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Abstract—In wireless Internet of Things (IoT) networks,
Federated Reinforcement Learning (FRL) has emerged as a
decentralized strategy for data-driven decision-making, enabling
devices to learn directly from real-time environmental inter-
actions, sidestepping the need for labeled data. This method
promises enhanced data privacy and finds practical applications
in autonomous driving, smart grids, and industrial automation.
However, the integrity of FRL can be compromised by malicious
clients injecting false data, underlining the need for a fault-
tolerant mechanism to sustain the robustness and accuracy of the
learning phase. Moreover, the inherent client heterogeneity within
IoT networks propels the demand for judicious client selection,
optimizing computational and communication resources. This
paper investigates client selection problem within a fault-tolerant
FRL framework for wireless IoT networks. Our objective is to
explore the tradeoff between maximizing client participation and
minimizing energy consumption of IoT devices. We formulate
our problem as a mixed-integer linear programming (MILP)
model and design an efficient algorithm with low computational
complexity to address it. Extensive simulations are conducted to
demonstrate the superiority of our proposed algorithm.

Index Terms—Federated reinforcement learning, internet of
things, client selection, fault tolerance, energy consumption.

I. INTRODUCTION

Internet of Things (IoT) has become indispensable in a
myriad of applications and services due to its advanced
embedded monitoring and data collection capabilities [1].
The collected IoT data are usually offloaded to the remote
cloud or edge servers for processing by machine learning
(ML) techniques. However, relying on third-party edge servers
or the cloud might introduce privacy risks when those data
encompass sensitive details such as an individual’s location or
preferences [2], [3]. Federated learning is proposed to address
this challenge by allowing different IoT devices to train their
ML models locally and only share the ML models in the edge
servers without sharing the raw data [4].

In certain applications, such as autonomous vehicles and
online gaming, the labeled training data are often absent.
Instead, decisions are usually derived from real-time interac-
tions with a continuously changing environment. This is where
Federated Reinforcement Learning (FRL) proves its worth
[5]. Integrating the principles of both federated learning and
reinforcement learning (RL), FRL empowers multiple agents
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(like IoT devices) to collaboratively refine a shared RL model
while upholding data privacy [6]. In this setup, every agent
undergoes local RL training within its unique environment,
assimilating knowledge through interactions and enhancing its
local model via RL techniques. These refined models are then
transmitted to a centralized server, where they are merged to
construct an improved amd more robust global model [7].

FRL, despite its merits, remains susceptible to threats like
Byzantine attacks [8]. In such attacks, malicious clients can
manipulate authentic models and gradients, intentionally cor-
rupting the training data. This could mislead the global model,
making it assimilate inaccurate data, or even trigger system
breakdowns [9]. The integration of adversarial clients into FRL
can notably hinder its convergence, or in extreme cases, halt
the learning process entirely. Hence, it is important to design
fault-tolerant FRL systems in IoT networks [10].

In wireless FRL systems, the diverse capabilities of clients,
marked by distinct computation and communication capacities,
emphasize the critical importance of client selection within
FRL. The choice of clients in every global iteration of the FRL
training significantly influences training duration. A flawed se-
lection can result in a straggler dilemma, leading to prolonged
training time. Traditionally, the strategy behind client selection
leaned towards engaging as many clients as possible within
the designated time frame of each global iteration, based on
the presumption that increased participation can hasten the FL
training convergence [11], [12]. Yet, this approach might not
always serve the best because extensive participation might
intensify energy consumption during both the training and data
transmission stages [13], [14]. Therefore, the tradeoff between
maximizing the number of selected clients and minimizing the
total energy consumption needs to be explored.

Client selection can filter out malicious participants, en-
hance training efficacy, and regulate energy usage, paving
the way for fault-tolerant, energy-efficient, and time-optimized
FRL systems. Therefore, in this paper, we investigate the
client selection problem in fault-tolerant FRL framework
within wireless IoT networks to explore the tradeoff between
maximizing the participant client number and minimizing the
system energy consumption. We design an algorithm with
low computational complexity to address this problem and
demonstrate its performance via extensive simulations.

The remainder of this paper is organized as follows. The
related work is summarized in Section II. Section III provides
an analysis of our system architecture, security model, latency
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model, and energy consumption model. The problem is formu-
lated in Section IV. Section V outlines our proposed algorithm.
In Section VI, simulation results are presented and analyzed.
Finally, Section VII concludes this paper.

II. RELATED WORK

The idea of FRL has grown significantly in acceptance and
has been the focus of multiple research. Wu et al. [15] intro-
duced CAFR, a novel approach that combines asynchronous
federated learning and deep reinforcement learning for coop-
erative caching in vehicular edge computing (VEC). Zhang et
al. [16] proposed a FRL-based algorithm for task offloading
and resource allocation in future connected automated vehicle
(CAV) networks, addressing low-latency data sharing for coop-
erative automated driving. The algorithm optimizes task exe-
cution delay while considering communication and computing
constraints, demonstrating improved system performance in
simulations and hardware tests. Nguyen et al. [7] proposed
DeepMonitor, a traffic monitoring framework for SDN-based
IoT networks that enhances flow-table capacity and improves
intrusion detection performance compared to existing solutions
like FlowStat, as demonstrated through extensive emulations.

Multiple research has explored the development of secure
and fault-tolerant FRL systems. Tang et al. [17] investigated a
node security problem and an improved practical Byzantine
fault tolerance (EPBFT) algorithm to safeguard the traffic
offloading procedure. They formulated the traffic offloading
challenge as a Markov decision problem (MDP) and ap-
plied the Blockchain-based Federated Asynchronous Advan-
tage Actor-Critic (BFA3C) algorithm for its resolution. Islam
et al. [18] investigated backdoor attacks and proposed versatile
defense strategies to protect against backdoor attacks in multi-
UAV scenarios within the context of federated deep reinforce-
ment learning. Fan et al. [19] investigated a FRL framework
that guarantees convergence and robustness to system failures
and attacks, without the need to share raw trajectories. The
framework is shown to improve sample efficiency with the
number of agents and is empirically validated on RL bench-
mark tasks. However, none of the above work investigates the
client selection problem in the FRL framework.

Client selection in federated learning framework has been
investigated in multiple research. Zhang et al. [20] proposed
a mobile edge computing (MEC) system and an adaptive
client selection algorithm based on reinforcement learning
to minimize energy consumption and training delay in the
federated learning framework. Qiao et al. [21] proposed a fed-
erated learning-based content caching system for low-latency
5G edge networks. It employs deep reinforcement learning to
optimize client selection and local iteration frequency, signif-
icantly improving cache efficiency. Yu et al. [22] designed
the ELASTIC algorithm, which dynamically balances client
selection and energy consumption, optimizing model accuracy
in IoT networks. However, none of the above works consider
the client selection problem in fault-tolerant FRL systems.

To the best of our knowledge, no prior work has addressed
the client selection problem within a fault-tolerant FRL frame-

work in wireless IoT networks. In this paper, we seek to bridge
this research gap by delving into this problem.

III. SYSTEM MODEL

In our proposed system model, we incorporate an FRL
framework within wireless IoT networks, depicted in Fig. 1.
The FRL mechanism functions in an iterative manner, includ-
ing both global and local training stages. Initially, each client
accesses the global policy and conducts local policy update on
its dataset using reinforcement learning techniques, such as the
policy gradient algorithm [23]. After local training concludes,
clients relay their updated parameters to a centralized server
located at the base station (BS). The server subsequently
aggregates these parameters to enhance the global policy. This
iterative process continues, consistently refining the policy
based on individual client experiences, until either a speci-
fied accuracy threshold or a predefined number of rounds is
attained.

Fig. 1. Federated reinforcement learning in wireless IoT networks.

Within the BS’s coverage area, assume that there are K
clients (i.e., IoT devices) and we designate the set of client
indices as K = 1, 2, 3, ...,K. Each client is represented by
a binary variable xk, indicating its participation status in
the ongoing FRL global iteration. If client k is selected,
xk = 1; otherwise, xk = 0. During each global iteration,
the BS disseminates the global policy parameter θ to every
client. Subsequently, individual clients refine their policies,
denoted as πθ(a|s), through interactions with their local
environments. Here, πθ(a|s) determines the probability of
an agent selecting action a in state s. Each client, based
on its current state s, generates an action a and receives a
corresponding reward R(s, a). The underlying goal of the RL
algorithm is to maximize the cumulative discounted reward,
expressed as J(θ) =

∑∞
t=0 γ

tR(st, at), where γ denotes the
discount factor and R(st, at) symbolizes the time-slot-specific
reward. State-action-reward trajectories (i.e., data samples) are
accumulated in the replay memory. From this memory, batches
of trajectories are drawn and utilized to adjust the policy,
following the update rule: θ = θ+η∇J(θ), with η representing
the learning rate [24].

A. Fault Tolerant Model
In order to establish a fault-tolerant FRL system, each

client forwards its gradient, denoted as µk, to the BS during
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every global round. However, malicious clients might transmit
arbitrary vectors. To counteract this, the BS processes these
gradients to pinpoint and filter out potential malicious clients.
Consequently, the aggregation phase only includes gradients
from clients presumed to be trustworthy [19].

We adopt the filtering model to identify the malicious clients
[19], [25]. The filtering model assumes that all good clients are
clustered in a small region. The maximum distance between
any two good agents is Tµ = 2σ

√
2 log(2K/δ)/B, where

σ is the variance bound, δ ∈ (0, 1) is a constant, and B
is the batch size [25]. A set of vector medians S can be
constructed, where each client is chosen if it is close to more
than K/2 clients, i.e., S = {µk}, where µk should satisfy
|{µk′ : ∥µk′ − µk∥ ≤ Tµ}| > K

2 . Here, |·| indicates the size
of a set. Next, we find a mean of median vector µmom

k from S,
which is defined as the client closest to the mean of all vectors
in S, i.e., µmom

k = argmin
∥∥µk − S̄

∥∥. Lastly, the set of reliable
clients can be calculated as those lying within a distance to
µmom
k that is smaller than or equal to the maximum distance

Tµ [19], i.e.,

Rc = {k ∈ K : ∥µk − µmom
k ∥ ≤ Tµ} . (1)

B. Latency Model
In a given global round, a client’s latency comprises both

its local computation duration and the time taken to upload
the policy parameter to the BS. It’s worth noting that the time
for downloading the global model from the BS is typically
much smaller in comparison to the upload duration; hence, we
disregard it in our analysis [22]. Within each global round, the
local computation duration for client k can be calculated as
[26]

tcomp
k = Ik

CkDk

fk
, (2)

where Ik is the number of local iterations, Ck is the number
of CPU cycles in one local iteration required to train a sample,
Dk is the number of samples, and fk is the CPU frequency.

Client k’s wireless data rate for uploading policy parameters
can be calculated according to the Shannon equation, i.e.,
rk = Wk log2

(
1 + pkGk

N0Wk

)
, where Wk is the allocated band-

width, pk transmission power, N0 is the noise power spectrum
density, and Gk is the channel gain between client k and the
BS. Then, client k’s uploading latency becomes [22]

tupk =
sk
rk

=
sk

Wk log2

(
1 + pkGk

N0Wk

) , (3)

where sk is the size of the policy parameters.

C. Energy Consumption Model
The energy consumed by a client encompasses the energy

expended during local computation and the energy used during
the policy parameter upload [22]. Typically, the energy utilized
per CPU cycle is denoted by rf2

k , with r representing the
switching capacitance and fk indicating the CPU frequency
[27]. Hence, the energy required for local computation is given
by:

Ecomp
k = IkCkDkrf

2
k , (4)

where the product IkCkDk means the total CPU cycles for
client k in each global round.

The energy expended to upload the policy parameter from
client k to the BS is determined by multiplying the transmis-
sion power with the transmission duration, expressed as:

Eup
k = pk × tupk =

pksk

Wk log2

(
1 + pkGk

N0Wk

) . (5)

IV. PROBLEM FORMULATION

In this section, we formulate our client selection problem
in fault-tolerant FRL system for wireless IoT networks as
follows:

P0: max
xk,τ

λ
∑
k∈K

xk − (1− λ)
∑
k∈K

xk

(
Ecomp

k + Eup
k

)
(6)

s.t. ∥µk − µmom
k ∥xk ≤ Tµ, ∀k ∈ K, (7)

(
tcomp
k + tup

k

)
xk ≤ τ, ∀k ∈ K, (8)

xk ∈ {0, 1}, ∀k ∈ K. (9)

The objective of problem P0 in Eq. (6) is to optimize the
tradeoff between maximizing the number of selected clients
and minimizing the energy consumption of clients, where the
weight parameter λ ∈ [0, 1] is a constant to adjust the weights
of the two objectives. Eq. (7) identifies the malicious clients
and ensures only the trustworthy clients are selected. Eq. (8)
imposes each selected client’s latency not to exceed the global
iteration time τ . Eq. (9) indicates that xk is a binary variable.

Note that problem P0 is a mixed integer linear program-
ming (MILP) problem, making it computationally intensive
to achieve an efficient solution. We design an algorithm to
address this problem with low computational complexity in
the next section.

V. PROPOSED ALGORITHM

The complexity of problem P0 is rooted in the global
iteration time, τ , which intertwines the selection xk of each
client, as depicted in Eq. (8). In other words, if Eq. (8) is
excluded, problem P0 can be divided into K independent
subproblems, where each determines the selection status of
an individual client. As a result, the core strategy of our
proposed algorithm aims to sever this linkage. We achieve this
by enumerating τ based on any client’s latency tcomp

k + tup
k

(i.e., enumerating the possible slowest client). Then, we select
the τ that achieves the maximum object value.

We assume that client i is the slowest one and so the global
iteration time τi = tcomp

i + tup
i . The objective function in Eq.

(6) is equivalent to
∑

k∈K[λ−(1−λ)(Ecomp
k +Eup

k )]xk. Then,
problem P0 can be separated into the following subproblems
for each client k:

P1: max
xk

[λ− (1− λ)(Ecomp
k + Eup

k )]xk (10)

2024 IEEE International Conference on Communications (ICC): Next-Generation Networking and Internet Symposium

461
Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on April 04,2025 at 22:59:48 UTC from IEEE Xplore.  Restrictions apply. 



s.t. ∥µk − µmom
k ∥xk ≤ Tµ, (11)

(
tcomp
k + tup

k

)
xk ≤ τi, (12)

xk ∈ {0, 1}. (13)

The candidate set V of problem P1 is the clients that satisfy
Eq. (11) and Eq. (12), i.e.,

V = {k ∈ K : ∥µk − µmom
k ∥ ≤ Tµ, tcomp

k + tup
k ≤ τi}. (14)

To optimize the objective of problem P1 as presented in Eq.
(10), we examine the coefficient λ − (1 − λ)(Ecomp

k + Eup
k ).

If this coefficient is positive, we set xk = 1; conversely, if
it is negative, we assign xk = 0. Therefore, the solution of
problem P1 can be described as:

xk =

{
1, if λ− (1− λ)(Ecomp

k + Eup
k ) ≥ 0, k ∈ V,

0, otherwise.
(15)

Our proposed algorithm is delineated in detail in Algorithm
1. From Lines 2-10, we iterate through each potential slowest
client. During Lines 4-7, the client selection decision is deter-
mined for each client. In Lines 8-9, we compute the objective
value associated with these client selection decisions. In Lines
11-12, the optimum solution is selected after comparing all
objective values. Note that this algorithm functions within a
single global iteration of the FRL training process, and the
algorithm is repeatedly executed for client selection until the
FRL process terminates.

Algorithm 1: Proposed Algorithm

Input : K, λ, Ecomp
k , Eup

k , tcomp
k , tup

k , µk, µmom
k ,

and Tµ.
Output: xk

1 Possible objective value vector P = ∅;
2 for i = 1, ...,K do
3 Assume τi = tcomp

i + tup
i ;

4 for k = 1, ...,K do
5 Calculate the candidate clients V according

to Eq. (14);
6 Calculate xk according to Eq. (15);
7 end
8 Calculate the objective value p according to Eq.

(6);
9 P [i] = p;

10 end
11 Choose i that achieves the largest P [i];
12 Choose τi and corresponding xk as the optimum

solution;

VI. PERFORMANCE EVALUATION

In this section, we present simulations to assess the perfor-
mance of our proposed algorithm, which we label as Propose.
Our simulations are executed on a Dell towerstation equipped
with an Intel Xeon(R) W-2245 CPU @ 3.90GHz (16 CPUs),
128GB RAM, and an NVIDIA Quadro RTX 6000/8000 GPU.
For a comparative analysis, we incorporate three benchmark
algorithms: Time-Average, Attack-Aware, and Random. The
Time-Average method, inspired by [28], determines the global
iteration time based on the average latency of all clients and
then excludes those whose latencies exceed the global iteration
time. Meanwhile, the Attack-Aware approach, inspired by [19],
selectively excludes unreliable clients within the FRL system
by the filtering model. Lastly, Random chooses clients at
random during each global iteration.

In our simulation, there are K = 10 IoT devices uniformly
distributed in a 2 km × 2 km area. The path loss between each
IoT device and the BS follows 128.1 + 37.6 lg dk, where dk
is the distance between client k and the BS. The transmission
power pk = 1 W, allocated bandwidth Wk = 1 MHz, and
the noise power spectrum density N0 = −90 dBm/Hz. The
weight coefficient λ = 0.65. For simulating the environment of
the IoT devices, we adopt the CartPole reinforcement learning
setting [29]. In each global iteration, each client trains its local
policy over Dk = 500 samples and the batch size B = 16.
Each client runs 1 epoch for local training, i.e., Ik = 1. The
required CPU cycles for training a sample Ck is randomly
chosen from the uniform distribution Ck ∼ U (3, 5) × 105.
The CPU frequency fk is randomly selected from 10 to 20
GHz, and the switch capacitance coefficient r = 10−28. The
parameters in the fault-tolerant model σ and δ are set as 0.06
and 0.6, respectively. The above parameters are consist with
[19], [22]. Note that all the above parameters are default values
and may be adjusted when we analyze their impact on the
performance.

Fig. 2 illustrates the performance of our proposed algorithm
and three benchmark algorithms with different numbers of
clients ranging from 10 to 30. It can be observed that Propose
achieves better performance than the other three benchmark
algorithms, which is attributed to the efficient management of
the trade-off between the number of chosen clients and energy
consumption. This is because Time-Average method chooses
the average latency of all clients as the global iteration time,
discarding any client whose latency surpasses this average,
which does not explore the optimum client selection. Attack-
Aware filters out the unreliable clients but does not optimize
the energy consumption. Random selects clients randomly and
so does not achieve optimum. Besides, the performance of
Propose increases as the number of clients grows because
more clients means the number of selected clients can be
higher, leading to a larger objective value.

Fig. 3 shows the return reward of our proposed algorithm
and three benchmark algorithms within the context of the
CartPole environment-based FRL system in different rounds
(i.e., global iterations). We adopt the random noise attack
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Fig. 2. Objective value vs number of clients.

where malicious clients intentionally transmit random noise
data to the BS. Time-Average does not filter out malicious
clients, causing a significant degradation in learning quality
as these clients send random vectors to the BS. Similarly,
Random selects clients randomly and offers no resistance
to the noise, resulting in diminished rewards compared to
Propose and Attack-Aware. Propose achieves a similar reward
with Attack-Aware while it performs better in addressing the
client selection problem, as shown in Fig. 2.

Fig. 3. Reward return vs number of rounds.

Fig. 4 compares the objective value of our proposed algo-
rithm and three benchmark algorithms with different numbers
of samples ranging from 400 to 550. A larger sample size
leads to longer parameter uploading latency and higher energy
consumption. Hence, fewer clients will be selected to satisfy
the global iteration time constraint, leading to a smaller
objective value. Therefore, the object value of all algorithms
decreases as the number of samples increases, except for
Random. Besides, our proposed algorithm Propose achieves
a higher object value than other benchmark algorithms.

In Fig. 5, the impact of an increasing number of attacks on
the objective value across all algorithms is depicted. As the

Fig. 4. Objective value vs number of samples.

number of attacks swells, both Propose and Attack-Aware see
their objective values diminish. This is because they exclude
a higher number of malicious clients when the number of
attacks increases. Consequently, the number of selected clients
declines, leading to a reduction in the objective value. Con-
trarily, the objective values of Time-Average and Random are
not affected by the number of attacks, given their indifference
to the presence of malicious clients. Similar to Fig. 2, Propose
outperforms all benchmark algorithms.

Fig. 5. Objective value vs number of attacks.

VII. CONCLUSION

In this study, we have investigated the client selection
problem in the fault-tolerant FRL framework for wireless IoT
networks to address challenges arising from client heterogene-
ity and potential malicious activities. We have formulated the
client selection problem as an MILP model. An efficient algo-
rithm with low computational complexity has been designed to
address our problem. Through extensive simulations, we have
demonstrated the robustness and superiority of our proposed
solution.
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