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Understanding computational capabilities of simple biological circuits, such as the regulatory cir-
cuits of single-cell organisms, remains an active area of research. Recent theoretical work has shown
that a simple cross-talk architecture based on end-product inhibition can exhibit predictive behav-
ior by learning fluctuation statistics of one or two environmental parameters. Here we extend this
analysis to higher dimensions, i.e., a large number of fluctuating inputs. We show that a generalized
version of the cross-talk architecture can learn not only the dominant direction of fluctuations, as
shown previously, but also the subdominant modes, orienting its responsiveness spectrum to the
fluctuation eigenmodes. We comment on the relevance of our results to living systems at other
scales of organization, such as ecosystems of species competing for fluctuating resources.

I. INTRODUCTION6

As organisms evolve to better survive in changing en-7

vironments, they develop adaptations that allow them to8

respond to change, but also to predict change. Char-9

acterizing such predictive (anticipatory [1–3]) behavior10

in microorganisms, whose regulatory circuits are far less11

complex than what can be achieved by a neuron-based12

brain [4], revealed many examples of evolutionary inge-13

nuity attaining complex objectives with minimal ingredi-14

ents [5, 6] (e.g., robust circadian clocks in photosynthetic15

algae, which allow them to reorganize their metabolism16

in preparation for sunrise [7]).17

Theoretical computer science has long established that18

even the simplest building blocks, if used in sufficient19

numbers, can support complex computations: very sim-20

ple instruction sets can already be Turing-complete [8–21

10]. The biologically relevant sister question—how sim-22

ple of a circuit can perform how complex a task?—is23

understood less well. Some well-studied examples in-24

clude the chemotaxis circuit achieving perfect adapta-25

tion [11, 12], mechanisms of temperature compensation26

in circadian clocks [7, 13], or the bistable genetic regula-27

tory network storing and retrieving associative memories28

[14]. Still, understanding the computational capabilities29

of simple circuits remains an active area of research.30

Recent theoretical work explored the ability of a simple31

circuit to learn complex statistical features of a fluctuat-32

ing input [15] (as experienced, for example, by a bac-33

terium faced with a fluctuating environment). Specifi-34

cally, that work considered the case of two fluctuating35

environmental parameters, and demonstrated that their36

variances and correlations may, in principle, be both37

learned and usefully “recalled” by a simple circuit based38

on the end-product inhibition motif [15].39

Here, we explore a high-dimensional generalization of40

this circuit. We ask whether the three ingredients iden-41

tified in Ref. [15]—nonlinearity, an excess of regulators,42

and cross-talk between them—are sufficient to learn the43

fluctuation structure of high-dimensional environments.44

This extension is interesting, because the complexity of45

the task grows dramatically with dimension. Indeed, in46

the two-dimensional problem considered previously [15],47

the difficult part of learning the input fluctuation struc-48

ture amounted to learning a single number: the direction49

of a single “dominant” direction of fluctuation. In con-50

trast, in higher dimensions, even the simplest Gaussian-51

structured fluctuations include sub-dominant modes, as52

explained below. However, the cross-talk architecture53

solving the 2d problem is naturally generalizable to arbi-54

trary dimension, prompting us to test its performance.55

We find that, as in the low-dimensional case, the56

cross-talk architecture can upregulate its reactivity to57

respond faster in epochs when environment fluctuations58

are larger. We further show that even a small excess59

of regulators already makes the cross-talk architecture60

responsive to changes in fluctuation structure, and that61

the state adopted by the cross-talk architecture encodes62

both the dominant and subdominant fluctuation modes63

of environmental parameters.64

Our analysis demonstrates how a highly complex task65

can be approximately solved by a simple circuit. We66

are cautious at drawing conclusions pertaining to bio-67

logical regulatory circuits, as our abstract model ignores68

stochasticity of transcriptional regulation. However, the69

circuit ingredients considered here are ubiquitous across70

several contexts such as organelle dynamics or ecological71

interactions. As a result, our results may be relevant for72

appreciating the complexity of the behavior that the col-73

lective dynamics of such simple elements may be able to74

achieve [16–18].75

II. THE MODEL76

Our approach builds directly on that of Landmann et77

al. [15], but this section provides enough details to be78

self-contained.79

Specific adaptation problems faced by real organisms80

are highly diverse. Following Ref. [15], here we distill the81

general problem of physiological learning to a minimal82

model. Specifically, we consider a scenario where a set83



2

of internal quantities P⃗ = (P1, . . . , PN ) (which a cell can84

regulate) must track a set of fluctuating external factors,85

D⃗ = (D1, . . . , DN ). For the sake of concreteness, we will86

think of this problem in metabolic terms, with Pi repre-87

senting the rates of production of metabolites xi. In our88

model, the cell seeks to match these production rates P⃗89

to the (time-dependent) demands D⃗(t) imposed by the90

external conditions. As an example, environmental con-91

ditions that trigger biofilm formation in bacteria require92

a different stoichiometry of synthesis than the condition93

of fast planktonic growth.94

If the fluctuations of demands are slow, the organism95

could sense them and directly match P⃗ to D⃗ at all times.96

But if fluctuations are too fast to be followed precisely,97

the organism must instead rely on the “statistical struc-98

ture” of D⃗(t), such as the mean value or correlations be-99

tween its components Di(t) [15]. If this statistical struc-100

ture remains constant over a very long timescale, the op-101

timal behavior (given this structure) could be hardwired102

into the cross-talk architecture by evolution. But if the103

structure itself occasionally changes, the organism would104

need to learn it from recent observations via physiologi-105

cal mechanisms. This is the regime where this problem106

can serve as a minimal model for the task of physiological107

learning.108

There are different levels of statistical structure to be109

learned. Under our tracking problem, the simplest form110

of learning would be to set the production rates Pi to111

match the average demand in the recent past. Beyond112

that, the subtler statistics include the variances and cor-113

relations among fluctuations. To model D(t) in a way114

where both means and correlations can be tuned, we115

consider a multi-dimensional random walk in a quadratic116

potential [15].117

D⃗(t+∆t) = D⃗(t)−M∆t · (D⃗(t)− ⃗⟨D⟩) +
√
2Γ∆t η⃗ (1)

Here ⃗⟨D⟩ denotes the average demand, Γ denotes the fluc-118

tuation strength, and η⃗ is a series of independent Gaus-119

sian random variables with zero mean and unit variance.120

The matrix M determines the correlation among fluctu-121

ations of different components of D. If M is isotropic122

(all of its eigenvalues are the same), the fluctuations of123

individual components of D will be decoupled.124

Our approach will be as follows. To probe whether a125

given regulatory architecture successfully learns the sta-126

tistical structure of the fluctuating environment, we ex-127

pose it in simulations to several environmental epochs128

that differ by statistical structure, and allow the system129

to reach a steady state. To say that the system success-130

fully “learns” its environment, we require two criteria.131

First, the system should be sensitive to the change of132

statistics, i.e. we expect the steady-state regulator activ-133

ity to be reorganized between epochs. Second, we should134

be able to exhibit the “rule” by which the statistical fea-135

ture of interest is encoded in the regulator activity.136

The simplest form of statistical structure is the aver-137

age demand ⃗⟨D⟩. This average demand can be learned138

already by the simple end-product inhibition (SEPI) cir-139

cuit, where the production Pi of each metabolite xi is140

placed under control of a single dedicated regulator ai141

inhibited by xi itself (Fig. 1A). In epochs of low demand,142

the unused xi accumulates and decreases production un-143

til it balances the demand. The average demand over a144

recent past is stored in the activity of the regulator ai145

(Fig. 1B, C).146

147

FIG. 1. The Simple end-product inhibition circuit (SEPI)
can be seen as learning signal mean. (A) In the simple
end-product inhibition architecture, the production P of a
metabolite x is placed under control of a single dedicated
regulator a inhibited by x itself. (B) We expose the SEPI
architecture to 3 environmental epochs (solid line) that differ

by the average demand ⃗⟨D⟩ (dashed line). (C) The expression
level of the regulator a encodes the average demand.
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The regulatory motif of end-product inhibition is not156

only simple, but has been shown to be remarkably effec-157

tive. For example, under certain assumptions, this motif158

alone can not only “solve” the problem of proteome real-159

location after a change of environmental conditions, but160

do so in an optimal time [19]. However, the effectiveness161

of SEPI necessarily applies only when dealing with states162

that, in the language of our model, differ by the signal163

mean. Indeed, at steady state, the internal degrees of164

freedom (the regulators a, serving as memory) can store165

only one value per metabolite xi. To be sensitive to ad-166

ditional statistics, additional degrees of freedom would167

necessarily be required. (It is worth noting that real168

cells can transiently circumvent the “one regulator en-169

codes one number” intuition, using temporally patterned170

signaling to transmit more information through a single171

regulator than one might naively expect [20]. However,172

even in this case, downstream readout circuitry must de-173
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code the information carried by dynamic features of the174

signal into steady-state expression levels of other genes,175

reducing to the same problem considered here.) Thus,176

from now on, we will allow the number of regulators Na177

to exceed the number of metabolites Nx, and label regu-178

lators using Greek indices µ, running from 1 to Na (while179

Roman indices i, labeling metabolites, run from 1 to Nx).180

Landmann et al. showed that a generalized end-181

product feedback architecture can learn the variances and182

correlations of Di [15]. Their architecture takes three183

ingredients: an excess of regulators (Na > Nx), non-184

linear activation/repression of the regulators aµ by the185

metabolite concentrations xi, and cross-talk among dif-186

ferent regulatory pathways. Specifically, they considered187

the following dynamics:188

xi =
Pi

Di

Pi =
∑
µ

σµiaµ

τaȧµ = aµ max
(
d,
∑
i

σµi(1− xi)
)
− κaµ

(2)

Here σµi describes how the activities of regulators aµ189

control the synthesis of metabolites xi; d parameterizes190

nonlinearity; τa sets the timescale of regulator dynam-191

ics, and κ/τa is the degradation rate. (This form as-192

sumes timescale separation with dynamics of metabolites193

xi being faster than that of regulators aµ; for details, see194

derivation and discussion in Ref. [15].)195

We should note that this simplified model ignores the196

intrinsic stochasticity of transcriptional regulation and is197

a poor representation of the complexity of real biological198

dynamics. Here, we use it as a model context to explore199

an abstract topic, namely the complexity of a task that a200

small number of simple regulatory elements can in prin-201

ciple achieve.202

In two dimensions (Nx = 2), this cross-talk architec-214

ture can sense, store and usefully “recall” the information215

on second-order input statistics, such as variances and216

correlations, and do so near-optimally [15]. Here, we ex-217

tend this architecture to higher dimensions (Fig. 2A). We218

choose regulators σ to be minimally redundant (see Sup-219

plemental Material [31] section B). Briefly, the elements220

of σ, normalized as |σ| = 1, can be seen as Na points221

on an Nx-dimensional sphere, and we pick them to be222

spread out as far away from each other as possible by223

treating them as repelling charges on a sphere’s surface224

(Fig. 2B). The charge-repelling procedure is initialized225

with random initial conditions, such that the residual ro-226

tational symmetry is fixed randomly in each simulation227

run. We expose the generalized end-product feedback228

architecture to environmental epochs that differ in fluc-229

tuation structure M only. To guarantee that any restruc-230

turing of regulator activity between exposure epochs is231

due to the changes of M , we keep the mean demand D̄232

the same in all epochs. For concreteness, we pick M to233

be a random rotation of

( 1 0 ··· 0
0 100 ··· 0
...

...
. . .

...
0 0 ··· 100

)
, so that the envi-234

ronmental fluctuations have one preferred direction (the235

direction of the dominant eigenvector of M−1), where236

the restoring force is the weakest, and the fluctuations237

are thus the largest. When shifting from one epoch to238

another, we reorient M by applying a random rotation239

(Fig. 2C), and observe how the regulator expression levels240

reorganize in response (Fig. 2D).241

Note that changing the direction of the dominant242

eigenvector is only one way to change the environment.243

For example, Ref. [15] also considered environments with244

different extent of correlation among fluctuations of Di’s,245

which the cross-talk architecture was also able to learn.246

Here, we will use the former approach, because the ex-247

istence of a preferred direction of fluctuations allows for248

more intuitive metrics quantifying circuit responsiveness,249

as we describe below. We will show that the architecture250

of Fig. 2A is indeed responsive to higher-dimensional ro-251

tations of M , and will quantify this sensitivity.252

III. RESULTS253

A. The generalized architecture254

can outperform SEPI, but is costly255

When Landmann et al. considered the cross-talk ar-256

chitecture (Eq 2) in the two-dimensional case, their fo-257

cus was not just learning, but also the benefit of learn-258

ing. Specifically, the primary readout used in that work259

was the ‘tracking performance’ P defined by P ≡260

−
√∑

i(Pi −Di)2, intended as a proxy for organism fit-261

ness, and they showed that the learning-capable circuit262

can enhance tracking performance over SEPI. In this sec-263

tion, we demonstrate that this observation continues to264

hold in higher dimensions: namely, the cross-talk archi-265

tecture of Fig. 2A can achieve better tracking perfor-266

mance P than the SEPI architecture. However, we will267

also show that this performance increase is very costly.268

We will use two metrics of cost. One is Control Input269

Power (CIP), a concept rooted in control theory and de-270

fined here by
∫
||Ṗ ||2dt. Measuring cost in this way has271

the advantage that the family of optimal strategies on272

the performance-CIP plane can be derived analytically,273

but CIP is difficult to interpret in biological terms. For274

this reason, we will also consider a more biologically rel-275

evant measure of cost, namely the total expression of all276

regulators combined:
∑

µ aµ.277

Fig. 3 confirms that both cost metrics yield similar293

results. As expected, increasing the number of regula-294

tors increases performance P. Performance can also be295

improved by reducing the degradation rate κ, since a296

higher expression of regulators (with activators and re-297

pressors active simultaneously, known as paradoxical reg-298

ulation [21]) allows Pi to change faster [15]. As a result,299

the performance P of the cross-talk architecture can ex-300
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FIG. 2. The generalized architecture is built to learn the variances and correlations of demand D⃗. (A) An example of generalized
end-product feedback architecture in the case where Nx = 3 and Na = 4. (B) 4 regulatory pathways on 3 resources are shown
as 4 vectors in 3d space. Regulation vectors are simulated as charges repelling each other to distribute evenly. (C) In this work,

we model environmental fluctuations as D⃗ executing a random walk in a quadratic potential M . Such fluctuation structure can
be visually represented as an ellipsoid, indicating the volume where a particle executing such random walk would typically be
found: each axis of the ellipsoid is the direction of the corresponding eigenvector of M , and the length of each semiaxis is the
inverse of the eigenvalue. The direction with the weakest restoring force (the dominant eigenvector of M−1) is the direction of
largest fluctuations, and is denoted v⃗M . To test the ability of the system to learn, we expose it consecutively to environmental
epochs differing in the fluctuation structure M , visually represented here as ellipsoids of different orientations. (D) In response
to changes of M , the system dynamically adjusts the expression level of regulators.
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ceed that of SEPI. However, Fig. 3 also shows the re-301

markable effectiveness of SEPI, which lies closest to the302

optimal curve at minimal circuit complexity.303

The ability to invest resources into improving preci-304

sion at an important task can be useful; such mecha-305

nisms are known to be employed by cells in other con-306

texts, e.g. investing energy to improve the accuracy of307

sensing [22, 23] or copying its DNA [24]. However, in308

our context it seems implausible that this marginal per-309

formance increase alone would be sufficient to offset the310

cost of a significant increase in protein expression lev-311

els and circuit complexity, particularly since our simple312

model ignores the intrinsic stochasticity of regulatory dy-313

namics, known to be substantial. Thus, from here on, we314

will no longer consider tracking performance P as our315

readout. Instead, we will assume that an ability to sense316

subtle changes in environmental statistics may itself be317

of value to the organism (e.g. as an early cue indicative of318

some other upcoming change), and investigate the ability319

of this cross-talk architecture to learn the environmental320

state and react to its changes.321

B. The regulatory state adopted by the cross-talk322

architecture tracks the dominant eigenvector of the323

fluctuation structure M−1
324

Fig. 2C, D provides an example showing that the cross-339

talk architecture is sensitive to the statistics of envi-340

ronmental fluctuations. After an environmental change,341

when vM is reoriented, the expression level of regulators342

is seen to change as well. We will now show that the343

regulation state adopted by the system is not random344

or idiosyncratic, but encodes information about the fluc-345

tuation structure M in a simple way. We follow Land-346

mann et al. to define system responsiveness Rij = dṖi

dDj
,347

where Ṗi represents the time derivative of production Pi348

(see Eq. (2)), and will show that the system preferen-349

tially aligns its eigenvectors to the dominant eigenvector350

of M−1. This behavior is, in fact, the “smart” thing351

to do: it can be shown that the optimal strategy (in the352

sense of control theory, with CIP as cost metric) would be353

similarly anisotropic, with the dominant direction of fluc-354

tuations eliciting the strongest response [15, 25]. (This355

analytical result is what motivates defining Rij as above.)356

To quantify this degree of alignment, we define357

γ = Prob∥u∥=1

(
∥R · u⃗∥ < ∥R · v⃗M∥

)
where v⃗M denotes the dominant eigenvector of M−1, nor-358

malized to unit length. The intuition behind this defini-359

tion is as follows. By definition of the responsiveness360

matrix R, the norm ||R · v⃗M || is the strength of the sys-361

tem’s response following a fluctuation of D in the di-362

rection v⃗M . Thus, γ quantifies how unlikely it is that363

a randomly drawn unitary vector u⃗ would elicit a re-364

sponse as strong, or stronger, than vM . A large γ indi-365

cates the projection of v⃗M on the dominant eigenvectors366

of R is atypically large, and we will colloquially refer to367

this quantity as measuring “alignment of v⃗M to R”. The368

larger the value of γ, the stronger the evidence that our369

generalized end-product feedback architecture adopted a370

state with a responsiveness matrix preferentially aligned371

to vM . Heatmap of γ (Fig. 4A) demonstrates that the372
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cross-talk architecture succeeds at aligning its responsive-373

ness with the input fluctuations, and that just two extra374

regulators are sufficient to enable such alignment.375

To evaluate the cost of such a regulatory strategy,376

Fig. 4B shows the correspondence between the system’s377

ability to align with the dominant direction of fluctua-378

tions (vM ), and the control input power it incurs. The379

analogous plot for the second measure of cost, total ex-380

pression level of regulators, looks similar and is shown in381

278

FIG. 3. Improving performance P beyond SEPI is very
costly. (A) Tracking performance of different architectures
when Nx = 6, shown against Control Input Power (CIP),
which is a measure of cost (see text). Gray dots show simula-
tion results of the analytically-derived optimal strategy (de-
fined in [15]), averaged over 10 replicate simulations (see Sup-
plemental Material [31] for more details); the black curve is a
smoothed guide for the eye. The blue triangle indicates per-
formance of SEPI, and the grey lines show the performance
of the cross-talk architecture for different values of the degra-
dation constant κ. The dots’ color changing from blue to red
indicates an increasing number of regulators from 6 to 20.
(B) Same as A, replotted using a more biologically relevant
measure of cost (the total expression of all regulators

∑
µ aµ).
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FIG. 4. A modest excess of regulators allows the cross-talk
architecture to learn the dominant direction of environmen-
tal fluctuations. (A) Heatmap of the alignment γ between
responsiveness R and the dominant eigenvector of M−1. The
panel shows that even a small excess of regulators is sufficient
for the cross-talk architecture to track the dominant eigen-
vector of the fluctuations of its input. The Na < Nx region is
grayed out, as we require the number of regulators Na to be
at least as large as the number of inputs Nx. (B) More regu-
lators enable better alignmnet without incurring extra cost of
control. Panel shows the alignment γ for Nx = 6 and varying
κ and Na, plotted against CIP. Dots changing from blue to
red indicate the number of regulators increasing from 6 to 20.
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the Supplemental Material [31] (see Fig. S2).382

Curiously, in contrast to Fig. 3A, Fig. 4B shows that383

the learning ability of the cross-talk architecture is con-384

trolled primarily by the number of regulators, and can be385

modulated without incurring an expression or CIP cost.386

One may also notice that the dependence of the incurred387
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cost, by either cost metric, on the number of regulators388

Na is non-monotonic. Intuitively, a larger Na means a389

more thorough tiling of the sphere of possible directions390

(Fig. 2B), so that any given direction in fluctuation space391

can be approximated more efficiently. However, if Na is392

too large, this benefit is undermined by the fact that the393

expression of any regulator is positive and has non-zero394

fluctuations, incurring some cost even if “unused.”395

C. The architecture also tracks non-dominant396

statistics397

So far we have been considering the case where405

M−1 has only one dominant direction, but what hap-406

pens when the fluctuation structure is more complex?407

To test this, we consider M with a sub-dominant408

eigenvector—specifically, a randomly rotated version409

of M0 =

 1 0 0 ··· 0
0 2 0 ··· 0
0 0 100 ··· 0
...
...

...
. . .

...
0 0 0 ··· 100

—and restrict environment410

changes to those that change only the sub-dominant di-411

rection, keeping the dominant eigenvector fixed. For ex-412

ample, in a three-dimensional case, one can intuitively413

think of this as rotating an anisotropic ellipsoid around414

its dominant axis (Fig. 5A).415

Fig. 5B confirms that in this regime, the alignment416

of system responsiveness R to the dominant eigenvector417

of M−1 remains significant (better than random), but418

becomes worse than we observed in Fig. 4A. This is, of419

course, expected: the structure of fluctuations no longer420

reduces to a single dominant direction. To fully assess the421

alignment between M and the responsiveness R, looking422

at only the dominant eigenvector is insufficient. To also423

take non-dominant eigenvectors of M into consideration,424

consider the quantity ϕ defined as425

ϕ[M,R] =
∥[M,R]∥
∥{M,R}∥

,

where ∥ . . . ∥ denotes the Frobenius norm of a matrix [26],426

[M,R] denotes the commutator of M and R and {M,R}427

denotes their anti-commutator. Note that if M and R428

are jointly diagonalizable (share the eigenbasis), then M429

and R commute and ϕ[M,R] would be 0. Thus, a non-zero430

ϕ[M,R] can be seen as a measure of misalignment between431

the eigenvectors of M and R. Dividing [M,R] by {M,R}432

yields a quantity invariant under rescaling of M or R by433

constant factors.434

Similar to the trick we used when defining γ, to enable435

meaningful comparisons across dimensions, instead of fo-436

cusing on the raw value of ϕ, we compute the probability437

φ = ProbR′(ϕ[M,R′] > ϕ[M,R]).

Here R′ is a random ‘subtle rotation’ of R, which we de-438

fine as a rotation that preserves its dominant eigenvector.439

We refer to φ as the alignment of non-dominant eigenvec-440

tors. If φ is close to 1, it means that M is better aligned441

to R than to almost any of its rotated versions, even when442

the rotations only change subdominant eigenvectors.443

The results are shown in Fig. 5C. The Nx = 2 col-444

umn is grayed out: in two dimensions, the only rotation445

that preserves the dominant eigenvector is the identity446

matrix. We see that the cross-talk architecture (Eq. 2) is447

not only responsive to changes in the subdominant direc-448

tion of fluctuations, but succeeds at realigning its respon-449

siveness matrix accordingly, particularly in dimensions 3450

and 4 (at the price of a somewhat worse alignment to the451

dominant direction; compare with panel B). However,452

as the dimension Nx increases, the number of regula-453

tors required to achieve a good non-dominant alignment454

φ > 0.9 quickly becomes unreasonably large (Na > 20).455

IV. DISCUSSION456

The regulatory circuit we considered in this work gen-457

eralizes simple end-product inhibition by including three458

additional ingredients: nonlinearity, an excess of regula-459

tors, and cross-talk between them. Previous work has460

shown that these ingredients can endow the circuit with461

an ability to learn time-dependent fluctuation statistics462

of its inputs through a form of associative learning, at463

least in the low-dimensional scenarios (with one or two in-464

puts) [15]. Here, we generalized this circuit to the higher-465

dimensional case and presented two results. Just like in466

lower dimensions, this architecture can show an improved467

performance P at the task of tracking environmental468

fluctuations. This small performance gain comes at a469

significant complexity cost. However, if sensing changes470

in environmental statistics is of value to the organism,471

then this architecture is quite interesting as it offers a472

sensitivity to subtle changes, sensing not only the domi-473

nant direction of fluctuations, but also the subdominant474

fluctuation modes.475

How relevant is this high-dimensional case for real476

cells? It is easy to imagine that a specific pair of re-477

sources might be correlated at some point of an organ-478

ism’s lifecycle but not at another; thus, it is clear that479

dynamically learning and unlearning a single correlation480

could be useful. By comparison, the “universal learn-481

ing” capacity described here—an ability to pick out any482

preferred direction of correlations in a high-dimensional483

space—seems rather more abstract. However, this could484

be the relevant regime for the regulatory architecture of485

a cell as a whole, seen as a high-dimensional learning486

circuit. Some intriguing recent ideas propose a possible487

common ground between evolvability of regulatory cir-488

cuits, their ability to solve complex problems, and the489

success of overparameterized models in machine learn-490

ing [27, 28]. So far, these parallels remain speculative;491

but the fact that simple elements can enable regulatory492

circuits to perform a form of associative learning could493

be a valuable piece of this puzzle. In this work, we have494

shown that one previously proposed mechanism success-495

fully generalizes to higher dimensions.496
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FIG. 5. The generalized architecture learns to track the changing sub-dominant eigenvector of the input fluctuation. (A) We
rotate M with its dominant eigenvector fixed. Note that such rotations exist only in dimension 3 and above. (B) Heatmap of the
alignment γ between responsiveness R and the dominant eigenvector of M . The alignment remains significant, indicating the
system continues to track the dominant eigenvector. (C) Additionally, the system is sensitive to the sub-dominant fluctuation
directions, as indicated by this heatmap of the alignment of non-dominant eigenvectors φ(R,M) (see text), which is better
than random for all allowed values of Nx (Nx ≥ 3; see panel A).
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In considering the biological implications of our anal-497

ysis, it is important to remember that our goal was not498

to accurately model real regulatory circuits. Rather, our499

simple model helps us explore the computational abil-500

ity of a simple circuit composed of biologically plausible501

elements.502

This level of abstraction has some advantages. Cir-503

cuit elements similar to those discussed here appear504

also in several other contexts, such as organelle regu-505

lation [29, 30] or resource competition dynamics of an506

ecosystem (where a species’ resource exploitation inhibits507

its own growth). In fact, in the ecological context, the508

ingredients required by the cross-talk architecture are509

arguably more natural. Indeed, in the gene regulatory510

context, the autocatalytic aspect is nontrivial to im-511

plement [15], while in the ecological context, the “self-512

activation” is automatically ensured by replicator dy-513

namics. This parallel suggests that under some minimal514

assumptions, the commonly considered resource compe-515

tition dynamics may cause the ecosystem to align its re-516

sponsiveness to the spectrum of environmental fluctua-517

tions. Confirming this behavior, and exploring its rele-518

vance for ecosystem dynamics is an exciting avenue for519

future work.520

At the same time, the level of abstraction adopted here521

also has clear limitations. As mentioned above, our sim-522

plified model ignores the intrinsic stochasticity of tran-523

scriptional regulation. Thus, any interpretation in terms524

of real regulatory circuits requires caution.525

All simulations were performed using Matlab (Math-526

works, Inc). The code reproducing all figures from527

scratch is provided as Supplementary File 1.528
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