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Abstract

Activation Editing, which involves directly edit-

ing the internal representations of large lan-

guage models (LLMs) to alter their behaviors

and achieve desired properties, has emerged as

a promising area of research. Existing works

primarily treat LLMs’ activations as points in

space and modify them by adding steering vec-

tors. However, this approach is limited in its

ability to achieve greater performance improve-

ment while maintaining the necessary consis-

tency of activation magnitudes. To overcome

these issues, we propose a novel editing method

that views activations in terms of their direc-

tions and magnitudes. Our method, named

Householder Pseudo-Rotation (HPR), mimics

the rotation transformation, thus preserving ac-

tivation norms and resulting in an improved

performance on various safety benchmarks.

1 Introduction

Building upon the paradigm of pre-training lan-

guage models on large corpora of raw text using

next-sentence-prediction objective (Radford and

Narasimhan, 2018; Radford et al., 2019), Large

Language Models (LLMs) research has taken a big

leap and become an essential asset of AI in recent

years. The latest LLMs can exhibit phenomenal flu-

ency and reasoning capability, excel in numerous

NLP benchmarks, while also aligning to human in-

tent (Wei et al., 2022; Ouyang et al., 2022; Touvron

et al., 2023a; Jiang et al., 2023; OpenAI, 2024). In

the midst of the rapid development of LLMs, efforts

to study and control their societal impacts, includ-

ing issues such as hallucination, bias, and toxicity

to name a few, are of the utmost importance. Yet,

with their ever-growing size, reaching hundreds of

billions of parameters (Brown et al., 2020; Chowd-

hery et al., 2022), the popular approach for con-

trolling and aligning LLMs via fine-tuning proves

to be very challenging and resource-intensive, ne-

cessitating the research into alternative solutions to

adapt the behaviors of LLMs.

Among various approaches to efficiently adapt

LLMs (Lester et al., 2021; Li and Liang, 2021; Hu

et al., 2022; Dong et al., 2023; Wan et al., 2024),

Activation Editing, also referred to as “Intervention”

or “Representation Engineering” in the literature,

has shown promising results. Based on the observa-

tion that LLMs form an internal “belief” about facts

in their activation space even before the responses

are generated (Dai et al., 2022; Li et al., 2023b;

Burns et al., 2023; Joshi et al., 2024), this approach

aims to draw factual knowledge out of the model by

directly editing activation vectors at inference time.

Most existing works in this area utilize a steering

vector (Li et al., 2023b; Turner et al., 2023, Rimsky

et al., 2024; von Rütte et al., 2024), which can be

scaled by a scaling factor and added to the original

activation. In doing so, activations are viewed as

points in space (Figure 1a). Correspondingly, the

process of adding a fixed steering vector to acti-

vations can be interpreted as moving these points

along a vector offset (Mikolov et al., 2013), and the

scaling factor tells how far they should be moved.

In an experiment with the activation space, we

discover an important property that is maintained

by powerful LLMs: activations within the same

layer tend to have roughly the same vector norm.

We refer to this as the Magnitude Consistency

property, i.e., Section 4.3. This observation high-

lights a key limitation of the points-in-space view,

where the steering vector approach cannot simulta-

neously maintain activation magnitude consistency

and effectively edit activation to achieve greater

performance improvement for desired behaviors

for LLMs. If the scaling factor is too large, the

additive edit might drastically alter the activation

norms in each layer, violating the norm consistency

property of LLMs. In extreme cases, this change

can lead to the generation of complete gibberish,

undermining the desired behaviors of the LLM’s re-

sponses. Conversely, if the scaling factor is set too

13737



low to preserve the activation norms, the steering

vector may have limited abilities to shift an acti-

vation toward new behavior, thus also hindering

editing performance for desired behaviors. More-

over, the steering vector approach does not align

with the commonly used cosine similarity metric,

which emphasizes directional alignment between

vectors rather than their absolute positions.

We argue that activation vectors should instead

be understood in terms of their directions and mag-

nitudes. We call this the direction-magnitude view

(Figure 1b). In this regard, the semantic informa-

tion of activations is reflected in their directions

from the origin, while their magnitude represents

the intensity of such information. This view also

facilitates cosine similarity better since it measures

the relationship between activations via the angle

between their directions. Furthermore, while the

points-in-space view struggles to achieve activation

norm consistency, the direction-magnitude view

can conveniently interpret the activation space in

each layer as a (d − 1)-dimensional hypersphere

centered at the origin. As such, the activations can

have a “stable” norm via the sphere’s radius.

In this work, we introduce a novel editing

method based on the direction-magnitude view. In-

stead of trying to move points, our method aims to

alter a LLM’s behavior by rotating activation vec-

tors around the origin to their designated directions

(Figure 1b). For example, rotating from untruthful

region into truthful region. Usually, computing a

matrix for vector rotation is non-trivial, especially

in high-dimensional space. Therefore, we propose

to relax the problem and resort to an approximated

rotation transformation instead (Figure 1c). To

this end, we first determine a hyperplane going

through the origin that separates the two regions

of interest. We then reflect undesirable activations

about this hyperplane to make them land on the

desirable region. Having an unique hyperplane

for each individual activation vector is infeasible

computationally as it would cost substantial GPU

memory to store them at runtime. We thus learn a

global hyperplane separating the activation vectors

for each edited layer. Finally, for each reflection

of an undersriable activation, we adjust it to the

corresponding desired activation. In this way, our

solution is more efficient as the adjustment for each

activation only involves scalar angles, whose learn-

ing is less expensive than a rotation matrix for each

edited vector. We name this method Householder

Pseudo-Rotation (HPR), based on the Householder

transformation (Householder, 1958) at its core.

We evaluate our editing method HPR on elicit-

ing truthfulness from LLMs. Experiment results on

the TruthfulQA dataset (Lin et al., 2022) demon-

strate a significant boost in performance compared

to Steering Vector editing. We further show that

HPR can improve LLMs’ performance for other

behavior-related problems, including bias, ethics,

and toxicity. Finally, we conduct extensive analysis

to provide deeper insights for the advantages of

HPR for activation editing.

2 Prerequisites

2.1 Problem Statement

Let M = {M(l)|0 ≤ l < L} be a L-layers pre-

trained LLM whose behavior needs to be altered.

Assume that the outputs of M exhibit either of the

two contrasting qualities: a positive behavior p or

a negative behavior n. For instance, p and n can

be truthfulness and untruthfulness. We denote:

• xi = {xi,j |0 ≤ j < Sx} : An input sequence

of length Sx.

• y
p

i = {ypi,j |0 ≤ j < Sp} : The positive (i.e.

desirable) output sequence with length Sp.

• yni = {yni,j |0 ≤ j < Sn} : The negative (i.e.

undesirable) output sequence with length Sn.

Here, i is the sample index in the dataset, and j

is the token index in a sample. When the label of

the output, i.e. positive or negative, is unknown,

we refer to its length as Sy.

In this work, unless specified otherwise, a “vec-

tor” is understood as a column vector of size d× 1.

Let us further use a
p,(l)
i,j ∈ Ap,(l) to denote the d-

dimensional positive activation vector at the jth

token of the lth layer in M, where Ap,(l) ⊂ R
d is

the positive region in the activation space of M(l).

Similarly, the corresponding negative activation is

denoted as a
n,(l)
i,j ∈ An,(l). These are obtained

by forwarding the concatenation of the input and

the corresponding output sequence, i.e. xi∥y
p

i or

xi∥y
n

i , through M. Since the question part xi is

the same for each data pair, we only use the activa-

tion vectors at the token positions of the responses.

Without loss of generality, we omit the layer no-

tation (l) and the quality notation (p or n) when

referring to an arbitrary item.

The general framework of Activation Editing uti-

lizes an editing function f(·|θ) with parameter θ

for activation vectors ai,j such that f(ai,j |θ) ∈ Ap.

The design of an Activation Editing method can

thus be broken down to the the design of such a
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With this we can reflect a to obtain the reflected

activation ȧ and the angle γ2 between a and ȧ:

ȧ = Ha, γ2 = g(ȧ, a) (11)

The Householder reflection and rotation trans-

formation preserve vector norm. Thus, the norm of

a, ȧ and â are identical. Combined with the com-

puted angles γ1 and γ2, the rotation on 2-D plane

to obtain the predicted positive activation â can be

calculated via a and ȧ as follows:

â =
sin(γ1)

sin(γ2)
ȧ+

sin(γ2 − γ1)

sin(γ2)
a (12)

The proof for Equation 12 is in Appendix A.

Finally, HPR’s editing function can be written

as follows: f(a|θprobe, θangle) = σ̂a+ (1− σ̂)â.

4 Experiments

4.1 Experimental Setup

Datasets: Following previous activation editing

work (Li et al., 2023b), we first evaluate the mod-

els on the TruthfulQA dataset (Lin et al., 2022).

TruthfulQA includes 817 questions, each of which

is coupled with factually correct and incorrect an-

swers. We split the dataset into subsets with ratios

45 / 5 / 50 for training, validation and testing re-

spectively.

Aside from truthfulness, we also demonstrate

the proposed method on other societal issues re-

lated to LLMs, more specifically, bias, ethics, and

toxicity. These are reflected in BigBench’s Bias

Benchmark for QA (BBQ) (Srivastava et al., 2023;

Parrish et al., 2022), BigBench’s Simple Ethical

Questions (SEQ), and Toxigen (Hartvigsen et al.,

2022), respectively. These datasets are already split

into a training set and a validation set. We use the

validation sets to test the models, while splitting

their training sets further with ratios 90 / 10 to make

new training and validation sets.

All four datasets are multiple choice tasks, thus

the main evaluation metrics is multiple choice ac-

curacy. The correct and incorrect answers for each

question can be used handily to create y
p

i / yni pairs.

Base Models and Baselines: We conduct ex-

periments with three recent popular open source

LLMs: Llama2-7B-Chat (Touvron et al., 2023b),

Mistral-7B-Instruct (Jiang et al., 2023), and

Llama3-8B-Instruct (AI@Meta, 2024). We

compare our method with the following baselines:

• Base: The unaltered base LLMs.

• LoRA (Hu et al., 2022): We fine-tune the base

LLM with LoRA adapter on the same training data

as activation editing methods for a fair comparison.

• Diff: Given a positive or negative activation

ai,j , this baseline employs a feedforward network

to directly predict the difference vector a
p

i,j − ai,j

with the corresponding positive activation a
p

i,j . At

inference time, we utilize the sum of the original

activation vector ai,j and its predicted difference

vector to obtain the predicted positive activation.

• ITI (Li et al., 2023b): A representative Activa-

tion Editing method for the aforementioned points-

in-space view that shifts the outputs of a set of

attention heads in each layer by a fixed steering di-

rection. The steering vector in ITI is the Mass Mean

Shift vector (i.e. the difference between the centers

of the positive and negative regions) of activations

in training data (i.e., not learnable). We employ

the source code published by the original authors.

However, their code is implemented only for Llama

models and TruthfulQA dataset specifically. Thus

we only report results of ITI with Llama2-7B-Chat

and Llama3-8B-Instruct on TruthfulQA.

Evaluation Framework: We utilize EleutherAI’s

Language Model Evaluation Harness (Gao et al.,

2023), a reliable evaluation framework used in

numerous works including HuggingFace’s Open

LLM Leaderboard. This framework supports auto-

matic evaluation of various benchmark datasets for

LLM. Our experiments involve evaluating mulit-

ple choice accuracy on various datasets. This is

done by calculating the aggregated log-likelihood

of each choice given the input prompt and then pick

the top one.

Hyperparameters: In our model, the linear probe

is a vector of the same dimensions as the LLMs’

hidden dimensions. The angle prediction module

is a feedforward neural network with 4 layers and

one output unit. We train each module for 5 epochs

with batch size 16, AdamW optimizer (Loshchilov

and Hutter, 2019), learning rate 5× 10−4, cosine

learning rate scheduler and warmup. For editing,

we apply HPR to the top k = 5 layers with the high-

est probe accuracy. Appendix C presents model

performance with different values of k.

4.2 Results

TruthfulQA: Table 1 presents the performance of

our method HPR and the baselines on TruthfulQA.

The results include both MC1, multiple choices

with only 1 correct answer per question, and MC2,

which is multiple choices with more than 1 cor-
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Method

Model

Llama2 Llama3 Mistral

MC1 MC2 MC1 MC2 MC1 MC2

Base
29.58 43.00 36.43 50.73 54.28 67.45

± 2.26 ± 2.17 ± 2.38 ± 2.13 ± 2.47 ± 2.14

LoRA
29.10 43.40 38.63 55.84 54.77 70.45

± 2.25 ± 2.15 ± 2.41 ± 2.11 ± 2.46 ± 2.06

Diff
33.74 48.87 29.34 52.53 50.61 68.68

± 2.47 ± 2.24 ± 2.25 ± 2.25 ± 2.48 ± 2.11

ITI
33.74 50.67 39.85 56.58 - -

± 2.34 ± 2.20 ± 2.42 ± 2.18 - -

HPR
51.83 70.95 52.32 71.70 55.01 72.14

± 2.47 ± 2.12 ± 2.47 ± 2.13 ± 2.46 ± 2.07

-AnglePred
30.07 43.36 35.94 49.77 53.79 67.31

± 2.27 ± 2.18 ± 2.375 ± 2.12 ± 2.47 ± 2.14

Table 1: Model performance (in %) on TruthfulQA

multiple choice tasks. ± indicates standard errors.

Model
Dataset

BBQ SEQ Toxigen

Llama2-7B-Chat 33.27 21.74 51.38

+ HPR 38.38 60.87 52.34

Llama3-8B-Instruct 60.44 47.83 45.32

+ HPR 67.10 52.17 46.81

Mistral-7B-Instruct 61.62 69.57 55.00

+ HPR 73.24 86.96 61.60

Table 2: HPR performance for bias, ethics, and toxicity.

We report multiple choice accuracy in %.

rect answer for each question. The first observa-

tion from the table is that fine-tuning LLMs with

LoRA does not produce consistent performance

improvement for TruthfulQA over different mod-

els. In contrast, activation editing methods, i.e., ITI

and HPR, consistently outperform the base LLM

models, achieving greater margins than LoRA fine-

tuning. It thus highlights the effectiveness of ac-

tivation editing for altering LLMs for desirable

behaviors. When comparing Diff and ITI, ITI’s su-

perior overall performance indicates that learning

negative-positive difference vectors for activations,

as done in Diff, is ineffective and cannot ensure

optimal aligning performance for LLMs. Most im-

portantly, the proposed model HPR is significantly

better than all the baselines with substantial mar-

gins across all base LLMs. These results clearly

testify to the advantages of HPR, demonstrating

the benefits of our new direction-magnitude view

for activation editing with reflection and rotation

for negative activation transformation.

Ablation Study: The last row in Table 1 further

shows the performance of HPR when the angle

prediction module is excluded from the full model.

In other words, the editing function now only re-

flects negative activation vectors about the separat-

ing hyperplane defined by the linear probe. As can

be seen, this exclusion leads to significant perfor-

mance drops across all base LLMs for HPR, sug-

gesting that simply having the activations landed

on the positive region is not enough to make an ef-

fective edit. Thereby, it justifies the importance of

angle prediction to adjust reflected activations for

our model. We also note that the linear probe mod-

ule cannot be removed from HPR for ablation study

as it is essential for finding the positive-negative

separating hyperplane and rotating plane in our

model. Finally, the superior performance of HPR

for different LLMs confirms the advantages of our

assumption on the shared 2-D plane of a, ȧ, and â.

BBQ, SEQ, and Toxigen: To further illustrate the

effectiveness of HPR in eliciting desirable behav-

ior, Table 2 shows HPR’s performance on the BBQ,

SEQ, and Toxigen datasets. These datasets eval-

uate the abilities of LLMs to generate unbiased

(BBQ), ethically acceptable (SEQ), and non-toxic

(Toxigen) responses. Across various base LLMs,

incorporating HPR can significantly enhance per-

formance on all of these datasets. These results

highlight the benefits of HPR in improving impor-

tant safety criteria for LLMs, leading to unbiased,

ethical, and non-toxic responses for responsible

models.

4.3 Analysis of Activation Space

In this section, we examine the activation norms of

the selected LLMs to gain a better understanding of

the activation space. We first look into base LLMs.

In Figure 3 we plot the activation norms in each

layer, positive vectors and negative vectors side-

by-side. From these box plots, we can observe the

Magnitude Consistency property: activations of

the same layer have roughly the same vector norm

for all considered LLMs. This observation holds

true regardless of the activations being positive or

negative. The gap between the whiskers of each

box is very narrow, suggesting a low variance. This

gap seems to become narrower for more power-

ful models, as can be seen in Figures 3b, 3c for

LLaMA3 and Mistral. Due to this universality, we

consider activation norm consistency as a neces-

sary condition that should be maintained by editing

methods to achieve desired LLMs.

Considering this property, we demonstrate how

the steering vector approach in ITI (Li et al., 2023b)

struggles to simultaneously maintain activation

magnitude consistency and effectively alter their ac-

tivations for greater improvement on desired behav-
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vergence from base LLMs for ITI? In Table 3, we

present the behavior shift rates of ITI15 and ITI200
compared to the original Llama2-7B-Chat model

on TruthfulQA. Specifically, we show how often

each editing method can flip the LLM’s predictions

of examples from true to false and vice versa. From

the table, we observe that the slight divergence of

activation norms in ITI15 results in a more limited

ability to change the base model’s behavior, with

a behavior shift rate of only 8.56% compared to

34.23% for ITI200. As the behavior shift rate is the

upper bound of the overall performance improve-

ment on TruthfulQA for ITI, this limited ability to

alter LLM behavior will hinder further improve-

ment with a small scaling factor in ITI.

Model
False to True to Remains Remains Overall

True↑ False↓ True↑ False↓ Acc.↑

Base model - - 29.58 70.42 29.58

ITI, α = 15 6.36 2.20 27.38 64.06 33.74

ITI, α = 200 14.18 20.05 9.54 56.23 23.72

HPR 28.85 6.60 22.98 41.56 51.83

Table 3: Behavior shift rate (in %) of activation editing

methods on TruthfulQA MC1 task compared to the base

model. The base LLM is Llama2-7B-Chat. ↑ means

greater is better and ↓ means lower is better.

Furthermore, with a larger scaling factor of

α = 200, the greater behavior shift rate in ITI200
might suggest that ITI200 can better boost truthful

performance for ITI. However, a closer examina-

tion at Table 3 reveals that the significant norm

change in ITI200 promotes both “good” False-to-

True and “bad” True-to-False prediction flips from

the base LLM. While ITI200 is more effective at

correcting false predictions, increasing the “False-

to-True” flip rate from 6.36% in ITI15 to 14.18%, it

also introduces more “bad” edits, changing 20.05%
of examples with True predictions in the base LLM

to False, compared to just 2.2% for ITI15. Over-

all, the bad edits significantly dominate the good

edits in the ITI model with more extensive norm

change, ITI200, leading to its poorer performance in

producing truthful responses. To this end, our anal-

ysis demonstrates the fundamental limitations of

steering vector approach on boosting truthful per-

formance for LLMs, regardless of efforts to tune

the scaling factor.

In contrast, Figure 4c highlights the inherent

ability of the proposed HPR method to preserve

activation norms through its activation rotation

mechanisms. In addition, HPR offers substantially

stronger editing capabilities for achieving desired

behaviors in LLMs as shown in Table 3. It signif-

icantly improves the False-to-True prediction flip

rate while minimizing undesirable True-to-False

edits for the base LLM, demonstrating the effec-

tiveness of our method for activation editing.

4.4 Impact on Generation Capability

Generation Quality: To assess the impact of the

proposed method on generation capability, we per-

form evaluations in the open-ended generation set-

ting of TruthfulQA with LLaMA models. For this

evaluation, we employ BLEU accuracy, which is

calculated as the ratio of generated responses hav-

ing BLEU scores with their respective correct (pos-

itive) references higher than that with the incor-

rect (negative) references, as described in Lin et al.

(2022). We use the popular implementation in Gao

et al. (2023) and the same data split as in Section

4.1. The results are presented in Table 4, where

ITI15 and ITI50 refer to the ITI method with a scal-

ing factor α = 15 and α = 50 respectively.

Backbone Method BLEU Acc

Llama2-7B-Chat

Base 38.39

ITI15 41.56

ITI50 34.96

HPR 42.30

Llama3-8B-Instruct

Base 43.28

ITI15 41.32

ITI50 41.08

HPR 44.74

Table 4: Automated evaluation of TruthfulQA open-

ended generation task.

It is clear from the table that the proposed HPR

method also outperforms different baselines signif-

icantly on generation-based evaluation for Truth-

fulQA.

In addition, we evaluate the fluency of the mod-

els’ generated responses. Table 5 shows the per-

plexity scores and bits per byte (smaller is better)

on the test set of WikiText-2 (Merity et al., 2017).

Backbone Method Word Ppl↓ Byte Ppl↓ BpB↓

Llama2

Base 13.7077 1.6316 0.7063

ITI15 14.2038 1.6425 0.7158

ITI50 133.7374 2.4982 1.3209

HPR 13.7206 1.6319 0.7066

Llama3

Base 11.9524 1.5903 0.6693

ITI15 17.0515 1.6996 0.7652

ITI50 4303.4616 4.7813 2.2574

HPR 11.9558 1.5904 0.6694

Table 5: Perplexity and bits-per-byte on WikiText-2 test

set.
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As can be seen, our method HPR does not need

to sacrifice the models’ fluency to achieve effec-

tive editing for desirable model behavior, unlike

the Steering Vector methods such as ITI. Notably,

when the scaling factor of ITI is high (i.e., 50), the

perplexity scores become extremely large, leading

to gibberish responses.

Llama2-7B Llama3-8B Mistral-7B

Base 2.33 2.08 2.33

LoRA 1.30 1.24 1.23

ITI 2.06 1.87 -

HPR1 2.18 1.99 2.25

HPR5 1.98 1.80 1.98

HPR10 1.73 1.63 1.76

Table 6: Inference speed in samples per second (larger

is better).

Inference Speed: Table 6 compares HPR with the

base model, ITI, and LoRA adapter in terms of

inference speed. For HPR, we report the speed for

its three variants corresponding to the number of

edited layers. We see that with only one edited

layer, the inference speed is slower than the base

model but faster than LoRA and ITI. HPR slows

down when we choose more layers to edit, which

is natural. Importantly, we do not see significant

speed reduction due to the introduction of our acti-

vation editing method, thus suggesting its potential

applications in different scenarios.

In fact, efficiency is a key motivation for the de-

sign of our method. Our method does not perform

direct rotation for each activation in the models as it

will be very expensive. Instead, we find a common

hyperplane to separate the negative and positive

regions of the activations, and we use this hyper-

plane to efficiently find the rotating direction for

all activations in the layer (i.e., via the reflections).

As finding rotating directions is the most expen-

sive part for a rotation operation, using a common

hyperplane for all activations significantly reduces

our computation costs for editing. Finally, to com-

pute the rotating angles, our method employs a

regression model, which is very efficient and can

be applied for each activation to improve the per-

formance of our method.

5 Related Work

Concerning the societal risks of LLMs, various ap-

proaches have been explored to control and align

their behavior post-pretraining. Unlike resource-

intensive methods for LLM alignment such as in-

struction tuning and reinforcement learning from

human feedback (Ouyang et al., 2022; Bai et al.,

2022), our work falls into the category of resource-

efficient methods for controlling LLMs. Several

resource-efficient approaches exist in this area.

First, parameter-efficient fine-tuning aims to fine-

tune LLMs with safety data while minimizing the

number of learnable parameters, such as prompt-

tuning (Lester et al., 2021), prefix-tuning (Li and

Liang, 2021), and LoRA (Hu et al., 2022). How-

ever, fine-tuning might also compromise the safety

of LLMs (Qi et al., 2023). Additionally, model

editing attempts to locate and edit model param-

eters associated with safety issues using minimal

invasions for efficiency (Meng et al., 2022; Ilharco

et al., 2023). However, model editing might im-

pact the general robustness of the models (Brown

et al., 2023). Our work belongs to the third di-

rection for efficient LLM control, i.e., activation

editing, which involves editing their inner repre-

sentations towards a desired behavior at inference

time (Li et al., 2023a; Hernandez et al., 2023) and

can be traced back to plug-and-play controllable

text generation research (Dathathri et al., 2020;

Krause et al., 2021). Accordingly, activation edit-

ing can preserve the pretrained LLMs to achieve

better robustness while still offering adjustable and

minimally invasive benefits.

In one approach to activation editing, Liu et al.

(2021), Li et al. (2023c), and Liu et al. (2024)

contrast the behavior of an expert and an amateur

model. Additionally, vector steering edits inner

representations by adding steering vectors (Burns

et al., 2023; Li et al., 2023b; Turner et al., 2023;

Rimsky et al., 2024; von Rütte et al., 2024). How-

ever, none of these work explores the direction-

magnitude perspective with activation rotations.

6 Conclusion

This work proposes a new activation editing ap-

proach based on the direction-maginitude view. By

rotating negative activations instead of adding to

them a fixed steering vector, our proposed method

effectively addresses the shortcomings of existing

work, as evidenced by the improved performance

on various benchmarks. Our analyses highlight

the magnitude consistency property of LLMs, pro-

viding insights into the operations of our editing

method. In the future, we plan to extend our re-

search to study how the activation space evolves

during fine-tuning and how the proposed method

scales to larger models and other architectures.
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Limitations

As an empirical study, our work is not without

limitations. Acknowledging this, we would like to

discuss them as follows:

• Due to limited computational resources, we

only employ open-source LLMs of size 7-8B

parameters. However, we show that the pro-

posed method can effectively alter the behav-

iors of LLMs for diverse base models and

tasks. We leave further research on the scala-

bility of HPR as well as its impact on models

of larger sizes for future work.

• Although our method exhibits strong edit-

ing performance for desired behaviors, the

method itself, like all other Activation Edit-

ing methods, only serves to alter LLMs’ be-

havior and elicit knowledge embedded into

them during pre-training, not to introduce any

new knowledge. Combining activation editing

with knowledge updates can be a promising

area for future research.

• Though HPR outperforms our baselines by a

significant margin (i.e., over 15% better than

the second best baseline ITI with LLama3),

there is still room for improvement. For exam-

ple, the best MC1 accuracy of HPR on Truth-

fulQA is currently only about 55% with the

base model Mistral. As such, future work

can expand our method to develop stronger

alignment methods and address safety con-

cerns for LLMs.

• HPR has been shown to perform well on a

variety of behavior-related tasks. However,

our experiments involves only English data,

thus not fully reflecting the capability of the

proposed method for multilingual LLMs and

data. Future work can explore the effective-

ness of our method for multilingual settings,

aiming for more robust methods for diverse

languages and multilingual LLMs.

Ethics Statement

Our work utilize open-source LLMs, i.e.,

Llama2-7B-Chat (Touvron et al., 2023b),

Mistral-7B-Instruct (Jiang et al., 2023), and

Llama3-8B-Instruct (AI@Meta, 2024), as the
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activation editing method aiming at altering

LLMs’ behaviour for the better, contributing to

the on-going efforts to advance LLM safety. As

activation and model editing for LLMs has been
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Liu et al., 2021; Ilharco et al., 2023), we do not

believe our work poses greater societal risks than

such studies and open-source LLMs. Finally, we

confirm that we follow all the ethical guideline

from ACL to the best of our knowledge when

performing this research.
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A Derivation of Equation 12

In this section we describe the process of deriving

Equation 12. Since the rotation of interest occurs

on a 2-D plane, and ∥â∥ = ∥ȧ∥ = ∥a∥, we can

calculate â by combining a and ȧ. If γ1 = γ2,

Equation 12 trivially holds: â = ȧ. If not, there are

two cases that can occur: γ1 < γ2, and γ1 > γ2.

We illustrate both of them in Figure 5 to make the

derivation easier to follow. In this figure, we color

the original negative activation a in red, the target

positive activation â in green, and the intermediate

vector ȧ in orange.

Say, we have

â = β1ȧ+ β2a (13)

In the first case (Figure 5a), applying the law of

sines in trigonometry, we obtain

∥â∥

sin(π − γ2)
=

β1∥ȧ∥

sin(γ1)
=

β2∥a∥

sin(γ2 − γ1)
(14)

This is equivalent to

1

sin(γ2)
=

β1

sin(γ1)
=

β2

sin(γ2 − γ1)
(15)

Thus,

β1 =
sin(γ1)

sin(γ2)
(16)

β2 =
sin(γ2 − γ1)

sin(γ2)
(17)

Similarly for the second case (Figure 5b), we

have

1

sin(γ2)
=

β1

sin(π − γ1)
=

−β2

sin(γ1 − γ2)
(18)

=⇒
1

sin(γ2)
=

β1

sin(γ1)
=

β2

sin(γ2 − γ1)
(19)

=⇒

{

β1 =
sin(γ1)
sin(γ2)

β2 =
sin(γ2−γ1)
sin(γ2)

(20)

Combining both cases, we arrive at a general

formula for calculating the target activation vector:

â =
sin(γ1)

sin(γ2)
ȧ+

sin(γ2 − γ1)

sin(γ2)
a (21)

B Training efficiency

During the training phase, we use a
(l),p
i,j / a

(l),n
i,j

pairs to form the inputs and labels for the linear

probe and angle prediction modules in each layer.

Generally, these are computed by passing training

data samples xi∥y
p

i and xi∥y
n

i through the model

M and record the activations at each layer and to-

ken position. However, since our method does not

update the parameters of M, its activation vectors

can be treated as constants. Thus, before training

we pre-compute all activations on the training data

to make a dataset of a
(l),p
i,j / a

(l),n
i,j pairs for each

layer. These can then be used to train the linear

probe and angle prediction modules independently

of the base model. In this way, the base LLM does

not need to be loaded into GPU RAM, saving more

space for training the HPR modules.

C Evaluating Different Numbers of

Editted Layers

Motivated by the varying linear probing accuracy

across different layers in LLMs for positive and

negative activations in Figure 2, our method HPR

choose the top k layers with highest probe accuracy

in LLMs for activation editing. Figure 6 illustrates

the performance of HPR using different values of k

for all the three base LLMs. The bars depict MC1

(blue) and MC2 (orange) accuracy. We also add

the performance of the respective base LLM and

illustrate them with horizontal lines for comparison.

It is clear from the figure that editing only the top

5 layers yields the best performance across mod-

els. As we increase the number of edited layers,

multiple choice accuracy decreases, even falling be-

low baseline in the case of Mistral-7B-Instruct.

This can be partly attributed to aggregated error

from imperfect linear probes (Figure 2).
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