Improving the accuracy of bulk fitness assays by correcting barcode processing biases

Ryan Seamus McGee^a, Grant Kinsler^b, Dmitri Petrov^c, Mikhail Tikhonov^{a,*}

^aDepartment of Physics, Washington University, St. Louis, MO, USA.
 ^bDepartment of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
 ^cDepartment of Biology, Stanford University, Palo Alto, CA, USA.
 *Corresponding author: Mikhail Tikhonov, tikhonov@wustl.edu

Abstract: Measuring the fitnesses of genetic variants is a fundamental objective in evolutionary biology. A standard approach for measuring microbial fitnesses in bulk involves labeling a library of genetic variants with unique sequence barcodes, competing the labeled strains in batch culture, and using deep sequencing to track changes in the barcode abundances over time. However, idiosyncratic properties of barcodes can induce non-uniform amplification or uneven sequencing coverage that causes some barcodes to be over- or under-represented in samples. This systematic bias can result in erroneous read count trajectories and misestimates of fitness. Here we develop a computational method, REBAR, for inferring the effects of barcode processing bias by leveraging the structure of systematic deviations in the data. We illustrate this approach by applying it to two independent data sets, and demonstrate that this method estimates and corrects for bias more accurately than standard proxies, such as GC-based corrections. REBAR mitigates bias and improves fitness estimates in high-throughput assays without introducing additional complexity to the experimental protocols, with potential applications in a range of experimental evolution and mutation screening contexts.

Keywords: fitness | sequence barcodes | high-throughput assays | systematic bias | inference

1 Introduction

Standard assays for measuring microbial fitness involve tracking the abundances of variants over time in batch culture competitions and using these data to estimate relative growth rates (Wiser and Lenski, 2015). High-throughput sequencing technology makes it possible to measure the fitnesses of many strains simultaneously using batch culture assays (Smith et al., 2009; Araya and Fowler, 2011; Mehlhoff and Ostermeier, 2020). In this approach, a collection of variants is labeled with unique sequence barcodes for identification (Figure 1A). The pooled variant library is then competed against a reference strain (e.g., the ancestor) over multiple growth cycles (Figure 1B). The batch culture is sampled at designated intervals, and barcode regions are extracted, amplified, and sequenced for each sample. The relative abundance of a variant at a given time can be determined from the fraction of the total sequencing reads that map to its barcode in the corresponding sample. In the simplest approach, the relative fitness of each variant can be estimated by fitting a linear model to its log-count trajectory (Figure 1C).

This approach provides good estimates of fitness when barcode read counts are a reliable reflection of the relative abundances of variants in the culture. However, multiple factors can introduce variability in read counts. Some noise is expected due to stochasticity in growth cycles, perturbations in culture conditions (e.g., 'batch effects' such as incubation temperature, nutrient concentrations, or inoculum densities), and bottlenecks associated with serial transfer and sampling. The uncertainty in fitness estimates attributable to random noise is, by definition, unavoidable, but can typically be quantified and mitigated through suitable control strategies.

Here we are concerned with sources of bias that cause barcode read counts to systematically deviate
from the variants' true culture abundances. While genetic barcodes are often assumed to be inert labels,
it has been shown that their sequence properties can lead to non-uniform amplification and uneven
coverage in next-generation sequencing pipelines (Smith et al., 2008; Aird et al., 2011; Thielecke et al.,
2017). For example, the base composition of a barcode can modulate its sensitivity to small fluctuations
in temperature ramps and enzyme activities during PCR amplification, which can cause some barcodes
to be consistently over- or under-represented in samples (Benjamini and Speed, 2012; Laursen et al.,
2017; Johnson et al., 2023). This can introduce systematic biases that result in erroneous read counts
and misestimates of fitness (Figure 1D). Barcode representation bias is known to correlate with statistics
such as GC ratio (Southern et al., 1999; Margulies et al., 2001; Dohm et al., 2008; Hillier et al., 2008;

Benjamini and Speed, 2012; Laursen et al., 2017), but the relationship between amplicon sequence and bias is more complex than GC content alone and has not been fully characterized (Kuo et al., 2002; Aird et al., 2011). Furthermore, amplification bias also depends on the idiosyncratic processing conditions for each sample, which makes it challenging to determine the extent to which counts and fitness estimates have been impacted by bias (Siddiqui et al., 2006).

One strategy to mitigate barcode-associated bias is to label each variant with multiple distinct barcodes such that their differing biases average out when taken as an ensemble (Ardell et al., 2023). However, the addition of redundant barcodes can introduce substantial complexity to library preparation, which limits the scalability of this approach. Beyond this, it is not straightforward to label variants with redundant barcodes in many experimental evolution contexts, such as in lineage tracking experiments where a clonal ancestral population is pre-labeled with random barcodes before *de novo* mutants are spontaneously generated (Levy et al., 2015; Venkataram et al., 2016).

Here we introduce a data-driven method, named REBAR (Removing the Effects of Bias through
Analysis of Residuals), that infers and removes the effects of barcode processing bias by leveraging the
structure of systematic error across an experimental data set. REBAR offers a procedure for improving
high-throughput fitness estimates that does not require changes to protocols and can even be applied
retroactively to existing data.

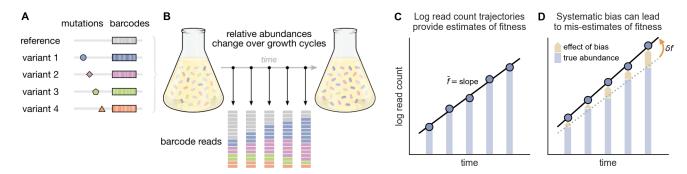


Figure 1: Genetic barcodes that are susceptible to systematic amplification and sequencing biases can cause misestimates of fitness. (A) A standard approach for bulk fitness assays involves labeling a library of genetic variants with unique sequence barcodes. (B) The variant library is pooled and grown in batch culture, often over multiple serial dilution growth cycles. Samples of the batch culture are taken at designated time points, and barcode sequences are extracted, amplified, and sequenced for each sample. The frequency of a barcode among all sequencing reads in a sample provides an estimate of the corresponding variant's relative abundance in the batch culture at that time. (C) The relative abundances of variants are expected to change exponentially over time according to their relative fitnesses. As such, the log read count of each variant's barcode is expected to change linearly, where the slope of the best-fit line provides an estimate of the variant's fitness \bar{f} (i.e., exponential growth rate). (D) However, bias-inducing factors in the amplification and sequencing process may cause barcode counts to be under- or over-represented relative to the true abundance of the corresponding variants in culture, which can lead to a misestimation of fitness, δf .

47 A Data-driven Approach

We aim to infer and correct systematic biases using the data that is typically collected in bulk fitness assays, namely barcode read counts for a library of variants measured across time series of competition culture samples. Often in such experiments the same barcode-labeled library is assayed multiple times, either as replicates or to measure fitnesses in alternative environmental conditions. The involvement of the same barcodes in multiple assays enhances the accuracy of our bias inference, but our method can also be applied to single-assay data.

For narrative simplicity, we assume that sequencing depth (i.e., total read count) is the same for 54 all samples, and we refer simply to "barcode counts" rather than "normalized counts" or "relative 55 abundances" (Supplementary Section S1.1). Sequencing depth is never actually uniform, but correcting 56 for varying sequencing depth is standard practice (in fact, our algorithm has a built-in capacity to do so: 57 see Supplementary Section S2.1b). We further assume that the variants of interest make up a small fraction of the batch culture relative to the reference strain, such that their change in abundance during 59 an assay is well-modeled by an exponential. Making this assumption and accounting for deviations from 60 it are also standard practice. Under these assumptions, the log-counts of each barcode are expected to 61 follow linear trajectories, which simplifies the presentation of our approach.

63 Model of underlying bias

72

In practice, observed counts reflect not only the relative abundances of variants, but also the effects of noise and bias that arise in the barcode amplification and sequencing process. Here we are concerned with the contributions of barcode processing bias in particular. This bias differs from random noise in that its effects on observed counts will tend to impact a given barcode in a systematic way across samples. That is, a variant whose barcode is highly susceptible to bias will tend to have its counts affected more strongly across all samples, compared to other variants. Similarly, samples with procedural conditions that induce substantial bias will exhibit greater impacts on variants' counts across the board when compared to other samples.

We model the effect of bias $b_{i,t}^{\alpha}$ on the observed count of variant i at time t in assay α as the product

of the variant's characteristic susceptibility to bias u_i and the prevalence of bias in that sample v_t^{α}

$$b_{i,t}^{\alpha} = u_i v_t^{\alpha} \,. \tag{1}$$

The bias prevalence component gives the overall strength and direction of bias in a sample, which reflects the tendency of the procedural conditions in that sample to influence barcode counts. In this 75 model, the susceptibility of a variant's barcode modulates how much that variant's counts are affected 76 by processing bias. Prevalent bias translates to relatively large shifts in counts for highly susceptible 77 variants (Figure 2A, top and bottom variants), while variants with negligible susceptibility are weakly 78 affected by bias-inducing factors, even when they are highly prevalent (Figure 2A, middle variant). 79 The counts of 'positively susceptible' barcodes are influenced in the opposite direction from 'negatively 80 susceptible' barcodes with respect to over-versus under-representation (Figure 2A, compare top and 81 bottom variants).

83 Manifestation of bias in residuals and misestimates of fitness

The log-count of each variant's barcode is expected to change linearly with a slope that corresponds to its growth rate. Fitting a line to the log-count trajectory of each barcode provides an estimate of the relative fitness \bar{f}_i for each variant (Figure 1C). However, barcode processing biases cause read counts to deviate from the "true" trajectories. Under our model of bias, we expect these effects to leave two notable signatures in the data.

The first effect is to perturb observed counts away from tightly log-linear trajectories. As a result,
the residuals of a variant's log-linear fit can reflect the magnitudes and directions of bias effects in the
respective samples (note the correspondence between the underlying bias effects in Figure 2A with
and the observed residuals in Figure 2B). Barcodes that are highly susceptible to bias often have large
residuals in samples where bias is prevalent (Figure 2B, top and bottom variants), whereas barcodes
that are not susceptible to bias will be immune from these deviations (Figure 2B, middle variant).

We checked for these patterns of bias-driven residuals in two published bulk fitness assay data sets, namely Chen et al. (2023) and Kinsler et al. (2020) (Figure 2C). Both studies collected barcode read count time series for hundreds of yeast variants across a number of assay conditions (a subset of which are shown in Figure 2C, see Supplementary Section S3 for more information). We see that both data

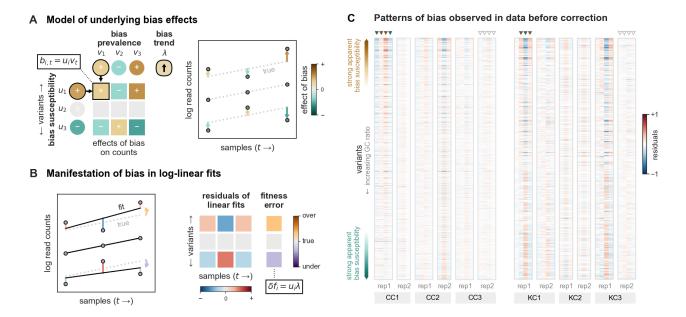


Figure 2: Barcode processing bias impacts the structure of residuals and the accuracy of fitness estimates derived from linear fits of log-count trajectories. (A) Log-count trajectories are shown for a hypothetical fitness assay with three variants (right). The contributions of barcode processing bias to the observed counts are shown in the table (left). We model the effect of bias on the count for variant i in sample t as the product of the prevalence of bias in the sample (v_t values, one per sample) and the variant's susceptibility to bias (u_i values, one per variant). These bias effects cause observed counts (points, right) to deviate (arrows, right) from the log-linear trajectories that correspond to each variant's true change in abundance over time (dotted lines, right). (B) A line is fit to each variant's observed log-count trajectory (black lines, left). The residuals of each fit are depicted as bars (left) and in the table (right). The effects of underlying bias are reflected in the structure of the magnitudes and signs of residuals (refer to the color scale below the table). Note the similarities between the bias effect table in (A) and the residuals table in (B). In this example, bias prevalence has a slight positive trend across time points (see v_t and λ values in (A)), which causes the slope of each variant's log-linear fit to deviate from that of its true trajectory as modulated by its bias susceptibility (arrows, left), which results in misestimates of fitness (column, far right). (C) Heatmaps depict the residuals of linear fits to log-count trajectories from two published bulk fitness assay data sets: Chen et al. (2023) (left) and Kinsler et al. (2020) (right). For each data set, we show residuals for a library of variants (rows) across 6 fitness assays conducted in three different environmental conditions ('Chen conditions' CC1, CC2, and CC3; and 'Kinsler conditions' KC1, KC2, and KC3. See Supplementary Section S3 for more information). Variants (rows) are ordered by the GC ratio of their barcodes, increasing from top to bottom. Barcodes with the highest and lowest GC ratios tend to have large residuals across multiple samples, which is consistent with these variants being more susceptible to bias. Samples (individual columns) with relatively large residuals and a strong correlation between residuals and GC ratios are consistent with high bias prevalence (example samples marked by solid arrows above table). By contrast, in other samples (such as those marked by open arrows above table) residuals are relatively uncorrelated with GC ratio, which indicates that bias prevalence is likely weak.

sets contain samples that exhibit strong residuals where the sign and magnitude of residuals also appear to be correlated with the GC ratio (i.e., row ordering) of the respective barcodes (e.g., columns marked by solid arrows in Figure 2C). This structure is consistent with systematic barcode processing bias being prevalent in those samples, in contrast to other samples where residuals are more random across variants (e.g., columns marked by open arrows in Figure 2C). Variants that have large residuals in one sample tend to have relatively large residuals in other samples as well, suggesting that these variants are more susceptible to bias-inducing effects. Those variants that appear to be most susceptible to

bias (i.e., those that have large residuals across samples) tend to have among the highest or lowest GC ratios in their respective library (i.e., are near the top or bottom of the heatmaps in Figure 2C), but the correlation between apparent bias susceptibility and GC ratio is imperfect. This is expected because barcode processing bias is related to a number of sequence properties, with GC content being just one factor.

The second major effect of bias is to cause the best-fit slope of a variant's log-count trajectory 111 to deviate from its actual rate of change in abundance (Figure 2B). This occurs when the effects of 112 bias vary from one sample to the next with a non-zero trend over time (such as in Figure 1D). Such 113 correlation of bias prevalence with time can arise by chance and is more likely to occur when the number 114 of sample time points per assay is small, as is often the case. A temporal trend in bias will confound the 115 signal from a variant's change in abundance and result in misestimates of fitness (note that bias with a 116 constant effect on all counts over time shifts the log-linear fit vertically but does not change its slope). The degree to which a variant's fitness estimate is impacted by a trend in bias prevalence is modulated 118 by its bias susceptibility (Figure 2B). 119

We can formalize the temporal trend of bias prevalence in an assay with a linear model

120

$$v_t^{\alpha} = \lambda^{\alpha} t + \gamma_t^{\alpha} \,, \tag{2}$$

where λ^{α} gives the change in prevalence over time and γ_t^{α} is the incidental deviation from this linear trend for each individual sample. Then, the error in a variant's fitness estimate relative to its true fitness (i.e., $\delta f_i^{\alpha} = \bar{f}_i^{\alpha} - f_{i,\text{true}}^{\alpha}$) is given by the product of the variant's bias susceptibility and the trend in bias prevalence in that assay (Supplementary Section S1.3):

$$\delta f_i^{\alpha} = u_i \lambda^{\alpha} \,. \tag{3}$$

It is impossible to disambiguate bias-driven trends in counts from fitness-driven ones using counts or residuals alone. Nevertheless, as we explain in the next section, having just *one* control group of variants with equal true fitnesses is sufficient to fully resolve this problem and infer the effects of bias for an entire library.

Disentangling bias trends from fitness estimates

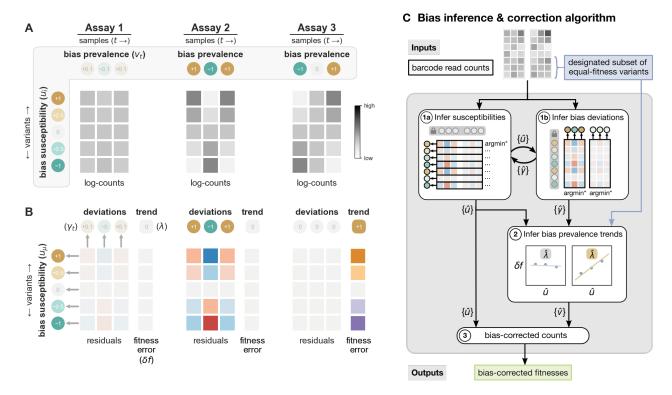


Figure 3: Decomposing bias into trend and deviation components enables their inference. (A) Log-counts from three hypothetical assays involving a set of five variants are shown (gray-scale tables). For illustrative purposes, these five variants are assumed to all have the same fitness as the reference strain. The true abundances of these variants remain constant in culture, but observed counts deviate from constant trajectories due to the effects of barcode processing bias. The 'ground truth' bias susceptibility and bias prevalence components that give rise to the observed counts are shown in the gray outlined region. (B) The residuals of linear fits to the trajectories in (A) are depicted in the lower tables for each assay. The errors in fitness estimates due to bias-induced shifts in log-count trajectories are given in the columns to the right of each residuals table. These linear fits effectively decompose counts data into trends (fitnesses) and deviations (residuals). Decomposing bias prevalence into trend (λ) and deviation (γ_t) components as well enables us to infer these components using the analogous terms derived from the counts data (see the text for more information). (C) A graphical schematic of the two-stage bias inference algorithm is shown (see the text and Supplementary Section S2 for more information).

Consider the thought experiment presented in Figure 3, where the ground truth fitnesses, bias 130 susceptibilities, and sample bias prevalences underlying a three-assay data set are known. Here, we 131 consider a set of neutral variants that all have the same fitness as the reference strain (e.g., the ancestor). 132 For such a set, the true relative abundances remain constant throughout each assay, but the barcode 133 read counts (shown as grayscale tables in Figure 3A) exhibit fluctuations due to the effects of bias in 134 each sample. 135 Overall, each variant's pattern of residuals across all assays (i.e., the signs and magnitudes in each row 136 of residuals) tends to correspond to the strength and direction of that variant's underlying susceptibility. 137

Similarly, the underlying bias prevalence values are often associated with a matching pattern of residuals

138

139 across variants in the respective columns.

However, the relationship between bias prevalence and residuals is more nuanced, as is illustrated 140 when comparing the three assays in this example. In Assay 1, bias prevalence is low in all samples, all 141 residuals are correspondingly small, and fitnesses are accurately estimated. In Assay 2, bias prevalence is 142 greater, and susceptible variants are more impacted as seen in larger residuals for those variants. However, 143 fitness estimates remain accurate because the bias does not have a temporal trend that confounds variant 144 growth over time (i.e., $\lambda^{(1)} = 0$). Compare these outcomes with those of Assay 3, where bias prevalence 145 increases linearly over time ($\lambda^{(3)} = 1$). This results in log-linear count trajectories that are perfectly fit 146 by lines with zero residuals (in the absence of other noise), but the apparent slopes are entirely due to the trend in bias and give erroneous fitness estimates. This illustrates why residuals alone are not 148 sufficient to infer bias prevalence without additional information about the bias trend for each assay. 149

Notice that we have decomposed both log-counts and bias prevalence values into trend (slope) and deviation (residual) terms (Figure 3B). Sets of residuals across variants in a sample are informative about the respective deviation of that sample's bias prevalence from the overall trend in prevalence for the assay (note the correspondence between columns of residuals and bias prevalence deviation values, γ_t^{α} , for all assays in Figure 3). It follows that the observed trajectory slopes provide information about trends in bias prevalence.

Equation 3 tells us that we can quantify the trend in bias prevalence λ^{α} by regressing fitness errors 156 δf_i^{α} against bias susceptibilities u_i . In general, it is unrealistic to assume that the fitness errors δf_i^{α} could be known, since the purpose of the assay is to measure fitnesses in the first place. However, if a 158 subset of variants is known beforehand to have the same fitness (e.g., a set of genetically identical strains 159 labeled with different barcodes), then, for that subset, fitness errors can be approximated by comparing the estimated fitness of each variant to the mean estimate of the group. Therefore, an assay's trend 161 in bias prevalence can be estimated using the fitness errors and bias susceptibilities obtained for this 162 special subset. In this way, a single subset of equal-fitness variants provides the information necessary to 163 infer the trends in bias that are experienced by all variants in the library. 164

Altogether, the logic of the REBAR method for inferring bias is as follows: i) the magnitudes and signs of a variant's collection of residuals across all available samples inform the magnitude and sign of that variant's bias susceptibility; ii) the magnitudes and signs of a sample's collection of residuals over all variants inform the magnitude and sign of that sample's deviation in bias prevalence from a general

trend in prevalence over the respective assay; and iii) the correlation of fitness misestimation with bias susceptibility among a control subset of equal-fitness variants informs the trend in bias prevalence itself. The inferred bias components are used to compute bias-corrected counts that no longer include spurious trends that confound estimates of fitness.

173 The bias inference & correction algorithm

REBAR infers underlying bias components from barcode read count time series data in two stages.

First, we infer bias susceptibility values and bias prevalence deviation values using an iterative optimization process. Let $\log C_{i,t}^{\alpha}$ denote the observed log-count of variant i in sample t of assay α (Supplementary Section S1.1). Then, a particular set of bias susceptibility and bias prevalence estimates (\hat{u}_i and \hat{v}_t^{α} , respectively) yields a corresponding set of bias-adjusted log-counts $\log A_{i,t}^{\alpha}$ for each variant-sample (Supplementary Section S1.4):

$$\log A_{i,t}^{\alpha} = \log C_{i,t}^{\alpha} - \hat{u}_i \hat{v}_t^{\alpha} \,. \tag{4}$$

Each adjusted count time series can be fit by a log-linear model

$$\log A_{i,t}^{\alpha} = \widetilde{f}_i^{\alpha} t + \widetilde{c}_i^{\alpha} + \widetilde{r}_{i,t}^{\alpha}, \tag{5}$$

where \tilde{f}_i^{α} gives the adjusted fitness estimate for variant i in assay α , \tilde{c}_i^{α} gives the y-intercept, and $\tilde{r}_{i,t}^{\alpha}$ denotes the residual of each sample t from the log-linear fit (Supplementary Section S1.4). We employ the heuristic that accurate estimates of bias susceptibility and prevalence deviations will yield bias-corrected counts that minimize residuals across the data.

We begin by initializing bias susceptibility and prevalence terms to random values (Supplementary

Section S2.0). To infer the bias susceptibility of variant i, we fix the set of bias prevalences at their current values and solve for the susceptibility value \hat{u}_i that minimizes the set of residuals associated with that variant across all assays and samples in the data set (Figure 3C, box 1a). Evaluating this optimization for every variant in turn produces an updated set of bias susceptibility values for the library. Next, we fix the set of variant susceptibilities at their current values and infer the bias prevalence deviation terms $\hat{\gamma}_t^{\alpha}$ that minimize the set of residuals in each assay α across all variants (optimization of bias prevalence deviation values is done on a per-assay basis; Figure 3C, box 1b). We alternate between

optimizing bias susceptibility values (given the current prevalence deviation values) and optimizing
bias prevalence deviation values (given the current susceptibility values) until suitable convergence is
reached (regularized objective functions are used to resolve symmetries and ensure convergence, see
Supplementary Section S2.1).

In the second stage of our process, we infer the trend in bias prevalence for each assay in order 197 to determine absolute estimates of bias prevalence. Following the logic derived from Equation 3, we 198 estimate the trend in bias prevalence in an assay α by regressing fitness misestimates $\delta f^{\alpha}_{i \in G}$ against 199 inferred bias susceptibilities $\hat{u}_{i \in G}$ for a group of variants G where these values are known (Figure 3C, 200 box 2). In particular, we perform this step using a designated control subset of variants that are known 201 beforehand to have the same fitness, which allows us to estimate their fitness errors relative to the group 202 mean. The slope of this regression provides an estimate of the trend in bias prevalence for the respective 203 assay (see Supplementary Figure S7, Figure S11 for examples). With inferred values for both the trends 204 and deviations in bias prevalence in hand, we then compute absolute bias prevalence estimates \hat{v}_t^{α} for 205 each sample (Supplementary Section S2.2). 206

The inferred bias susceptibility and bias prevalence values we obtain from this procedure allow us
to estimate and correct the effect of bias for each individual count in the data set (Equation 4). More
information about the implementation of this algorithm is provided in Supplementary Section S2.

$_{\scriptscriptstyle 10}$ Results

220

We applied REBAR to the bulk fitness assay data sets from Chen et al. (2023) and Kinsler et al. (2020) that were introduced above (Figure 2C). Both data sets include barcode read count time series for a large 212 library of yeast variants (2.586 and 548 variants, respectively) across multiple assay conditions (9 and 15 213 conditions, respectively; see Supplementary Section S3 for more information), and both libraries include a subset of near-equal fitness variants suitable for use as the control set in REBAR (288 and 159 control 215 variants, respectively; see Supplementary Section S3 for more information). Figure 4 summarizes the 216 results of REBAR for replicate assays performed in three conditions from each study ('Chen conditions' 217 CC1, CC2, and CC3; and 'Kinsler conditions' KC1, KC2, and KC3), each of which highlights different 218 features of REBAR (complete results are presented in Supplementary Section S3). 219

The objective of REBAR is to improve the accuracy of fitness estimates by removing the confounding

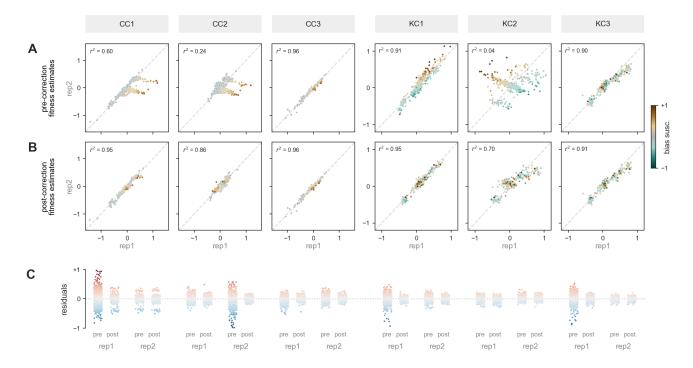


Figure 4: REBAR infers bias corrections that improve the accuracy of fitness estimates library-wide. (A) Replicate fitness estimates are plotted for all variants (points) before bias correction for three assay conditions each from Chen et al. (2023) and from Kinsler et al. (2020) (column headers: 'Chen Conditions' CC1, CC2, and CC3; and 'Kinsler Conditions' KC1, KC2, and KC3). Large discrepancies in fitness estimates between replicates suggest that fitness may be misestimated due to bias in one or both assays. Indeed, the magnitude of the replicate-replicate discrepancy (distance from 45-degree line) for a given variant is correlated with it bias susceptibility as inferred by REBAR (color scale). (B) REBAR improves the accuracy of fitness estimates as seen in the tight correspondence of fitness estimates across replicates in all conditions after correction. (C) REBAR's corrections improve the log-linearity of count trajectories as seen in tight distributions of residuals (each point represents a variant-sample) for all assays after correction.

effects of barcode processing bias. As such, the performance of REBAR can be assessed by comparing
the original and bias-corrected fitness estimates against known values (e.g., obtained using independent
low-throughput assays). However, such ground truth fitnesses will not always be available for validation,
such as when applying REBAR to pre-existing data as we do here. In these cases, the performance
of REBAR can be evaluated by comparing the agreement of fitness estimates obtained from replicate
assays before and after bias correction.

For example, in the original data, fitness estimates are inconsistent from one replicate to the next for several conditions, including CC1, CC2, KC1, and KC2 (deviation of points from 45-degree line in Figure 4A). By contrast, the corrections applied by REBAR yield fitness estimates that have high correspondence across replicates (Figure 4B, CC1). The algorithm had no knowledge of which, if any, assays were expected to be similar, so obtaining high agreement between fitness estimates in known replicate conditions confirms that REBAR is returning accurate fitness corrections. In addition, inferred

variant bias susceptibilities are strongly correlated with disagreements between replicate fitness estimates before, but not after, correction (Figure 4A, CC1), which indicates that REBAR is addressing a bias mode that was responsible for confounding fitness estimates in one or both replicate assays.

Large fitness discrepancies are not observed in the original data for all conditions (e.g., CC3 and KC3 in Figure 4A). In these cases, REBAR finds negligible bias trends and preserves the original fitness estimates. Therefore, REBAR corrects bias in assays where it distorts fitness estimates while maintaining accuracy where bias is not an issue.

REBAR improves the log-linearity of count trajectories and reduces the overall magnitude of residuals 240 by design (Figure 4C). Assays with confounding bias prevalence often include count trajectories with large 241 residuals that are substantially reduced by REBAR's corrections (e.g., CC1 replicate 1, KC1 replicate 1). 242 However, large residuals are not always associated with misestimates of fitness (e.g., KC3 replicate 1 in 243 Figure 4C; see also Assay 2 in Figure 3), and bias-induced errors are not always accompanied by large 244 residuals (e.g., KC2 in Figure 4C; see also Assay 3 in Figure 3). The nuanced relationship between bias. 245 residuals, and fitness estimates is difficult to disambiguate on a per-assay basis, but REBAR successfully 246 leverages the global structure of residuals to do so. 247

In the high-bias conditions, the median magnitude of REBAR's fitness correction was 0.08 for Kinsler et al. (KC1, KC2) and 0.02 for Chen et al. (CC1, CC2). For comparison, the median fitness (after correction) in these two datasets was 0.09 and 0.06, respectively. In other words, the corrections are non-negligible and can be comparable to the magnitude of the fitness effects the assay is meant to measure (for more detailed quantification, see Supplementary Section S3).

The variant library assayed in Kinsler et al. (2020) has a special feature that allows us to validate
the REBAR-inferred fitness corrections even further. Specifically, this library includes several subsets
of variants with similar mutations that are expected to have nearly equal fitnesses (Supplementary
Section S3.1.2). REBAR has no knowledge of such groups (other than the single required control set).
Therefore, demonstrating that fitness estimates within these groups become more similar after the
REBAR corrections provides additional independent validation of the method's accuracy.

In particular, many of the mutants in Kinsler et al. (2020) underwent a whole-genome duplication to become diploid but have otherwise very similar genetic backgrounds. The fitness effect of genome duplication is similar for all diploid mutants across the assays considered here (Supplementary Section S3.1.2). Similarly, two other subsets of variants have mutations in the same gene—*GPB2* and

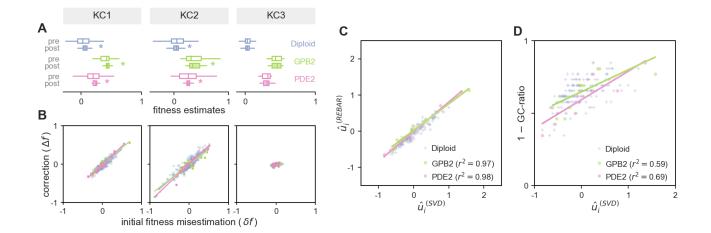


Figure 5: Validation of bias-corrected fitness estimates and inferred bias susceptibilities. (A) Distributions of fitness estimates before and after bias correction (white and shaded boxplots, respectively) are shown for the Kinsler et al. (2020) control (Diploid) and validation (GPB2 and PDE2) groups of variants across three growth conditions ('Kinsler conditions' KC1, KC2, and KC3). The variance of fitness estimates decreases significantly (statistical significance, denoted by *, is determined by Levene's test for equal variances; p < 0.05) in the KC1 and KC2 conditions, in which multiple assays have high bias prevalence with strong temporal trends (Figure 4C). (B) The correspondence between each variant's initial fitness misestimation using pre-correction counts data ($\delta f_i^{\alpha} = f_{i \in G}^{\alpha} - \langle f_{j \in G}^{\alpha} \rangle$) and the change in its fitness estimate following bias correction ($\Delta f_i^{\alpha} = \tilde{f}_i^{\alpha} - f_i^{\alpha}$) is depicted using scatter plots for each growth condition (each point represents a variant). (C) The bias susceptibility values returned by REBAR are highly correlated with bias susceptibilities inferred using an independent, SVD-based method, which we consider to be approximate ground truth values. (D) As expected, the approximate ground truth bias susceptibility of each variant is also correlated with the GC ratio of its barcode, but this correlation is weaker than it is for the bias susceptibility values returned by REBAR.

PDE2, respectively—that confer similar fitness effects across assays (Supplementary Section S3.1.2).
Any one of these groups can be used as an approximate equal-fitness control set required for our method,
and the remaining two groups can then be used for independent validation of the output. Here, we use
the Diploid set for the inference control, and GPB2 and PDE2 for validation.

The results of this analysis are shown in Figure 5A. REBAR significantly reduces the variance of 267 fitness estimates for GPB2 and PDE2 mutants in assay conditions where within-group variation was 268 initially high (e.g., KC1, KC2). We see that significant reductions in fitness estimate variance coincide 269 with assays where bias is both relatively prevalent and has a strong temporal trend (see Supplementary 270 Figure S7, Figure S11). In conditions where fitness estimates are already tight in the original data (e.g., 271 KC3), REBAR independently infers low bias prevalence and does not significantly alter either the mean 272 or variance of fitness estimates. We emphasize that the method is ignorant of the GPB2 and PDE2 groupings and thus has no explicit incentive to favor tight distributions of fitness estimates for these 274 subsets of variants. The fact that REBAR does return tighter estimates of fitness for groups that are 275 expected to have near-equal fitness provides validation of its performance.

Figure 5B provides a closer look at how REBAR's bias corrections impact fitness estimates at the level of individual variants. In conditions where initial fitness estimates have substantial errors (e.g., KC1, KC2), the updates to fitness estimates induced by our bias-corrections ($\Delta f_{i \in G}^{\alpha} = \tilde{f}_{i \in G}^{\alpha} - \bar{f}_{i \in G}^{\alpha}$) are highly correlated with the initial errors in estimation ($\delta f_{i \in G}^{\alpha} = \bar{f}_{i \in G}^{\alpha} - \langle \bar{f}_{j \in G} \rangle^{\alpha}$). This demonstrates that the corrections made by REBAR address the underlying cause of misestimation for each particular variant. On the other hand, REBAR does not significantly alter fitness estimates in conditions where fitness errors are already low (e.g., KC3).

Finally, we can also compare the bias components returned by REBAR to those obtained using 284 an independent method. The relationship given by Equation 3 (i.e., $\delta f_i^{\alpha} = u_i \lambda^{\alpha}$) indicates that if 285 fitness misestimates δf_i^{α} were known, then bias susceptibilities and prevalence trends could be recovered 286 by performing singular value decomposition (SVD) on a variant-by-assay matrix of fitness errors 287 (specifically, the first left singular vector provides estimates of bias susceptibility for each variant, and the 288 first right singular vector gives estimates of the trend in bias prevalence in each assay; see Supplementary 289 Section S3.1.2). We stress that this SVD approach requires knowledge of true fitnesses for the collection 290 of variants and assays in question, which is, of course, not generally available beforehand. However, 291 this SVD can be applied individually to known subsets of equal-fitness variants, such as our GPB2 and 292 PDE2 validation groups, for which true fitnesses can be approximated using the subset's average fitness 293 estimate. This provides yet another avenue for validating the method's performance. 294

Figure 5C shows a tight correspondence between the variant bias susceptibility values inferred using REBAR and the corresponding values estimated using the SVD approach. The strong correlation seen in each validation group confirms the bias inference performed by our algorithm. Critically, note that REBAR infers bias susceptibility values for the entire variant library, while the SVD approach can only be applied to special variant subsets for which a priori fitness information is available.

Variants with the strongest inferred susceptibilities are often those with the most extreme GC ratios, as predicted by the structure of residuals in the original data (Supplementary Section S3). GC content is known to play a role in modulating how a barcode responds to bias-inducing conditions in the amplification and sequencing process, but it is not the only factor that influences a barcode's representation in a sample (Kuo et al., 2002; Aird et al., 2011). We find that a barcode's susceptibility to bias is only weakly correlated with sequence properties such as GC ratio (Figure 5D) or nucleotide entropy (Figure S8, Figure S12), which indicates that the bias mode corrected by REBAR is poorly

explained by simple sequence proxies alone. While we do not characterize all of the factors contributing
to the observed barcode processing bias, the bias susceptibility values inferred by REBAR capture each
barcode's response to this multi-factorial bias mode and account for the systematic structure in the
data. In turn, the estimates of bias susceptibilities and bias prevalences returned by REBAR may help
pinpoint the features of barcodes or protocols that are responsible for bias.

Discussion

We have developed a robust computational method for inferring and correcting the effects of barcode processing biases in high-throughput fitness assays. REBAR infers the bias susceptibility of each barcode as well as the prevalence of bias in each sample. These components are used to estimate the effect of bias on each individual count, from which bias-adjusted effective counts are obtained. The bias-corrected counts are better representations of the actual changes in variant abundances, and thus provide more accurate estimates of fitness.

An advantage of our approach is that REBAR requires only one multiply-labeled subset of variants to infer and correct the effects of bias for an entire library. The accuracy of REBAR depends in part on the fidelity of this control set. Ideally, this group would consist of differentially labeled but otherwise genetically identical strains to ensure absolute fitness neutrality among the control set. When such an ideal control set is not available (such as when analyzing a pre-existing data set), a subset of variants that are believed to be nearly-neutral can be used, as was done here for the Chen et al. (2023) and Kinsler et al. (2020) data sets. These case studies demonstrate that REBAR can make significant improvements to fitness estimates even when there is some biological variation in the control set.

To further evaluate the robustness of REBAR to variation in the control set, we conducted a sensitivity
analysis using synthetic data sets with simulated noise and bias effects (details in Supplementary
Section S3.3.1). We varied the size of the control set and the variance in fitness among control set
variants, ranging from identical sets with zero variance to degenerate sets that have the same amount of
variance as the library overall (Figure 6). When the control set has very low fitness variance as intended,
REBAR can remove 90% or more of the bias-induced fitness error in these data sets (Figure 6). The
ability to disambiguate bias trends from fitness effects tends to diminish as variation in the control set
increases, but substantial error reduction can still be achieved with moderately variable control sets.

relative fitness error after corection

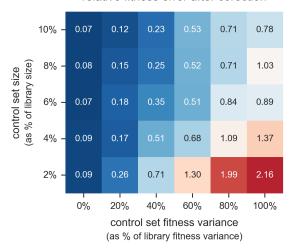


Figure 6: Sensitivity of fitness error reduction to control set fidelity. We tested REBAR on synthetic data sets with simulated noise and bias effects. Each synthetic data set includes barcode read counts for a library of 500 variants from 5 simulated bulk fitness assays, where ground truth fitnesses, bias susceptibilities, and bias prevalences are assigned randomly (see Supplementary Section S3.3.2 for details). We measure the mean absolute error (MAE) in fitness estimates for each data set before and after correction by REBAR (MAE_{pre} and MAE_{post}, respectively). We also estimate the error in fitness estimates that is expected of Poisson sampling noise alone in the absence of bias for each data set MAE_{noise}. Each cell in the heatmap reports the median 'relative fitness error after correction' ε for 50 synthetic data sets, where $\varepsilon = (\text{MAE}_{\text{post}} - \text{MAE}_{\text{noise}})/(\text{MAE}_{\text{pre}} - \text{MAE}_{\text{noise}})$. REBAR removes nearly all of the initial fitness error attributable to bias when used with an ideal zero-variance control set (e.g., genetically identical strains). Decreasing control set quality reduces REBAR's ability to correct fitness estimates, but this can be offset by increasing the size of the control set.

The accuracy of bias inference improves as the number of control set labels increases, but reasonable accuracy can be achieved with a modest number of nearly-neutral control variants. Altogether, we find that REBAR's ability to significantly reduce bias-induced fitness errors is robust across a wide range of realistic control set sizes and fitness distributions (Figure 6).

Similarly, the accuracy of bias corrections using this method scales with the size of the data set. In principle, REBAR can make substantial improvements to fitness estimates for even a single assay, but its inference is better constrained and more accurate when applied to multi-assay data sets (Supplementary Section S3.3.3). It does not matter if the assays represent replicates from the same condition or assays performed in different conditions so long as the barcoded library is the same throughout. The degree to which inference is improved by the inclusion of additional assays depends on how prevalent bias is in the respective assays.

Here we model the effects of barcode processing bias as a single error mode (i.e., a single coherent pattern of effects). We find that one bias mode is sufficient to correct most of the deviations in the data sets considered here (Supplementary Section S3.1.2), but this error model presents two limitations in

general. First, REBAR accounts for bias with a 'rank-one' structure, but this may not capture all of 349 the systematic sources of error. For example, some structure is still present in our case study residuals 350 following correction by REBAR (Supplementary Section S3.1.3, Supplementary Section S3.2.3), which 351 suggests that there are additional sources of systematic noise beyond the dominant mode that REBAR 352 identifies and removes. In principle, our methodology could be extended to handle multiple bias modes, 353 but we do not investigate that here. Second, REBAR corrects systematic bias but does not address 354 sources of random noise in the growth assay or amplification process. For example, a barcode may 355 become overrepresented in a sample due to a one-off PCR jackpot, but this kind of non-systematic 356 effect is outside the scope of REBAR. Unique Molecular Identifiers (UMIs) are commonly used to detect stochastic variation in PCR amplification (Fu et al., 2011; Kivioja et al., 2011; Johnson et al., 2023), and 358 incorporating UMI information into a REBAR-like error correction pipeline is an area for future work. 359 A significant benefit of REBAR is that it does not make demands on variant library design or fitness 360 assay protocols, so long as at least one equal-fitness control set is included. This avails REBAR as 361 a post-processing tool that can improve the accuracy of fitness estimates with low overhead in many 362 contexts. Therefore, we anticipate that this computational approach will be applicable to a wide range of 363 experimental fields where accurate fitness measurements are of interest, such as experimental evolution, 364 lineage tracking, and deep mutational scanning. 365

366 Code & Data Availability

A python module implementing this method is available along with documentation and case study
data at github.com/ryansmcgee/REBAR. This implementation is also published as a PyPI packge at
https://pypi.org/project/rebar-py (installable using, e.g., pip install rebar-py).

370 Acknowledgments

We thank Olivia Ghosh, Olivia Kosterlitz, Jacob Moran, and the Tikhonov group for valuable discussions.

This work was supported in part by National Science Foundation grant PHY-2310746.

Author Contributions

Conceptualization: MT. Data Curation RSM, GK, MT. Formal Analysis: RSM, MT. Funding: MT. Investigation: RSM, GK, MT. Methodology: RSM, MT. Project Administration: RSM, MT. Resources: GK,

- DP. Software: RSM, MT. Supervision: DP, MT. Validation: RSM, MT. Visualization: RSM. Writing
- (Original Draft): RSM. Writing (Review & Editing): RSM, GK, MT.
- 378 The authors declare no conflicts of interest.

79 References

- Daniel Aird, Michael G. Ross, Wei-Sheng Chen, Maxwell Danielsson, Timothy Fennell, Carsten Russ,
- David B. Jaffe, Chad Nusbaum, and Andreas Gnirke. Analyzing and minimizing PCR amplification
- bias in Illumina sequencing libraries. Genome Biology, 12(2):R18, February 2011. doi: 10.1186/
- gb-2011-12-2-r18.
- ³⁸⁴ Carlos L. Araya and Douglas M. Fowler. Deep mutational scanning: assessing protein function on a
- massive scale. Trends in Biotechnology, 29(9):435–442, September 2011. doi: 10.1016/j.tibtech.2011.
- o4.003. Publisher: Elsevier.
- Sarah Ardell, Alena Martsul, Milo S Johnson, and Sergey Kryazhimskiy. Environment-independent
- distribution of mutational effects emerges from microscopic epistasis. bioRxiv, pages 2023–11, 2023.
- Yuval Benjamini and Terence P. Speed. Summarizing and correcting the GC content bias in high-
- throughput sequencing. Nucleic Acids Research, 40(10):e72, May 2012. doi: 10.1093/nar/gks001.
- Vivian Chen, Milo S Johnson, Lucas Herissant, Parris T Humphrey, David C Yuan, Yuping Li, Atish
- Agarwala, Samuel B Hoelscher, Dmitri A Petrov, Michael M Desai, and Gavin Sherlock. Evolution
- of haploid and diploid populations reveals common, strong, and variable pleiotropic effects in non-
- home environments. eLife, 12:e92899, oct 2023. ISSN 2050-084X. doi: 10.7554/eLife.92899. URL
- 395 https://doi.org/10.7554/eLife.92899.
- Juliane C. Dohm, Claudio Lottaz, Tatiana Borodina, and Heinz Himmelbauer. Substantial biases in
- ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Research, 36(16):
- e105, September 2008. doi: 10.1093/nar/gkn425.
- 399 Glenn K. Fu, Jing Hu, Pei-Hua Wang, and Stephen P. A. Fodor. Counting individual DNA molecules by
- the stochastic attachment of diverse labels. Proceedings of the National Academy of Sciences, 108(22):

- 401 9026-9031, May 2011. doi: 10.1073/pnas.1017621108. URL https://www.pnas.org/doi/full/10.
- 402 1073/pnas.1017621108. Publisher: Proceedings of the National Academy of Sciences.
- LaDeana W. Hillier, Gabor T. Marth, Aaron R. Quinlan, David Dooling, Ginger Fewell, Derek Barnett,
- Paul Fox, Jarret I. Glasscock, Matthew Hickenbotham, Weichun Huang, Vincent J. Magrini, Ryan J.
- Richt, Sacha N. Sander, Donald A. Stewart, Michael Stromberg, Eric F. Tsung, Todd Wylie, Tim
- Schedl, Richard K. Wilson, and Elaine R. Mardis. Whole-genome sequencing and variant discovery
- in C. elegans. Nature Methods, 5(2):183–188, February 2008. doi: 10.1038/nmeth.1179. Number: 2
- 408 Publisher: Nature Publishing Group.
- Milo S. Johnson, Sandeep Venkataram, and Sergey Kryazhimskiy. Best Practices in Designing, Se-
- quencing, and Identifying Random DNA Barcodes. Journal of Molecular Evolution, 91(3):263–280,
- June 2023. ISSN 1432-1432. doi: 10.1007/s00239-022-10083-z. URL https://doi.org/10.1007/
- s00239-022-10083-z.
- 413 Grant Kinsler, Kerry Geiler-Samerotte, and Dmitri A Petrov. Fitness variation across subtle environ-
- mental perturbations reveals local modularity and global pleiotropy of adaptation. *eLife*, 9:e61271,
- December 2020. doi: 10.7554/eLife.61271. Publisher: eLife Sciences Publications, Ltd.
- 416 Teemu Kivioja, Anna VA€hA€rautio, Kasper Karlsson, Martin Bonke, Sten Linnarsson, and Jussi
- Taipale. Counting absolute number of molecules using unique molecular identifiers. *Nature Precedings*,
- 418 April 2011. ISSN 1756-0357. doi: 10.1038/npre.2011.5903.1. URL https://www.nature.com/
- articles/npre.2011.5903.1.
- Winston Patrick Kuo, Tor-Kristian Jenssen, Atul J. Butte, Lucila Ohno-Machado, and Isaac S. Kohane.
- 421 Analysis of matched mRNA measurements from two different microarray technologies. *Bioinformatics*
- (Oxford, England), 18(3):405–412, March 2002. doi: 10.1093/bioinformatics/18.3.405.
- Martin F. Laursen, Marlene D. Dalgaard, and Martin I. Bahl. Genomic GC-Content Affects the Accuracy
- of 16S rRNA Gene Sequencing Based Microbial Profiling due to PCR Bias. Frontiers in Microbiology,
- 425 8, 2017.
- ⁴²⁶ Sasha F. Levy, Jamie R. Blundell, Sandeep Venkataram, Dmitri A. Petrov, Daniel S. Fisher, and Gavin
- Sherlock. Quantitative evolutionary dynamics using high-resolution lineage tracking. *Nature*, 519

- 428 (7542):181–186, March 2015. doi: 10.1038/nature14279. Number: 7542 Publisher: Nature Publishing
- 429 Group.
- 430 E. H. Margulies, S. L. Kardia, and J. W. Innis. Identification and prevention of a GC content bias in
- SAGE libraries. Nucleic Acids Research, 29(12):E60–60, June 2001. doi: 10.1093/nar/29.12.e60.
- 432 Jacob D. Mehlhoff and Marc Ostermeier. Biological fitness landscapes by deep mutational scanning. In
- Dan S. Tawfik, editor, Methods in Enzymology, volume 643 of Enzyme Engineering and Evolution:
- 434 General Methods, pages 203–224. Academic Press, January 2020. doi: 10.1016/bs.mie.2020.04.023.
- Asim S. Siddiqui, Allen D. Delaney, Angelique Schnerch, Obi L. Griffith, Steven J. M. Jones, and
- Marco A. Marra. Sequence biases in large scale gene expression profiling data. Nucleic Acids Research,
- 437 34(12):e83, June 2006. doi: 10.1093/nar/gkl404.
- 438 Andrew M. Smith, Lawrence E. Heisler, Joseph Mellor, Fiona Kaper, Michael J. Thompson, Mark Chee,
- Frederick P. Roth, Guri Giaever, and Corey Nislow. Quantitative phenotyping via deep barcode
- sequencing. Genome Research, 19(10):1836–1842, October 2009. doi: 10.1101/gr.093955.109. Company:
- Cold Spring Harbor Laboratory Press Distributor: Cold Spring Harbor Laboratory Press Institution:
- Cold Spring Harbor Laboratory Press Label: Cold Spring Harbor Laboratory Press Publisher: Cold
- Spring Harbor Lab.
- Douglas R. Smith, Aaron R. Quinlan, Heather E. Peckham, Kathryn Makowsky, Wei Tao, Betty Woolf,
- Lei Shen, William F. Donahue, Nadeem Tusneem, Michael P. Stromberg, Donald A. Stewart, Lu Zhang,
- Swati S. Ranade, Jason B. Warner, Clarence C. Lee, Brittney E. Coleman, Zheng Zhang, Stephen F.
- McLaughlin, Joel A. Malek, Jon M. Sorenson, Alan P. Blanchard, Jarrod Chapman, David Hillman,
- Feng Chen, Daniel S. Rokhsar, Kevin J. McKernan, Thomas W. Jeffries, Gabor T. Marth, and Paul M.
- Richardson. Rapid whole-genome mutational profiling using next-generation sequencing technologies.
- 450 Genome Research, 18(10):1638–1642, October 2008. doi: 10.1101/gr.077776.108. Company: Cold
- 451 Spring Harbor Laboratory Press Distributor: Cold Spring Harbor Laboratory Press Institution: Cold
- Spring Harbor Laboratory Press Label: Cold Spring Harbor Laboratory Press Publisher: Cold Spring
- 453 Harbor Lab.
- 454 E. Southern, K. Mir, and M. Shchepinov. Molecular interactions on microarrays. Nature Genetics, 21(1
- Suppl):5–9, January 1999. doi: 10.1038/4429.

- Lars Thielecke, Tim Aranyossy, Andreas Dahl, Rajiv Tiwari, Ingo Roeder, Hartmut Geiger, Boris Fehse,
- Ingmar Glauche, and Kerstin Cornils. Limitations and challenges of genetic barcode quantification.
- Scientific Reports, 7(1):43249, March 2017. ISSN 2045-2322. doi: 10.1038/srep43249. Publisher:
- Nature Publishing Group.
- 460 Sandeep Venkataram, Barbara Dunn, Yuping Li, Atish Agarwala, Jessica Chang, Emily R. Ebel,
- Kerry Geiler-Samerotte, Lucas Hérissant, Jamie R. Blundell, Sasha F. Levy, Daniel S. Fisher, Gavin
- Sherlock, and Dmitri A. Petrov. Development of a Comprehensive Genotype-to-Fitness Map of
- Adaptation-Driving Mutations in Yeast. Cell, 166(6), September 2016. doi: 10.1016/j.cell.2016.08.002.
- Michael J. Wiser and Richard E. Lenski. A Comparison of Methods to Measure Fitness in Escherichia
- coli. *PLoS ONE*, 10(5):e0126210, May 2015. doi: 10.1371/journal.pone.0126210.