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Abstract
Sequencing surveys of microbial communities in hosts, oceans, and soils have revealed 
ubiquitous patterns linking community composition to environmental conditions. While metabolic 
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capabilities restrict the environments suitable for growth, the influence of ecological interactions 
on patterns observed in natural microbiomes remains uncertain. Here, we use denitrification 
as a model system to demonstrate how metagenomic patterns in soil microbiomes can emerge 
from pH-dependent interactions. In an analysis of a global soil sequencing survey, we find that 
the abundances of two genotypes trade-off with pH; nar gene abundances increase while nap 
abundances decrease with declining pH. We then show that in acidic conditions strains possessing 
nar fail to grow in isolation but are enriched in the community due to an ecological interaction 
with nap genotypes. Our study provides a roadmap for dissecting how associations between 
environmental variables and gene abundances arise from environmentally-modulated community 
interactions.

Introduction
Natural microbiomes drive the global cycling of carbon, nitrogen, and other elements 
essential to life on Earth (1). This activity arises from the collective action of metabolic 
pathways carried by diverse, interacting microbes in dynamic communities. Despite this 
complexity, global sequencing surveys of natural communities have revealed ubiquitous 
patterns relating the abundance of the genes that make up these pathways to local 
environmental variables in marine systems (2), soils (3-5) and human hosts (6-8). 
Uncovering the origins of environmentally-mediated variation in microbiome gene content is 
a necessity to understand how human activity impacts global nutrient cycles.

Conventional wisdom for the distribution of microbes is that “everything is everywhere 
but the environment selects” (9) – but how does the environment select? One view is that 
microbes occupy environmental niches that are a function of their metabolic capabilities and 
traits. For example, the relative abundance of acid-tolerant Acidobacteria in soil increases 
as the pH declines (10-12). In such cases, we presume that specific metabolic strategies 
are enriched in niches where those strategies facilitate an individual competitive advantage. 
However, we also know that microbial communities are complex systems with numerous 
interactions between constituents (13-16), resulting in feedbacks, counter-intuitive inhibitory 
effects, coevolution, and predation, all of which conspire to determine abundances (17-21). 
Thus environmental factors should in principle modulate interactions and drive impacts on 
community diversity, gene content, and metabolic activity.

From this vantage, a problem arises: how can simple patterns in environmentally mediated 
gene content emerge given the apparent complexity of community interactions? One 
possibility is that interactions are weak, and changes in gene content reflect an adaptation 
of individual genotypes to local environmental conditions. A second possibility is that the 
patterns in gene content emerge from ecological interactions whose strength and specificity 
are modulated by local environmental variables. In this case, the emergence of reproducible 
patterns requires that the interactions exhibit regularity across different locations with 
similar environmental conditions. However, given the complexity of interactions in 
microbiomes, imagining how this regularity could manifest is a challenge.

Here, we present evidence that patterns in the metagenomic content of microbial 
communities can emerge from environmentally dependent interactions between members 
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of the community. Using bacterial denitrification as a model process, we find that soil pH 
strongly associates with variation in denitrification reductase gene content across the global 
topsoil microbiome (4). Through enrichments and quantitative phenotyping of isolates, we 
then demonstrate how pH shapes ecological interactions and patterns in denitrification gene 
abundances. We argue that these interactions yield reproducible metagenome-environment 
associations as a result of the conserved phenotypic properties of the genotypes involved, 
and the interactions these physiological traits support. Our study provides a unified approach 
for uncovering how ubiquitous patterns in microbiomes can emerge from environmentally-
modulated interactions between members of the community.

Results
Quantifying patterns in topsoil denitrification gene content

We first sought to quantify metabolic gene content variation across environments, focusing 
on the widespread process of denitrification in soils (22). Denitrification involves the 
anaerobic respiration of oxidized nitrogen compounds through a cascade of reduction 
reactions (Fig. 1A). Denitrification is essential to global nitrogen cycling (23), representing 
the primary sink of bioavailable nitrogen from the biosphere. This process also influences 
human health through activity in wastewater treatment (24) and the human gut (25). The fact 
that denitrification arises from enzymes that are well-studied and reliably annotated (26, 27), 
and is performed by diverse, culturable taxa (28-31), enabled us to readily identify genomic 
patterns in gene content from sequencing data and dissect interactions using wild isolates.

To study denitrification gene content in soils we utilized the survey by Bahram et al. (4) 
of the global topsoil microbiome. The dataset comprises n = 189 samples taken from sites 
across the planet (Fig. 1A; Ref. 4). Crucially, this dataset combines shotgun metagenomics 
with a detailed characterization of the physicochemical properties of each soil sample, 
including pH, ion concentrations, nutrient levels, and site climate characteristics (Methods). 
The fact that these measurements were performed in a standardized fashion on soils from 
across the globe enabled us to reliably relate environmental factors to the abundances of 
denitrification genes.

First, we computed the relative abundance of the six main reductases in the denitrification 
pathway (narG, napA, nirS, nirK, norB, and nosZ; Fig. 1B). Note that, due to the sequencing 
depth of the dataset, we were not able to construct reliable metagenome-assembled 
genomes, so the genomic context of these genes is not known. We refer to the total 
prevalence denitrification reductases in a given sample as the “magnitude” (d) of the 
pathway, and the relative contribution of each reductase to the total as the “composition” 
( c , Fig. 1C). We observed that denitrification pathway magnitude varies by about 50-fold 
across soil samples. While pathway composition also varies from sample to sample, this 
variation is challenging to visually distinguish from variation in pathway magnitude.

To disentangle pathway magnitude from composition, we developed a new approach based 
on unit-invariant singular value decomposition (uiSVD, Ref. 32; Methods). We used this 
approach to decompose the relative abundances of denitrification genes in each sample 
(x i) into a contribution arising from the magnitude of the pathway (di) and the pathway 
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composition ( c i) (Fig. 1D). We note that it was not necessary to transform the data to 
account for compositionality, as the high diversity of the gene abundance dataset makes the 
effects of compositionality negligible (Supplementary Information Section 1).

pH correlates with pathway composition on a global scale

To assess how environmental variation impacts the prevalence of denitrification reductases, 
we computed the principal components (PCs) of the composition matrix (Methods, 
Extended Data Fig. 1), which represent covarying groups of genes. Correlations between PC 
scores (projections of composition onto the PCs) with the environmental variables show that 
a single component of variation, PC2 (21.7% variance explained), was associated with pH 
much more strongly than any other combination of components and environmental variables 
(ρ = 0.64, p < 10−6 via one-tailed randomization test; Fig. 1E, G). The loadings of each 
reductase in PC2 (Fig. 1H) reveal how denitrification reductase genes vary with pH on a 
global scale: some reductase genes are enriched as pH decreases (narG, nirS, norB), while 
others decline (napA, nirK, nosZ). While pH is widely appreciated as a strong contributor 
to community diversity in soils (33), and is known to be important for denitrification (34, 
35), our analysis provides a granular view into how pH impacts the composition of the 
denitrification pathway across environments.

In contrast to the composition ( c i), pathway magnitude (di) was most strongly associated 
with C/N ratio (ρ2 = 0.35 Fig. 1F). The correlation is negative (ρ = − 0.59, p < 10−6 via 
one-tailed randomization test; Extended Data Fig. 2), consistent with previous work showing 
that the prevalence of denitrification is enhanced at low C/N ratios (36). The fact that 
pathway magnitude and composition are strongly associated with distinct environmental 
factors highlights the need to disentangle these two components to assess the drivers of their 
variation.

Enrichment cultures reproduce topsoil microbiome patterns

If pH is causally related to patterns of denitrification gene abundances in the global topsoil 
microbiome (Fig. 1E, G, H), we reasoned that enrichment cultures with different pH 
conditions should reproduce these patterns. We extracted microbial communities from six 
soil samples (Table S1), and inoculated them into chemically defined media buffered at 
pH 6.0 and 7.3. We then passaged these communities serially for 12 growth cycles under 
anaerobic conditions for 72 h each, with 8-fold dilutions between cycles, supplying 1.75 
mM nitrate at the beginning of each cycle (Fig. 2A; Methods). We chose these conditions 
because pH in soils is often strongly buffered (37-39), mM concentrations of nitrate are 
often present (40,41), and the growth medium was designed to capture a diverse range of 
denitrifiers (29). The resulting enrichments were then sequenced via shotgun metagenomics 
to assay taxonomic and functional composition (Methods).

Endpoint enrichments were dominated by the orders Pseudomonadales and Rhizobiales, 
with the former comprising the majority of all enrichments at pH 6.0 and the latter making 
up the majority of five out of six enrichments at pH 7.3 (Fig. 2B). Because the starting 
points of enrichments for both pH conditions were the same, this result suggests that pH 6.0 
selects for Pseudomonadales strains, while pH 7.3 selects for Rhizobiales strains. Taxa from 
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the orders Burkholderiales and Enterobacteriales were present at comparably lower levels, 
and no other taxonomic orders were present at a relative abundance greater than 1%.

Metagenome-assembled genomes (MAGs) (42) revealed that taxa from different 
enrichments had largely similar denitrification genotypes (Fig. 2C); Pseudomonadales 
MAGs typically encoded the reductases NarG and NirS, while Rhizobiales MAGs encoded 
the NapA and NirK reductases. A second experiment performed with seven soil samples 
enriched across a broader range of pH values also reproduced the same basic pattern 
in genotype abundances, with taxa possessing NarG heavily enriched at pH 5.0 and 5.5 
(Extended Data Fig. 3; Methods).

Strikingly, these enrichments reproduce the patterns in denitrification gene content observed 
in the topsoil microbiome (Fig. 1H); namely, we observed a greater prevalence of narG 
and nirS at acidic pH (Pseudomonadales in Figs. 2B and C), and alternatively a greater 
prevalence of napA and nirK at neutral pH (Rhizobiales in Figs. 2B and C). This agreement 
between the enrichment and the global topsoil microbiome suggests that the mechanisms 
shaping these patterns in soils are also at play in vitro.

Individual traits do not explain acidic enrichment outcomes

To uncover the mechanisms that give rise to selection for specific genotypes in our 
enrichment experiments (Fig. 2C), we isolated taxa from the enrichment endpoint from 
the genera Pseudomonas (narG/nirS) and Rhizobium (napA/nirK) (Fig. 2D, Methods). We 
denote the taxonomy and genotype of these isolates as PD Nar+ and RH Nap+. The simplest 
interpretation for the dominance of these strains is that the Nar+ strain is better adapted 
than the Nap+ strain to acidic conditions, and vice versa in neutral conditions. To test 
this hypothesis, we performed a serial dilution experiment with isolates cultured axenically 
under anaerobic conditions (Methods). We measured the dynamics of nitrate, nitrite, and 
total biomass at the end of each cycle (Fig. 3).

Indeed, the isolate RH Nap+, representative of taxa most abundant in pH 7.3 enrichments, 
appeared better adapted for pH 7.3 than PD Nar+. RH Nap+ produced more biomass in 
the final cycle at pH 7.3 (Fig. 3C) and accumulated less nitrite in the first cycle (Fig. 3G), 
despite reducing nitrate more quickly (Fig. 3E). Additionally, simulated competition using 
a consumer-resource model previously developed for denitrification (31) confirmed the 
fitness RH Nap+ over PD Nar+ at pH 7.3 based on monoculture phenotypes (Supplementary 
Information Section 2.1; Extended Data Fig. 4).

In contrast, at pH 6.0 PD Nar+ produced only a small amount of biomass, with levels 
decreasing with each cycle (Fig. 3B). This strain also reduced nitrate more slowly than RH 
Nap+ in cycles 2–4, and reduced nitrite more slowly in all cycles (Fig. 3D, F). Moreover, PD 
Nar+ transiently accumulated nitrite, with accumulation increasing over successive cycles 
(Fig. 3F).

These experiments reveal a paradox at pH 6.0: PD Nar+ dominated in a community context 
(Fig. 2B) and yet performed poorly by itself. This result suggested that the dominance 
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of Nar+ genotypes in acidic enrichment experiments was not simply a consequence of 
individual traits, and instead emerged from community-level processes.

Nitrite toxicity impacts acidic pH denitrification activity

To determine how community-level processes account for the discrepancy between 
enrichments (Fig. 2) and monocultures (Fig. 3) at pH 6.0, we investigated mechanisms 
underlying the poor performance of PD Nar+. Given previous literature indicating the 
toxicity of nitrite under acidic conditions (43-45), we hypothesized that nitrite accumulation 
(Fig. 3F) inhibited the growth of PD Nar+ at pH 6.0.

We first tested whether nitrite inhibited either isolate at pH 6.0. To do this, we initiated 
monocultures of each strain with 1.75 mM nitrate and varying concentrations of nitrite 
and then measured nitrate and nitrite dynamics over 72 h of growth. For both strains, we 
found that inhibition increased with initial nitrite concentration (Fig. 4A). Further, the nitrate 
reduction rate of PD Nar+ slowed gradually with increasing initial nitrite concentration, 
and the nitrate reduction rate for RH Nap+ showing a threshold-like dependence on nitrite 
concentration ([NO2

−] ∼ 0.4‐0.5mM).

Next, we measured killing curves for each strain in monoculture at pH 6.0 with no nitrate 
and 0, 0.875, or 1.75 mM nitrite (Fig. 4B; Methods). We observed the mortality of PD Nar+ 

increased with the concentration of nitrite, while the mortality rate of RH Nap+ changed 
little. This suggests that the accumulation of nitrite by PD Nar+ in monoculture (Fig. 3F) 
causes cell death.

Finally, we performed PD Nar+ monocultures at pH 6.0 with either high (1.75 mM) or low 
(0.875 mM) concentrations of nitrate. PD Nar+ accumulated more nitrite in the high nitrate 
condition (Fig. 4C), and produced one-fifth of the biomass yield per unit substrate consumed 
compared with the low nitrate condition. We additionally inferred that toxicity slowed the 
rate of nitrite reduction using a consumer-resource model (Fig. 4C; Methods; Supplementary 
Information Section 2.2). Overall, these experiments demonstrated that nitrite accumulation 
has a significant deleterious effect on the growth and metabolic activity of PD Nar+.

Co-culture alleviates nitrite toxicity in acidic conditions

PD Nar+ grew poorly in monoculture at pH 6.0 (Fig. 3) due to toxicity from accumulating 
nitrite (Fig. 4), but still managed to dominate acidic enrichments (Fig. 2). We hypothesized 
that because RH Nap+ diminishes nitrite accumulation in monoculture (Fig. 4A, Fig. 3F), it 
does so as well in co-culture, alleviating toxicity and allowing PD Nar+ to dominate.

To test this hypothesis, we performed 1:1 co-cultures of PD Nar+ and RH Nap+ at pH 
6.0, supplying 1.75 mM nitrate (Methods). These co-cultures accumulated substantially less 
nitrite relative to the monoculture of PD Nar+, and produced significantly more biomass 
(Fig. 5B). Transient nitrite levels did not exceed ~0.5 mM, which is at or below the 
toxicity threshold identified for RH Nap+ monocultures in earlier experiments (Fig. 4A). 
We conclude that PD Nar+ experienced substantially less toxicity due to nitrite in co-culture 
than in monoculture.
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We then investigated whether diminished nitrite toxicity in co-cultures explains the 
dominance of PD Nar+ over multiple cycles of growth (Fig. 2B). To do this, we co-cultured 
these isolates over four cycles of serial dilution and measured relative abundances via 16S 
amplicon sequencing (Fig. 5D; Methods). To assess whether density-dependent effects are 
present, we varied initial ratios of PD Nar+ and RH Nap+, holding total initial biomass 
constant.

Indeed, we found that co-cultures approached a stable configuration with PD Nar+ 

dominating (Fig. 5E). After the first cycle of growth, relative abundances of PD Nar+ 

decreased across most starting conditions, an effect perhaps attributable to physiological 
adaptation to anaerobic conditions (46). However, all conditions subsequently approached 
a state with PD Nar+ at 60–75% relative abundance by the fourth cycle. The amount of 
nitrite accumulation in these experiments increased with the relative abundance of PD Nar+ 

(Extended Data Fig. 5G). Similar serial co-cultures performed at pH 7.3 showed RH Nap+ 

driving PD Nar+ to extinction after four cycles (Fig. 5F), corroborating our expectations 
from earlier experiments and analyses (Fig. 3C, E, G; Extended Data Fig. 4) that RH Nap+ is 
a better competitor for resources at neutral pH.

Nar+ and Nap+ phenotypes are conserved across diverse taxa

We demonstrated that the dominance of PD Nar+ under acidic conditions required the 
presence of RH Nap+ (Figs. 3-5). Underlying the interactions between these isolates was the 
fact that the former is a nitrate specialist, capable of quickly consuming the primary limiting 
resource supplied to the community, while the later is a nitrite specialist, which mitigates the 
toxic effects of accumulated nitrite. To extend the applicability of this observation to diverse 
taxa in soil microbiomes, we asked whether other strains with Nar+ and Nap+ genotypes 
display nitrate and nitrite specialist phenotypes, respectively.

We phenotyped 7 strains isolated in our previous study (31) which span α, β and γ—
proteobacteria and possess one or the other nitrate reductase (3 Nar+, 4 Nap+). To avoid 
ambiguity, we excluded strains possessing both Nar and Nap. These reductases tend to 
appear separately in reference genomes (Supplementary Information Section 3; Fig. S1), and 
when they co-occur Nap may be used for redox balancing (47) or expressed primarily in 
μM nitrate concentrations (48, 49). For each strain, we measured nitrate and nitrite dynamics 
at pH 6.0 supplied with 1.75 mM nitrate, using the area under the curve (AUC) of these 
dynamics to summarize traits (Fig. 6A). As with PD Nar+ and RH Nap+, we found that 
Nar+ genotypes exhibited fast nitrate reduction and the transient accumulation of nitrite, 
while Nap+ strains exhibited slow nitrate reduction and no nitrite accumulation (Fig. 6B). 
We conclude that Nar+ genotypes tend to accumulate nitrite via fast nitrate reduction, and 
that Nap+ strains tend to avoid this accumulation.

Soil microbiomes harbor substantial taxonomic diversity, raising the question of whether the 
trait conservation we observe in Proteobacteria (Fig. 6) is relevant to communities in the 
wild. To extend the applicability of our observations, we demonstrated that Proteobacteria 
are likely representative of denitrifying populations in natural soils using two culture-free 
approaches (Supplementary Information Section 4). Briefly, we found that (a) a substantial 
fraction of denitrification reductase reads can be classified as Proteobacterial (Fig. S2), 
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and (b) laboratory incubation experiments performed on homogenized topsoils under 
anaerobic conditions show Protobacterial populations dominate community response to 
nitrate amendment (Fig. S3). Finally, a meta-analysis of culture-based studies of denitrifiers 
in soils also supports the claim that Proteobacteria dominate these populations (Table S2). 
These findings support the hypothesis that the traits of our Proteobacterial isolates are 
representative of the dominant denitrifying populations in soils.

Discussion
We have presented a data-driven and experimentally validated approach to understanding 
how environmental conditions determine community composition at the granular level 
of gene content. Beginning with a statistical analysis of the global topsoil microbiome, 
we found that pH is strongly correlated with the composition of the reductases in the 
denitrification pathway. We then reproduced the observed pattern between pH and gene 
content via enrichment experiments, allowing us to dissect community responses to pH 
in vitro. Experiments on isolates from these enrichments showed that the dominance of 
a nitrate specialist Nar+ isolate in acidic conditions depends on the presence of a nitrite 
specialist Nap+ isolate to alleviate pH-dependent nitrite toxicity. Finally, we provided 
evidence that Nar+ and Nap+ genotypes are generically associated with nitrate and nitrite 
specialist phenotypes, respectively, providing a mechanistic explanation for covariation 
between pH and gene content in the global topsoil microbiome.

A central finding of our study is that widespread patterns in metagenomic gene content 
can emerge from ecological interactions between members of the community, and not 
necessarily only from individual adaptations to environmental conditions (50). While 
individual fitness effects clearly play a role in defining patterns in many contexts, 
interactions are likely essential to explaining patterns in a variety of other contexts. It will be 
an important avenue for future work to use the methods developed here to generate concrete 
hypotheses for the role of individual fitness effects and interactions in forming gene content 
patterns across a variety of metabolic processes and biomes.

Despite the breadth of our study, however, there were limitations that led us to perform 
additional analyses. First, our in vitro investigations focus on just two taxa. However, soils 
support thousands of taxa, raising the question of how an interaction between two taxa 
can be relevant in the complex ecological context of soils. Our soil microcosm experiment 
provides strong evidence that the complexity of the nitrate-utilizing community in soils is 
low (Fig. S3; Supplementary Information Section 4). Specifically, a small fraction of all taxa 
in the soil community respond to the addition of nitrate (0.3% ± 0.2%, Fig. S3C). The result 
suggests that despite the ecological complexity of soils, a small number of taxa (4 ± 3 in our 
experiment, Fig. S3C) participate significantly in this metabolic process in situ.

Next, we have used the enzymes Nar and Nap as markers for nitrate and nitrite specialists, 
respectively. While it is possible for these enzymes to co-occur, we showed via a 
co-evolution analysis in reference genomes that genes encoding these enzymes are anti-
correlated (Fig. S1), and previous work suggests that Nap may be used for redox balancing 
(47) or μM nitrate concentrations (48,49) in strains that contain both enzymes. Additionally, 
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the nitrite reductases encoded by the genes nirS and nirK must also contribute to the 
nitrate and nitrite specialist phenotypes. In vitro studies show that NirK enzymes have 
higher activity than NirS (26,51-64), and previous work correlates the presence of nirK with 
faster nitrite reduction traits across diverse taxa (65). However, this work also shows that 
strains with narG exhibit faster nitrate reduction than strains with only napA (65), a finding 
corroborated by in vitro comparisons of these enzymes (66-70). We note that one strain 
considered in Fig. 6, PDM21, possesses both narG and nirK, unlike either of the enrichment 
isolates PD Nar+ (which possesses nirS) or RH Nap+ (which possess nirK). PDM21 showed 
a clear nitrate specialist phenotype, despite the fact that it possesses nirK. The fact that Nar+ 

strains are nitrate specialists at low pH, independently of the nitrite reductase they encode, 
may ultimately arise because the Nar nitrate reductase is protected from extracellular pH in 
the cytoplasm, while the periplasmic Nap and Nir reductases are not (26).

Finally, a key finding of our study is that the interaction between Nar+ and Nap+ genotypes 
arises due to specialization by these two genotypes for the first and second steps of the 
denitrification cascade. Previous studies have suggested that such specialization is the 
consequence of a physiological trade-off (35, 71). We investigated this hypothesis further 
using simulations that account for a trade-off between nitrate and nitrite reduction rates, as 
well as the toxicity of nitrite (Supplemental Information). The results of these simulations 
are consistent with the results of our enrichment experiments: namely, specialists are 
selected for when toxicity is high and generalists are selected when toxicity is low (Figs. 
S4, S5; Supplementary Information Section 5). An important direction for future work will 
be experimentally characterizing the physiological basis for phenotypic specializations in 
denitrification.

Methods
Analysis of the global topsoil microbiome

Data pre-processing—Gene abundance tables and environmental variables for the global 
topsoil microbiome dataset were provided by Bahram et al. (4), who sampled, sequenced, 
and analyzed 189 topsoil sites representing the world’s terrestrial biomes. Samples were 
processed according to standardized protocols, including shotgun metagenomic sequencing 
of soil DNA extracts, and chemical analysis of soil pH, P, K, Ca, Mg, 12C, 13C, 14N, 
and 15N. In addition, site data including mean annual temperature (MAT), mean annual 
precipitation (MAP), potential evapotranspiration (PET), net primary productivity (NPP), 
and moisture were obtained from public databases. Paired metagenome reads were quality 
filtered and annotated to yield KEGG ortholog (KO) abundance tables. The details of all 
protocols and analyses to obtain gene abundance tables and site environmental variables are 
given in Ref. 4.

In the subsequent analyses, the abundance of KOs corresponding to the six reductases 
in the denitrification pathway (narG/K00370, napA/K02567, nirS/K15864, nirK/K00368, 
norB/K04561, nosZ/K00376) were considered. The relative abundances of these KOs were 
computed by dividing the number of reads mapped to each KO by the total number of 
reads in each sample. In addition, 17 site environmental variables from the measurements 
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and analyses described above were considered: pH, P, K, Ca, Mg, C, N, δ13C, δ15N, C/N, 
latitude, longitude, MAT, MAP, PET, NPP, and moisture.

Unit-invariant singular value decomposition—Unit-invariant singular value 
decomposition (uiSVD; Ref. 32) was applied to the denitrification reductase relative 
abundance matrix (X) to separate variation in pathway magnitude (i.e., variations in 
total reductase content) from variation in pathway composition (i.e., variations in relative 
fractions of reductase content). This approach was motivated by modeling the data as

x i = di c i,

(1)

where x i is the ith row of X (with entries being relative abundances of each KO), di is a 
scalar representing pathway magnitude and c i is a vector representing pathway composition. 
In matrix form, this can be written as

X = DC,

(2)

where D is a diagonal matrix. Expressing X in this form can be achieved by applying 
uiSVD, which decomposes X as

X = DUSV TE,

(3)

where D, S, and E are diagonal matrices and U and V  are unitary matrices. Hence

C = USV TE .

(4)

The results of this decomposition are shown in Fig. 1D. Note that, in this representation, D
encodes the scale of the rows of X (i.e., pathway magnitude), while E encodes the relative 
scales of the columns (i.e., typical relative scales of each gene). Code used to perform 
uiSVD was adapted for Python from the MATLAB code given in (32).

Having decomposed the relative abundance data X into elements of pathway magnitude 
(D) and composition (C), modes of gene covariation within the composition matrix were 
identified via principal components analysis (PCA). Because E encodes scaling information 
about the genes in X, C ≡ CE−1 can be interpreted as a normalized gene composition matrix, 
for which all genes have been set to the same approximate scale. Therefore PCA was applied 
to C by meancentering the columns, and applying singular value decomposition the resulting 
matrix, yielding a decomposition USV T . The columns of V  represent the orthonormal 
principal components (PCs) of C (shown in Extended Data Fig. 1), and
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T = US

(5)

represents the “scores” matrix, i.e., the projections of C onto the PCs in V .

Analyzing gene-environment covariation—In order to relate gene covariation to 
variation in site environmental variables, Pearson correlations (ρ2) were computed between 
the scores of each principal component (Eq. 5) and each environmental variable (squared 
Pearson correlations shown in Fig. 1E). Additionally, the same analysis was performed 
between the diagonal elements of D and each environmental parameter (Fig. 1F). 
Each correlation was computed using the n = 189 observations from the global topsoil 
microbiome dataset, with environmental variables containing NaN values removed when 
computing each correlation. The significance of associations between C/N ratio and D, 
as well as between pH and PC2 scores was determined via a one-tailed randomization 
test. Explicitly, a distribution for the null hypothesis of zero correlation was empirically 
constructed by repeatedly (106 times) computing correlations between shuffled versions of 
the variables.

Phylogenetic classification of denitrification reductases—Raw reads from the 
global topsoil microbiome dataset (PRJEB18701) were trimmed of adapters and low 
quality sequences using Trimmomatic ver. 0.39 with default settings. Trimmed reads were 
assembled using SPAades ver. 3.15.0. Predicted ORFs on assembled contigs were then 
annotated as KEGG ortholog groups (KOs) of the denitrification reductases (narG/K00370, 
napA/K02567, nirS/K15864, nirK/K00368, norB/K04561, nosZ/K00376) using eggNOG-
mapper ver. 2.0.8, and reads were mapped to these annotated ORFs using minimap2. Finally, 
reads mapping to denitrification KOs were phylogenetically classified using the Kaiju web 
server (https://kaiju.binf.ku.dk/server; Ref. 72). The results of these classifications, at the 
level of taxonomic phylum and grouping all samples together, are shown in Fig. S2.

Enrichment and isolation of denitrifying strains

Processing of soils for primary enrichment experiments—Six forest and prairie 
soil samples were collected from Meadowbrook Park, Urbana, IL. Details regarding these 
soil samples are given in Table S1. Soils were sampled from a depth of 1–5 cm using 
autoclaved steel laboratory spatulas, and then stored in sealed plastic bags at 4 °C for 
approximately two months prior to the start of the experiment. No sample compositing was 
performed. To mechanically homogenize soils prior to enrichment, 5 g samples of each 
soil were added to sterile 50 mL centrifuge tubes, along with 25 mL PBS (pH 7.4) and 
5–10 g sterile 4 mm glass beads. Tubes were then vortexed (Vortex-Genie 2) at high speed 
for 1 min to homogenize the samples. After vortexing, large particles in homogenized soil 
samples were allowed to settle for 20 min before transferring 1 mL of supernatant to sterile 
microcentrifuge tubes.

Primary enrichment experiments—Wells of a sterile 96-deepwell plate (Axygen 
PDW20C) were loaded with 1.2 mL of defined media. The media contained succinate 
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(25 mM) as the carbon source and 2.0 mM sodium nitrate was initially supplied. Medium 
pH was buffered by phosphate (40 mM) at two conditions, pH 6.0 and 7.3. This medium 
will hereafter be referred to as succinate defined medium (SDM); its precise composition 
is described in Ref. 31, and it was developed to capture a diverse range of denitrifiers (29). 
Six wells of each pH condition were then inoculated with 10 μL of each soil supernatant, 
with two wells of each pH condition left as no-growth controls. The plate was then sealed 
with a gas-permeable sterile membrane (Diversified Biotech BERM-2000). After sealing, 
the plate was immediately transferred to an anaerobic glove box (Coy Laboratory Products 
7601-110/220), which was continuously purged by a 99%/1% N2/CO2 mixture. The plate 
was incubated at 30 °C and shaken at 950 RPM (Talboys Professional 1000MP, 3 mm orbital 
radius).

Cultures were grown under these conditions for 72 h. At the end of this time, 150 μL of the 
cultures were passaged under anaerobic conditions into a freshly prepared plate containing 
1050 μL of fresh medium (1/8 dilution factor). These passaged cultures were sealed and 
returned to incubation and shaking for another 72 h growth cycle. At the end of each cycle, 
unused cultures were assayed for endpoint nitrate and nitrite concentrations via Griess assay 
and vanadium (III) chloride reduction method via the protocol described in Ref. 31 (Fig. 
S6). In addition, optical densities at 600 nm were also recorded (BMG CLARIOstar) using 
300 μL of endpoint cultures in 96 well optical plates (Fig. S6).

Cultures were repeatedly passaged and assayed in this manner for 12 cycles. At the 
endpoints of cycles 4, 8, and 12, 100 μL samples of endpoint cultures were cryopreserved 
by adding 100 μL of 50 % glycerol and storing at −80 °C. At the end of cycle 12, 
cultures remaining after cryopreservation and nitrate/nitrite assay were frozen at −20 °C 
for subsequent DNA extraction.

Sequencing and analysis of primary enrichment experiments—Frozen 
enrichment endpoint (cycle 12) cultures stored at −20 °C were thawed and DNA extracted 
using the DNeasy UltraClean Microbial Kit (Qiagen). DNA concentrations were quantified 
using the Qubit dsDNA BR Assay Kit (Invitrogen). Library preparation for sequencing 
of DNA extracts was performed using the Nextera DNA Prep Kit and the Nextera DNA 
CD Indexes (Illumina). Pooled libraries were then sequenced using a NextSeq 500/550 
Mid Output Kit v2.5 (Illumina, 2 × 150 bp paired-end), with a 1.5 pM library loading 
concentration and a 1% spike-in of PhiX Control v3 (Illumina). Sequencing was performed 
on a locally maintained and operated Illumina NextSeq 550 system.

To characterize the taxonomic composition of enrichments, 16S rRNA fragments (miTAGs) 
were extracted from the sequencing data using the miTAGs extraction script ver. 1 (73), 
after trimming and merging of overlapping paired-end reads via Trim-Galore ver. 0.6.7 (74) 
and BBMerge ver. 38.22 (75), respectively. The resulting miTAGs were then taxonomically 
classified using the RDP Classifier (76), using a confidence threshold of 80% and the copy 
number adjustment option enabled.

The sequencing data were then binned into metagenome assembled genomes (MAGs) 
using the metaWRAP pipeline ver. 1.3 (42). In summary, the pipeline performed adapter 
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and quality trimming of raw reads using Trim-Galore ver. 0.6.7 (74), assembly using 
metaSPAdes ver. 3.15.4 (77), binning using CONCOCT ver. 1.1.0 (78), MaxBin2 ver. 2.2.7 
(79), and metaBAT ver. 2.15 (80), bin quality assessment using CheckM ver. 1.0.11 (81), 
and bin refinement by combining the results of the three binning algorithms. Bin completion 
and contamination thresholds of 95% and 5%, respectively, were used to obtain high-quality 
MAGs in most samples (Table S3). High-quality MAGs were then annotated using the 
RAST server (82).

Isolation of strains from primary enrichment experiments—Strains representing 
the dominant taxa in the enrichment experiments were isolated from cryopreserved cycle 
12 samples from soil #1. Glycerol-cryopreserved cultures were streaked to purity on 
1/10x TSB agar plates (1.5% agar w/v) in aerobic conditions. Overnight cultures of single-
colony isolates were grown in 1/10x TSB (30 °C, 400 RPM) in aerobic conditions and 
cryopreserved (50% glycerol, −80 °C). Sanger sequencing of the 16S rRNA gene using 27F 
and 806R universal primers was used to taxonomically classify isolates using the SILVA 
rRNA database (83-85). RH Nap+ was determined to be of the family Rhizobiaceae and PD 
Nar+ was determined to be of the genus Pseudomonas.

Additional enrichments across a broader pH range—Additional enrichments using 
a different set of soil samples were performed across a broader range of pH conditions, 
spanning pH 5.0 to 7.3. Seven soil samples (soils #7–13, Table S1) taken from prairies 
and forest preserves across the Midwestern United States (IL, IN, MI, WI) from a 
depth of 1–5 cm using autoclaved steel laboratory spatulas, and were homogenized and 
processed as described above. These soils were used to inoculate an enrichment experiment 
with four different pH-buffered SDM conditions: 5.0, 5.5, 6.0, 7.3. In pH 5.0 and 5.5 
conditions, succinate/succinic acid serves as the buffering agent because the buffering 
capacity of phosphate is weak in this pH range. Details of incubation, passaging, sampling, 
cryopreservation, as well as of sequencing and data analysis of cycle 12 cultures, are as 
described above, except that defined media succinate concentration is reduced to 4mM. 
Since nitrate is the limiting resource in these experiments, this change does not impact 
growth, but a lower succinate concentration reduces spontaneous protonation at low pH. The 
taxonomic composition and median MAG genotypes of endpoint enrichments are shown in 
Extended Data Fig. 3.

Characterization of isolate phenotypes

Culturing protocol—Strains were pre-cultured in two stages under aerobic conditions 
prior to transfer to denitrifying (anaerobic) conditions for phenotyping. First, wells of a 
sterile 24-well plate (Thermo Scientific Nunc Non-Treated Multidishes) were loaded with 
1.7 mL of R2B medium. Wells were inoculated with isolates PD Nar+ and RH Nap+ 

from glycerol stocks stored at −80 °C. The plates were then sealed with a gas-permeable 
sterile membrane (Breathe-Easier, USA Scientific, 9126-2100). After sealing, the culture 
was incubated overnight at 0.5 rcf (400 RPM in Fisherbrand Incubating Microplate Shakers 
02-217-759, 3 mm orbital radius or 219 RPM in Heidolph Unimax 1010, 10 mm orbital 
radius) and 30 °C in aerobic conditions. These cultures reached saturation during this time. 
Second, wells of a sterile 24-well plate were loaded with 1.7mL of SDM at pH 7.3 with 
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25 mM succinate (and no sodium nitrate). Wells were then inoculated with 17 μL of the 
saturated R2B PD Nar+ and RH Nap+. After sealing, the cultures were incubated at 0.5 rcf 
and 30 °C in aerobic conditions overnight. These cultures reached saturation during this 
time. Saturated SDM culture densities were measured and normalized to an optical density 
of 1.0 (measured at 600 nm) via dilution into pH 7.4 phosphate-buffered saline (8 g/L H2O, 
0.2 g/L KCl, 2.68 g/L Na2HPO4·7H2O, 0.24 g/L KH2PO4).

Due to a lag time associated with growth in anaerobic conditions for facultative anaerobes 
(86-91), an additional period of pre-culture in anaerobic conditions was performed before 
phenotyping. Wells of a sterile 96-deepwell plate (Axygen PDW20C) were loaded with 1.2 
mL SDM (4mM succinate) supplemented with 1 mM sodium nitrate, from stock that had 
been allowed to equilibrate in the anaerobic glovebox. SDM without nitrate was loaded into 
at least three wells of the plate as a control for growth on trace quantities of oxygen; since 
succinate is a non-fermentable carbon source, any growth in the absence of nitrate in this 
medium indicates aerobic growth. These wells were inoculated in the glovebox with 12 μL 
of OD-normalized PD Nar+ and RH Nap+ aerobic pre-cultures, resulting in a starting OD 
of 0.01. Additional wells were left blank as no-growth controls. Plates were sealed with a 
gas-permeable sterile membrane. Cultures were incubated at 30 °C and shaken at 950 RPM 
(Fisherbrand Incubating Microplate Shakers 02-217-759 or Talboys Professional 1000MP, 3 
mm orbital radius) for 72 h.

Anaerobic pre-cultures were then used to initiate denitrification phenotyping experiments. 
Optical densities of endpoint anaerobic pre-cultures were measured using 300 μL of cultures 
in 96-well optical plates. Optical densities were then normalized to 0.04 via dilution 
into SDM (no nitrate). 150 μL of this normalized endpoint anaerobic culture was then 
passaged to 1050 μL of SDM, with pH and nitrate/nitrite concentrations varying according 
to the experiment (e.g., Fig. 4). In the case of co-culture phenotyping experiments, this 
150 μL inoculum contained a 1:1 ratio of PD Nar+ and RH Nap+, as measured by 
optical density. Inoculated plates were then incubated at 30 °C and shaken at 950 rpm in 
anaerobic conditions. Nitrate and nitrite concentrations were assayed over time via manual 
sampling and subsequent Griess assay and vanadium (III) chloride reduction via the protocol 
described in Ref. 31. Endpoint biomass was measured via optical density at 600 nm using 
300 μL samples.

Additional experiments were conducted where measurements were taken over multiple 
cycles of growth and dilution into fresh medium (e.g., Figs. 3 & 5). For these experiments, 
aerobic pre-cultures were used to directly inoculate the first cycle of anaerobic growth. 
Nitrate and nitrite measurements were taken beginning in the first cycle of growth, and 
normalization of optical density after the first cycle was omitted. For the first cycle, 1.2 mL 
of SDM (4 mM succinate, 2 mM nitrate) was loaded into a 96-deepwell plate as described 
above. 12 μL of normalized culture from the endpoint of the aerobic pre-culture protocol 
was used to inoculate the wells of this plate. For the experiment shown in Fig. 5, the 
fractions of PD Nar+ and RH Nap+ were chosen to achieve specified relative abundances 
by optical density. Two no-growth controls that contain either no inoculum (to control for 
contamination) or no nitrate or nitrate (to control for aerobic growth) were included on each 
plate.
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At the end of each growth experiment or cycle, cultures were removed from anaerobic 
conditions, sealed with Microseal ‘B’ Seals (BIO-RAD, MSB1001), and stored at −80 °C 
for subsequent DNA extraction.

Quantification of relative abundance dynamics in co-culture—Relative 
abundances were quantified in co-culture experiments using 16S amplicon sequencing. 
Frozen endpoint co-culture enrichments stored at −80 °C were thawed and DNA extracted 
using the DNeasy 96 Blood & Tissue Kit (Qiagen). DNA concentrations were quantified 
using the Qubit dsDNA BR Assay Kit (Invitrogen). Next, the 16S v4 region of the rRNA 
gene was amplified with 515F and 806R primers using the Illumina 16S sequencing 
protocol (92). Briefly, a fragment of the 16S rRNA gene was amplified using the 515F 
(GTGYCAGCMGCCGCGGTAA) and 806R (GGACTACNVGGGTWTCTAAT) universal 
primers. The following reagents were used for each reaction: 14.5 μL nuclease-free H2O, 1 
μL 515F primer (5 μM), 1 μL 806R primer (5 μM), 10.5 μL DNA extract, 12.5 μL Platinum 
Hot Start PCR Master Mix (Invitrogen). The following thermocycler settings were used: 
initial denaturation, 3 min at 95 °C; amplification (25 cycles), 30 sec at 95 °C, 30 sec at 
55 °C, 30 sec at 72 °C; final extension, 5 min at 72 °C. PCR products were cleaned using 
the PCRCLEAN DX Kit (Aline). 16S amplicons were barcoded for multiplexed Illumina 
sequencing using the Nextera XT Index kit (Illumina) following the Illumina protocol (92). 
Pooled amplicon libraries were then submitted to the University of Chicago Genomics 
Facility for sequencing using a 15-20% spike-in of PhiX Control.

Resulting paired-end reads were merged with Pear (93) and then quality filtered with 
DADA2 plugin in the QIIME2 pipeline with default parameters (94). Taxonomy of ASVs 
were assigned by q2-feature-classifier prefitted to the SILVA database using the naive Bayes 
algorithm for the V4 region of 16S rRNA (95). ASVs of the family Rhizobiaceae were 
classified as RH Nap+, ASVs of the genus Pseudomonas were classified as PD Nar+. 
Virtually no contamination (defined as ASVs classified as neither RH Nap+ nor PD Nar+) 
was observed (< 0.2% total counts, < 0.8% counts per condition).

Systematic measurement bias complicates the interpretation of 16S amplicon data as a 
reflection of biomass relative abundance (96). Therefore we sought to infer the relative 
abundances by biomass using a standard curve to infer conversion factors between ASV 
counts and biomass for each strain. Following Ref. 96, we assumed the biomass x∗ of each 
strain is proportional to the ASV counts C∗, with bias factors b∗:

xPD = bPDCPD

xRH = bRHCRH

(6)

The relative abundance then becomes

fPD = CPD
CPD + brCRH

.

(7)
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where br is the ratio of the bias factors br = bRH ∕ bPD. Using measured counts for cultures with 
known PD Nar+ relative abundances, we fit br using the Levenberg-Marquardt algorithm 
(Fig. S7) and obtained a bias ratio of 4.3 ± 0.7. Eq. (7) was then used to infer biomass 
relative abundances from ASV counts. Error in inferred relative abundance comes from (a) 
error in the inference of br, and (b) variance between replicates. To account for (a), error 
in br was inferred from the covariance of the fit, and corresponding uncertainty in relative 
abundance was calculated using the variance formula (97). To account for (b), standard 
deviation of relative abundance between biological replicates was calculated. The sum of the 
errors (a) and (b) was added in quadrature to compute the total error.

Measurement of mortality rates via plating—To measure and compare the effect of 
nitrite on mortality at pH 6.0 and 7.3, PD Nar+ and RH Nap+ were subjected to varying 
nitrite concentrations, and the number of viable cells over time was measured. This allowed 
us to infer a mortality rate as a function of pH and nitrite concentration.

First, plating media were selected to identify PD Nar+ and RH Nap+ separately. Preliminary 
experiments indicated that PD Nar+ colonies were most clearly visible and well-defined on 
1/10X TSB, 1.5% agar plates (1.5 g/L tryptone, 0.5 g/L soytone, 0.5 g/L sodium chloride, 15 
g/L Bacto agar), and that RH Nap+ colonies were most distinguishable on a defined medium 
with mannitol as the carbon source. Mannitol defined medium (MDM) was made using the 
same protocol as SDM, but 160 mM mannitol was substituted for succinate, and 1.5% w/v 
agar was added.

Strains were then prepared for mortality experiments by preculturing as in phenotyping 
experiments (i.e., two stages of aerobic growth and one stage of anaerobic growth). After 
the anaerobic pre-culture step, 150 μL of culture of each strain normalized to OD600 = 0.04 
was passaged under anaerobic conditions to 1050 μL of SDM (4 mM succinate, no nitrate) 
and incubated at 30 °C and 950 RPM. Two pH conditions (6 and 7.3) and four initial nitrite 
conditions (0, 0.438, 0.875, and 1.75 mM) were tested.

Mortality rates were measured via time course of viable cell counts in each culture. 10 
μL samples were taken from each condition at each time point. These samples were then 
serially tenfold diluted to achieve suspensions containing less than approximately 100 cells; 
the number of dilutions necessary for each strain in each condition were determined by 
preliminary experiments. 10 μL of diluted samples were then pipetted onto solid medium, 
and streaked by tipping the plate at a roughly 45° angle until droplets approached the 
opposite edge of the plate. We eschewed mechanical streaking to avoid measurement bias. 
Plates were then covered and incubated at 30 °C. Colonies in each streak were counted 
manually when distinct but not overgrown (approximately 1 day for PD Nar+ on 1/10x TSB 
and 2 days for RH Nap+ on MDM).

We mathematically combined cell density inferences from multiple streaks to reduce 
measurement error. Cell density inferred from each streak at dilution level Di can be written 
as

ni = DiCi,
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(8)

where ni is estimated cell density and Ci is the number viable cells counted. To combine 
counts across dilution levels, weighted averages were used (98):

nc =
∑i n̄iwi

∑iwi

(9)

where wi = 1 ∕ σi
2 are the weights and n̄i and σi are the average and standard deviation of the 

counts across biological replicates at dilution level i. The error on the combined counts is 
then given by

σc = 1
∑iwi

.

(10)

In the presence of growth, it is not possible to accurately measure mortality rate via plating. 
At pH 7.3, growth was observed for all supplied nitrite values I0 > 0, so so these conditions 
were discarded from analysis. At pH 6.0, growth was observed at I0 = 0.5mM (monotonic 
decrease in nitrite concentration, Fig. S8), so this condition was also discarded from further 
analysis. For the conditions showing no growth, mortality rate was inferred using a log-
linear fit. By assuming the mortality rate is proportional to the number of cells, the number 
of viable cells can be expressed as follows:

nc = nc, 0 exp( − rdt)

(11)

where rd is the death rate, and nc, 0 is the number of viable cells at t = 0. Thus,

ln(nc) = ln(nc, 0) − rdt,

(12)

which is linear with respect to time. We, therefore, performed least-squares fits of ln(nc, 0) − rdt
to the logarithm of the measured number of viable counts and obtained ln(nc, 0) and rd as fit 
parameters.

Topsoil incubation experiments

Soil collection—To identify the taxa responsible for denitrification activity in natural soils 
using culture-free methods, topsoils were sampled across a range of pH values (5.0–7.1) 
from the Cook Agronomy Farm in September 2022 (Table S4). The Cook Agronomy Farm 
(CAF, 46.78°N, 117.09°W, 800 m above sea level) is a long-term agricultural research 
site located near Pullman, Washington, USA. CAF was established in 1998 as part of 
the Long-Term Agroecosystem Research (LTAR) network supported by the United States 
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Department of Agriculture. Before being converted to an agricultural field, the site was 
zonal xeric grassland or steppe. CAF operates on a continuous dryland-crop rotation system 
comprising winter wheat and spring crops. CAF is located in the high rainfall zone of 
the Pacific northwest region and the soil type is classified as Mollisol (Naff, Thatuna and 
Palouse Series) (99).

Ten topsoils were collected from the eastern region of the CAF at a depth of 10–20 
cm. Samples were collected within a diameter of 500 m to minimize the variation of 
edaphic factors other than pH. The large variation of soil pH comes from the long-term 
use of ammoniacal fertilizers and associated N transformations, combined with field-scale 
hydrologic processes that occur under continuous no-tillage superimposed over a landscape 
that has experienced long-term soil erosion. The pH measurements were made using a glass 
electrode in a 1:5 (soil to water) suspension of soil in Milli-Q filtered water. The ten soils 
had similar edaphic properties: 6–8% gravimetric water content (g/g), soil texture of silty 
clay or silty clay loam with 36–41% clay, and C:N ratio constnat at an approximate value of 
12 with 1.1–1.8% total carbon (wt/wt) (Table S4).

Soil processing and incubation—To process soils for incubation, samples were sieved 
(<2 mm) to remove apparent plant roots and stones, and water content was measured (via 
drying at 105 °C for 24 h). To mimic autumn rainfall in the CAF area and stabilize microbial 
activity before beginning incubation, we rewetted the soil with sterile Milli-Q water at 40% 
water holding capacity for 2 weeks at room temperature. Soil slurries were then made by 
adding sterilized water to soil (2:1 w/w ratio of water to soil), which is close to natural 
state of soil saturated with water. Three replicates of each soil sample were then mixed with 
a concentrated sodium nitrate solution (nitrate+ conditions) to yield an approximate 2 mM 

final concentration, and another three with sterile water (controls). These slurries were then 
transferred to 48-deepwell plates for incubation under anaerobic conditions (950 RPM, 30 
°C) for approximately 96 h. Soil extracts were then prepared using a 2 M KCl solution, 
followed by 0.22 μm filtering to remove soil particles that may interfere with colorimetric 
assays. Colorimetric assays to measure the amount of nitrate consumed were carried out 
using a plate reader as described in earlier experiments. Post-incubation, endpoint samples 
were stored at −80 °C for subsequent DNA extraction and sequencing.

Sequencing and analysis of topsoil incubations—Genomic DNA was extracted 
from 400 μL incubation endpoint subsamples in a combined chemical and mechanical 
procedure using the PowerSoil DNeasy PowerSoil HTP 96 Kit (Qiagen, Hilden, Germany). 
Extraction was performed following the manufacturer’s protocol, and extracted DNA was 
stored at −20 °C. To estimate the absolute abundance of bacterial 16S rRNA amplicons, 
known quantities of gDNA belonging to Escherichia coli B and Parabacteroides sp. TM425 
(sample obtained from Duchossois Family Institute Commensal Isolate Library, Chicago, IL, 
USA) were added to the slurry subsamples before the DNA extraction step. DNA Library 
preparation was performed using the 16S Metagenomic Sequencing Library Preparation 
protocol with a 2-stage PCR workflow (Illumina, San Diego, CA, United States). The V3–
V4 region was amplified using forward primer 341-b-S-17 (CCTACGGGNGGCWGCAG) 
and reverse primer 785-a-A-21 (GACTACHVGGGTATCTAATCC) (100). We confirmed 
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using gel electrophoresis that the negative samples containing all reagents did not show 
visible bands after PCR amplification. Sequences were obtained on the Illumina MiSeq 
platform in a 2 × 300 bp paired-end run using the MiSeq Reagent Kit v3 (Illumina, San 
Diego, CA, United States). A standardized 10-strain gDNA mixture (MSA-1000, ATCC, 
Manassas, VA, USA) was sequenced as well to serve as a positive control.

Raw Illumina sequencing reads were stripped of primers, truncated at Phred quality score 2, 
trimmed to length 263 for forward reads and 189 for reverse reads (ensuring a 25-nucleotide 
overlap for most reads), and filtered to a maximum expected error of 4 based on Phred 
scores; this pre-processing was performed with USEARCH ver. 11.0 (101). The filtered 
reads were then processed with DADA2 ver. 1.26 following the developers’ recommended 
pipeline (94). Briefly, forward and reverse reads were denoised separately, then merged 
and filtered for chimeras. For greater sensitivity, ASV inference was performed using the 
DADA2 pseudo-pooling mode, pooling samples by soil. After processing, the sequencing 
depth of denoised samples was 104–105 reads per sample. Low-abundance ASVs were 
dropped, retaining 4466 ASVs for further analysis. (The samples used in this work were 
collected as part of a larger study; the exact abundance-filtering criterion was to retain ASVs 
with cumulative abundance of at least 1000 counts across the 902 samples of this larger 
dataset.) Taxonomy was assigned by DADA2 using the SILVA database ver. 138.1, typically 
at genus level, but with species-level attribution recorded in cases of a 100% sequence 
match.

As an internal control, we verified that the ASVs corresponding to the two spiked-in genera 
Escherichia-Shigella and Parabacteroides were highly correlated with each other as expected 
(Pearson correlation ρ = 0.94). These ASVs were removed from the table and combined into 
a single reference vector of “spike-in counts”. The spike-in counts constituted 5.5 ± 2.5% of 
total reads in each sample.

For subsequent analysis, the raw ASV counts were augmented by a pseudocount of 0.5 and 
divided by the per-sample spike-in counts, yielding values that can be interpreted as the 
absolute biomass of each taxon (up to a factor corresponding to the copy number of the 16S 
operon), measured in units where 1 means as many 16S fragments as the number of DNA 
molecules in the spike-in.

Identifying ASVs enriched on nitrate in topsoil incubations—To identify the 
ASVs enriched in nitrate treatments versus the no-nitrate controls, it was necessary to 
determine what change in recorded abundance constitutes a significant change, relative 
to what might be expected for purely stochastic reasons. The relevant null model would 
combine sampling and sequencing noise with the stochasticity of ecological dynamics 
over a 4-day incubation, and cannot be derived from first principles. However, since all 
measurements were performed in triplicate with independent incubations, the relevant null 
model can be determined empirically. The deviations of replicate-replicate comparisons 
from 1:1 line were well-described by an effective model combining two independent 
contributions, a Gaussian noise of fractional magnitude cfrac and a constant Gaussian noise 
of magnitude c0 reads, such that repeated measurements (over biological replicates) of 
an ASV with mean abundance n counts are approximately Gaussian-distributed with a 
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standard deviation of σ(c0, cfrac) = (cfracn)2 + c02 counts (Fig. S9). In this expression, cfrac was 
estimated from moderate-abundance ASVs (> 50 counts) for which the other noise term is 
negligible; and c0 was then determined as the value for which 67% of replicate-replicate 
comparisons are within ±σ(c0, cfrac) of each other, as expected for 1-sigma deviations. This 
noise model was inferred separately for each soil, as the corresponding samples were 
processed independently in different sequencing runs; the parameters across 10 soils were 
cfrac = 0.22 ± 0.03 and c0 = 11 ± 3 counts. The model was used to compute the z-scores for 
the enrichments of absolute ASV abundances in nitrate treatments against no-nitrate controls 
(three independent z-scores, from triplicate treatments). Significantly enriched ASVs were 
identified in each sample as those with z-scores greater than z = Φ−1(1 − α ∕ 2 ∕ nASV ), 
where Φ−1(x) is the inverse CDF of the standard normal distribution, α = 0.01, and nASV
as the number of nonzero ASVs in a given sample. This critical z-score (z = 4.51 
± 0.04) corresponds to a two-tailed Bonferroni-corrected hypothesis test at significance 
level α under the null hypothesis that counts in the nitrate+ and control conditions are 
drawn from the same distribution. These analyses were performed using custom MATLAB 
scripts (Mathworks, Inc), which are available on the OSF data repository for the present 
manuscript; for additional technical details, the reader is referred to the detailed comments 
in these scripts.

In order to determine which significantly enriched ASVs are likely to represent denitrifiers, 
PICRUSt2 ver. 2.5.2 (102) was used to assign putative genotypes. PICRUSt2 matches input 
16S rRNA sequences to genotypes using a curated reference genome database. A list of 
inferred KEGG orthologs for each ASV was computed using the default parameters of the 
PICRUSt2 pipeline. An ASV was classified as a denitrifier if KEGG orthologs for any 
denitrification reductase (narG/K00370, napA/K02567, nirS/K15864, nirK/K00368, norB/
K04561, nosZ/K00376) were inferred and if the DNRA nitrite reductase nrfA/K03385 was 
not inferred. ASVs were classified as performing DNRA if nrfA/K03385 was inferred, and 
as neither performing denitrification nor DNRA otherwise.

Statistics & Reproducibility—No data were excluded from the analyses.
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Extended Data

Extended Data Figure 1: 
Bars show the loadings of each gene in the six principal components (PCs) resulting from 
the uiSVD decomposition of denitrification reductase (narG, napA, nirS, nirK, norB, nosZ) 
relative abundances from the global topsoil microbiome.

Extended Data Figure 2: 
Unit-invariant singular value decomposition (uiSVD) was used to decompose denitrification 
reductase (narG, napA, nirS, nirK, norB, nosZ) relative abundances from the global topsoil 
microbiome into contributions due to pathway magnitude and composition (Fig. 1A-D). 
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Pathway magnitude (d) most strongly correlated with C/N ratio ( ρ = − 0.59, p < 10−6 via 
one-tailed randomization test; Fig. 1F).

Extended Data Figure 3: 
Additional enrichments were performed at pH 5.0, 5.5, 6.0, and 7.3 and the endpoint 
cultures were shotgun sequenced to infer taxonomic composition and genotypes. (A) 
Endpoint community compositions of the enrichments inferred via 16S miTAGs are shown. 
Taxa with Nar+ genotypes are indicated in shades of blue, while taxa that possess Nap and 
not Nar are indicated in shades of red. Compositions are shown at the level of taxonomic 
order, and taxa present at a level of less than 1% are omitted. (B) Median denitrification 
reductase genotypes inferred via annotation of metagenome assembled genomes are shown.
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Extended Data Figure 4: 
(A)-(H) Consumer resource model (Supplementary Information Eq. S1) fit to monoculture 
metabolite data at pH 7.3. Dots indicate nitrate concentrations, stars indicate nitrite 
concentrations, solid lines show fits to nitrate dynamics, and dash-dot lines show fits to 
nitrite dynamics. All concentrations are averaged over biological replicates (n = 3). Panels 
(A, C, E, G) are fits to PD Nar+ data, while panels (B, D, F, H) are fits to RH Nap+ 

data. To infer nitrate and nitrite reduction rates independently fits were performed for a 
number of different initial conditions ([NO−3], [NO−2]). Panels (A) and (B) correspond to 
(1.75, 0), (C) and (D) to (0.875, 0), (E) and (F) to (0.4375, 1.3125), (G) and (H) to (0.875, 
0.4375). All concentrations are reported in units of mM. (I) Co-culture relative abundance 
prediction based on monoculture phenotypes. RH Nap+ is predicted to approach a relative 
abundance of 1 for all initial conditions at pH 7.3. This is consistent with what was observed 
in enrichment experiments (Fig. 5F).
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Extended Data Figure 5: 
Details of the PD Nar+ and RH Nap+ co-culture experiment shown in Fig. 5. (A) PD 
Nar+ relative abundance dynamics at pH 6.0 are shown. f0,Nar+ = 0, 0.03, 0.5, 0.97 and 1 are 
highlighted. Due to small levels of cross-contamination between pure and mixed cultures, 
fNar+ increases from 0 and decreases from 1. Although this was unintentional, it indicates 
that each of these strains is invasible by the other in this condition, providing more evidence 
that they coexist. (B) PD Nar+ relative abundance dynamics at pH 7.3 are shown. In 
panels A and B, data points are means of biological replicates (n = 4 for PD Nar+ relative 
abundance >= 0.5 at pH 6 and relative abundance <= 0.03 and = 1 in both pH conditions; 
n = 3 for all other conditions) of inferred relative abundances (Methods) and errorbars 
are calculated as described in the Fig. 5 caption and Methods. (C) Endpoint biomass 
dynamics, measured via absorbance at 600 nm, are shown for each cycle at pH 6.0. The 
f0,Nar+ = 0 condition produces much less biomass than the other conditions, as expected. (D) 
Endpoint biomass dynamics are shown for each cycle at pH 7.3. (E, G) NO−3 and NO−2 

dynamics are measured using a Griess assay (117) and shown at pH 6.0. Aside from the 
f0,Nar+ = 0 condition, for which biomass is very low (panel C), increasing fNar+ (panel A) 
corresponds to increasing nitrite accumulation. (F, H) Metabolite dynamics are shown at pH 
7.3. Decreasing fNar+ (B) corresponds to decreasing nitrite accumulation. Points and error 
bars in panels C-H show means and standard deviations over biological replicates (n = 4 for 
PD Nar+ relative abundance >= 0.5 at pH 6 and relative abundance <= 0.03 and = 1 in both 
pH conditions; n = 3 for all other conditions) in each condition.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1: pH is associated with covariation in denitrification pathway composition in the global 
topsoil microbiome.
(A) Topsoils sampled at n = 189 globally-distributed sites were chemically characterized 
(pH, Ca, Mg, …), sequenced via shotgun metagenomics, and functionally annotated by 
Bahram et al. (4). (B) The relative abundance of denitrification reductases in each soil 
sample (relative to total gene content) are plotted in order of increasing total relative 
abundance. Reductase color legend indicated in panel A. (C-D) Unit-invariant singular 
value decomposition (uiSVD) (32) was used to decompose the data in panel B into 
contributions due to pathway magnitude (di) and pathway composition ( c i). The results 
of this decomposition are plotted in panel D. (E-F) Principal component (PC) scores for 
pathway composition and pathway magnitudes obtained via uiSVD (Methods) are compared 
with 17 environmental variables, and squared Pearson correlation coefficients are shown. 
Scores of PC2 are most correlated with pH (ρ = 0.64, p < 10−6 via one-tailed randomization 
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test; panel G), while pathway magnitude is most correlated with C/N ratio (ρ = −0.59, p 
< 10−6 via one-tailed randomization test; Extended Data Fig. 2). (H) Loadings of PC2 are 
shown, where positive values indicate reductase content that increases with pH, and vice 
versa. See also Extended Data Figs. 1, 2.
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Figure 2: Enrichment cultures reproduce patterns in denitrification gene content in the topsoil 
microbiome.
(A) Denitrifying communities were enriched from soil samples in two pH conditions (6.0 
and 7.3), and then sequenced via shotgun metagenomics to measure taxonomic composition 
and genotypes. Six soil samples were mechanically homogenized and used to inoculate a 
serial dilution experiment in denitrifying (anaerobic) conditions. After 72 h growth cycles, 
cultures were repeatedly passaged (12×) into a defined medium containing 1.75 mM nitrate 
via a 1/8 dilution factor (Methods). (B) Endpoint community compositions are shown at the 
level of taxonomic order for enrichments in pH 6.0 and 7.3. Compositions were determined 
by extracting 16S rRNA fragments (miTAGs) from shotgun metagenome data (73), and 
then taxonomically annotating miTAGs via RDP (76). Taxa present at a relative abundance 
less than 1% are omitted. (C) Median denitrification reductase genotypes are shown for 
metagenome-assembled genomes (MAGs) corresponding to the four most abundant taxa 
present in the composition data in panel B. MAGs were functionally annotated using RAST 
(82), and the median genotype was computed over MAGs obtained in different samples. (D) 
Strains were isolated from cryopreserved samples from the enrichment endpoint (Methods). 
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The strain Pseudomonas sp. PD Nar+ represents the dominant taxa present across samples at 
pH 6.0, and Rhizobiales sp. RH Nap+ represents the dominant taxa across samples at pH 7.3. 
See also Fig. S6, Extended Data Fig. 3.
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Figure 3: Individual traits do not explain the outcome of acidic enrichments.
(A) Schematic of the experimental design. PD Nar+ (blue) and RH Nap+ (orange) were 
passaged repeatedly in monoculture under denitrifying (anaerobic) conditions. After each 
72 h growth cycle, cultures were passaged (3×) into a defined medium containing 1.75 mM 

nitrate using a 1/8 dilution factor. Biomass is measured via 600 nm absorbance at the end of 
each cycle, and nitrate and nitrite concentrations are measured throughout each cycle using 
a Griess assay (Methods). (B and C) Endpoint biomass is shown for each strain at both 
pH 6.0 (panel B) and 7.3 (panel C). Lines connect the average across replicates. RH Nap+ 

(orange) produces more biomass at both pH levels, while PD Nar+ (blue) appears to decay 
in abundance at pH 6.0 (despite PD Nar+ community enrichment in this condition, Fig. 2B). 
(D-G) Nitrate and nitrite concentration dynamics are shown at six timepoints throughout 
each cycle in each condition. PD Nar+ nitrate and nitrite reduction rates slow at pH 6.0 as 
the growth-dilution cycles progress, consistent with its reduction in biomass (Panels D & F, 
blue). PD Nar+ (blue) accumulates nitrite at each pH condition, whereas RH Nap+ (orange) 
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does not (Panels F & G). Biological replicates (n = 4) are shown for each strain in each 
experimental condition, with lines connecting the averages of these replicates.
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Figure 4: Nitrite toxicity impacts denitrification activity of isolates at low pH.
(A) PD Nar+ and RH Nap+ were grown in monoculture under anaerobic conditions at pH 
6.0 with 1.75 mM nitrate and varying nitrite levels indicated by colors shown in the legend. 
The dynamics of nitrate and nitrite concentrations are shown for each strain. The growth 
of both strains was increasingly inhibited as the initial supply of nitrite ([NO2

−]0) increased. 
PD Nar+ was unable to fully reduce nitrate when [NO2

−]0 > 0.35 mM (blue and green curves, 
top left panel) and was unable to fully reduce nitrite when [NO2

−]0 > 0 mM (all except dark 
purple curve, bottom left panel). Similarly, RH Nap+ was unable to fully reduce either 
nitrate or nitrite when [NO2

−]0 > 0.35 mM (blue and green curves, right panels). The mean 
and standard deviation of biological replicates (n = 3) are shown. (B) PD Nar+ and RH 
Nap+ were again grown in anaerobic monoculture at pH 6.0 with varying nitrite levels; 
nitrate was not supplied to prevent growth (Methods). The density of colony-forming units 
was measured via plating with replicates (n = 3) for each condition, with points indicating 
means across replicates. Error bars were calculated by weighting across dilution levels, as 
described in Methods. Lines are log-linear fits, and the (negative) slope of the line indicates 
the mortality rate (Methods). For PD Nar+, inferred death rates were 0.008 ± 0.004, 0.023 ± 
0.004, and 0.039 ± 0.004 h−1 for [NO2

−]0 = 0, 0.875, and 1.75 mM, respectively. For RH Nap+, 
inferred death rates were 0.013 ± 0.004, −0.001 ± 0.001, and 0.007 ± 0.001 h−1 for [NO2

−]0 = 
0, 0.875, and 1.75 mM, respectively. Uncertainties indicate standard deviations of log-linear 
fit parameters. (C) Nitrate (top) and nitrite (bottom) metabolite dynamics for monocultures 
of PD Nar+, supplied with initial nitrate concentrations of 0.875 mM (light blue) and 1.75 
mM (dark blue). Inset in the bottom panel shows the change in optical density during the 
72 h growth cycle (ΔOD = ODf − ODi); endpoint biomass levels were greater in the 0.875 
mM nitrate condition than in the 1.75 mM condition, suggesting mortality induced by nitrite 
accumulation. A consumer-resource model was fit to the low nitrate condition (solid light 
blue lines) and used to predict high nitrate condition (dashed dark blue lines). The mean and 
standard deviation of biological replicates (n = 3) of the data are shown.
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Figure 5: Coculture alleviates nitrite toxicity under acidic conditions.
(A-B) Monoculture PD Nar+ growth metabolite dynamics (shown previously in Fig. 4C) 
compared with the those of a 1:1 PD Nar+ and RH Nap+ co-culture at pH 6.0. Panel A shows 
nitrate concentration and panel B shows nitrite concentration. Initial biomass (OD600 = 0.01) 
and nitrate (1.75 mM) was the same in each condition, but the co-culture (purple) exhibited 
significantly less nitrite accumulation despite only slightly decreased nitrate reduction rate, 
as well as significantly higher biomass production (purple bar, inset, panel B). Points 
and error bars indicate the means and standard deviations, respectively, across biological 
replicates (n = 3). (C) Schematic of proposed interaction between PD Nar+ and RH Nap+. 
(D) Schematic illustrating the multi-cycle co-culture experiment shown in panels E and 
F. Mixtures of PD Nar+ and RH Nap+ were prepared across a range of ratios spanning 
0.03:0.97 to 0.97:0.03 (distinguished by color), with total biomass held constant. These 
mixtures were then transferred to fresh media buffered at pH 6.0 or pH 7.3, with 2 mM 

nitrate supplied. Cultures were grown under anaerobic conditions for 72 h and passaged 1:8 
into fresh media for a total of four growth cycles. 16S amplicon sequencing was used to 
infer PD Nar+ relative abundance at the end of each cycle in pH 6.0 conditions, and at the 
end of four cycles in pH 7.3 (Fig. S7, Methods). (E) PD Nar+ relative abundance dynamics 
at pH 6.0 are shown. fNar+, 0 = 0.03, 0.5, and 0.97 are highlighted by darker lines. (F) PD 
Nar+ relative abundance dynamics at pH 7.3 are shown. Relative abundance values in panels 
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E and F are the means of inferred relative abundances across biological replicates (n = 4 
for PD Nar+ relative abundance >= 0.5 at pH 6 and relative abundance = 0.03 in both pH 
conditions; n = 3 for all other conditions). Errorbars are calculated by adding the errors 
due to inference of amplification bias during sequencing and variance between biological 
replicates in quadrature (see Methods for detail).
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Figure 6: Nar+ and Nap+ phenotypes are conserved across diverse taxa.
Additional Nar+ and Nap+ soil isolates were grown in anaerobic conditions at pH 6.0, 
and their denitrification phenotypes were measured. (A) Denitrification phenotypes were 
summarized by area under the nitrate (top) and nitrite (bottom) curves (AUC). Metabolite 
dynamics for PDM04 Nar+ (blue) and XNM01 Nap+ (orange) monocultures are shown, with 
area under the curve (AUC) for each metabolite illustrated by the colored shaded regions. 
Smaller AUC indicates faster metabolite reduction. (B) AUC for nitrate (top) and nitrite 
(bottom) for three Nar+ and four Nap+ strains isolated in Ref. 31. Nar+ strains exhibit faster 
nitrate reduction (blue bars, top panel) and slower nitrite reduction (blue bars, bottom panel), 
and Nap+ strains are the opposite. The height of the bar corresponds to the mean AUC across 
biological replicates (n = 2).
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