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Abstract

Large Language Models (LLMs)1 excel in vari-

ous natural language processing tasks, but lever-

aging them for dense passage embedding re-

mains challenging. This is due to their causal

attention mechanism and the misalignment be-

tween their pre-training objectives and the text

ranking tasks. Despite some recent efforts to

address these issues, existing frameworks for

LLM-based text embeddings have been lim-

ited by their support for only a limited range

of LLM architectures and fine-tuning strate-

gies, limiting their practical application and

versatility. In this work, we introduce the Uni-

fied framework for Large Language Model

Embedding (ULLME), a flexible, plug-and-

play implementation that enables bidirectional

attention across various LLMs and supports

a range of fine-tuning strategies. We also

propose Generation-augmented Representation

Learning (GRL), a novel fine-tuning method

to boost LLMs for text embedding tasks. GRL

enforces consistency between representation-

based and generation-based relevance scores,

leveraging LLMs’ powerful generative abilities

for learning passage embeddings. To show-

case our framework’s flexibility and effective-

ness, we release three pre-trained models from

ULLME with different backbone architectures,

ranging from 1.5B to 8B parameters, all of

which demonstrate strong performance on the

Massive Text Embedding Benchmark. Our

framework is publicly available at: https://

github.com/nlp-uoregon/ullme. A demo

video for ULLME can also be found at https:

//rb.gy/ws1ile.

1 Introduction

For many years, the field of information retrieval

has been dominated by a paradigm that relied

heavily on pre-trained bidirectional encoders or

1The definition of LLMs is vague. Here, we use “LLMs” to
refer to models with more than 1 billion parameters. Moreover,
in the scope of this work, we focus on decoder-only LLMs.

Framework #Supported Supported Fine-tuning Strategy

LLMs SFT DPO Contrastive

SentenceTrasformers (Reimers and

Gurevych, 2019)

>10 ✗ ✗ ✗

SGPT (Muennighoff, 2022) 1 ✗ ✗ ✓

RepLLaMA (Ma et al., 2023) 1 ✗ ✗ ✓

Echo-Embedding (Springer et al., 2024) 2 ✗ ✗ ✗

GritLM (Muennighoff et al., 2024) 2 ✓ ✗ ✓

LLM2Vec (BehnamGhader et al., 2024) 3 ✗ ✗ ✓

NV-Emb (Lee et al., 2024) 1 ✗ ✗ ✓

ULLME (our) >10 ✓ ✓ ✓

Table 1: Comparisions between ULLME and other

LLM-Embedding frameworks. For ULLME, the mod-

ule combination enables many possible models and 10

is the number of models we have tested for usability.

encoder-decoders to obtain effective representa-

tion vectors for input texts (representation learn-

ing), e.g., BERT (Devlin et al., 2019) and T5 (Raf-

fel et al., 2023). These architectures have played

a pivotal role in advancing various language un-

derstanding tasks, including passage retrieval (Ni

et al., 2022; Qu et al., 2021; Reimers and Gurevych,

2019), inter alia. However, recent research has wit-

nessed a shift towards scaling representation learn-

ing methods to modern autoregressive language

models (Muennighoff, 2022; Muennighoff et al.,

2024; BehnamGhader et al., 2024). Leveraging

the ongoing advancements in large language mod-

els (LLMs) with various sizes and domains, this

approach has the potential to transform research

in information retrieval, significantly improving

performance on related tasks.

However, directly applying pre-trained LLMs

to dense retrieval still presents numerous chal-

lenges. These challenges primarily stem from two

factors: the inherent limitations of LLMs’ causal

attention mechanism which restricts the models’

attention to only preceding tokens (Muennighoff,

2022; Springer et al., 2024), and the persistent mis-

alignment between LLM pre-training objectives

and text-ranking tasks (Ma et al., 2023; Muen-

nighoff et al., 2024; BehnamGhader et al., 2024).

To address these issues, researchers have developed

methods to enable bidirectional attention within
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LLMs by replacing the causal attention mask,

which only allows attention to previous tokens,

with an all-one mask that enables full contextual

awareness. Furthermore, to better align the models

with text retrieval tasks, researchers have employed

fine-tuning strategies using retrieval-related data.

However, as illustrated in Table1, existing frame-

works for LLM-based representation learning have

been limited in their scope, supporting only a nar-

row range of LLM architectures and fine-tuning

strategies. This limitation highlights the need for

a flexible and comprehensive framework that can

accommodate diverse combinations of LLM back-

bones and fine-tuning approaches to facilitate full

explorations of possibilities in different areas.

In this paper, we present ULLME, a versatile

and extensible platform designed to advance the

use of LLMs for dense retrieval. ULLME ad-

dresses the critical limitations of existing frame-

works by offering a comprehensive, plug-and-play

solution that seamlessly enables bidirectional at-

tention across a array of diverse LLM families, in-

cluding LLaMa, Mistral, Phi, Qwen, among others.

Our framework’s flexibility also extends beyond

model compatibility, supporting a wide spectrum

of fine-tuning strategies for LLM-based representa-

tion learning. As such, ULLME provides an unified

framework for various LLM backbones and fine-

tuning methodologies, allowing developers to com-

prehensively explore the full potential of LLMs in

diverse embedding tasks, free from the constraints

of implementation-specific restrictions.

In addition, existing frameworks for LLM-based

text embeddings can be challenging for general

users who are not familiar with training details

like contrastive learning with large batch sizes and

efficient fine-tuning. ULLME lowers these entry

barriers by providing an efficient, user-friendly ab-

straction from those complexities, allowing users

to focus on their data and tasks. For instance,

ULLME’s training processes are integrated with

advanced techniques like GradCache (Gao et al.,

2021a) and LoRa (Hu et al., 2022), enabling effi-

cient contrastive learning and tuning with larger

batch sizes, and sparing users from complicated

configuration and testing. ULLME also comes

with user-friendly features that make it easy to

evaluate various fine-tuned LLMs using the Mas-

sive Text Embedding Benchmark (MTEB) (Muen-

nighoff et al., 2023), a comprehensive evaluation

suite with numerous tasks for text embeddings.

Building upon the ULLME framework, we fur-

ther introduce Generation-augmented Representa-

tion Learning (GRL), a novel fine-tuning strategy

that leverages LLMs’ generative capabilities for

enhanced passage embedding. GRL bridges tradi-

tional dense retrieval methods with LLMs’ inherent

generation strengths through two key mechanisms:

(i) Joint Training: we simultaneously fine-tune

LLMs on passage generation and contrastive learn-

ing tasks; (ii) Generation-Guided Representation

Learning: we propose to directly leverage the pas-

sage’s generation probabilities of LLMs to enhance

representation learning. This is achieved by encour-

aging consistency between the passage-query co-

sine similarities (derived from learned embeddings)

and the passages’ generation probability of LLMs

given the queries. GRL thus effectively aligns the

understanding of LLMs for text relevance with re-

spect to both the embedding and generation spaces,

leading to more nuanced and richer embeddings

from LLMs.

To showcase the versatility and effectiveness

of ULLME, we release three pre-trained LLM-

Embedding models with different backbone ar-

chitectures, ranging from 1.5B to 8B parameters,

which deliver highly competitive results on MTEB.

Our findings also highlight the advantages of our

new fine-tuning method, GRL, which significantly

outperforms the strong baselines, underscoring the

potential of our framework to advance research and

development in LLM-based embeddings.

2 Related Work

Our work is situated within the field of Information

Retrieval (IR), specifically focusing on frameworks

that leverage Large Language Models (LLMs) for

Dense Retrieval.

LLMs for Dense Retrieval. Recent advance-

ments in this area have primarily addressed two key

challenges: (i): Overcoming LLMs’ Causal Atten-

tion Limitations by developing methods to enable

bidirectional attention within LLMs (Muennighoff,

2022; Muennighoff et al., 2024; BehnamGhader

et al., 2024; Lee et al., 2024), allowing models to

consider both past and future context when com-

puting embeddings, and (ii): Aligning LLM Pre-

training with Text Ranking by fine-tuning LLMs

via contrastive learning (Ma et al., 2023; Wang

et al., 2024; Lee et al., 2024). This process

can also be augmented with additional objectives

such as supervised fine-tuning (SFT) (Muennighoff

et al., 2024) or mask-filling tasks (BehnamGhader
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et al., 2024). An alternative approach proposed by

Springer et al. (2024) involves a prompting method

where the input sequence is duplicated, enabling

each token to attend to future tokens and mitigating

the contextualization issues inherent in causal at-

tention. While these methods have shown promise,

they generally do not explicitly enforce consistency

between the model’s understanding of relevance in

both the embedding and generation spaces. This

limitation restricts their ability to fully leverage

the remarkable generative capabilities of LLMs

for dense retrieval tasks. Our work, GRL, builds

upon these foundations while addressing their limi-

tations, introducing novel techniques to harmonize

embedding-based and generation-based relevance

scoring within a unified framework.

Frameworks of LLMs for Dense Retrieval.

Existing frameworks for LLMs in Dense Retrieval

have been constrained by their limited support for

LLM architectures and fine-tuning strategies. As

shown in Table1, SentenceTransformers(Reimers

and Gurevych, 2019) supports various types of

LLMs but is primarily designed for inference with-

out allowing fine-tuning, limiting its applicability

in advancing state-of-the-art dense retrieval meth-

ods. Some recent works (Muennighoff, 2022; Ma

et al., 2023; Lee et al., 2024), such as Echo (Wang

et al., 2024), GritLM (Muennighoff et al., 2024),

LLM2Vec (BehnamGhader et al., 2024), and the

models in the Hugging Face’s MTEB leaderboard2,

have introduced implementations for LLM-based

text embeddings. However, these approaches are

often tailored to specific model architectures and

training methods with hard-coded implementations,

thus restricting their adaptability and use across

different LLM architectures and fine-tuning strate-

gies to meet diverse development and application

demands. In contrast, our framework ULLME ad-

dresses these limitations by offering a flexible and

extensible platform. ULLME can accommodate a

diverse range of LLM backbones and supports vari-

ous training approaches, making it highly versatile

and broadly applicable.

3 ULLME - Unified framework for Large

Language Model Embedding

We present an overview of our ULLME framework

in Section 3.1 while Section 3.2 details the key

technical methods.

2
https://huggingface.co/spaces/mteb/

leaderboard

from ullme.models import ULLME

model = ULLME(

model_name_or_path="mistralai/Mistral-7B-v0.1",

model_backbone_type="mistral",

lora_name="ullme-mistral",

loar_r=16,

lora_alpha=32,

)

input_sentence = "This a example sentence."

model_inputs = model.tokenizer(

[input_sentence],

return_tensors='pt'

)

model_output = model(

input_ids=model_inputs['input_ids'],

attention_mask=model_inputs['attention_mask'],

is_generate=False

)

>> {'rep': (1, hidden_dim)}

Listing 1: Extending bidirectional attention for LLMs

via ULLME.

3.1 Overview

ULLME addresses the limitations of existing LLM-

based dense retrieval frameworks by offering a

flexible and comprehensive solution. The frame-

work operates in three main stages. First, it en-

ables bidirectional attention within LLMs by re-

placing the causal attention mask with a bidirec-

tional one. This crucial modification extends the

models’ ability to consider both past and future

context when generating embeddings, significantly

enhancing its capacity for dense retrieval tasks.

The transformed model is then returned as a Py-

Torch object, providing users with the flexibility to

integrate it into various frameworks or pipelines.

We will elaborate on this process in Section 3.2.1.

Second, ULLME supports a diverse array of fine-

tuning strategies, including Contrastive Learning,

Supervised Fine-tuning (SFT), Direct Preference

Optimization (DPO), and our novel Generation-

augmented Representation Learning (GRL). This

versatility allows for tailored optimization across

a wide spectrum of retrieval tasks and domains, as

detailed in Section 3.2.2. Finally, the framework

streamlines the evaluation process by incorporating

direct support for model validation using the Mas-

sive Text Embedding Benchmark (MTEB) library

(Section 3.3). This integration facilitates compre-

hensive assessment across numerous retrieval and

embedding tasks. By seamlessly combining these

elements, ULLME provides an extensive toolkit for

leveraging LLMs in diverse dense retrieval tasks,
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encompassing everything from initial model adap-

tation to fine-tuning and evaluation. Our compre-

hensive approach aims to accelerate research and

development for of LLM-based dense retrieval, of-

fering researchers and practitioners a comprehen-

sive platform for innovation and advancement.

3.2 Key Features

3.2.1 Enabling Bidirectional Attention

To enable bidirectional attention in LLMs, ULLME

requires only minimal code modifications, as

illustrated in Listing 1. The framework’s

user-friendly design allows for easy initializa-

tion with various LLM backbones by sim-

ply specifying the “model_name_or_path” and

“model_backbone_type” parameters. ULLME

seamlessly integrates with Hugging Face Trans-

formers, loading pre-trained LLMs directly from

their repository. Additionally, our framework sup-

ports parameter-efficient fine-tuning through Low-

Rank Adaptation (LoRA) (Hu et al., 2022), offer-

ing flexibility in model adaptation. Once initialized,

the model can be used to compute sequence repre-

sentations. The “is_generate” parameter plays a

crucial role in controlling the attention mechanism:

when set to “False”, the model employs bidirec-

tional attention, optimizing it for dense retrieval

tasks, while “True” reverts the model to causal

attention, mimicking the standard Hugging Face

Transformer model output. This dual functionality

allows ULLME to serve both as an advanced spe-

cialized embedding model and as a language model

when needed, providing developers with a flexi-

ble tool that can conveniently transition between

bidirectional and causal attention modes. ULLME

provides various methods for extracting text embed-

dings from LLMs, such as using representations

from the first token, last token, mean, or weighted

mean pooling. However, it defaults to averaging the

representation vectors from the final layers (mean)

for better performance on our datasets.

3.2.2 Fine-tuning Strategies

Our ULLME framework supports multiple fine-

tuning strategies, as illustrated in Listing 2.

Contrastive Learning. ULLME’s Contrastive

Learning objective utilizes in-batch negatives

(Chen et al., 2020; Gao et al., 2021b). The con-

trastive loss is formally defined as: LCL =

− log exp (srt(q,p+))
exp (srt(q,p+))+

∑
p−∈B

exp (srt(q,p−))
.

Here, B represents a mini-batch, q is the input

from ullme.trainer import GradCacheTrainer

trainer = GradCacheTrainer(

con_loss_type='NTXentLoss',

gen_loss_type='dpo', # 'sft'

use_kl_loss=True

)

trainer.fit_epoch(

model=model,

train_loader=train_dataloader,

)

Listing 2: Finetuning LLMs for text embedings via

ULLME.

query, p+ denotes the positive (relevant) passage,

and p− represents negative (non-relevant) passages

sampled from the current training mini-batch. The

function srt(q, p) computes the relevance score be-

tween a query and a passage using cosine similarity

of the induced representations for q and p. To en-

hance the effectiveness of Contrastive Learning,

especially under limited GPU memory constraints,

ULLME incorporates advanced techniques such as

GradCache (Gao et al., 2021a) and cross-device

contrastive loss computation. These optimizations

allow for efficient training with larger batch sizes

and more diverse negative samples, which are cru-

cial for learning high-quality representations.

Supervised Fine-tuning (SFT). In addition to

contrastive learning, ULLME supports SFT, a strat-

egy that enhances LLMs’ ability to generate high-

quality passages in response to queries. ULLME

implements SFT using a next-word prediction ob-

jective: LSFT = − 1
N

∑N
i=1 log πθ(wi|w<i, q).

Here, N is the length of the positive passage p+,

wi is the i-th token in p+, and πθ(w|x) is the con-

ditional likelihood of w given x, computed by the

LLM θ. Importantly, during SFT loss computation,

ULLME reverts to using causal attention, mirroring

standard LLM behavior.

Direct Preference Optimization (DPO).

ULLME incorporates Direct Preference Optimiza-

tion (DPO) (Rafailov et al., 2023) as an advanced

fine-tuning strategy, offering an alternative to

traditional Supervised Fine-tuning (SFT). DPO has

demonstrated superior effectiveness in LLM fine-

tuning. Moreover, the DPO approach inherently

accounts for both preferred and rejected outputs,

making it intuitively more suitable for aligning

models with text-ranking objectives compared to

SFT. In ULLME’s implementation, the ground-

truth relevant passage p+ for a query q is treated as
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the preferred output, while negative and irrelevant

passages p− are considered dispreferred. The DPO

loss function is designed to encourage the model

to assign higher generation probabilities to p+

compared to any p−: LDPO =

− log σ
(

β log πθ(p
+|q)

πref (p+|q)
− β log πθ(p

−|q)
πref (p−|q)

)

. In

this formulation, σ represents the sigmoid function,

β is a scaling factor, and πref (p|q) denotes the

conditional likelihood computed by the original

pre-trained LLM (the reference model).

In addition to the standard DPO formulation,

ULLME includes implementations of advanced

variants such as Kahneman-Tversky Optimization

(KTO) (Ethayarajh et al., 2024) and Contrastive

Preference Optimization (CPO) (Xu et al., 2024).

The modular architecture of ULLME facilitates

the seamless integration of new preference opti-

mization techniques as they emerge, ensuring that

the framework remains at the forefront of LLM

fine-tuning advancements. Finally, to maintain con-

sistency with the model’s pre-training paradigm,

ULLME employs causal attention when computing

the DPO loss, similar to the approach used in SFT.

Generation-augmented Representation

Learning (GRL). ULLME further introduces

a novel fine-tuning strategy GRL that explicitly

aligns the LLMs’ understanding of passage-query

text relevance in embedding and generation

spaces to boost representation learning. As

such, GRL first computes a generation-based

relevance score sgen(q, p) utilizing the con-

ditional generation likelihood of a passage

candidate p given input query q from LLMs:

sgen(q, p) = 1
t

∑t
i=1 log πθ(wi|w<i, q), where t

is the length of p and wi is the i-th token in p.

Next, we seek to recognize the consistency of the

query-passage relevance scores obtained from the

representations (i.e., srt(q, p)) and the generation

likelihood (i.e., sgen(q, p)). Particularly, let U be

the set of m candidate passages for q. For each can-

didate passage pi ∈ U , we compute srt(q, pi) and

sgen(q, pi), then normalize these scores to obtain

the representation and generation relevance distri-

butions over U : Prt(q, pi) = exp(srt(q,pi))∑
p′∈U exp(srt(q,p′))

and Pgen(q, pi) =
exp(sgen(q,pi))∑

p′∈U exp(sgen(q,p′))
.

Afterward, we minimize the KL di-

vergence between their distributions:

LKL =
∑

p∈U Prt(q, p) log
Prt(q,p)
Pgen(q,p)

, serv-

ing as a training signal to enrich representation

learning for LLMs.

from ullme.models import WrappedULLME

from ullme.eval import eval_mteb_dataset

model = WrappedULLME(

model_name_or_path="mistralai/Mistral-7B-v0.1",

model_backbone_type="mistral",

lora_name="ullme-mistral",

loar_r=16,

lora_alpha=32,

model_checkpoint="path/to/your/checkpoint"

)

eval_result = eval_mteb_dataset(

model=model,

dataset_name='MSMARCO',

langs=['eng'],

)

>> {'eng': 35.8}

Listing 3: Evaluation on MTEB dataset via ULLME.

Finally, the overall training loss for GRL com-

bines the contrastive loss LCL, the direct pref-

erence optimization loss LDPO, and the KL-

divergence loss LKL: LGRL = λCLLCL +
λDPOLDPO + λKLLKL, where λCL, λDPO, and

λKL are weighting hyperparameters.

3.3 Evaluation Process

ULLME streamlines the evaluation process by

integrating direct support for evaluating LLM-

based text embedding models over MTEB3, a

widely-used Massive Text Embedding Benchmark

with diverse tasks and datasets. This integration

facilitates comprehensive model development with

different methods and extensive assessment across

numerous retrieval and embedding tasks in a sin-

gle framework. ULLME wraps a fine-tuned model

into a “WrappedULLME” instance, ensuring compat-

ibility with MTEB’s requirements for direct eval-

uation. In addition to supporting ULLME’s fine-

tuned models, our evaluation function is designed

to perform seamlessly with most LLM models

available in the Hugging Face ecosystem, including

the latest LLM-Embedding models in the MTEB

leaderboard. Users can easily specify the desired

model through the “model_name_or_path” pa-

rameter, enabling effortless evaluation of various

LLMs without the need for extensive configuration.

ULLME allows users to select specific datasets and

language subsets for evaluation. The evaluation

results are reported using MTEB’s predefined main

scores of the corresponding dataset, ensuring stan-

dardized and comparable metrics across different

models, as demonstrated in Listing 3.

3
https://github.com/embeddings-benchmark/mteb
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4 Experiments

Our ULLME framework supports various LLM

architectures and fine-tuning strategies for text em-

beddings with convenient interface. To highlight

the framework’s flexibility, we demonstrate the

operations of ULLME with three different base

LLMs ranging from 1.5B to 8B parameters: Phi-

1.5B (Li et al., 2023), Mistral-7B-Instruct-v0.2

(Jiang et al., 2023), and Meta-LLama3-8B-Instruct

(AI@Meta, 2024). For each LLM, we evaluate

ULLME’s performance for different combinations

of attention and fine-tuning approaches, includ-

ing: Base: Original causal model, Causal + CL:

Causal model fine-tuned with Contrastive Learn-

ing, Bi + CL: Bidirectional-enabled model fine-

tuned with Contrastive Learning, and Bi + CL +

SFT: Bidirectional-enabled model fine-tuned with

Contrastive Learning and SFT. In addition, we re-

port the performance of our Generation-augmented

Representation Learning (GRL) method for fine-

tuning LLMs in ULLME, featuring the full model

GRL and GRLSFT , a variant of GRL that replaces

DPO with SFT for tuning. Finally, we compare

the performance of ULLME’s models with recent

state-of-the-art methods for LLM-based text em-

beddings, including Echo (Wang et al., 2024) and

LLM2Vec (BehnamGhader et al., 2024).

Settings. Following prior work (Qu et al., 2021;

Ren et al., 2021; Ma et al., 2023), we use a cu-

rated subset of the MSMARCO dataset (Bajaj et al.,

2018) for model training. MTEB datasets are em-

ployed for evaluation. To train the models, we

utilize LoRA (Hu et al., 2022) with r = 16 and

α = 32, and enable various optimization tech-

niques, i.e., GradCache, gradient checkpointing,

mixed precision training, and FSDP (Zhao et al.,

2023), to minimize GPU memory requirements.

We utilize the AdamW optimizer (Loshchilov and

Hutter, 2017) with a learning rate of 2e-4 and a

batch size of 512 with the number of hard neg-

ative passages per example was set to 8. We

train the models for one epoch on MSMARCO.

The weights for the GRL loss components include

λCL = λKL = 1 and λDPO = 0.5. The scaling

factor β in the DPO loss was set to 0.1.

Results. Table 2 showcases the performance of

various models on the MTEB datasets. Compared

to previous methods Echo and LLM2Vec, it is clear

that our ULLME framework can be used to train

diverse and competitive LLM-based embedding

models for different base LLMs and tasks in MTEB.

Phi 1.5 Mistral-2-7B LlaMa-3-8B

Echo* 36.00 50.26 51.11
LLM2Vec∗ 54.47 57.47 58.04

Base 31.15 42.31 42.33
Causal + CL 51.83 54.03 54.68
Bi + CL 52.70 55.41 55.86
Bi + CL + SFT 53.88 57.01 56.83

GRLSFT 55.01 58.37 57.50
GRL (ours) 55.76 59.50 59.27

Table 2: Model performances on MTEB datasets us-

ing MSMARCO for training data. The numbers are

averaged over 56 datasets of MTEB, covering diverse

tasks such as Retrieval, Reranking, Clustering, Pair Clas-

sification, Classification, Semantic Textual Similarity,

and Summarization. The best results are in bold and ∗

indicates our implementation/reproduced results using

the same training data. Detailed performance for all

datasets in MTEB is reported in Table 3.

Among various architectures in ULLME, we ob-

serve that the combination of contrastive learning

and SFT leads to better performance than the indi-

vidual techniques, demonstrating their complemen-

tary benefits for LLM-based embeddings. Notably,

our proposed Generation-augmented Representa-

tion Learning (GRL) method in ULLME consis-

tently outperforms the best baseline, LLM2Vec,

across different base models ranging from 1.5B to

8B parameters. This highlights the effectiveness

of using generation probabilities to guide repre-

sentation learning in GRL. Finally, we note that

the inference time of the fine-tuned models with

ULLME is comparable to the original LLMs, pro-

cessing 16K, 12K, and 12.8K tokens per second

for Phi-1.5B, Mistral-7B-Instruct-v0.2, and Meta-

LLama3-8B-Instruct, respectively.

5 Conclusion

We introduce ULLME (Unified framework for

Large Language Model Embedding), a compre-

hensive and flexible toolkit for leveraging LLMs

for text embeddings and dense retrieval tasks.

Our work addresses critical limitations in exist-

ing frameworks for LLM embeddings by providing

support for various LLM architectures, fine-tuning

strategies, and benchmark evaluation within a sin-

gle, user-friendly framework. Our experimental

results demonstrate the effectiveness of ULLME,

particularly the GRL strategy, in improving dense

retrieval performance across various LLM scales

and tasks. Our potential future directions include

exploration of better techniques to leverage the

generative and discriminative capabilities of LLMs,

235



and extension of the framework to support emerg-

ing LLM architectures and training paradigms. We

anticipate that ULLME will facilitate broader appli-

cations of LLM embeddings in downstream tasks,

ranging from deep context understanding require-

ments like sentiment analysis (Gupta et al., 2024)

to text style comprehension tasks such as author-

ship attribution (Rivera-Soto et al., 2021; Man and

Huu Nguyen, 2024), thereby contributing to the

advancement of natural language processing and

information retrieval fields.
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A Detailed Performance on MTEB

We present the full performance of the three

ULLME-released models – Phi-1.5 (Li et al., 2023),

Mistral-2-7B-instruct (Jiang et al., 2023), and

LLaMa-3-B-instruct (AI@Meta, 2024) – across

the MTEB datasets in Table 3.
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Task Phi 1.5 Mistral-2-7B LlaMa-3-8B

AmazonCounterfactualClassification 67.79 75.28 73.69
AmazonPolarityClassification 72.03 77.40 78.51
AmazonReviewsClassification 35.58 39.78 38.31
Banking77Classification 84.24 84.57 84.76
EmotionClassification 45.83 45.02 49.48
ImdbClassification 66.73 72.47 74.97
MassiveIntentClassification 70.43 73.41 73.1
MassiveScenarioClassification 76.75 78.28 78.59
MTOPDomainClassification 92.58 94.72 94.70
MTOPIntentClassification 69.63 77.05 73.49
ToxicConversationsClassification 66.26 60.62 64.21
TweetSentimentExtractionClassification 55.92 55.99 56.63
ArxivClusteringP2P 42.29 46.97 46.46
ArxivClusteringS2S 31.65 39.92 37.91
BiorxivClusteringP2P 36.25 38.18 38.35
BiorxivClusteringS2S 30.46 31.48 30.32
MedrxivClusteringP2P 31.82 32.32 32.19
MedrxivClusteringS2S 30.18 26.95 26.01
RedditClustering 49.31 41.45 41.96
RedditClusteringP2P 55.85 62.26 61.64
StackExchangeClustering 60.6 62.44 61.06
StackExchangeClusteringP2P 31.79 32.99 33.77
TwentyNewsgroupsClustering 42.95 38.52 41.32
SprintDuplicateQuestions 92.78 92.2 94.73
TwitterSemEval2015 59.19 67.35 69.0
TwitterURLCorpus 85.06 86.81 85.61
AskUbuntuDupQuestions 59.23 63.62 63.43
MindSmallReranking 31.70 32.30 31.66
SciDocsRR 79.29 83.47 81.42
StackOverflowDupQuestions 48.61 52.56 52.38
ArguAna 55.06 45.93 46.78
ClimateFEVER 22.28 28.10 22.22
CQADupstackTexRetrieval 22.39 25.84 28.30
DBPedia 30.45 46.55 46.36
FEVER 58.11 79.39 61.52
FiQA2018 32.25 42.97 42.28
HotpotQA 48.44 64.04 67.41
MSMARCO 28.65 34.22 35.65
NFCorpus 34.54 39.37 39.37
NQ 38.37 60.73 61.36
QuoraRetrieval 86.49 88.33 87.75
SCIDOCS 16.46 21.00 21.13
SciFact 63.41 72.86 72.38
Touche2020 16.56 30.52 27.13
TRECCOVID 54.21 84.74 83.56
BIOSSES 85.35 78.64 83.74
SICK-R 70.49 70.31 69.11
STS12 71.83 67.25 69.95
STS13 80.05 82.35 79.58
STS14 74.19 75.04 73.67
STS15 83.0 82.69 83.47
STS16 79.77 81.15 81.58
STS17 88.49 86.38 86.3
STS22 67.77 68.54 67.35
STSBenchmark 80.81 78.21 80.25
SummEval 30.61 30.56 31.10

Average 55.76 59.50 59.27

Table 3: Performance of ULLME’s released models on full MTEB benchmark using MSMARCO as training data.
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