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Generalized end-product feedback circuit can sense high dimensional environmental
fluctuations

Fang Yu and Mikhail Tikhonov
Department of Physics, Washington University in St. Louis, St. Louis, Missouri, USA
(Dated: October 29, 2024)

Understanding computational capabilities of simple biological circuits, such as the regulatory cir-
cuits of single-cell organisms, remains an active area of research. Recent theoretical work has shown
that a simple cross-talk architecture based on end-product inhibition can exhibit predictive behav-
ior by learning fluctuation statistics of one or two environmental parameters. Here we extend this
analysis to higher dimensions, i.e., a large number of fluctuating inputs. We show that a generalized
version of the cross-talk architecture can learn not only the dominant direction of fluctuations, as
shown previously, but also the subdominant modes, orienting its responsiveness spectrum to the
fluctuation eigenmodes. We comment on the relevance of our results to living systems at other
scales of organization, such as ecosystems of species competing for fluctuating resources.

I. INTRODUCTION

As organisms evolve to better survive in changing en-
vironments, they develop adaptations that allow them to
respond to change, but also to predict change. Char-
acterizing such predictive (anticipatory [1-3]) behavior
in microorganisms, whose regulatory circuits are far less
complex than what can be achieved by a neuron-based
brain [4], revealed many examples of evolutionary inge-
nuity attaining complex objectives with minimal ingredi-
ents [5, 6] (e.g., robust circadian clocks in photosynthetic
algae, which allow them to reorganize their metabolism
in preparation for sunrise [7]).

Theoretical computer science has long established that
even the simplest building blocks, if used in sufficient
numbers, can support complex computations: very sim-
ple instruction sets can already be Turing-complete [8—
10]. The biologically relevant sister question—how sim-
ple of a circuit can perform how complex a task?—is
understood less well. Some well-studied examples in-
clude the chemotaxis circuit achieving perfect adapta-
tion [11, 12], mechanisms of temperature compensation
in circadian clocks [7, 13], or the bistable genetic regula-
tory network storing and retrieving associative memories
[14]. Still, understanding the computational capabilities
of simple circuits remains an active area of research.

Recent theoretical work explored the ability of a simple
circuit to learn complex statistical features of a fluctuat-
ing input [15] (as experienced, for example, by a bac-
terium faced with a fluctuating environment). Specifi-
cally, that work considered the case of two fluctuating
environmental parameters, and demonstrated that their
variances and correlations may, in principle, be both
learned and usefully “recalled” by a simple circuit based
on the end-product inhibition motif [15].

Here, we explore a high-dimensional generalization of
this circuit. We ask whether the three ingredients iden-
tified in Ref. [15]—monlinearity, an excess of regulators,
and cross-talk between them—are sufficient to learn the
fluctuation structure of high-dimensional environments.
This extension is interesting, because the complexity of

46

47

48

49

50

5

=2

5!

o

)

@

5

X

55

56

5

g

5

&

5!

©

6

S

6

2

6!

)

6.

@

6

®

65

6

o

6

2

6

o

6!

©

7

=]

7

oy

7

N

7

@

7

>

7

o

76

7

7

@

7

©

80

8

=2

8:

5

8.

@

the task grows dramatically with dimension. Indeed, in
the two-dimensional problem considered previously [15],
the difficult part of learning the input fluctuation struc-
ture amounted to learning a single number: the direction
of a single “dominant” direction of fluctuation. In con-
trast, in higher dimensions, even the simplest Gaussian-
structured fluctuations include sub-dominant modes, as
explained below. However, the cross-talk architecture
solving the 2d problem is naturally generalizable to arbi-
trary dimension, prompting us to test its performance.

We find that, as in the low-dimensional case, the
cross-talk architecture can upregulate its reactivity to
respond faster in epochs when environment fluctuations
are larger. We further show that even a small excess
of regulators already makes the cross-talk architecture
responsive to changes in fluctuation structure, and that
the state adopted by the cross-talk architecture encodes
both the dominant and subdominant fluctuation modes
of environmental parameters.

Our analysis demonstrates how a highly complex task
can be approximately solved by a simple circuit. We
are cautious at drawing conclusions pertaining to bio-
logical regulatory circuits, as our abstract model ignores
stochasticity of transcriptional regulation. However, the
circuit ingredients considered here are ubiquitous across
several contexts such as organelle dynamics or ecological
interactions. As a result, our results may be relevant for
appreciating the complexity of the behavior that the col-
lective dynamics of such simple elements may be able to
achieve [16-18].

II. THE MODEL

Our approach builds directly on that of Landmann et
al. [15], but this section provides enough details to be
self-contained.

Specific adaptation problems faced by real organisms
are highly diverse. Following Ref. [15], here we distill the
general problem of physiological learning to a minimal
model. Specifically, we consider a scenario where a set



w of internal quantities P = (Py, ..., Py) (which a cell can
s regulate) must track a set of fluctuating external factors,

o D= (D1,...,Dy). For the sake of concreteness, we will
&7 think of this problem in metabolic terms, with P; repre-
s senting the rates of production of metabolites x;. In our
s model, the cell seeks to match these production rates P
o to the (time-dependent) demands D(t) imposed by the
o external conditions. As an example, environmental con-
o2 ditions that trigger biofilm formation in bacteria require
o3 a different stoichiometry of synthesis than the condition
o of fast planktonic growth.

o5 If the fluctuations of demands are slow, the organism
o6 could sense them and directly match P to D at all times.
o7 But if fluctuations are too fast to be followed precisely,
s the organism must instead rely on the “statistical struc-
ture” of ﬁ(t), such as the mean value or correlations be-
tween its components D;(t) [15]. If this statistical struc-
ture remains constant over a very long timescale, the op-
timal behavior (given this structure) could be hardwired
into the cross-talk architecture by evolution. But if the
structure itself occasionally changes, the organism would
need to learn it from recent observations via physiologi-
cal mechanisms. This is the regime where this problem
can serve as a minimal model for the task of physiological
learning.

There are different levels of statistical structure to be
learned. Under our tracking problem, the simplest form
of learning would be to set the production rates P; to
match the average demand in the recent past. Beyond
that, the subtler statistics include the variances and cor-
relations among fluctuations. To model D(¢) in a way
where both means and correlations can be tuned, we
consider a multi-dimensional random walk in a quadratic
7 potential [15].
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D(t+ At) = D(t) — MAt- (D(t) — (D)) + V2T Atif (1)

us Here <ﬁ> denotes the average demand, I' denotes the fluc-
no tuation strength, and 77 is a series of independent Gaus-
120 sian random variables with zero mean and unit variance.
121 The matrix M determines the correlation among fluctu-
122 ations of different components of D. If M is isotropic
s (all of its eigenvalues are the same), the fluctuations of
124 individual components of D will be decoupled.
125 Our approach will be as follows. To probe whether a
126 given regulatory architecture successfully learns the sta-
127 tistical structure of the fluctuating environment, we ex-
128 pose it in simulations to several environmental epochs
129 that differ by statistical structure, and allow the system
130 to reach a steady state. To say that the system success-
= fully “learns” its environment, we require two criteria.
122 First, the system should be sensitive to the change of
133 statistics, i.e. we expect the steady-state regulator activ-
134 ity to be reorganized between epochs. Second, we should
135 be able to exhibit the “rule” by which the statistical fea-
136 ture of interest is encoded in the regulator activity.

137 The simplest form of statistical structure is the aver-

—

s age demand (D). This average demand can be learned
already by the simple end-product inhibition (SEPI) cir-
cuit, where the production P; of each metabolite z; is
placed under control of a single dedicated regulator a;
inhibited by x; itself (Fig. 1A). In epochs of low demand,
13 the unused x; accumulates and decreases production un-
14 til it balances the demand. The average demand over a
1s recent past is stored in the activity of the regulator a;
146 (Fig. ].B, C)
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FIG. 1. The Simple end-product inhibition circuit (SEPI)
can be seen as learning signal mean. (A) In the simple
end-product inhibition architecture, the production P of a
metabolite = is placed under control of a single dedicated
regulator @ inhibited by x itself. (B) We expose the SEPI
architecture to 3 environmental epochs (solid line) that differ

-

by the average demand (D) (dashed line). (C) The expression
level of the regulator a encodes the average demand.
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The regulatory motif of end-product inhibition is not
only simple, but has been shown to be remarkably effec-
tive. For example, under certain assumptions, this motif
alone can not only “solve” the problem of proteome real-
location after a change of environmental conditions, but
do so in an optimal time [19]. However, the effectiveness
of SEPI necessarily applies only when dealing with states
that, in the language of our model, differ by the signal
mean. Indeed, at steady state, the internal degrees of
freedom (the regulators a, serving as memory) can store
only one value per metabolite z;. To be sensitive to ad-
ditional statistics, additional degrees of freedom would
necessarily be required. (It is worth noting that real
cells can transiently circumvent the “one regulator en-
codes one number” intuition, using temporally patterned
signaling to transmit more information through a single
regulator than one might naively expect [20]. However,
even in this case, downstream readout circuitry must de-
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code the information carried by dynamic features of the
signal into steady-state expression levels of other genes,
reducing to the same problem considered here.) Thus,
from now on, we will allow the number of regulators N,
to exceed the number of metabolites IV, and label regu-
lators using Greek indices p, running from 1 to N, (while
Roman indices i, labeling metabolites, run from 1 to N).

Landmann et al. showed that a generalized end-
product feedback architecture can learn the variances and
correlations of D; [15]. Their architecture takes three
ingredients: an excess of regulators (N, > N,.), non-
linear activation/repression of the regulators a, by the
metabolite concentrations x;, and cross-talk among dif-
ferent regulatory pathways. Specifically, they considered
the following dynamics:

OpiQy

=M 5|

TaQy, = @, max (d7 Zam(l — xz)> — Kay

Here o0,; describes how the activities of regulators a,
control the synthesis of metabolites x;; d parameterizes
nonlinearity; 7, sets the timescale of regulator dynam-
ics, and k/7, is the degradation rate. (This form as-
sumes timescale separation with dynamics of metabolites
x; being faster than that of regulators a,; for details, see
derivation and discussion in Ref. [15].)

We should note that this simplified model ignores the
intrinsic stochasticity of transcriptional regulation and is
a poor representation of the complexity of real biological
dynamics. Here, we use it as a model context to explore
an abstract topic, namely the complexity of a task that a
small number of simple regulatory elements can in prin-
ciple achieve.

In two dimensions (N, = 2), this cross-talk architec-
ture can sense, store and usefully “recall” the information
on second-order input statistics, such as variances and
correlations, and do so near-optimally [15]. Here, we ex-
tend this architecture to higher dimensions (Fig. 2A). We
choose regulators o to be minimally redundant (see Sup-
plemental Material [31] section B). Briefly, the elements
of o, normalized as |o| = 1, can be seen as N, points
on an N, -dimensional sphere, and we pick them to be
spread out as far away from each other as possible by
treating them as repelling charges on a sphere’s surface
(Fig. 2B). The charge-repelling procedure is initialized
with random initial conditions, such that the residual ro-
tational symmetry is fixed randomly in each simulation
run. We expose the generalized end-product feedback
architecture to environmental epochs that differ in fluc-
tuation structure M only. To guarantee that any restruc-
turing of regulator activity between exposure epochs is
due to the changes of M, we keep the mean demand D
the same in all epochs. For concreteness, we pick M to
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ronmental fluctuations have one preferred direction (the
direction of the dominant eigenvector of M~1), where
the restoring force is the weakest, and the fluctuations
are thus the largest. When shifting from one epoch to
another, we reorient M by applying a random rotation
(Fig. 2C), and observe how the regulator expression levels
reorganize in response (Fig. 2D).

Note that changing the direction of the dominant
eigenvector is only one way to change the environment.
For example, Ref. [15] also considered environments with
different extent of correlation among fluctuations of D;’s,
which the cross-talk architecture was also able to learn.
Here, we will use the former approach, because the ex-
istence of a preferred direction of fluctuations allows for
more intuitive metrics quantifying circuit responsiveness,
as we describe below. We will show that the architecture
of Fig. 2A is indeed responsive to higher-dimensional ro-
tations of M, and will quantify this sensitivity.

be a random rotation of (

III. RESULTS

A. The generalized architecture
can outperform SEPI, but is costly

When Landmann et al. considered the cross-talk ar-
chitecture (Eq 2) in the two-dimensional case, their fo-
cus was not just learning, but also the benefit of learn-
ing. Specifically, the primary readout used in that work
was the ‘tracking performance’ &2 defined by & =
—/2_;(P; — D;)?, intended as a proxy for organism fit-
ness, and they showed that the learning-capable circuit
can enhance tracking performance over SEPI. In this sec-
tion, we demonstrate that this observation continues to
hold in higher dimensions: namely, the cross-talk archi-
tecture of Fig. 2A can achieve better tracking perfor-
mance & than the SEPI architecture. However, we will
also show that this performance increase is very costly.

We will use two metrics of cost. One is Control Input
Power (CIP), a concept rooted in control theory and de-
fined here by [ ||P||2dt. Measuring cost in this way has
the advantage that the family of optimal strategies on
the performance-CIP plane can be derived analytically,
but CIP is difficult to interpret in biological terms. For
this reason, we will also consider a more biologically rel-
evant measure of cost, namely the total expression of all
regulators combined: }  a,.

Fig. 3 confirms that both cost metrics yield similar
results. As expected, increasing the number of regula-
tors increases performance &. Performance can also be
improved by reducing the degradation rate s, since a
higher expression of regulators (with activators and re-
pressors active simultaneously, known as paradoxical reg-
ulation [21]) allows P; to change faster [15]. As a result,
the performance & of the cross-talk architecture can ex-
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FIG. 2. The generalized architecture is built to learn the variances and correlations of demand D. (A) An example of generalized
end-product feedback architecture in the case where N, = 3 and N, = 4. (B) 4 regulatory pathways on 3 resources are shown
as 4 vectors in 3d space. Regulation vectors are simulated as charges repelling each other to distribute evenly. (C) In this work,

we model environmental fluctuations as D executing a random walk in a quadratic potential M. Such fluctuation structure can
be visually represented as an ellipsoid, indicating the volume where a particle executing such random walk would typically be
found: each axis of the ellipsoid is the direction of the corresponding eigenvector of M, and the length of each semiaxis is the
inverse of the eigenvalue. The direction with the weakest restoring force (the dominant eigenvector of M 71) is the direction of
largest fluctuations, and is denoted ¥as. To test the ability of the system to learn, we expose it consecutively to environmental
epochs differing in the fluctuation structure M, visually represented here as ellipsoids of different orientations. (D) In response
to changes of M, the system dynamically adjusts the expression level of regulators.

ceed that of SEPI. However, Fig. 3 also shows the re-
markable effectiveness of SEPI, which lies closest to the
optimal curve at minimal circuit complexity.

The ability to invest resources into improving preci-
sion at an important task can be useful; such mecha-
nisms are known to be employed by cells in other con-
texts, e.g. investing energy to improve the accuracy of
sensing [22, 23] or copying its DNA [24]. However, in
our context it seems implausible that this marginal per-
formance increase alone would be sufficient to offset the
cost of a significant increase in protein expression lev-
els and circuit complexity, particularly since our simple
model ignores the intrinsic stochasticity of regulatory dy-
namics, known to be substantial. Thus, from here on, we
will no longer consider tracking performance & as our
readout. Instead, we will assume that an ability to sense
subtle changes in environmental statistics may itself be
of value to the organism (e.g. as an early cue indicative of
some other upcoming change), and investigate the ability
of this cross-talk architecture to learn the environmental
state and react to its changes.

B. The regulatory state adopted by the cross-talk
architecture tracks the dominant eigenvector of the
fluctuation structure M !

Fig. 2C, D provides an example showing that the cross-
talk architecture is sensitive to the statistics of envi-
ronmental fluctuations. After an environmental change,
when v, is reoriented, the expression level of regulators
is seen to change as well. We will now show that the
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regulation state adopted by the system is not random
or idiosyncratic, but encodes information about the fluc-
tuation structure M in a simple way. We follow Land-
ik
where P, represents the time derivative of production P
(see Eq. (2)), and will show that the system preferen-
tially aligns its eigenvectors to the dominant eigenvector
of M—!'. This behavior is, in fact, the “smart” thing
to do: it can be shown that the optimal strategy (in the
sense of control theory, with CIP as cost metric) would be
similarly anisotropic, with the dominant direction of fluc-
tuations eliciting the strongest response [15, 25]. (This
analytical result is what motivates defining R;; as above.)
To quantify this degree of alignment, we define

mann et al. to define system responsiveness R;; =

7 = Probyy=i (1R @ < | R 7))

where ¥, denotes the dominant eigenvector of M !, nor-
malized to unit length. The intuition behind this defini-
tion is as follows. By definition of the responsiveness
matrix R, the norm ||R - ¥)|| is the strength of the sys-
tem’s response following a fluctuation of D in the di-
rection Ujs. Thus, 7 quantifies how unlikely it is that
a randomly drawn unitary vector @ would elicit a re-
sponse as strong, or stronger, than v,;. A large v indi-
cates the projection of ¥j; on the dominant eigenvectors
of R is atypically large, and we will colloquially refer to
this quantity as measuring “alignment of ¥y to R”. The
larger the value of v, the stronger the evidence that our
generalized end-product feedback architecture adopted a
state with a responsiveness matrix preferentially aligned
to vpr. Heatmap of v (Fig. 4A) demonstrates that the
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cross-talk architecture succeeds at aligning its responsive-
ness with the input fluctuations, and that just two extra
regulators are sufficient to enable such alignment.

To evaluate the cost of such a regulatory strategy,
Fig. 4B shows the correspondence between the system’s
ability to align with the dominant direction of fluctua-
tions (vps), and the control input power it incurs. The
analogous plot for the second measure of cost, total ex-
pression level of regulators, looks similar and is shown in

A

Performance &2 of SEPI and the cross-talk
architecture vs two metrics of cost
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FIG. 3. Improving performance & beyond SEPI is very
costly. (A) Tracking performance of different architectures

when N, = 6, shown against Control Input Power (CIP),
which is a measure of cost (see text). Gray dots show simula-
tion results of the analytically-derived optimal strategy (de-
fined in [15]), averaged over 10 replicate simulations (see Sup-
plemental Material [31] for more details); the black curve is a
smoothed guide for the eye. The blue triangle indicates per-
formance of SEPI, and the grey lines show the performance
of the cross-talk architecture for different values of the degra-
dation constant x. The dots’ color changing from blue to red
indicates an increasing number of regulators from 6 to 20.
(B) Same as A, replotted using a more biologically relevant
measure of cost (the total expression of all regulators °  a,.).
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FIG. 4. A modest excess of regulators allows the cross-talk
architecture to learn the dominant direction of environmen-
tal fluctuations. (A) Heatmap of the alignment v between
responsiveness R and the dominant eigenvector of M 1. The
panel shows that even a small excess of regulators is sufficient
for the cross-talk architecture to track the dominant eigen-
vector of the fluctuations of its input. The N, < N, region is
grayed out, as we require the number of regulators N, to be
at least as large as the number of inputs N;. (B) More regu-
lators enable better alignmnet without incurring extra cost of
control. Panel shows the alignment v for N, = 6 and varying
K and N, plotted against CIP. Dots changing from blue to
red indicate the number of regulators increasing from 6 to 20.

the Supplemental Material [31] (see Fig. S2).

Curiously, in contrast to Fig. 3A, Fig. 4B shows that
the learning ability of the cross-talk architecture is con-
trolled primarily by the number of regulators, and can be
modulated without incurring an expression or CIP cost.
One may also notice that the dependence of the incurred
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cost, by either cost metric, on the number of regulators
N, is non-monotonic. Intuitively, a larger N, means a
more thorough tiling of the sphere of possible directions
(Fig. 2B), so that any given direction in fluctuation space
can be approximated more efficiently. However, if N, is
too large, this benefit is undermined by the fact that the
expression of any regulator is positive and has non-zero
fluctuations, incurring some cost even if “unused.”

C. The architecture also tracks non-dominant
statistics

So far we have been considering the case where
M~! has only one dominant direction, but what hap-
pens when the fluctuation structure is more complex?
To test this, we consider M with a sub-dominant
eigenvector—specifically, a randomly rotated version

10 0 - O
02 0 -+ 0

of MO

—and restrict environment

00100 -~ 0
00 0 - 100

changes to those that change only the sub-dominant di-
rection, keeping the dominant eigenvector fixed. For ex-
ample, in a three-dimensional case, one can intuitively
think of this as rotating an anisotropic ellipsoid around
its dominant axis (Fig. 5A).

Fig. 5B confirms that in this regime, the alignment
of system responsiveness R to the dominant eigenvector
of M~! remains significant (better than random), but
becomes worse than we observed in Fig. 4A. This is, of
course, expected: the structure of fluctuations no longer
reduces to a single dominant direction. To fully assess the
alignment between M and the responsiveness R, looking
at only the dominant eigenvector is insufficient. To also
take non-dominant eigenvectors of M into consideration,
consider the quantity ¢ defined as

o — IR
MM, RY|)

where || ... || denotes the Frobenius norm of a matrix [26],
[M, R] denotes the commutator of M and R and {M, R}
denotes their anti-commutator. Note that if M and R
are jointly diagonalizable (share the eigenbasis), then M
and R commute and ¢, g} would be 0. Thus, a non-zero
¢, R) can be seen as a measure of misalignment between
the eigenvectors of M and R. Dividing [M, R] by {M, R}
yields a quantity invariant under rescaling of M or R by
constant factors.

Similar to the trick we used when defining -, to enable
meaningful comparisons across dimensions, instead of fo-
cusing on the raw value of ¢, we compute the probability

p= PI‘ObR/(QS[]\/[,R’] > ¢[M7R])-

Here R’ is a random ‘subtle rotation’ of R, which we de-
fine as a rotation that preserves its dominant eigenvector.
We refer to ¢ as the alignment of non-dominant eigenvec-
tors. If ¢ is close to 1, it means that M is better aligned
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to R than to almost any of its rotated versions, even when
the rotations only change subdominant eigenvectors.
The results are shown in Fig. 5C. The N, = 2 col-
umn is grayed out: in two dimensions, the only rotation
that preserves the dominant eigenvector is the identity
matrix. We see that the cross-talk architecture (Eq. 2) is
not only responsive to changes in the subdominant direc-
tion of fluctuations, but succeeds at realigning its respon-
siveness matrix accordingly, particularly in dimensions 3
and 4 (at the price of a somewhat worse alignment to the
dominant direction; compare with panel B). However,
as the dimension NV, increases, the number of regula-
tors required to achieve a good non-dominant alignment
© > 0.9 quickly becomes unreasonably large (N, > 20).

IV. DISCUSSION

The regulatory circuit we considered in this work gen-
eralizes simple end-product inhibition by including three
additional ingredients: nonlinearity, an excess of regula-
tors, and cross-talk between them. Previous work has
shown that these ingredients can endow the circuit with
an ability to learn time-dependent fluctuation statistics
of its inputs through a form of associative learning, at
least in the low-dimensional scenarios (with one or two in-
puts) [15]. Here, we generalized this circuit to the higher-
dimensional case and presented two results. Just like in
lower dimensions, this architecture can show an improved
performance & at the task of tracking environmental
fluctuations. This small performance gain comes at a
significant complexity cost. However, if sensing changes
in environmental statistics is of value to the organism,
then this architecture is quite interesting as it offers a
sensitivity to subtle changes, sensing not only the domi-
nant direction of fluctuations, but also the subdominant
fluctuation modes.

How relevant is this high-dimensional case for real
cells? It is easy to imagine that a specific pair of re-
sources might be correlated at some point of an organ-
ism’s lifecycle but not at another; thus, it is clear that
dynamically learning and unlearning a single correlation
could be useful. By comparison, the “universal learn-
ing” capacity described here—an ability to pick out any
preferred direction of correlations in a high-dimensional
space—seems rather more abstract. However, this could
be the relevant regime for the regulatory architecture of
a cell as a whole, seen as a high-dimensional learning
circuit. Some intriguing recent ideas propose a possible
common ground between evolvability of regulatory cir-
cuits, their ability to solve complex problems, and the
success of overparameterized models in machine learn-
ing [27, 28]. So far, these parallels remain speculative;
but the fact that simple elements can enable regulatory
circuits to perform a form of associative learning could
be a valuable piece of this puzzle. In this work, we have
shown that one previously proposed mechanism success-
fully generalizes to higher dimensions.
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_Dominant eigenvector alignment

Subdominant eigenvector alignment ¢

FIG. 5. The generalized architecture learns to track the changing sub-dominant eigenvector of the input fluctuation. (A) We
rotate M with its dominant eigenvector fixed. Note that such rotations exist only in dimension 3 and above. (B) Heatmap of the
alignment - between responsiveness R and the dominant eigenvector of M. The alignment remains significant, indicating the
system continues to track the dominant eigenvector. (C) Additionally, the system is sensitive to the sub-dominant fluctuation
directions, as indicated by this heatmap of the alignment of non-dominant eigenvectors ¢(R, M) (see text), which is better
than random for all allowed values of N, (N, > 3; see panel A).

In considering the biological implications of our anal-
ysis, it is important to remember that our goal was not
to accurately model real regulatory circuits. Rather, our
simple model helps us explore the computational abil-
ity of a simple circuit composed of biologically plausible
elements.

This level of abstraction has some advantages. Cir-
cuit elements similar to those discussed here appear
also in several other contexts, such as organelle regu-
lation [29, 30] or resource competition dynamics of an
ecosystem (where a species’ resource exploitation inhibits
its own growth). In fact, in the ecological context, the
ingredients required by the cross-talk architecture are
arguably more natural. Indeed, in the gene regulatory
context, the autocatalytic aspect is nontrivial to im-
plement [15], while in the ecological context, the “self-
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activation” is automatically ensured by replicator dy-
namics. This parallel suggests that under some minimal
assumptions, the commonly considered resource compe-
tition dynamics may cause the ecosystem to align its re-
sponsiveness to the spectrum of environmental fluctua-
tions. Confirming this behavior, and exploring its rele-
vance for ecosystem dynamics is an exciting avenue for
future work.

At the same time, the level of abstraction adopted here
also has clear limitations. As mentioned above, our sim-
plified model ignores the intrinsic stochasticity of tran-
scriptional regulation. Thus, any interpretation in terms
of real regulatory circuits requires caution.

All simulations were performed using MATLAB (Math-
works, Inc). The code reproducing all figures from
scratch is provided as Supplementary File 1.
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