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Abstract

Few-shot Continual Relations Extraction
(FCRE) is an emerging and dynamic area of
study where models can sequentially integrate
knowledge from new relations with limited la-
beled data while circumventing catastrophic
forgetting and preserving prior knowledge from
pre-trained backbones. In this work, we in-
troduce a novel method that leverages often-
discarded language model heads. By employ-
ing these components via a mutual informa-
tion maximization strategy, our approach helps
maintain prior knowledge from the pre-trained
backbone and strategically aligns the primary
classification head, thereby enhancing model
performance. Furthermore, we explore the
potential of Large Language Models (LLMs),
renowned for their wealth of knowledge, in
addressing FCRE challenges. Our comprehen-
sive experimental results underscore the effi-
cacy of the proposed method and offer valuable
insights for future work.

1 Introduction

Continual Relations Extraction (CRE) (Nguyen
et al., 2023; Le et al., 2024c; Nguyen et al.) is
a learning scenario that requires a model to identify
emerging relationships between entities or objects
in texts (Baldini Soares et al., 2019; Lai et al., 2022;
Man et al., 2022) while maintaining the accuracy of
existing classifications and avoiding the problem of
Catastrophic forgetting (Thrun and Mitchell, 1995;
French and Chater, 2002; Le et al., 2024b; Hai et al.,
2024; Phan et al., 2022). In many real-world situa-
tions, models must learn from a few new samples
due to the limited availability of labeled training
data for relations. As a result, Few-short Continual
Relation Extraction (FCRE) methods have been
proposed (Qin and Joty, 2022; Chen et al., 2023)
to enable models to solve new tasks where each
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Figure 1: Accuracy drop (%) after learning eight tasks
of methods on TACRED 5-way-5-shot. Lower is better.

new relation has only a minimal number of corre-
sponding samples. However, due to the lack of data,
FCRE models are often biased towards the current
task compared to related scenarios, which can lead
to forgetting previous knowledge and losing highly
general priori from the pre-trained backbone. Thus,
the challenge of FCRE is not only catastrophic for-
getting but also severe overfitting.

Recent works (Wang et al., 2023; Qin and Joty,
2022; Chen et al., 2023) tackles these issues by
employing memory-based approaches inspired by
traditional Continual Learning methods (Rolnick
et al., 2019; Buzzega et al., 2020; Lopez-Paz
and Ranzato, 2017; Van et al., 2022; Le et al.,
2024a), along with various strategies to enhance the
model’s ability to distinguish relation representa-
tions. Nevertheless, these methods solely fine-tune
pre-trained BERT-based backbones for few-shot
tasks, which leads to eroding prior knowledge from
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Figure 2: Generalization gap regarding loss of mod-
els after training each task (TACRED 5-way-5-shot,
seed=100).

the pre-trained model and hindering the final perfor-
mance. Additionally, these methods often neglect
the pre-trained LM head in favor of training a new
classifier from scratch, even though this component
contains rich and general knowledge that remains
untapped. Therefore, we propose our Mutual Infor-
mation Maximization (MIM) strategy that leverages
pre-trained LM heads during training FCRE mod-
els for the first time. Our proposed strategy not only
helps preserve the knowledge on the backbone but
also assists in aligning the main classifier to im-
prove representation learning. Extensive experi-
mental results on benchmark datasets demonstrate
the effectiveness of our novel approach in preserv-
ing the pre-trained LM’s generalization capability
and reducing forgetting, leading to remarkable re-
sults.

Furthermore, pre-trained Large Language Mod-
els (LLMs) (Touvron et al., 2023; Jiang et al.,
2023) with billions of parameters are known for
their excellence in autoregressive text generation
tasks. They have also been extensively studied
in text classification and information extraction
(Zhao et al., 2021; Wei et al., 2023). However,
these models often underperform compared to dis-
criminative encoder models like BERT due to their
generation-focused mechanism. To address this,
recent work (Li et al., 2023) proposed replacing
ineffective LLM heads with classification heads in
the restricted space of the classification problem.
This approach has shown promise, but the potential
of LLMs in CL, specifically in FCRE, remains un-
derexplored. Therefore, we conduct extensive ex-
periments to answer: How the performance would
LLMs yeild for FCRE? How will limited data in
this scenario impact the generalization of LLMs?

We also assess the effectiveness of our MIM strat-
egy when using LLM heads, which were eliminated
due to their unsuitability. The results offer valuable
insights for the community.

To sum up, our main contributions are twofold:

* First, we introduce a novel approach to en-
hance FCRE models by strategically leverag-
ing the LM heads. Through maximizing mu-
tual information between these components
and the primary classifiers, we can better pre-
serve prior knowledge from pre-trained back-
bones, as well as strengthen representation
learning. The experimental results demon-
strate our effectiveness.

* We also investigate the application of pre-
trained LLMs to FCRE tasks, including evalu-
ating the effectiveness of the proposed method
when using LLM heads, which were discarded
in classification-based problems due to their
unsuitability. Our comprehensive experimen-
tal results offer valuable insights.

2 Related work

Continual Learning (CL) is a learning scenario
that requires models to continually acquire new
knowledge from a sequence of tasks while prevent-
ing the loss of previously learned information. The
main challenge in CL is catastrophic forgetting
(French, 1993). To address this problem, memory-
based approaches prove to be effective methods for
both machine learning (Rebulffi et al., 2017; Shin
et al., 2017) and NLP problems (Wang et al., 2019;
Han et al., 2020). In particular, models need to save
a few representative samples from the current task
in a memory buffer and replay these samples when
learning new tasks to review old knowledge.

Fewshot Continual Relation Extraction is a
challenging scenario, which was introduced by
(Qin and Joty, 2022) for Relation Extraction prob-
lems. This challenge arises due to the limited avail-
ability of data for new tasks, coupled with the high
cost and time involved in obtaining high-quality
data. Recent work like Wang et al. (2023); Chen
et al. (2023); Ma et al. (2024) propose memory-
based solutions, which suggest imposing objective
functions on the embedding space and classifica-
tion head. Specifically, Wang et al. (2023) employs
serial objective functions based on contrastive and
distillation, Qin and Joty (2022) leverage extra
training data from unlabeled text, and Chen et al.
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(2023) proposes a consistent prototype learning
strategy to help the model distinguish between dif-
ferent relation representations, thus enhancing rep-
resentation learning efficiency.

However, in these methods, eliminating the pre-
trained LM head and training a new classifier still
leads to overfitting and forgetting due to limited
data, as it emphasizes discriminative features only.
To address this problem, we propose a novel ap-
proach that leverages LM heads, which are often
overlooked in pre-trained models for downstream
tasks. Our method not only helps preserve prior
knowledge from the backbone but also supports the
training of the main classifier, thereby further re-
ducing both catastrophic forgetting and overfitting.

3 Background

3.1 Problem Formulation

In the setting of FCRE, a model needs to continu-
ally acquire new knowledge from a series of tasks.
For each task ¢, also denoted as 7, the model is
trained on the training set D' = {(z}, y!)} VK.
Here, N and K represent the number of classes in
the new relation set R' and the number of samples
corresponding to each relation, respectively. Each
sample (z!,y!) consists of a sentence x; with a
pair of entities (ep,, e;) and a relation label y; € RY.
This type of task is also known as "N-way-K-shot".
Once task 7 is completed, D! is no longer avail-
able for future learning. Finally, the model will be
evaluated on all task data so far in order to identify
relations in R¢ = Ui, R'.

3.2 Existing Concept of FCRE Models

Current FCRE methods (Wang et al., 2023; Chen
et al., 2023; Ma et al., 2024) have considered tack-
ling two main issues: catastrophic forgetting and
overfitting. This has been achieved by exploiting
the power of pre-trained BERTs and various mo-
tivated techniques which can divided into 3 main
groups, including (i) using objective functions (i.e.,
L) to enhance representation learning ability, (ii)
implementing a prompt design, and (iii) employ-
ing a memory management strategy to store and
retrieve knowledge of old tasks. In this paper, we
propose a novel strategy that can flexibly integrate
with and improve these methods (Figure 3).
Moreover, to explore the potential of pre-trained
LLMs when dealing with the FCRE problems, we
need to apply the current SOTA methods for LLMs,
which were originally designed for "encoder-only"

models. On the other hand, the examined LLMs
(LLAMAZ?2, Mistral) are "decoder-only", operating
in the auto-regressive mechanism (Xie, 2017; Yang
et al., 2019). Due to the differences between these
models, we have to modify the original designs
mentioned above (see Sec. 4.2).

4 Proposed Method

In this section, we first present our efficient strat-
egy in Section 4.1 that can flexibly adapt to the
existing FCRE methods and enhance model perfor-
mance. After that, in Section 4.2, we explain in
detail the motivation and research questions when
investigating LLMs in FCRE.

Existing FCRE methods

Our MIM
; strategy Mutual
Representation 5
learning loss Infclb-r‘matlon
0SS
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Figure 3: Our Framework

4.1 Mutual Information Maximization (MIM)

According to recent work (Li et al., 2023; Xu et al.,
2023), using pre-trained LMs (BERTSs) with their
classification heads often leads to poor results. This
is because the models must return responses in the
vocabulary’s high-dimensional space (i.e., ||[V|]).
Therefore, in downstream tasks like Relation Ex-
traction, LM heads of pre-trained LMs are often dis-
carded. Instead, existing work (Wang et al., 2023;
Ma et al., 2024) opt for training a classification
head across tasks as a better solution. However, in
FCRE, training a new classifier from scratch often
encourages models to emphasize only discrimina-
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FewRel (10-way 5-shot)

Method T T T A
SCKD 9475 8283 7621 7219 7061 67.15 6486 62.98
SCKD+MI 9475 83.88 7671 72.34 70.78 6736 65.08 63.951097
ConPL™ 9518 79.63 7454 7127 6835 63.86 6474 62.46
ConPL+MI 9502 81.42 7723 7421 69.64 67.74 66.44 64.50 1204
CPL 94.87 85.14 7880 75.10 7257 69.57 66.85 64.50
CPL+MI 9469 8558 80.12 7571 7390 7072 6842 66.27 177

TACRED (5-way 5-shot)

Method T T T A A
SCKD 8842 7935 70.61 66.78 6047 58.05 5441 5211
SCKD+MI  87.55 79.39 70.70 66.68 6194 59.81 55.10 53.631 152
ConPL*™ 8877 69.64 57.50 52.15 58.19 5501 52.88 50.97
ConPL+MI 88.10 83.03 7319 6521 59.77 60.99 58.88 52981201
CPL 8627 81.55 7352 6896 6396 62.66 59.96 57.39
CPL+MI 8567 8254 7512 70.65 66.79 65.17 61.25 59.48 1209

Table 1: Accuracy (%) of different BERT-based methods after training for each task on TACRED and FewRel in
5-shot settings. We highlight the rows corresponding to our method. The best result in each group is in bold.

**Results of ConPL are reproduced (see Section 5.1)

tive features derived from sparse data streams and
memory buffers. This biased behavior can make
the model seriously overfit and rapidly lose prior
knowledge from the pre-trained backbone and, thus,
hinder the final performance.

Therefore, we propose an MIM strategy that ex-
ploits the overlooked LM head to solve the draw-
backs of existing FCRE methods. Intuitively, lever-
aging knowledge from pre-trained LM heads will
support the primary classifier, aiding the model in
capturing information more holistically and better
preserving old knowledge of the pre-trained back-
bone. In particular, inspired by (Guo et al., 2022),
we aim at maximizing Mutual Information (MI) be-
tween latent representations on the LM head branch
and on our main classifier branch as follows:

MI = I[gy(x), g™ (x)] (1)

where g corresponds to the class-discriminative

feature representation at the classification head,
M denotes the representation at the LM head.

According to (van den Oord et al., 2018):

MTI >log B + InfoNCE({z;}2.;;h) (2

where we have defined

InfoNCE({z;}2 1;h) =

h(ge(xi), géM (x;)) = exp

g¢ (xi), 95 (x1))
7 h(ge(x1), g5M (x3))
9o (x1) T W g™ (x5)

T

3

where 7 is the temperature, B is mini-batch size
and W is a trainable parameter. Then, the MI loss
function in our implementation is:

Lur=— Y

(Iz,yl)GD

InfoNCE({z;}2 ,: h)
train
“
Therefore, the objective function of the model
can be summarized as:

L=Ly+ Lnr (5)

where L is the loss function of the original method.
In this work, to demonstrate the effectiveness of our
method, we integrate it into three existing methods
CPL (Ma et al., 2024), ConPL (Chen et al., 2023)
and SCKD (Wang et al., 2023) (see Appendix A.2).

Discussion: Although using pre-trained LM
heads directly in downstream tasks is challeng-
ing, this does not hinder us from tapping into their
wealth of knowledge to enhance our model perfor-
mance in FCRE.
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* First, maintaining the LM heads while fine-
tuning them with a carefully controlled learn-
ing rate encourages the pre-trained backbones
to retain prior knowledge and inherent be-
haviors. Thus, this strategy can mitigate the
risk of overfitting, especially when models are
trained on limited data for each task, enhanc-
ing their overall robustness and reliability.
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Figure 4: +-SNE visualization for representation of 10
relations from Task 1 on the main classification branch
after the last task (FewRel 10 way - 5shot).

* Second, applying MIM on different represen-
tation layers of the data will be a powerful
aid for £ in learning representations. Specifi-
cally, the mutual information of samples with
the same label will be enhanced, while the
information corresponding to features of dif-
ferent labels will be restricted. As a result,
feature vectors of the same class will become
more condensed, and representations of differ-
ent classes will be more separated.

4.2 Exploiting LLMs for FCRE

Motivations and Research questions Pre-
trained LLMs (Touvron et al., 2023; Jiang et al.,
2023) are known for containing rich knowledge
with billions of parameters, which have achieved
impressive results in auto-regressive text genera-
tion tasks. These models have also been extensively
examined in classification-based problems (Zhao
et al., 2021; Wei et al., 2023). However, these
models often do not outperform discriminative en-
coder models such as BERT because their orig-
inal generation-focused mechanism, which gen-
erates answers over a large vocabulary, may not
capture task-specific patterns as efficiently as label-
supervised BERT models. To address this draw-
back, recent work (Li et al., 2023) proposed di-
rectly extracting latent representations from the
final LLaMA decoder layer and mapping them into
the label space through feed-forward layers. Specif-
ically, the LLLM heads, which have been found in-

effective, are removed and replaced by a classifi-
cation head trained from scratch using CrossEn-
tropy loss. This approach has shown promising
results. However, exploration in the area of Con-
tinual Learning, specifically Few-shot Continual
Relation Extraction (FCRE), has not yet been thor-
oughly investigated. Therefore, in this work, we
conduct extensive experiments to answer the fol-
lowing research questions (RQs):

* RQI: How the performance would LLMs
yield in FCRE tasks? Will it yield signifi-
cantly better results compared to conventional
BERT-based models? How will the limited
data in the FCRE scenario impact the gener-
alization of this model class? It would be in-
teresting to examine the behavior of an LLM,
which contains rich prior knowledge in the
context of the FCRE problem, where each
task only has very little data, and the model
will usually be forgotten and severely overfit.

RQ2: Our study also aims to assess the ef-
fectiveness of employing our MIM strategy
for LLMs, particularly in addressing the chal-
lenges of forgetting prevention and overfitting
reduction. Does using LLM heads according
to our strategy eliminate the prejudice about
the unsuitability of LLMs in classification-
based problems, specifically FCRE?

How to adapt BERT-based FCRE methods to
LLMs? Because current FCRE methods are used
for BERT-based backbones, which are "encoder-
only" language models. It is essential to modify
their original design to adapt to "decoder-only”
LLMs like LLAMA2-7B (Touvron et al., 2023),
Mistral-7B (Jiang et al., 2023), which operate in
the auto-regressive mechanism (Xie, 2017; Yang
etal., 2019; et al, 2023). See illustration in Figure
6, Appendix. In particular:

* (i) The prompted inputs will be in the form of:
"[Original sentence]. The relation between
[Entity 1] and [Entity 2] is [Answer]";

* (ii) The embedding used for the main classi-
fier (i.e., g4 (+)) is now the embedding of the
word "is" in the corresponding input, instead
of "[MASK] embedding" in Figure 3.

5 Experimental Results

In this part, we first present the experiment setup
in Section 5.1, followed by the results that demon-
strate the effectiveness of our proposed method
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(Section 5.2) when using BERT-based backbones.
We then discuss the investigation results of using
pre-trained LLMs for FCRE tasks in Section 5.3.

5.1 Experiment Setup

In our experiments, we use three current state-of-
the-art methods as baselines, including: SCKD
(Wang et al., 2023), ConPL (Chen et al., 2023), and
CPL (Maetal., 2024). Besides, the models are eval-
uated using pre-trained models consisting of BERT
(Devlin et al., 2018), LLAMAZ2-7B (Touvron et al.,
2023), and Mistral-7B (Jiang et al., 2023), on two
benchmark datasets: FewRel (Han et al., 2018) and
TACRED (Zhang et al., 2017). We note that we
have reproduced the results of ConPL (Chen et al.,
2023) under the same setting as SCKD and CPL.
The reason is that the evaluation strategy in this pa-
per is impractical for continual learning scenarios.
Please refer to Appendix A for more details.

5.2 Evaluation

a. Using LM heads significantly improves the
model’s accuracy. Table 1 reports the results of
baselines and our proposed method (+MI), which
exploits pre-trained LM heads beside the primary
classifiers. In general, our method consistently
helps improve the performance of existing meth-
ods in all cases. On both datasets, our strategy
improved the final accuracy by around 2% when in-
tegrated with CPL and ConPL and around 1% when
combined with SCKD. Moreover, considering ac-
curacy after learning immediate tasks, ConPL+MI,
when using our proposed strategy, can exceed the
original version by about 15% on TACRED.

b. Exploiting the LM head effectively helps
reduce forgetting and overfitting. Figure 1 and
Table 2 show the accuracy drop after complet-
ing 8 tasks in various cases. The results indicate
that our method significantly helps reduce forget-
ting for the baselines by approximately 1 to 3%.
Moreover, Figure 2 shows generalization gaps (i.e.,
0 = test loss — train loss) after training each task
of different models. The results show that our MIM
strategy helps the models minimize these gaps sig-
nificantly, thereby increasing their generalization.

c. The LM head supports representation
learning. Figure 4 presents representations in the
latent space of CPL model before and after exploit-
ing our MIM strategy (CPL+MI) on data of Task
1, after learning 8 tasks. It can be seen that the
test features belonging to different categories of
CPL+MI are better separated and therefore achieve

FewRel TACRED
Original +MI  Original =+ MI
SCKD 36.31 3392 31.77  30.80
ConPL  37.80 35.12 3272  30.52
CPL 28.88  26.19 30.37 2842

Table 2: Accuracy drop (%) after learning eight tasks of
methods on the FewRel and TACRED in 5-shot settings.

better results. In addition, we provide a t-SNE vi-
sualization about features of the first task in the
latent space on the LM head after learning the fi-
nal tasks (Figure 5), confirming the benefits when
taking advantage of this component to enhance the
performance of models.
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Figure 5: #-SNE visualization of the representation of
10 relations from the first task of CPL+MI on the LM
head after the last task (FewRel 10-way 5-shot).

d. Ablation study

For further analyzing the effectiveness of our
proposed method, we make an ablation study and
present the experimental results in Table 3. Regard-
ing ConPL, it becomes evident that our MIM (e.i.,
+MI) plays a pivotal role compared to the loss com-
ponents proposed in the original paper. Specifically,
the elimination of each loss component among L.,
Lg. and Ly, leads to only a marginal decline in
performance. However, removing MI results in a
notable decrease in accuracy across tasks, except
for tasks 1 and 5. In the case of the SCKD, we
note a substantial impact when excluding the dis-
tillation element (i.e., Lgs;). This underscores the
pivotal role of this component in mitigating forget-
ting while our proposed MI mechanism continues
to enhance the performance of the overall model.

Moreover, we also explore a scenario in which
the LM head is frozen to retain the knowledge from
the pretraining phase fully. We notice inconsis-
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Method T T Ty s s T
ConPL + MI 83.10 83.03 73.19 6521 59.77 60.99 58.88 52.98
w.oMI (ConPL) 8877 69.64 57.50 52.15 58.19 5501 52.88 50.97
W.0 Lect 88.15 83.01 73.11 65.16 5870 60.06 58.61 52.69
w.0 Lot 88.10 82.67 73.10 65.06 58.70 60.36 58.71 52.84
w.o Lot 88.06 81.15 72.04 63.15 5626 5930 57.69 50.10
freeze LM head  88.22 8027 77.15 67.72 59.62 57.75 54.73 52.10
SCKD + MI 8755 79.39 70.70 66.78 61.94 59.81 55.10 53.63
w.oMI(SCKD) 8842 7935 70.61 66.68 6047 58.05 5441 52.11
w.0 Lsit 87.61 77.15 6721 6221 57.11 5498 5053 50.38
w.0 augt 87.66 78.06 69.29 66.16 61.06 59.71 55.05 53.38
w.0 Lgs; and augt  87.37 7681 6588 62.03 56.81 52.87 4941 46.09
freeze LM head  87.61 7841 70.62 6598 61.33 5890 5519 51.99
CPL + MI 8567 82.54 7512 70.65 66.79 65.17 61.25 59.48
freeze LM head 8617 80.52 73.84 69.03 64.33 6236 60.19 57.99

Table 3: Ablation study on TACRED in the 5-way-5- shot setting. tThe components in the ablation study of the

existing methods are described in Appendix A.2.

FewRel TACRED

Original 4+ MI Original + MI
SCKD 6298 6345 5211  53.63
Llama2-7B-SCKD 65.14  66.58 5426  55.17
ConPL 6246 6450 5097  52.98
Llama2-7B-ConPL ~ 63.97  65.18 54.72  56.07
CPL 6450  66.27 5739  59.48
Llama2-7B-CPL 69.87 72.08 58.03  62.04
Mistral-7B-CPL 71.89  75.02 64.11 6548

Table 4: Final Accuracy (%) of methods after training
the final task in the 5-shot settings.

tent changes during the task learning process, with
certain tasks demonstrating performance improve-
ments while others exhibit declines. We hypoth-
esize that in specific cases, the LM’s pretraining-
derived general knowledge can facilitate recogniz-
ing specific relations. Consequently, fine-tuning
the model on domain-restricted data might compro-
mise this capability. Conversely, for other relations,
the general knowledge of the pretraining stage may
not hold significant value.

5.3 Using LLM for FCRE

RQ1: How the performance would LLMs yield
in FCRE tasks? Table 4 depicts the increase in
final accuracy after learning 8 FCRE tasks when
the BERT-based backbone is replaced by the LLM
backbone. Specifically, improvements can be as
much as 3.75% in the case of LLAMA-2-7B, and
8.75% for Mistral-7B across both datasets. In addi-
tion, Table 6 shows the full results of FCRE mod-
els on both datasets. Mostly, during the training

of eight tasks, the LLMs tend to provide higher
accuracy than the BERT-based models. For some
immediate tasks, LLAMAZ2-7B can achieve up to
16% higher accuracy than BERT-based models in
TACRED, although their accuracy can be slightly
lower in other cases. Besides, the differences in
performance after training the first task and the last
task (Accuracy drop - column A |) in LLMs are
smaller than in BERT-based models, from 2 to 5%
in the case of LLAMA2-7B and as much as 8% for
Mistral-CPL. These experimental results confirm
the general superiority of LLM in solving FCRE
compared to the class of conventional BERT-based
models.

On the other hand, pre-trained LLMs are known
to be knowledge-rich models with high generaliza-
tion capabilities. However, for the first task, LLMs
achieve accuracies of around 96% on FewRel and
around 86% on TACRED, having no clear advan-
tage over BERT-based models. Besides, the results
in Table 6 clearly demonstrate the degradation of
prior knowledge when applying pre-trained LLM
in FCRE. In particular, the model’s accuracy can
drop by 30 - 32% for LLAMAZ2-7B and by 20 -
25% for Mistral-7B, after training 8 tasks.

Thanks to thorough training on large datasets,
LLMs with billions of parameters contain a wealth
of knowledge and have great potential in down-
stream tasks. However, in some cases, with the
current operating mechanism of an autoregressive
decoder, employing such a model with billions of
parameters, as opposed to one with hundreds of
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FewRel (10-way-5-shot)

Method T! T? T3 T? E T T" T8 ‘ Al

SCKD 9475 82.83 76.21 72.19 70.61 67.15 64.86 6298 | 31.77
SCKD + MI 9475 83.88 76.71 7234 70.78 67.36 65.08 63.45 | 31.30
Llama2-7B-SCKD 95.63 82.76 76.04 7491 70.10 66.52 64.89 65.14 | 30.49
Llama2-7B-SCKD + MI 9522 85.01 76.63 76.50 72.19 67.47 67.03 66.58 | 28.64
ConPL** 95.18 79.63 7454 71.27 68.35 63.86 64.74 62.46 | 32.72
ConPL + MI 95.02 8142 7723 7421 69.64 67.74 66.44 64.50 | 30.52
Llama2-7B-ConPL 9472 8243 7507 7395 72.67 6580 6341 63.79 | 30.93
Llama2-7B-ConPL + MI  94.50 83.75 77.61 74.78 72.83 68.01 63.98 65.18 | 29.32
CPL 94.87 85.14 78.80 75.10 7257 69.57 66.85 64.50 | 30.37
CPL + MI 94.69 8558 80.12 75.71 7390 70.72 68.42 66.27 | 28.42
Llama2-7B-CPL 95.73 85.87 80.57 78.60 77.30 73.95 71.35 69.87 | 25.86
Llama2-7B-CPL + MI 95.63 87.14 8325 80.59 79.20 76.41 74.62 72.08 | 23.55
Mistral-7B-CPL 96.57 86.80 83.31 7945 77.17 7424 73.59 71.89 | 24.68
Mistral-7B-CPL + MI 96.55 90.77 84.81 83.08 78.92 77.27 77.05 75.02 | 21.53
TACRED (5-way-5-shot)

Method T! T? T3 T4 T° TS T’ T8 \ Al

SCKD 88.42 79.35 70.61 66.78 6047 58.05 5441 52.11 | 36.31
SCKD + MI 87.55 7839 69.70 66.88 61.94 59.81 55.10 53.63 | 33.92
Llama2-7B-SCKD 88.67 84.48 7253 63.10 62.01 59.38 57.18 54.26 | 34.41
Llama2-7B-SCKD + MI  88.35 84.90 74.32 6348 63.37 60.20 59.64 55.17 | 33.18
ConPL** 88.77 69.64 57.50 52.15 58.19 55.01 52.88 5097 | 37.80
ConPL + MI 88.10 83.03 73.19 65.21 58.77 60.99 58.88 5298 | 35.12
Llama2-7B-ConPL 87.26 81.72 73.04 65.67 6096 5847 5649 5472 | 32.54
Llama2-7B-ConPL + MI  86.88 83.11 73.83 67.58 61.87 60.31 56.83 56.07 | 30.81
CPL 86.27 81.55 73.52 6896 6396 62.66 5996 57.39 | 28.88
CPL + MI 85.67 82.54 75.12 70.65 66.79 65.17 61.25 59.48 | 26.19
Llama2-7B-CPL 86.76 7594 70.65 68.64 6744 65.12 60.27 58.03 | 30.23
Llama2-7B-CPL + MI 85.55 7791 7649 7499 69.15 68.19 64.19 62.04 | 23.51
Mistral-7B-CPL 86.67 80.98 77.16 73.24 70.05 67.70 67.04 64.11 | 22.56
Mistral-7B-CPL + MI 86.32 81.00 77.71 7548 71.92 71.02 67.69 65.48 | 20.84

Table 5: Accuracy (%) of methods using different LMs after training for each task. We highlight the rows
corresponding to our proposed method. The best result in each group is in bold. **Results of ConPL are reproduced.
Columns A | present Accuracy drop after learning 8 tasks.

millions (BERT), proves exceedingly expensive for
only marginal improvements in accuracy. Even on
TACRED, the final accuracy of LLAMA2-7B-CPL
is lower than that of CPL+MI, indicating that our
method with the BERT-based model can effectively
replace the LLM in this case. These findings neces-
sitate the development of more effective method-
ologies to ensure the effectiveness of LLMs within
this challenging setting

RQ2: The effectiveness of exploiting our MIM
strategy for LLMs in FCRE tasks Figure 1 and
Table 6 clearly show that our strategy significantly

mitigates accuracy drop in LLMs, which could
reach up to 6% on TACRED and 4% on FewRel,
and better than on BERT-based models. Besides,
Figure 2 consistently illustrates the effectiveness of
our method in reducing overfitting. It can be said
that with our proposed strategy, LLM heads are
no longer an obstacle when applying pre-trained
LLMs to classification tasks. On the contrary, using
LLMs demonstrates the clearest and most signifi-
cant improvement in mitigating catastrophic forget-
ting and reducing overfitting.
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6 Conclusion

In this work, we introduce a novel method that
utilizes pre-trained language model heads to main-
tain the generalization of LMs in FCRE problem:s.
By making use of this often ignored component
through a mutual information strategy, our ap-
proach also significantly improves the comprehen-
siveness of the representation on the main classi-
fier. Additionally, we present comprehensive exper-
imental results that demonstrate the impact of using
LLMs for FCRE and provide valuable insights to
the community.

Limitations

* First, our proposed method and current inves-
tigations in this paper apply only to high-level
RE tasks, where all entities are assumed to be
given. Therefore, to achieve more practical
results, it is motivating to consider end-to-end
RE problems, covering entity recognition to
relation extraction between entities in the fu-
ture.

* Another potential limitation could arise from
the fact that pre-trained LMs used in our work
might inherit biases from their pre-training
data. These biases can manifest in various
forms, such as gender, racial, or cultural bi-
ases, and could be exacerbated in scenarios
with limited labeled data, as in FCRE tasks.
Our method endeavors to transfer the knowl-
edge within the LMs to the classification
head by leveraging Mutual Information (MI),
which could inadvertently perpetuate biased
representations. Such biased representations
may have adverse consequences, potentially
resulting in misidentifying relations associ-
ated with biased information. This raises an
open question for the research community to
investigate further, exploring the impact of
bias on FCRE tasks when utilizing LLMs.
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A Implementation details

For each reported result, we conduct 6 in-
dependent runs with different random seeds
and report the mean. Our code is available at
https://github.com/thanhnx 12/CRE-via-MMI

Note: As discussed in (Li et al., 2023), LLaMA-
2-7B model gives better results compared with
LLaMA-2-13B. Therefore, we opt to use LLaMA-
2-7B to examine in our experiments.

A.1 Datasets

Our experiments utilize the following two bench-
marks:

¢ FewRel (Han et al., 2018) includes 100 rela-
tions with 70,000 samples. Following Qin and
Joty (2022), we employ a setup with 80 rela-
tions, partitioned into 8 tasks, each compris-
ing 10 relations (10-way). Task 7! includes
100 samples per relation, whereas the remain-
ing tasks are characterized as few-shot tasks
conducted under 5-shot settings.

* TACRED (Zhang et al., 2017) encompasses
42 relations with 106,264 samples extracted
from Newswire and Web documents. Consis-
tent with the approach outlined by Qin and
Joty (2022), we exclude instances labeled as
"no_relation" and allocate the remaining 41
relations across 8 tasks. Task 7! comprises 6
relations, each with 100 samples, while each
subsequent tasks involve 5 relations (5-way)
in 5-shot setups.

A.2 Baselines

In this work, we showcase our approach through
thorough experiments using three recent SOTA
methods in FCRE as the baselines, including:

* SCKD (Wang et al., 2023): adopts a system-
atic strategy for knowledge distillation, which
aims to preserve old knowledge from previ-
ous tasks. Besides, this method employs con-
trastive learning techniques with pseudo sam-
ples to enhance the distinguishability between
representations of different relations.

In this paper, to conduct the ablation study in
Table 3, we denote L, as the representative
of all the losses serving the distillation and
contrastive learning mentioned above and aug
as the augmentation technique on the memory
buffer.

* ConPL (Chen et al., 2023) proposes a method
that consists of three fundamental modules:
a prototype-based classification module, a
memory-enhanced module, and a novel con-
sistent learning module that enforces distribu-
tion consistency to prevent forgetting. Addi-
tionally, ConPL leverages prompt learning to
improve representation learning and incorpo-
rate focal loss to alleviate confusion among
closely related classes.

This paper conducts the ablation study in Ta-
ble 3where the role of each component of
ConPL’s objective function is analyzed. In par-
ticular, L.. helps constrain the consistency be-
tween samples and corresponding prototypes
of old tasks, L. forces the consistency regard-
ing the distribution of samples and prototypes,
and Ly, is a focal loss that alleviates the dif-
ficulty of choosing negative classes during
inference.

* CPL (Ma et al., 2024) CPL proposes a Con-
trastive Prompt Learning framework, which
designs prompts to generalize across cat-
egories and uses margin-based contrastive
learning to handle hard samples, thus reduc-
ing catastrophic forgetting and overfitting. Be-
sides, the authors employ a memory augmen-
tation strategy to generate diverse samples
with ChatGPT, further mitigating overfitting
in low-resource scenarios of FCRE.

A.3 Evaluation Protocol

Metric We use final average accuracy to evaluate
methods in our experiments. The average accuracy
at task 7} is calculated as follows:

j
ACC; = ! > ACCy,
73
where ACC}; is the accuracy on the test set of
task 7 after training the model on task 7.

Prediction mechanism As mentioned in 5.1, our
methods follow the evaluation strategy in the set-
ting of SCKD and CPL. Specifically, during the
testing phase, the learned model is required to eval-
uate all classes/ relations it has been trained on so
far.

Note that in the original code repository of
ConPL (e.g., Lines 18-53 in this file), this method
follows a different evaluation process. In particu-
lar, after training on task 7%, the model has been
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FewRel (10-way-5-shot)

Method 7! 77 T 7! B 7 T 7 (Al
SCKD 94.75 82.83 76.21 72.19 70.61 67.15 64.86 62.98 31.77
SCKD + MI 94.754037 83.88+067 76.Tlio4g 72344143 70.781082 67.364073 65.084243 63.4541044 | 31.30
Llama2-7B-SCKD 95.631056 82.761296 76.041420 7491177 70.101363 66.52109 64.89 935 65.1411.52 | 30.49
Llama2-7B-SCKD + MI 95~22i0.53 85.01i2,4 76.63i1‘19 76~50i1428 72.19i1,4 67~47i1,87 67.03i2,97 66.58i2,11 28.64
ConPL** 95.1840.73 79.634197 74544113 T1.274085 68.354086 63.864203 64.741139 62.464154 | 32.72
ConPL + MI 95.02104 81421793 77231101 7421415 69.641119 67.741150 66.441101 64.5041.15 | 30.52
Llama2-7B-ConPL 94.721115 82431169 75071162 73.954075 72.674151 65.804146 63.414915 63.7912.7¢ | 30.93
Llama2-7B-ConPL + MI ~ 94.501957 83.754105 77.611107 74.7841319 72.831074 68.0112093 63.98.3.1 65.1811.99 | 29.32
CPL 94.87 85.14 78.80 75.10 72.57 69.57 66.85 64.50 30.37
CPL + MI 94.69107 85581183 80.121245 T75.71i09s 73.90118 70.7210091 68.424177  66.274158 | 28.42
Llama2-7B-CPL 95.7310.092 85871146 80.571174 78.601337 77.301041 73954154 71.354375 69.871032 | 25.86
Llama2-7B-CPL + MI 95.631108 87141194 83251214 80.591237 79.201136 76.4149013 74.624.1.73 72.084318 | 23.55
Mistral-7B-CPL 96.571040 86.801253 83311194 79451053 7717100 74241196 73.5919200 71.894197 | 24.68
Mistral-7B-CPL + MI 96.554043 90.774211 84.811100 83.08+15 78924135 77274206 77.05423 75.0241 67 | 21.53

TACRED (5-way-5-shot)

Method 71 72 7 7T 7 70 Al ™[4l
SCKD 88.42 79.35 70.61 66.78 60.47 58.05 54.41 52.11 36.31
SCKD + MI 87.551048 78.394218 069.701175 66.881156 61.941087 59.811156 55.104363 53.634931 | 33.92
Llama2-7B-SCKD 88.671056 84.481296 72531420 63101477 62.011363 59.381290 H7.1819285 54.264152 | 34.41
Llama2-7B-SCKD + MI ~ 88.351711 84.904259 74.324373 63.481903 63.374244 60.204354 59.641319 55.171068 | 33.18
ConPL** 88.771084 69.644193 57.504248 52154159 58.194231 55.014312 52.884366  50.97+341 | 37.80
ConPL + MI 88.104068 83.034338 73.194157 65214304 58.774345 60.99+161 58.884252 52.98416s | 35.12
Llama2-7B-ConPL 87.261190 81.721054 73.0412925 65.671207 60.961439 58471330 56.49139 54.72 1994 | 32.54
Llama2-7B-ConPL + MI ~ 86.881103 83.11434¢ 73.831083 67.5841004 61.871416 60.311441 56.831257 56.0713.45 | 30.81
CPL 86.27 81.55 73.52 68.96 63.96 62.66 59.96 57.39 28.88
CPL + MI 85.67108 825449985 75.121367 70.654975 66.794918 651741048 61.254152 59.484353 | 26.19
Llama2-7B-CPL 86.761158 75941476 70.6b1257 68.641303 67.441295 65.124355 60.271379  58.034198 | 30.23
Llama2-7B-CPL + MI 85.55i0_74 77~91i2.8 76.49i2_7g 74~99j:2.69 69.15;{:3_65 68.19i2_29 64.19i3_01 62.0411_1 23.51
Mistral-7B-CPL 86467i0_31 80.98i5_42 77-16i4.96 73'24i3.63 70~05i2.5 67470i3_95 67.0413.12 64~11i3.68 22.56
Mistral-7B-CPL + MI 86.324195 81.00439 77.7lio31 754841959 71.924309 71.024084 67.691358 65.484197 | 20.84

Table 6: Accuracy (%) of methods using different LMs after training for each task. We highlight the rows
corresponding to our proposed method. The best result in each group is in bold. **Results of ConPL are reproduced.
Columns A | present Accuracy drop after learning 8 tasks.

trained on a set of R relations. However, for each
relation r, ConPL defines a set of negative can-
didate classgs M., so that predictions are made
on the set (R* N M,). This means that the model
does not make predictions with all the classes it
has learned so far but rather with a predefined sub-
set specific to each relation. While enhancing the
performance reported for ConPL, this targeted pre-
diction approach does not align with the practical
requirements of CL. In this challenging scenario,
each model has to dynamically adapt and make
predictions across the expanding set of relations
without relying on some fixed set of classes. There-
fore, despite its efficacy in controlled evaluations,
the ConPL method is impractical for real-world
continual learning applications.
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Figure 6: Adapting LLMs for FCRE problems
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