strength, and $\vec{\eta}$ is a series of independent Gaus-
 120 sian random variables with zero mean and unit variance.
 121 The matrix M determines the correlation among fluctu-
 122 ations of different components of D . If M is isotropic
 123 (all of its eigenvalues are the same), the fluctuations of
 124 individual components of D will be decoupled.

125 Our approach will be as follows. To probe whether a
 126 given regulatory architecture successfully learns the sta-
 127 tistical structure of the fluctuating environment, we ex-
 128 pose it in simulations to several environmental epochs
 129 that differ by statistical structure, and allow the system
 130 to reach a steady state. To say that the system success-
 131 fully “learns” its environment, we require two criteria.
 132 First, the system should be sensitive to the change of
 133 statistics, i.e. we expect the steady-state regulator activ-
 134 ity to be reorganized between epochs. Second, we should
 135 be able to exhibit the “rule” by which the statistical fea-
 136 ture of interest is encoded in the regulator activity.

137 The simplest form of statistical structure is the aver-

138 age demand $\langle \vec{D} \rangle$. This average demand can be learned
 139 already by the simple end-product inhibition (SEPI) cir-
 140 cuit, where the production P_i of each metabolite x_i is
 141 placed under control of a single dedicated regulator a_i
 142 inhibited by x_i itself (Fig. 1A). In epochs of low demand,
 143 the unused x_i accumulates and decreases production un-
 144 til it balances the demand. The average demand over a
 145 recent past is stored in the activity of the regulator a_i
 146 (Fig. 1B, C).



147 FIG. 1. The Simple end-product inhibition circuit (SEPI)
 148 can be seen as learning signal mean. (A) In the simple
 149 end-product inhibition architecture, the production P of a
 150 metabolite x is placed under control of a single dedicated
 151 regulator a inhibited by x itself. (B) We expose the SEPI
 152 architecture to 3 environmental epochs (solid line) that differ
 153 by the average demand $\langle \vec{D} \rangle$ (dashed line). (C) The expression
 154 level of the regulator a encodes the average demand.

155 The regulatory motif of end-product inhibition is not
 156 only simple, but has been shown to be remarkably effec-
 157 tive. For example, under certain assumptions, this motif
 158 alone can not only “solve” the problem of proteome real-
 159 location after a change of environmental conditions, but
 160 do so in an optimal time [19]. However, the effectiveness
 161 of SEPI necessarily applies only when dealing with states
 162 that, in the language of our model, differ by the signal
 163 mean. Indeed, at steady state, the internal degrees of
 164 freedom (the regulators a , serving as memory) can store
 165 only one value per metabolite x_i . To be sensitive to ad-
 166 ditional statistics, additional degrees of freedom would
 167 necessarily be required. (It is worth noting that real
 168 cells can transiently circumvent the “one regulator en-
 169 codes one number” intuition, using temporally patterned
 170 signaling to transmit more information through a single
 171 regulator than one might naively expect [20]. However,
 172 even in this case, downstream readout circuitry must de-

174 code the information carried by dynamic features of the
 175 signal into steady-state expression levels of other genes,
 176 reducing to the same problem considered here.) Thus,
 177 from now on, we will allow the number of regulators N_a
 178 to exceed the number of metabolites N_x , and label regu-
 179 lators using Greek indices μ , running from 1 to N_a (while
 180 Roman indices i , labeling metabolites, run from 1 to N_x).
 181 Landmann *et al.* showed that a generalized end-
 182 product feedback architecture can learn the variances and
 183 correlations of D_i [15]. Their architecture takes three
 184 ingredients: an excess of regulators ($N_a > N_x$), non-
 185 linear activation/repression of the regulators a_μ by the
 186 metabolite concentrations x_i , and cross-talk among dif-
 187 ferent regulatory pathways. Specifically, they considered
 188 the following dynamics:

$$\begin{aligned} x_i &= \frac{P_i}{D_i} \\ P_i &= \sum_{\mu} \sigma_{\mu i} a_{\mu} \\ \tau_a \dot{a}_{\mu} &= a_{\mu} \max \left(d, \sum_i \sigma_{\mu i} (1 - x_i) \right) - \kappa a_{\mu} \end{aligned} \quad (2)$$

189 Here $\sigma_{\mu i}$ describes how the activities of regulators a_μ
 190 control the synthesis of metabolites x_i ; d parameterizes
 191 nonlinearity; τ_a sets the timescale of regulator dynam-
 192 ics, and κ/τ_a is the degradation rate. (This form as-
 193 sumes timescale separation with dynamics of metabolites
 194 x_i being faster than that of regulators a_μ ; for details, see
 195 derivation and discussion in Ref. [15].)

196 We should note that this simplified model ignores the
 197 intrinsic stochasticity of transcriptional regulation and is
 198 a poor representation of the complexity of real biological
 199 dynamics. Here, we use it as a model context to explore
 200 an abstract topic, namely the complexity of a task that a
 201 small number of simple regulatory elements can in prin-
 202 ciple achieve.

214 In two dimensions ($N_x = 2$), this cross-talk architec-
 215 ture can sense, store and usefully “recall” the information
 216 on second-order input statistics, such as variances and
 217 correlations, and do so near-optimally [15]. Here, we ex-
 218 tend this architecture to higher dimensions (Fig. 2A). We
 219 choose regulators σ to be minimally redundant (see Sup-
 220 plemental Material [31] section B). Briefly, the elements
 221 of σ , normalized as $|\sigma| = 1$, can be seen as N_a points
 222 on an N_x -dimensional sphere, and we pick them to be
 223 spread out as far away from each other as possible by
 224 treating them as repelling charges on a sphere’s surface
 225 (Fig. 2B). The charge-repelling procedure is initialized
 226 with random initial conditions, such that the residual ro-
 227 tational symmetry is fixed randomly in each simulation
 228 run. We expose the generalized end-product feedback
 229 architecture to environmental epochs that differ in fluc-
 230 tuation structure M only. To guarantee that any restruc-
 231 turing of regulator activity between exposure epochs is
 232 due to the changes of M , we keep the mean demand \bar{D}
 233 the same in all epochs. For concreteness, we pick M to

234 be a random rotation of $\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 100 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 100 \end{pmatrix}$, so that the envi-

235 ronmental fluctuations have one preferred direction (the
 236 direction of the dominant eigenvector of M^{-1}), where
 237 the restoring force is the weakest, and the fluctuations
 238 are thus the largest. When shifting from one epoch to
 239 another, we reorient M by applying a random rotation
 240 (Fig. 2C), and observe how the regulator expression levels
 241 reorganize in response (Fig. 2D).

242 Note that changing the direction of the dominant
 243 eigenvector is only one way to change the environment.
 244 For example, Ref. [15] also considered environments with
 245 different extent of correlation among fluctuations of D_i ’s,
 246 which the cross-talk architecture was also able to learn.
 247 Here, we will use the former approach, because the ex-
 248 istence of a preferred direction of fluctuations allows for
 249 more intuitive metrics quantifying circuit responsiveness,
 250 as we describe below. We will show that the architecture
 251 of Fig. 2A is indeed responsive to higher-dimensional ro-
 252 tations of M , and will quantify this sensitivity.

III. RESULTS

A. The generalized architecture can outperform SEPI, but is costly

254 When Landmann *et al.* considered the cross-talk ar-
 255 chitecture (Eq 2) in the two-dimensional case, their fo-
 256 cus was not just learning, but also the benefit of learn-
 257 ing. Specifically, the primary readout used in that work
 258 was the ‘tracking performance’ \mathcal{P} defined by $\mathcal{P} \equiv$

$$259 -\sqrt{\sum_i (P_i - D_i)^2}$$
, intended as a proxy for organism fit-
 260 ness, and they showed that the learning-capable circuit
 261 can enhance tracking performance over SEPI. In this sec-
 262 tion, we demonstrate that this observation continues to
 263 hold in higher dimensions: namely, the cross-talk archi-
 264 tecture of Fig. 2A can achieve better tracking perfor-
 265 mance \mathcal{P} than the SEPI architecture. However, we will
 266 also show that this performance increase is very costly.

267 We will use two metrics of cost. One is Control Input
 268 Power (CIP), a concept rooted in control theory and de-
 269 fined here by $\int \|\dot{P}\|^2 dt$. Measuring cost in this way has
 270 the advantage that the family of optimal strategies on
 271 the performance-CIP plane can be derived analytically,
 272 but CIP is difficult to interpret in biological terms. For
 273 this reason, we will also consider a more biologically rel-
 274 evant measure of cost, namely the total expression of all
 275 regulators combined: $\sum_{\mu} a_{\mu}$.

276 Fig. 3 confirms that both cost metrics yield similar
 277 results. As expected, increasing the number of regu-
 278 lators increases performance \mathcal{P} . Performance can also be
 279 improved by reducing the degradation rate κ , since a
 280 higher expression of regulators (with activators and re-
 281 pressors active simultaneously, known as paradoxical reg-
 282 ulation [21]) allows P_i to change faster [15]. As a result,
 283 the performance \mathcal{P} of the cross-talk architecture can ex-



203

204 FIG. 2. The generalized architecture is built to learn the variances and correlations of demand \vec{D} . (A) An example of generalized
 205 end-product feedback architecture in the case where $N_x = 3$ and $N_a = 4$. (B) 4 regulatory pathways on 3 resources are shown
 206 as 4 vectors in 3d space. Regulation vectors are simulated as charges repelling each other to distribute evenly. (C) In this work,
 207 we model environmental fluctuations as \vec{D} executing a random walk in a quadratic potential M . Such fluctuation structure can
 208 be visually represented as an ellipsoid, indicating the volume where a particle executing such random walk would typically be
 209 found: each axis of the ellipsoid is the direction of the corresponding eigenvector of M , and the length of each semiaxis is the
 210 inverse of the eigenvalue. The direction with the weakest restoring force (the dominant eigenvector of M^{-1}) is the direction of
 211 largest fluctuations, and is denoted \vec{v}_M . To test the ability of the system to learn, we expose it consecutively to environmental
 212 epochs differing in the fluctuation structure M , visually represented here as ellipsoids of different orientations. (D) In response
 213 to changes of M , the system dynamically adjusts the expression level of regulators.

301 ceed that of SEPI. However, Fig. 3 also shows the re-
 302 markable effectiveness of SEPI, which lies closest to the
 303 optimal curve at minimal circuit complexity.

304 The ability to invest resources into improving preci-
 305 sion at an important task can be useful; such mecha-
 306 nisms are known to be employed by cells in other con-
 307 texts, e.g. investing energy to improve the accuracy of
 308 sensing [22, 23] or copying its DNA [24]. However, in
 309 our context it seems implausible that this marginal per-
 310 formance increase alone would be sufficient to offset the
 311 cost of a significant increase in protein expression lev-
 312 els and circuit complexity, particularly since our simple
 313 model ignores the intrinsic stochasticity of regulatory dy-
 314 namics, known to be substantial. Thus, from here on, we
 315 will no longer consider tracking performance \mathcal{P} as our
 316 readout. Instead, we will assume that an ability to sense
 317 subtle changes in environmental statistics may itself be
 318 of value to the organism (e.g. as an early cue indicative of
 319 some other upcoming change), and investigate the ability
 320 of this cross-talk architecture to learn the environmental
 321 state and react to its changes.

322 **B. The regulatory state adopted by the cross-talk
 323 architecture tracks the dominant eigenvector of the
 324 fluctuation structure M^{-1}**

339 Fig. 2C, D provides an example showing that the cross-
 340 talk architecture is sensitive to the statistics of envi-
 341 ronmental fluctuations. After an environmental change,
 342 when v_M is reoriented, the expression level of regulators
 343 is seen to change as well. We will now show that the

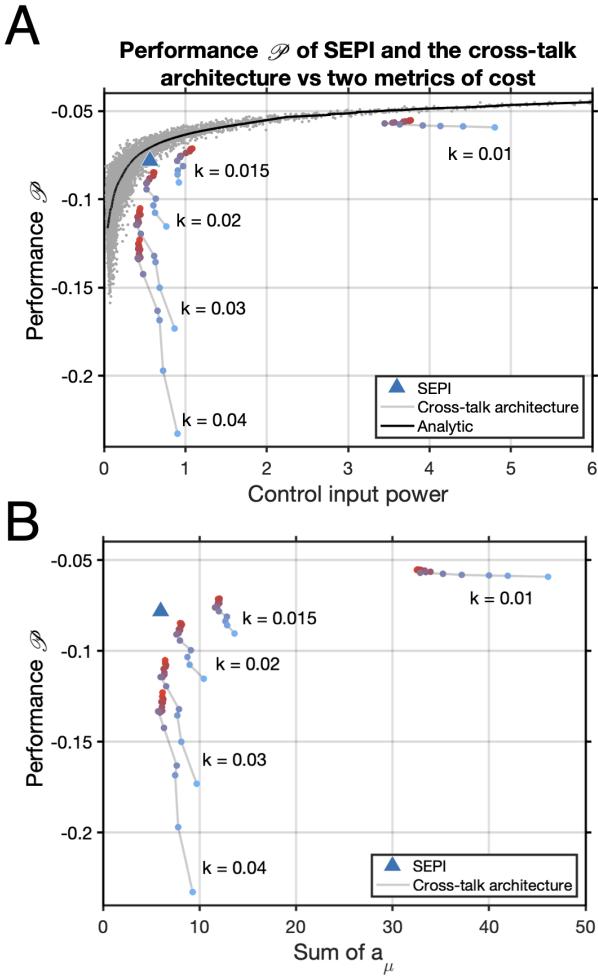
344 regulation state adopted by the system is not random
 345 or idiosyncratic, but encodes information about the fluc-
 346 tuation structure M in a simple way. We follow Land-
 347 mann *et al.* to define system *responsiveness* $R_{ij} = \frac{d\dot{P}_i}{dD_j}$,
 348 where \dot{P}_i represents the time derivative of production P_i
 349 (see Eq. (2)), and will show that the system preferen-
 350 tially aligns its eigenvectors to the dominant eigenvector
 351 of M^{-1} . This behavior is, in fact, the “smart” thing
 352 to do: it can be shown that the optimal strategy (in the
 353 sense of control theory, with CIP as cost metric) would be
 354 similarly anisotropic, with the dominant direction of fluc-
 355 tuations eliciting the strongest response [15, 25]. (This
 356 analytical result is what motivates defining R_{ij} as above.)
 357 To quantify this degree of alignment, we define

$$\gamma = \text{Prob}_{\|u\|=1} \left(\|R \cdot \vec{u}\| < \|R \cdot \vec{v}_M\| \right)$$

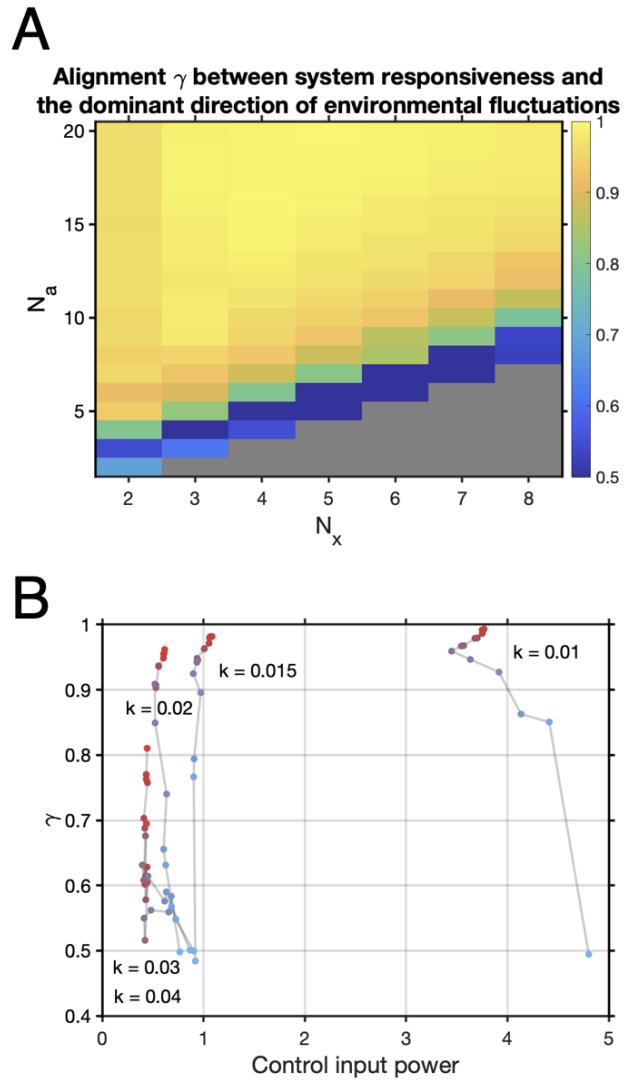
358 where \vec{v}_M denotes the dominant eigenvector of M^{-1} , nor-
 359 malized to unit length. The intuition behind this defin-
 360 ition is as follows. By definition of the responsiveness
 361 matrix R , the norm $\|R \cdot \vec{v}_M\|$ is the strength of the sys-
 362 tem’s response following a fluctuation of D in the di-
 363 rection \vec{v}_M . Thus, γ quantifies how unlikely it is that
 364 a randomly drawn unitary vector \vec{u} would elicit a re-
 365 sponse as strong, or stronger, than v_M . A large γ indi-
 366 cates the projection of \vec{v}_M on the dominant eigenvectors
 367 of R is atypically large, and we will colloquially refer to
 368 this quantity as measuring “alignment of \vec{v}_M to R ”. The
 369 larger the value of γ , the stronger the evidence that our
 370 generalized end-product feedback architecture adopted a
 371 state with a responsiveness matrix preferentially aligned
 372 to v_M . Heatmap of γ (Fig. 4A) demonstrates that the

373 cross-talk architecture succeeds at aligning its responsiveness
 374 with the input fluctuations, and that just two extra
 375 regulators are sufficient to enable such alignment.

376 To evaluate the cost of such a regulatory strategy,
 377 Fig. 4B shows the correspondence between the system's
 378 ability to align with the dominant direction of fluctua-
 379 tions (v_M), and the control input power it incurs. The
 380 analogous plot for the second measure of cost, total ex-
 381 pression level of regulators, looks similar and is shown in



278 FIG. 3. Improving performance \mathcal{P} beyond SEPI is very
 279 costly. (A) Tracking performance of different architectures
 280 when $N_x = 6$, shown against Control Input Power (CIP),
 281 which is a measure of cost (see text). Gray dots show simula-
 282 tion results of the analytically-derived optimal strategy (de-
 283 fined in [15]), averaged over 10 replicate simulations (see Sup-
 284 plemental Material [31] for more details); the black curve is a
 285 smoothed guide for the eye. The blue triangle indicates per-
 286 formance of SEPI, and the grey lines show the performance
 287 of the cross-talk architecture for different values of the degra-
 288 dation constant κ . The dots' color changing from blue to red
 289 indicates an increasing number of regulators from 6 to 20.
 290 (B) Same as A, replotted using a more biologically relevant
 291 measure of cost (the total expression of all regulators $\sum_\mu a_\mu$).



325 FIG. 4. A modest excess of regulators allows the cross-talk
 326 architecture to learn the dominant direction of environmen-
 327 tal fluctuations. (A) Heatmap of the alignment γ between
 328 responsiveness R and the dominant eigenvector of M^{-1} . The
 329 panel shows that even a small excess of regulators is suffi-
 330 cient for the cross-talk architecture to track the dominant eigen-
 331 vector of the fluctuations of its input. The $N_a < N_x$ region is
 332 grayed out, as we require the number of regulators N_a to be
 333 at least as large as the number of inputs N_x . (B) More regu-
 334 lators enable better alignment without incurring extra cost of
 335 control. Panel shows the alignment γ for $N_x = 6$ and varying
 336 κ and N_a , plotted against CIP. Dots changing from blue to
 337 red indicate the number of regulators increasing from 6 to 20.

382 the Supplemental Material [31] (see Fig. S2).

383 Curiously, in contrast to Fig. 3A, Fig. 4B shows that
 384 the learning ability of the cross-talk architecture is con-
 385 trolled primarily by the number of regulators, and can be
 386 modulated without incurring an expression or CIP cost.
 387 One may also notice that the dependence of the incurred

388 cost, by either cost metric, on the number of regulators
 389 N_a is non-monotonic. Intuitively, a larger N_a means a
 390 more thorough tiling of the sphere of possible directions
 391 (Fig. 2B), so that any given direction in fluctuation space
 392 can be approximated more efficiently. However, if N_a is
 393 too large, this benefit is undermined by the fact that the
 394 expression of *any* regulator is positive and has non-zero
 395 fluctuations, incurring some cost even if “unused.”

396 **C. The architecture also tracks non-dominant
 397 statistics**

405 So far we have been considering the case where
 406 M^{-1} has only one dominant direction, but what hap-
 407 pens when the fluctuation structure is more complex?
 408 To test this, we consider M with a sub-dominant
 409 eigenvector—specifically, a randomly rotated version

410 of $M_0 = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 2 & 0 & \cdots & 0 \\ 0 & 0 & 100 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 100 \end{pmatrix}$ —and restrict environment

411 changes to those that change only the sub-dominant di-
 412 rection, keeping the dominant eigenvector fixed. For ex-
 413 ample, in a three-dimensional case, one can intuitively
 414 think of this as rotating an anisotropic ellipsoid around
 415 its dominant axis (Fig. 5A).

416 Fig. 5B confirms that in this regime, the alignment
 417 of system responsiveness R to the dominant eigenvector
 418 of M^{-1} remains significant (better than random), but
 419 becomes worse than we observed in Fig. 4A. This is, of
 420 course, expected: the structure of fluctuations no longer
 421 reduces to a single dominant direction. To fully assess the
 422 alignment between M and the responsiveness R , looking
 423 at only the dominant eigenvector is insufficient. To also
 424 take non-dominant eigenvectors of M into consideration,
 425 consider the quantity ϕ defined as

$$\phi_{[M,R]} = \frac{\|[M,R]\|}{\|\{M,R\}\|},$$

426 where $\|\dots\|$ denotes the Frobenius norm of a matrix [26],
 427 $[M,R]$ denotes the commutator of M and R and $\{M,R\}$
 428 denotes their anti-commutator. Note that if M and R
 429 are jointly diagonalizable (share the eigenbasis), then M
 430 and R commute and $\phi_{[M,R]}$ would be 0. Thus, a non-zero
 431 $\phi_{[M,R]}$ can be seen as a measure of misalignment between
 432 the eigenvectors of M and R . Dividing $[M,R]$ by $\{M,R\}$
 433 yields a quantity invariant under rescaling of M or R by
 434 constant factors.

435 Similar to the trick we used when defining γ , to enable
 436 meaningful comparisons across dimensions, instead of fo-
 437 cusing on the raw value of ϕ , we compute the probability

$$\varphi = \text{Prob}_{R'}(\phi_{[M,R']} > \phi_{[M,R]}).$$

438 Here R' is a random ‘subtle rotation’ of R , which we de-
 439 fine as a rotation that preserves its dominant eigenvector.
 440 We refer to φ as the alignment of non-dominant eigenvec-
 441 tors. If φ is close to 1, it means that M is better aligned

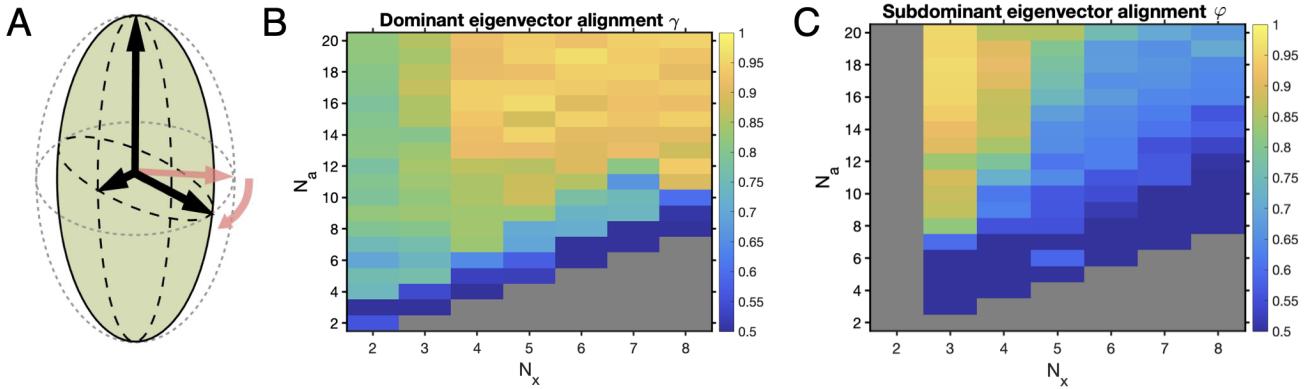
442 to R than to almost any of its rotated versions, even when
 443 the rotations only change subdominant eigenvectors.

444 The results are shown in Fig. 5C. The $N_x = 2$ col-
 445 umn is grayed out: in two dimensions, the only rotation
 446 that preserves the dominant eigenvector is the identity
 447 matrix. We see that the cross-talk architecture (Eq. 2) is
 448 not only responsive to changes in the subdominant direc-
 449 tion of fluctuations, but succeeds at realigning its respon-
 450 siveness matrix accordingly, particularly in dimensions 3
 451 and 4 (at the price of a somewhat worse alignment to the
 452 dominant direction; compare with panel B). However,
 453 as the dimension N_x increases, the number of regula-
 454 tors required to achieve a good non-dominant alignment
 455 $\varphi > 0.9$ quickly becomes unreasonably large ($N_a > 20$).

IV. DISCUSSION

456 The regulatory circuit we considered in this work gen-
 457 eralizes simple end-product inhibition by including three
 458 additional ingredients: nonlinearity, an excess of regula-
 459 tors, and cross-talk between them. Previous work has
 460 shown that these ingredients can endow the circuit with
 461 an ability to learn time-dependent fluctuation statistics
 462 of its inputs through a form of associative learning, at
 463 least in the low-dimensional scenarios (with one or two in-
 464 puts) [15]. Here, we generalized this circuit to the higher-
 465 dimensional case and presented two results. Just like in
 466 lower dimensions, this architecture can show an improved
 467 performance \mathcal{P} at the task of tracking environmental
 468 fluctuations. This small performance gain comes at a
 469 significant complexity cost. However, if sensing changes
 470 in environmental statistics is of value to the organism,
 471 then this architecture is quite interesting as it offers a
 472 sensitivity to subtle changes, sensing not only the domi-
 473 nant direction of fluctuations, but also the subdominant
 474 fluctuation modes.

475 How relevant is this high-dimensional case for real
 476 cells? It is easy to imagine that a specific pair of re-
 477 sources might be correlated at some point of an organ-
 478 ism’s lifecycle but not at another; thus, it is clear that
 479 dynamically learning and unlearning a *single* correlation
 480 could be useful. By comparison, the “universal learn-
 481 ing” capacity described here—an ability to pick out any
 482 preferred direction of correlations in a high-dimensional
 483 space—seems rather more abstract. However, this could
 484 be the relevant regime for the regulatory architecture of
 485 a cell as a whole, seen as a high-dimensional learning
 486 circuit. Some intriguing recent ideas propose a possible
 487 common ground between evolvability of regulatory cir-
 488 cuits, their ability to solve complex problems, and the
 489 success of overparameterized models in machine learn-
 490 ing [27, 28]. So far, these parallels remain speculative;
 491 but the fact that simple elements can enable regulatory
 492 circuits to perform a form of associative learning could
 493 be a valuable piece of this puzzle. In this work, we have
 494 shown that one previously proposed mechanism success-
 495 fully generalizes to higher dimensions.



398

399 FIG. 5. The generalized architecture learns to track the changing sub-dominant eigenvector of the input fluctuation. (A) We
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564

497 In considering the biological implications of our analysis, it is important to remember that our goal was not 498 to accurately model real regulatory circuits. Rather, our 499 simple model helps us explore the computational ability 500 of a simple circuit composed of biologically plausible 501 elements.

502 This level of abstraction has some advantages. Circuit 503 elements similar to those discussed here appear 504 also in several other contexts, such as organelle regulation 505 [29, 30] or resource competition dynamics of an 506 ecosystem (where a species' resource exploitation inhibits 507 its own growth). In fact, in the ecological context, the 508 ingredients required by the cross-talk architecture are 509 arguably more natural. Indeed, in the gene regulatory 510 context, the autocatalytic aspect is nontrivial to implement 511 [15], while in the ecological context, the "self-

512 activation" is automatically ensured by replicator dynamics. This parallel suggests that under some minimal assumptions, the commonly considered resource competition dynamics may cause the ecosystem to align its responsiveness to the spectrum of environmental fluctuations. Confirming this behavior, and exploring its relevance for ecosystem dynamics is an exciting avenue for future work.

513 At the same time, the level of abstraction adopted here 514 also has clear limitations. As mentioned above, our simplified 515 model ignores the intrinsic stochasticity of transcriptional 516 regulation. Thus, any interpretation in terms 517 of real regulatory circuits requires caution.

518 All simulations were performed using MATLAB (Math- 519 works, Inc). The code reproducing all figures from 520 scratch is provided as Supplementary File 1.

529 [1] I. Tagkopoulos, Y.-C. Liu, and S. Tavazoie, Predictive 530 behavior within microbial genetic networks, *Science* 320, 531 1313 (2008).

532 [2] M. A. Savageau, *Escherichia coli* habitats, cell types, and 533 molecular mechanisms of gene control, *Am. Nat.* 122, 732 534 (1983).

535 [3] M. Sims, Many paths to anticipatory behavior: Anticipatory 536 model acquisition across phylogenetic and ontogenetic 537 timescales, *Biol. Theory* 18, 114 (2023).

538 [4] S. J. Gershman, The molecular memory code and synaptic 539 plasticity: A synthesis, *Biosystems* 224, 104825 540 (2023).

541 [5] J. P. Dexter, S. Prabakaran, and J. Gunawardena, A 542 complex hierarchy of avoidance behaviors in a single-cell 543 eukaryote, *Curr. Biol.* 29, 4323 (2019).

544 [6] S. J. Gershman, P. E. Balbi, C. R. Gallistel, and J. Gu- 545 nawardena, Reconsidering the evidence for learning in 546 single cells, *eLife* 10, e61907 (2021).

547 [7] D. Bell-Pedersen, V. M. Cassone, D. J. Earnest, S. S. 548 Golden, P. E. Hardin, T. L. Thomas, and M. J. Zoran, 549 Circadian rhythms from multiple oscillators: lessons from 550 diverse organisms, *Nat. Rev. Genet.* 6, 544 (2005).

551 [8] A. M. Turing, On Computable Numbers, with an Application 552 to the Entscheidungsproblem, *Proc. Lond. Math. Soc.* 42, 230 (1936).

553 [9] W. S. Brainerd and L. H. Landweber, *Theory of Computation* (Wiley, 1974).

554 [10] J. Pérez, J. Marinković, and P. Barceló, On the tur- 555 ing completeness of modern neural network architectures, 556 arXiv:1901.03429 (2019).

557 [11] T.-M. Yi, Y. Huang, M. I. Simon, and J. Doyle, Robust 558 perfect adaptation in bacterial chemotaxis through in- 559 tegral feedback control, *Proc. Natl. Acad. Sci. U.S.A.* 97, 560 4649 (2000).

561 [12] H. Chang and A. Levchenko, Adaptive molecular net- 562 works controlling chemotactic migration: dynamic inputs 563

and selection of the network architecture, *Philos. Trans. R. Soc. B Biol. Sci.* 368, 20130117 (2013). 629

[13] K. Husain, W. Pittayakanchit, G. Pattanayak, M. J. 630
Rust, and A. Murugan, Kalman-like self-tuned sensitivity in biophysical sensing, *Cell Syst.* 9, 459 (2019).

[14] M. Sorek, N. Q. Balaban, and Y. Loewenstein, Stochasticity, bistability and the wisdom of crowds: a model for associative learning in genetic regulatory networks, *PLoS Comput. Biol.* 9, e1003179 (2013).

[15] S. Landmann, C. M. Holmes, and M. Tikhonov, A simple regulatory architecture allows learning the statistical structure of a changing environment, *eLife* 10, e67455 (2021).

[16] J. G. Sanders, H. Akl, S. J. Hagen, and B. Xue, Crosstalk enables mutual activation of coupled quorum sensing pathways through "jump-start" and "push-start" mechanisms, *Sci. Rep.* 13, 19230 (2023).

[17] W. Bialek, A. Cavagna, I. Giardina, T. Mora, E. Silvestri, M. Viale, and A. M. Walczak, Statistical mechanics for natural flocks of birds, *Proc. Natl. Acad. Sci. U.S.A.* 109, 4786 (2012).

[18] M. Aldana, H. Larralde, and B. Vázquez, On the emergence of collective order in swarming systems: a recent debate, *Int. J. Mod. Phys. B* 23, 3661 (2009).

[19] M. Y. Pavlov and M. Ehrenberg, Optimal control of gene expression for fast proteome adaptation to environmental change, *Proc. Natl. Acad. Sci. U.S.A.* 110, 20527 (2013).

[20] A. S. Hansen and E. K. O'Shea, Limits on information transduction through amplitude and frequency regulation of transcription factor activity, *eLife* 4, e06559 (2015).

[21] Y. Hart, Y. E. Antebi, A. E. Mayo, N. Friedman, and U. Alon, Design principles of cell circuits with paradoxical components, *Proc. Natl. Acad. Sci. U.S.A.* 109, 8346 (2012).

[22] S. B. Laughlin, Energy as a constraint on the coding and processing of sensory information, *Curr. Opin. Neurobiol.* 11, 475 (2001).

[23] G. Lan, P. Sartori, S. Neumann, V. Sourjik, and Y. Tu, The energy-speed-accuracy trade-off in sensory adaptation, *Nat. Phys.* 8, 422 (2012).

[24] A. C. Olson, J. N. Patro, M. Urban, and R. D. Kuchta, The energetic difference between synthesis of correct and incorrect base pairs accounts for highly accurate DNA replication, *J. Am. Chem. Soc.* 135, 1205 (2013).

[25] D. Liberzon, *Calculus of Variations and Optimal Control Theory: A Concise Introduction* (Princeton University Press, 2011).

[26] C. F. Van Loan and G. Golub, Matrix computations (Johns Hopkins Studies in Mathematical Sciences, 1996).

[27] O. Howell, S. Patterson, J. F. Green, and C. J. Lane, Machine learning as ecology, *J. Phys. A: Math. Theor.* 53, 334001 (2020).

[28] J. W. Rocks and P. Mehta, The geometry of over-parameterized regression and adversarial perturbations, *arXiv:2103.14108* (2021).

[29] K. P. Amiri, A. Kalish, and S. Mukherji, Robustness and universality in organelle size control. *Physical review letters*, 130(1), 018401 (2023).

[30] W.F. Marshall. The flagellar length control system: exploring the physical biology of organelle size. *Physical biology*, 20(2), 10.1088/1478-3975/acb18d (2023).

[31] See Supplemental Material at [URL will be inserted by publisher] for more details on the model, simulation pa- 628
rameters, and figures using an alternative definition of expression 'cost'.