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Abstract: Measuring the fitnesses of genetic variants is a fundamental objective in evolution-
ary biology. A standard approach for measuring microbial fitnesses in bulk involves labeling
a library of genetic variants with unique sequence barcodes, competing the labeled strains in
batch culture, and using deep sequencing to track changes in the barcode abundances over
time. However, idiosyncratic properties of barcodes can induce non-uniform amplification
or uneven sequencing coverage that causes some barcodes to be over- or under-represented
in samples. This systematic bias can result in erroneous read count trajectories and mis-
estimates of fitness. Here we develop a computational method, REBAR, for inferring the
e↵ects of barcode processing bias by leveraging the structure of systematic deviations in
the data. We illustrate this approach by applying it to two independent data sets, and
demonstrate that this method estimates and corrects for bias more accurately than standard
proxies, such as GC-based corrections. REBAR mitigates bias and improves fitness estimates
in high-throughput assays without introducing additional complexity to the experimental
protocols, with potential applications in a range of experimental evolution and mutation
screening contexts.
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Introduction1

Standard assays for measuring microbial fitness involve tracking the abundances of variants over time in2

batch culture competitions and using these data to estimate relative growth rates (Wiser and Lenski,3

2015). High-throughput sequencing technology makes it possible to measure the fitnesses of many strains4

simultaneously using batch culture assays (Smith et al., 2009; Araya and Fowler, 2011; Mehlho↵ and5

Ostermeier, 2020). In this approach, a collection of variants is labeled with unique sequence barcodes6

for identification (Figure 1A). The pooled variant library is then competed against a reference strain7

(e.g., the ancestor) over multiple growth cycles (Figure 1B). The batch culture is sampled at designated8

intervals, and barcode regions are extracted, amplified, and sequenced for each sample. The relative9

abundance of a variant at a given time can be determined from the fraction of the total sequencing reads10

that map to its barcode in the corresponding sample. In the simplest approach, the relative fitness of11

each variant can be estimated by fitting a linear model to its log-count trajectory (Figure 1C).12

This approach provides good estimates of fitness when barcode read counts are a reliable reflection13

of the relative abundances of variants in the culture. However, multiple factors can introduce variability14

in read counts. Some noise is expected due to stochasticity in growth cycles, perturbations in culture15

conditions (e.g., ‘batch e↵ects’ such as incubation temperature, nutrient concentrations, or inoculum16

densities), and bottlenecks associated with serial transfer and sampling. The uncertainty in fitness17

estimates attributable to random noise is, by definition, unavoidable, but can typically be quantified18

and mitigated through suitable control strategies.19

Here we are concerned with sources of bias that cause barcode read counts to systematically deviate20

from the variants’ true culture abundances. While genetic barcodes are often assumed to be inert labels,21

it has been shown that their sequence properties can lead to non-uniform amplification and uneven22

coverage in next-generation sequencing pipelines (Smith et al., 2008; Aird et al., 2011; Thielecke et al.,23

2017). For example, the base composition of a barcode can modulate its sensitivity to small fluctuations24

in temperature ramps and enzyme activities during PCR amplification, which can cause some barcodes25

to be consistently over- or under-represented in samples (Benjamini and Speed, 2012; Laursen et al.,26

2017; Johnson et al., 2023). This can introduce systematic biases that result in erroneous read counts27

and misestimates of fitness (Figure 1D). Barcode representation bias is known to correlate with statistics28

such as GC ratio (Southern et al., 1999; Margulies et al., 2001; Dohm et al., 2008; Hillier et al., 2008;29
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Benjamini and Speed, 2012; Laursen et al., 2017), but the relationship between amplicon sequence and30

bias is more complex than GC content alone and has not been fully characterized (Kuo et al., 2002; Aird31

et al., 2011). Furthermore, amplification bias also depends on the idiosyncratic processing conditions for32

each sample, which makes it challenging to determine the extent to which counts and fitness estimates33

have been impacted by bias (Siddiqui et al., 2006).34

One strategy to mitigate barcode-associated bias is to label each variant with multiple distinct35

barcodes such that their di↵ering biases average out when taken as an ensemble (Ardell et al., 2023).36

However, the addition of redundant barcodes can introduce substantial complexity to library preparation,37

which limits the scalability of this approach. Beyond this, it is not straightforward to label variants with38

redundant barcodes in many experimental evolution contexts, such as in lineage tracking experiments39

where a clonal ancestral population is pre-labeled with random barcodes before de novo mutants are40

spontaneously generated (Levy et al., 2015; Venkataram et al., 2016).41

Here we introduce a data-driven method, named REBAR (Removing the E↵ects of Bias through42

Analysis of Residuals), that infers and removes the e↵ects of barcode processing bias by leveraging the43

structure of systematic error across an experimental data set. REBAR o↵ers a procedure for improving44

high-throughput fitness estimates that does not require changes to protocols and can even be applied45

retroactively to existing data.46

Figure 1: Genetic barcodes that are susceptible to systematic amplification and sequencing biases can

cause misestimates of fitness. (A) A standard approach for bulk fitness assays involves labeling a library of genetic
variants with unique sequence barcodes. (B) The variant library is pooled and grown in batch culture, often over multiple
serial dilution growth cycles. Samples of the batch culture are taken at designated time points, and barcode sequences are
extracted, amplified, and sequenced for each sample. The frequency of a barcode among all sequencing reads in a sample
provides an estimate of the corresponding variant’s relative abundance in the batch culture at that time. (C) The relative
abundances of variants are expected to change exponentially over time according to their relative fitnesses. As such, the
log read count of each variant’s barcode is expected to change linearly, where the slope of the best-fit line provides an
estimate of the variant’s fitness f̄ (i.e., exponential growth rate). (D) However, bias-inducing factors in the amplification
and sequencing process may cause barcode counts to be under- or over-represented relative to the true abundance of the
corresponding variants in culture, which can lead to a misestimation of fitness, �f .
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A Data-driven Approach47

We aim to infer and correct systematic biases using the data that is typically collected in bulk fitness48

assays, namely barcode read counts for a library of variants measured across time series of competition49

culture samples. Often in such experiments the same barcode-labeled library is assayed multiple times,50

either as replicates or to measure fitnesses in alternative environmental conditions. The involvement of51

the same barcodes in multiple assays enhances the accuracy of our bias inference, but our method can52

also be applied to single-assay data.53

For narrative simplicity, we assume that sequencing depth (i.e., total read count) is the same for54

all samples, and we refer simply to “barcode counts” rather than “normalized counts” or “relative55

abundances” (Supplementary Section S1.1). Sequencing depth is never actually uniform, but correcting56

for varying sequencing depth is standard practice (in fact, our algorithm has a built-in capacity to do so;57

see Supplementary Section S2.1b). We further assume that the variants of interest make up a small58

fraction of the batch culture relative to the reference strain, such that their change in abundance during59

an assay is well-modeled by an exponential. Making this assumption and accounting for deviations from60

it are also standard practice. Under these assumptions, the log-counts of each barcode are expected to61

follow linear trajectories, which simplifies the presentation of our approach.62

Model of underlying bias63

In practice, observed counts reflect not only the relative abundances of variants, but also the e↵ects of64

noise and bias that arise in the barcode amplification and sequencing process. Here we are concerned65

with the contributions of barcode processing bias in particular. This bias di↵ers from random noise66

in that its e↵ects on observed counts will tend to impact a given barcode in a systematic way across67

samples. That is, a variant whose barcode is highly susceptible to bias will tend to have its counts68

a↵ected more strongly across all samples, compared to other variants. Similarly, samples with procedural69

conditions that induce substantial bias will exhibit greater impacts on variants’ counts across the board70

when compared to other samples.71

We model the e↵ect of bias b↵i,t on the observed count of variant i at time t in assay ↵ as the product72
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of the variant’s characteristic susceptibility to bias ui and the prevalence of bias in that sample v↵t73

b↵i,t = uiv
↵
t . (1)

The bias prevalence component gives the overall strength and direction of bias in a sample, which74

reflects the tendency of the procedural conditions in that sample to influence barcode counts. In this75

model, the susceptibility of a variant’s barcode modulates how much that variant’s counts are a↵ected76

by processing bias. Prevalent bias translates to relatively large shifts in counts for highly susceptible77

variants (Figure 2A, top and bottom variants), while variants with negligible susceptibility are weakly78

a↵ected by bias-inducing factors, even when they are highly prevalent (Figure 2A, middle variant).79

The counts of ‘positively susceptible’ barcodes are influenced in the opposite direction from ‘negatively80

susceptible’ barcodes with respect to over- versus under-representation (Figure 2A, compare top and81

bottom variants).82

Manifestation of bias in residuals and misestimates of fitness83

The log-count of each variant’s barcode is expected to change linearly with a slope that corresponds to84

its growth rate. Fitting a line to the log-count trajectory of each barcode provides an estimate of the85

relative fitness f̄i for each variant (Figure 1C). However, barcode processing biases cause read counts86

to deviate from the “true” trajectories. Under our model of bias, we expect these e↵ects to leave two87

notable signatures in the data.88

The first e↵ect is to perturb observed counts away from tightly log-linear trajectories. As a result,89

the residuals of a variant’s log-linear fit can reflect the magnitudes and directions of bias e↵ects in the90

respective samples (note the correspondence between the underlying bias e↵ects in Figure 2A with91

and the observed residuals in Figure 2B). Barcodes that are highly susceptible to bias often have large92

residuals in samples where bias is prevalent (Figure 2B, top and bottom variants), whereas barcodes93

that are not susceptible to bias will be immune from these deviations (Figure 2B, middle variant).94

We checked for these patterns of bias-driven residuals in two published bulk fitness assay data sets,95

namely Chen et al. (2023) and Kinsler et al. (2020) (Figure 2C). Both studies collected barcode read96

count time series for hundreds of yeast variants across a number of assay conditions (a subset of which97

are shown in Figure 2C, see Supplementary Section S3 for more information). We see that both data98
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Figure 2: Barcode processing bias impacts the structure of residuals and the accuracy of fitness estimates

derived from linear fits of log-count trajectories. (A) Log-count trajectories are shown for a hypothetical fitness
assay with three variants (right). The contributions of barcode processing bias to the observed counts are shown in the
table (left). We model the e↵ect of bias on the count for variant i in sample t as the product of the prevalence of bias in the
sample (vt values, one per sample) and the variant’s susceptibility to bias (ui values, one per variant). These bias e↵ects
cause observed counts (points, right) to deviate (arrows, right) from the log-linear trajectories that correspond to each
variant’s true change in abundance over time (dotted lines, right). (B) A line is fit to each variant’s observed log-count
trajectory (black lines, left). The residuals of each fit are depicted as bars (left) and in the table (right). The e↵ects of
underlying bias are reflected in the structure of the magnitudes and signs of residuals (refer to the color scale below the
table). Note the similarities between the bias e↵ect table in (A) and the residuals table in (B). In this example, bias
prevalence has a slight positive trend across time points (see vt and � values in (A)), which causes the slope of each variant’s
log-linear fit to deviate from that of its true trajectory as modulated by its bias susceptibility (arrows, left), which results
in misestimates of fitness (column, far right). (C) Heatmaps depict the residuals of linear fits to log-count trajectories
from two published bulk fitness assay data sets: Chen et al. (2023) (left) and Kinsler et al. (2020) (right). For each data
set, we show residuals for a library of variants (rows) across 6 fitness assays conducted in three di↵erent environmental
conditions (‘Chen conditions’ CC1, CC2, and CC3; and ‘Kinsler conditions’ KC1, KC2, and KC3. See Supplementary
Section S3 for more information). Variants (rows) are ordered by the GC ratio of their barcodes, increasing from top to
bottom. Barcodes with the highest and lowest GC ratios tend to have large residuals across multiple samples, which is
consistent with these variants being more susceptible to bias. Samples (individual columns) with relatively large residuals
and a strong correlation between residuals and GC ratios are consistent with high bias prevalence (example samples marked
by solid arrows above table). By contrast, in other samples (such as those marked by open arrows above table) residuals
are relatively uncorrelated with GC ratio, which indicates that bias prevalence is likely weak.

sets contain samples that exhibit strong residuals where the sign and magnitude of residuals also appear99

to be correlated with the GC ratio (i.e., row ordering) of the respective barcodes (e.g., columns marked100

by solid arrows in Figure 2C). This structure is consistent with systematic barcode processing bias101

being prevalent in those samples, in contrast to other samples where residuals are more random across102

variants (e.g., columns marked by open arrows in Figure 2C). Variants that have large residuals in one103

sample tend to have relatively large residuals in other samples as well, suggesting that these variants104

are more susceptible to bias-inducing e↵ects. Those variants that appear to be most susceptible to105

6



bias (i.e., those that have large residuals across samples) tend to have among the highest or lowest GC106

ratios in their respective library (i.e., are near the top or bottom of the heatmaps in Figure 2C), but the107

correlation between apparent bias susceptibility and GC ratio is imperfect. This is expected because108

barcode processing bias is related to a number of sequence properties, with GC content being just one109

factor.110

The second major e↵ect of bias is to cause the best-fit slope of a variant’s log-count trajectory111

to deviate from its actual rate of change in abundance (Figure 2B). This occurs when the e↵ects of112

bias vary from one sample to the next with a non-zero trend over time (such as in Figure 1D). Such113

correlation of bias prevalence with time can arise by chance and is more likely to occur when the number114

of sample time points per assay is small, as is often the case. A temporal trend in bias will confound the115

signal from a variant’s change in abundance and result in misestimates of fitness (note that bias with a116

constant e↵ect on all counts over time shifts the log-linear fit vertically but does not change its slope).117

The degree to which a variant’s fitness estimate is impacted by a trend in bias prevalence is modulated118

by its bias susceptibility (Figure 2B).119

We can formalize the temporal trend of bias prevalence in an assay with a linear model120

v↵t = �↵t+ �↵t , (2)

where �↵ gives the change in prevalence over time and �↵t is the incidental deviation from this linear121

trend for each individual sample. Then, the error in a variant’s fitness estimate relative to its true fitness122

(i.e., �f↵
i = f̄↵

i � f↵
i,true) is given by the product of the variant’s bias susceptibility and the trend in bias123

prevalence in that assay (Supplementary Section S1.3):124

�f↵
i = ui�

↵ . (3)

It is impossible to disambiguate bias-driven trends in counts from fitness-driven ones using counts125

or residuals alone. Nevertheless, as we explain in the next section, having just one control group of126

variants with equal true fitnesses is su�cient to fully resolve this problem and infer the e↵ects of bias for127

an entire library.128
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Disentangling bias trends from fitness estimates129

Figure 3: Decomposing bias into trend and deviation components enables their inference. (A) Log-counts
from three hypothetical assays involving a set of five variants are shown (gray-scale tables). For illustrative purposes, these
five variants are assumed to all have the same fitness as the reference strain. The true abundances of these variants remain
constant in culture, but observed counts deviate from constant trajectories due to the e↵ects of barcode processing bias.
The ‘ground truth’ bias susceptibility and bias prevalence components that give rise to the observed counts are shown in the
gray outlined region. (B) The residuals of linear fits to the trajectories in (A) are depicted in the lower tables for each assay.
The errors in fitness estimates due to bias-induced shifts in log-count trajectories are given in the columns to the right of
each residuals table. These linear fits e↵ectively decompose counts data into trends (fitnesses) and deviations (residuals).
Decomposing bias prevalence into trend (�) and deviation (�t) components as well enables us to infer these components
using the analogous terms derived from the counts data (see the text for more information). (C) A graphical schematic of
the two-stage bias inference algorithm is shown (see the text and Supplementary Section S2 for more information).

Consider the thought experiment presented in Figure 3, where the ground truth fitnesses, bias130

susceptibilities, and sample bias prevalences underlying a three-assay data set are known. Here, we131

consider a set of neutral variants that all have the same fitness as the reference strain (e.g., the ancestor).132

For such a set, the true relative abundances remain constant throughout each assay, but the barcode133

read counts (shown as grayscale tables in Figure 3A) exhibit fluctuations due to the e↵ects of bias in134

each sample.135

Overall, each variant’s pattern of residuals across all assays (i.e., the signs and magnitudes in each row136

of residuals) tends to correspond to the strength and direction of that variant’s underlying susceptibility.137

Similarly, the underlying bias prevalence values are often associated with a matching pattern of residuals138
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across variants in the respective columns.139

However, the relationship between bias prevalence and residuals is more nuanced, as is illustrated140

when comparing the three assays in this example. In Assay 1, bias prevalence is low in all samples, all141

residuals are correspondingly small, and fitnesses are accurately estimated. In Assay 2, bias prevalence is142

greater, and susceptible variants are more impacted as seen in larger residuals for those variants. However,143

fitness estimates remain accurate because the bias does not have a temporal trend that confounds variant144

growth over time (i.e., �(1) = 0). Compare these outcomes with those of Assay 3, where bias prevalence145

increases linearly over time (�(3) = 1). This results in log-linear count trajectories that are perfectly fit146

by lines with zero residuals (in the absence of other noise), but the apparent slopes are entirely due147

to the trend in bias and give erroneous fitness estimates. This illustrates why residuals alone are not148

su�cient to infer bias prevalence without additional information about the bias trend for each assay.149

Notice that we have decomposed both log-counts and bias prevalence values into trend (slope) and150

deviation (residual) terms (Figure 3B). Sets of residuals across variants in a sample are informative151

about the respective deviation of that sample’s bias prevalence from the overall trend in prevalence for152

the assay (note the correspondence between columns of residuals and bias prevalence deviation values,153

�↵t , for all assays in Figure 3). It follows that the observed trajectory slopes provide information about154

trends in bias prevalence.155

Equation 3 tells us that we can quantify the trend in bias prevalence �↵ by regressing fitness errors156

�f↵
i against bias susceptibilities ui. In general, it is unrealistic to assume that the fitness errors �f↵

i157

could be known, since the purpose of the assay is to measure fitnesses in the first place. However, if a158

subset of variants is known beforehand to have the same fitness (e.g., a set of genetically identical strains159

labeled with di↵erent barcodes), then, for that subset, fitness errors can be approximated by comparing160

the estimated fitness of each variant to the mean estimate of the group. Therefore, an assay’s trend161

in bias prevalence can be estimated using the fitness errors and bias susceptibilities obtained for this162

special subset. In this way, a single subset of equal-fitness variants provides the information necessary to163

infer the trends in bias that are experienced by all variants in the library.164

Altogether, the logic of the REBAR method for inferring bias is as follows: i) the magnitudes and165

signs of a variant’s collection of residuals across all available samples inform the magnitude and sign of166

that variant’s bias susceptibility; ii) the magnitudes and signs of a sample’s collection of residuals over167

all variants inform the magnitude and sign of that sample’s deviation in bias prevalence from a general168
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trend in prevalence over the respective assay; and iii) the correlation of fitness misestimation with bias169

susceptibility among a control subset of equal-fitness variants informs the trend in bias prevalence itself.170

The inferred bias components are used to compute bias-corrected counts that no longer include spurious171

trends that confound estimates of fitness.172

The bias inference & correction algorithm173

REBAR infers underlying bias components from barcode read count time series data in two stages.174

First, we infer bias susceptibility values and bias prevalence deviation values using an iterative175

optimization process. Let logC↵
i,t denote the observed log-count of variant i in sample t of assay176

↵ (Supplementary Section S1.1). Then, a particular set of bias susceptibility and bias prevalence177

estimates (ûi and v̂↵t , respectively) yields a corresponding set of bias-adjusted log-counts logA↵
i,t for each178

variant-sample (Supplementary Section S1.4):179

logA↵
i,t = logC↵

i,t � ûiv̂
↵
t . (4)

Each adjusted count time series can be fit by a log-linear model180

logA↵
i,t = ef↵

i t+ ec ↵
i + er ↵

i,t , (5)

where ef↵
i gives the adjusted fitness estimate for variant i in assay ↵, ec ↵

i gives the y-intercept, and181

er↵i,t denotes the residual of each sample t from the log-linear fit (Supplementary Section S1.4). We182

employ the heuristic that accurate estimates of bias susceptibility and prevalence deviations will yield183

bias-corrected counts that minimize residuals across the data.184

We begin by initializing bias susceptibility and prevalence terms to random values (Supplementary185

Section S2.0). To infer the bias susceptibility of variant i, we fix the set of bias prevalences at their186

current values and solve for the susceptibility value ûi that minimizes the set of residuals associated187

with that variant across all assays and samples in the data set (Figure 3C, box 1a). Evaluating this188

optimization for every variant in turn produces an updated set of bias susceptibility values for the189

library. Next, we fix the set of variant susceptibilities at their current values and infer the bias prevalence190

deviation terms �̂↵t that minimize the set of residuals in each assay ↵ across all variants (optimization of191

bias prevalence deviation values is done on a per-assay basis; Figure 3C, box 1b). We alternate between192
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optimizing bias susceptibility values (given the current prevalence deviation values) and optimizing193

bias prevalence deviation values (given the current susceptibility values) until suitable convergence is194

reached (regularized objective functions are used to resolve symmetries and ensure convergence, see195

Supplementary Section S2.1).196

In the second stage of our process, we infer the trend in bias prevalence for each assay in order197

to determine absolute estimates of bias prevalence. Following the logic derived from Equation 3, we198

estimate the trend in bias prevalence in an assay ↵ by regressing fitness misestimates �f↵
i2G against199

inferred bias susceptibilities ûi2G for a group of variants G where these values are known (Figure 3C,200

box 2). In particular, we perform this step using a designated control subset of variants that are known201

beforehand to have the same fitness, which allows us to estimate their fitness errors relative to the group202

mean. The slope of this regression provides an estimate of the trend in bias prevalence for the respective203

assay (see Supplementary Figure S7, Figure S11 for examples). With inferred values for both the trends204

and deviations in bias prevalence in hand, we then compute absolute bias prevalence estimates v̂↵t for205

each sample (Supplementary Section S2.2).206

The inferred bias susceptibility and bias prevalence values we obtain from this procedure allow us207

to estimate and correct the e↵ect of bias for each individual count in the data set (Equation 4). More208

information about the implementation of this algorithm is provided in Supplementary Section S2.209

Results210

We applied REBAR to the bulk fitness assay data sets from Chen et al. (2023) and Kinsler et al. (2020)211

that were introduced above (Figure 2C). Both data sets include barcode read count time series for a large212

library of yeast variants (2,586 and 548 variants, respectively) across multiple assay conditions (9 and 15213

conditions, respectively; see Supplementary Section S3 for more information), and both libraries include214

a subset of near-equal fitness variants suitable for use as the control set in REBAR (288 and 159 control215

variants, respectively; see Supplementary Section S3 for more information). Figure 4 summarizes the216

results of REBAR for replicate assays performed in three conditions from each study (‘Chen conditions’217

CC1, CC2, and CC3; and ‘Kinsler conditions’ KC1, KC2, and KC3), each of which highlights di↵erent218

features of REBAR (complete results are presented in Supplementary Section S3).219

The objective of REBAR is to improve the accuracy of fitness estimates by removing the confounding220
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Figure 4: REBAR infers bias corrections that improve the accuracy of fitness estimates library-wide.

(A) Replicate fitness estimates are plotted for all variants (points) before bias correction for three assay conditions each
from Chen et al. (2023) and from Kinsler et al. (2020) (column headers: ‘Chen Conditions’ CC1, CC2, and CC3; and
‘Kinsler Conditions’ KC1, KC2, and KC3). Large discrepancies in fitness estimates between replicates suggest that fitness
may be misestimated due to bias in one or both assays. Indeed, the magnitude of the replicate-replicate discrepancy
(distance from 45-degree line) for a given variant is correlated with it bias susceptibility as inferred by REBAR (color scale).
(B) REBAR improves the accuracy of fitness estimates as seen in the tight correspondence of fitness estimates across
replicates in all conditions after correction. (C) REBAR’s corrections improve the log-linearity of count trajectories as seen
in tight distributions of residuals (each point represents a variant-sample) for all assays after correction.

e↵ects of barcode processing bias. As such, the performance of REBAR can be assessed by comparing221

the original and bias-corrected fitness estimates against known values (e.g., obtained using independent222

low-throughput assays). However, such ground truth fitnesses will not always be available for validation,223

such as when applying REBAR to pre-existing data as we do here. In these cases, the performance224

of REBAR can be evaluated by comparing the agreement of fitness estimates obtained from replicate225

assays before and after bias correction.226

For example, in the original data, fitness estimates are inconsistent from one replicate to the next227

for several conditions, including CC1, CC2, KC1, and KC2 (deviation of points from 45-degree line228

in Figure 4A). By contrast, the corrections applied by REBAR yield fitness estimates that have high229

correspondence across replicates (Figure 4B, CC1). The algorithm had no knowledge of which, if any,230

assays were expected to be similar, so obtaining high agreement between fitness estimates in known231

replicate conditions confirms that REBAR is returning accurate fitness corrections. In addition, inferred232
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variant bias susceptibilities are strongly correlated with disagreements between replicate fitness estimates233

before, but not after, correction (Figure 4A, CC1), which indicates that REBAR is addressing a bias234

mode that was responsible for confounding fitness estimates in one or both replicate assays.235

Large fitness discrepancies are not observed in the original data for all conditions (e.g., CC3 and236

KC3 in Figure 4A). In these cases, REBAR finds negligible bias trends and preserves the original fitness237

estimates. Therefore, REBAR corrects bias in assays where it distorts fitness estimates while maintaining238

accuracy where bias is not an issue.239

REBAR improves the log-linearity of count trajectories and reduces the overall magnitude of residuals240

by design (Figure 4C). Assays with confounding bias prevalence often include count trajectories with large241

residuals that are substantially reduced by REBAR’s corrections (e.g., CC1 replicate 1, KC1 replicate 1).242

However, large residuals are not always associated with misestimates of fitness (e.g., KC3 replicate 1 in243

Figure 4C; see also Assay 2 in Figure 3), and bias-induced errors are not always accompanied by large244

residuals (e.g., KC2 in Figure 4C; see also Assay 3 in Figure 3). The nuanced relationship between bias,245

residuals, and fitness estimates is di�cult to disambiguate on a per-assay basis, but REBAR successfully246

leverages the global structure of residuals to do so.247

In the high-bias conditions, the median magnitude of REBAR’s fitness correction was 0.08 for Kinsler248

et al. (KC1, KC2) and 0.02 for Chen et al. (CC1, CC2). For comparison, the median fitness (after249

correction) in these two datasets was 0.09 and 0.06, respectively. In other words, the corrections are250

non-negligible and can be comparable to the magnitude of the fitness e↵ects the assay is meant to251

measure (for more detailed quantification, see Supplementary Section S3).252

The variant library assayed in Kinsler et al. (2020) has a special feature that allows us to validate253

the REBAR-inferred fitness corrections even further. Specifically, this library includes several subsets254

of variants with similar mutations that are expected to have nearly equal fitnesses (Supplementary255

Section S3.1.2). REBAR has no knowledge of such groups (other than the single required control set).256

Therefore, demonstrating that fitness estimates within these groups become more similar after the257

REBAR corrections provides additional independent validation of the method’s accuracy.258

In particular, many of the mutants in Kinsler et al. (2020) underwent a whole-genome duplication259

to become diploid but have otherwise very similar genetic backgrounds. The fitness e↵ect of genome260

duplication is similar for all diploid mutants across the assays considered here (Supplementary Sec-261

tion S3.1.2). Similarly, two other subsets of variants have mutations in the same gene—GPB2 and262
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Figure 5: Validation of bias-corrected fitness estimates and inferred bias susceptibilities. (A) Distributions of
fitness estimates before and after bias correction (white and shaded boxplots, respectively) are shown for the Kinsler et al.
(2020) control (Diploid) and validation (GPB2 and PDE2 ) groups of variants across three growth conditions (‘Kinsler
conditions’ KC1, KC2, and KC3). The variance of fitness estimates decreases significantly (statistical significance, denoted
by ⇤, is determined by Levene’s test for equal variances; p < 0.05) in the KC1 and KC2 conditions, in which multiple
assays have high bias prevalence with strong temporal trends (Figure 4C). (B) The correspondence between each variant’s
initial fitness misestimation using pre-correction counts data (�f↵

i = f↵
i2G � hf↵

j2Gi) and the change in its fitness estimate

following bias correction (�f↵
i = ef↵

i � f↵
i ) is depicted using scatter plots for each growth condition (each point represents a

variant). (C) The bias susceptibility values returned by REBAR are highly correlated with bias susceptibilities inferred
using an independent, SVD-based method, which we consider to be approximate ground truth values. (D) As expected,
the approximate ground truth bias susceptility of each variant is also correlated with the GC ratio of its barcode, but this
correlation is weaker than it is for the bias susceptibility values returned by REBAR.

PDE2, respectively—that confer similar fitness e↵ects across assays (Supplementary Section S3.1.2).263

Any one of these groups can be used as an approximate equal-fitness control set required for our method,264

and the remaining two groups can then be used for independent validation of the output. Here, we use265

the Diploid set for the inference control, and GPB2 and PDE2 for validation.266

The results of this analysis are shown in Figure 5A. REBAR significantly reduces the variance of267

fitness estimates for GPB2 and PDE2 mutants in assay conditions where within-group variation was268

initially high (e.g., KC1, KC2). We see that significant reductions in fitness estimate variance coincide269

with assays where bias is both relatively prevalent and has a strong temporal trend (see Supplementary270

Figure S7, Figure S11). In conditions where fitness estimates are already tight in the original data (e.g.,271

KC3), REBAR independently infers low bias prevalence and does not significantly alter either the mean272

or variance of fitness estimates. We emphasize that the method is ignorant of the GPB2 and PDE2273

groupings and thus has no explicit incentive to favor tight distributions of fitness estimates for these274

subsets of variants. The fact that REBAR does return tighter estimates of fitness for groups that are275

expected to have near-equal fitness provides validation of its performance.276
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Figure 5B provides a closer look at how REBAR’s bias corrections impact fitness estimates at the277

level of individual variants. In conditions where initial fitness estimates have substantial errors (e.g.,278

KC1, KC2), the updates to fitness estimates induced by our bias-corrections (�f↵
i2G = ef↵

i2G � f̄↵
i2G)279

are highly correlated with the initial errors in estimation (�f↵
i2G = f̄↵

i2G � hf̄j2Gi↵). This demonstrates280

that the corrections made by REBAR address the underlying cause of misestimation for each particular281

variant. On the other hand, REBAR does not significantly alter fitness estimates in conditions where282

fitness errors are already low (e.g., KC3).283

Finally, we can also compare the bias components returned by REBAR to those obtained using284

an independent method. The relationship given by Equation 3 (i.e., �f↵
i = ui�↵) indicates that if285

fitness misestimates �f↵
i were known, then bias susceptibilities and prevalence trends could be recovered286

by performing singular value decomposition (SVD) on a variant-by-assay matrix of fitness errors287

(specifically, the first left singular vector provides estimates of bias susceptibility for each variant, and the288

first right singular vector gives estimates of the trend in bias prevalence in each assay; see Supplementary289

Section S3.1.2). We stress that this SVD approach requires knowledge of true fitnesses for the collection290

of variants and assays in question, which is, of course, not generally available beforehand. However,291

this SVD can be applied individually to known subsets of equal-fitness variants, such as our GPB2 and292

PDE2 validation groups, for which true fitnesses can be approximated using the subset’s average fitness293

estimate. This provides yet another avenue for validating the method’s performance.294

Figure 5C shows a tight correspondence between the variant bias susceptibility values inferred using295

REBAR and the corresponding values estimated using the SVD approach. The strong correlation seen296

in each validation group confirms the bias inference performed by our algorithm. Critically, note that297

REBAR infers bias susceptibility values for the entire variant library, while the SVD approach can only298

be applied to special variant subsets for which a priori fitness information is available.299

Variants with the strongest inferred susceptibilities are often those with the most extreme GC300

ratios, as predicted by the structure of residuals in the original data (Supplementary Section S3). GC301

content is known to play a role in modulating how a barcode responds to bias-inducing conditions302

in the amplification and sequencing process, but it is not the only factor that influences a barcode’s303

representation in a sample (Kuo et al., 2002; Aird et al., 2011). We find that a barcode’s susceptibility304

to bias is only weakly correlated with sequence properties such as GC ratio (Figure 5D) or nucleotide305

entropy (Figure S8, Figure S12), which indicates that the bias mode corrected by REBAR is poorly306
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explained by simple sequence proxies alone. While we do not characterize all of the factors contributing307

to the observed barcode processing bias, the bias susceptibility values inferred by REBAR capture each308

barcode’s response to this multi-factorial bias mode and account for the systematic structure in the309

data. In turn, the estimates of bias susceptibilities and bias prevalences returned by REBAR may help310

pinpoint the features of barcodes or protocols that are responsible for bias.311

Discussion312

We have developed a robust computational method for inferring and correcting the e↵ects of barcode313

processing biases in high-throughput fitness assays. REBAR infers the bias susceptibility of each barcode314

as well as the prevalence of bias in each sample. These components are used to estimate the e↵ect of315

bias on each individual count, from which bias-adjusted e↵ective counts are obtained. The bias-corrected316

counts are better representations of the actual changes in variant abundances, and thus provide more317

accurate estimates of fitness.318

An advantage of our approach is that REBAR requires only one multiply-labeled subset of variants319

to infer and correct the e↵ects of bias for an entire library. The accuracy of REBAR depends in part on320

the fidelity of this control set. Ideally, this group would consist of di↵erentially labeled but otherwise321

genetically identical strains to ensure absolute fitness neutrality among the control set. When such an322

ideal control set is not available (such as when analyzing a pre-existing data set), a subset of variants that323

are believed to be nearly-neutral can be used, as was done here for the Chen et al. (2023) and Kinsler324

et al. (2020) data sets. These case studies demonstrate that REBAR can make significant improvements325

to fitness estimates even when there is some biological variation in the control set.326

To further evaluate the robustness of REBAR to variation in the control set, we conducted a sensitivity327

analysis using synthetic data sets with simulated noise and bias e↵ects (details in Supplementary328

Section S3.3.1). We varied the size of the control set and the variance in fitness among control set329

variants, ranging from identical sets with zero variance to degenerate sets that have the same amount of330

variance as the library overall (Figure 6). When the control set has very low fitness variance as intended,331

REBAR can remove 90% or more of the bias-induced fitness error in these data sets (Figure 6). The332

ability to disambiguate bias trends from fitness e↵ects tends to diminish as variation in the control set333

increases, but substantial error reduction can still be achieved with moderately variable control sets.334
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Figure 6: Sensitivity of fitness error reduction to control set fidelity. We tested REBAR on synthetic data sets
with simulated noise and bias e↵ects. Each synthetic data set includes barcode read counts for a library of 500 variants
from 5 simulated bulk fitness assays, where ground truth fitnesses, bias susceptibilities, and bias prevalences are assigned
randomly (see Supplementary Section S3.3.2 for details). We measure the mean absolute error (MAE) in fitness estimates
for each data set before and after correction by REBAR (MAEpre and MAEpost, respectively). We also estimate the error
in fitness estimates that is expected of Poisson sampling noise alone in the absence of bias for each data set MAEnoise.
Each cell in the heatmap reports the median ‘relative fitness error after correction’ " for 50 synthetic data sets, where
" = (MAEpost �MAEnoise)/(MAEpre �MAEnoise). REBAR removes nearly all of the initial fitness error attributable to
bias when used with an ideal zero-variance control set (e.g., genetically identical strains). Decreasing control set quality
reduces REBAR’s ability to correct fitness estimates, but this can be o↵set by increasing the size of the control set.

The accuracy of bias inference improves as the number of control set labels increases, but reasonable335

accuracy can be achieved with a modest number of nearly-neutral control variants. Altogether, we find336

that REBAR’s ability to significantly reduce bias-induced fitness errors is robust across a wide range of337

realistic control set sizes and fitness distributions (Figure 6).338

Similarly, the accuracy of bias corrections using this method scales with the size of the data set. In339

principle, REBAR can make substantial improvements to fitness estimates for even a single assay, but its340

inference is better constrained and more accurate when applied to multi-assay data sets (Supplementary341

Section S3.3.3). It does not matter if the assays represent replicates from the same condition or assays342

performed in di↵erent conditions so long as the barcoded library is the same throughout. The degree to343

which inference is improved by the inclusion of additional assays depends on how prevalent bias is in the344

respective assays.345

Here we model the e↵ects of barcode processing bias as a single error mode (i.e., a single coherent346

pattern of e↵ects). We find that one bias mode is su�cient to correct most of the deviations in the data347

sets considered here (Supplementary Section S3.1.2), but this error model presents two limitations in348
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general. First, REBAR accounts for bias with a ‘rank-one’ structure, but this may not capture all of349

the systematic sources of error. For example, some structure is still present in our case study residuals350

following correction by REBAR (Supplementary Section S3.1.3, Supplementary Section S3.2.3), which351

suggests that there are additional sources of systematic noise beyond the dominant mode that REBAR352

identifies and removes. In principle, our methodology could be extended to handle multiple bias modes,353

but we do not investigate that here. Second, REBAR corrects systematic bias but does not address354

sources of random noise in the growth assay or amplification process. For example, a barcode may355

become overrepresented in a sample due to a one-o↵ PCR jackpot, but this kind of non-systematic356

e↵ect is outside the scope of REBAR. Unique Molecular Identifiers (UMIs) are commonly used to detect357

stochastic variation in PCR amplification (Fu et al., 2011; Kivioja et al., 2011; Johnson et al., 2023), and358

incorporating UMI information into a REBAR-like error correction pipeline is an area for future work.359

A significant benefit of REBAR is that it does not make demands on variant library design or fitness360

assay protocols, so long as at least one equal-fitness control set is included. This avails REBAR as361

a post-processing tool that can improve the accuracy of fitness estimates with low overhead in many362

contexts. Therefore, we anticipate that this computational approach will be applicable to a wide range of363

experimental fields where accurate fitness measurements are of interest, such as experimental evolution,364

lineage tracking, and deep mutational scanning.365

Code & Data Availability366

A python module implementing this method is available along with documentation and case study367

data at github.com/ryansmcgee/REBAR. This implementation is also published as a PyPI packge at368

https://pypi.org/project/rebar-py (installable using, e.g., pip install rebar-py).369
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