




(2023) proposes a consistent prototype learning

strategy to help the model distinguish between dif-

ferent relation representations, thus enhancing rep-

resentation learning efficiency.

However, in these methods, eliminating the pre-

trained LM head and training a new classifier still

leads to overfitting and forgetting due to limited

data, as it emphasizes discriminative features only.

To address this problem, we propose a novel ap-

proach that leverages LM heads, which are often

overlooked in pre-trained models for downstream

tasks. Our method not only helps preserve prior

knowledge from the backbone but also supports the

training of the main classifier, thereby further re-

ducing both catastrophic forgetting and overfitting.

3 Background

3.1 Problem Formulation

In the setting of FCRE, a model needs to continu-

ally acquire new knowledge from a series of tasks.

For each task t, also denoted as T t, the model is

trained on the training set Dt = {(xti, y
t
i)}

N×K
i=1 .

Here, N and K represent the number of classes in

the new relation set Rt and the number of samples

corresponding to each relation, respectively. Each

sample (xti, y
t
i) consists of a sentence xi with a

pair of entities (eh, et) and a relation label yi ∈ Rt.

This type of task is also known as "N-way-K-shot".

Once task T t is completed, Dt is no longer avail-

able for future learning. Finally, the model will be

evaluated on all task data so far in order to identify

relations in R̃t =
⋃t

i=1R
i.

3.2 Existing Concept of FCRE Models

Current FCRE methods (Wang et al., 2023; Chen

et al., 2023; Ma et al., 2024) have considered tack-

ling two main issues: catastrophic forgetting and

overfitting. This has been achieved by exploiting

the power of pre-trained BERTs and various mo-

tivated techniques which can divided into 3 main

groups, including (i) using objective functions (i.e.,

L0) to enhance representation learning ability, (ii)

implementing a prompt design, and (iii) employ-

ing a memory management strategy to store and

retrieve knowledge of old tasks. In this paper, we

propose a novel strategy that can flexibly integrate

with and improve these methods (Figure 3).

Moreover, to explore the potential of pre-trained

LLMs when dealing with the FCRE problems, we

need to apply the current SOTA methods for LLMs,

which were originally designed for "encoder-only"

models. On the other hand, the examined LLMs

(LLAMA2, Mistral) are "decoder-only", operating

in the auto-regressive mechanism (Xie, 2017; Yang

et al., 2019). Due to the differences between these

models, we have to modify the original designs

mentioned above (see Sec. 4.2).

4 Proposed Method

In this section, we first present our efficient strat-

egy in Section 4.1 that can flexibly adapt to the

existing FCRE methods and enhance model perfor-

mance. After that, in Section 4.2, we explain in

detail the motivation and research questions when

investigating LLMs in FCRE.

Figure 3: Our Framework

4.1 Mutual Information Maximization (MIM)

According to recent work (Li et al., 2023; Xu et al.,

2023), using pre-trained LMs (BERTs) with their

classification heads often leads to poor results. This

is because the models must return responses in the

vocabulary’s high-dimensional space (i.e., ∥V ∥).

Therefore, in downstream tasks like Relation Ex-

traction, LM heads of pre-trained LMs are often dis-

carded. Instead, existing work (Wang et al., 2023;

Ma et al., 2024) opt for training a classification

head across tasks as a better solution. However, in

FCRE, training a new classifier from scratch often

encourages models to emphasize only discrimina-
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FewRel (10-way 5-shot)

Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

SCKD 94.75 82.83 76.21 72.19 70.61 67.15 64.86 62.98

SCKD+MI 94.75 83.88 76.71 72.34 70.78 67.36 65.08 63.95 ↑ 0.97

ConPL∗∗ 95.18 79.63 74.54 71.27 68.35 63.86 64.74 62.46

ConPL+MI 95.02 81.42 77.23 74.21 69.64 67.74 66.44 64.50 ↑ 2.04

CPL 94.87 85.14 78.80 75.10 72.57 69.57 66.85 64.50

CPL+MI 94.69 85.58 80.12 75.71 73.90 70.72 68.42 66.27 ↑ 1.77

TACRED (5-way 5-shot)

Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

SCKD 88.42 79.35 70.61 66.78 60.47 58.05 54.41 52.11

SCKD+MI 87.55 79.39 70.70 66.68 61.94 59.81 55.10 53.63 ↑ 1.52

ConPL∗∗ 88.77 69.64 57.50 52.15 58.19 55.01 52.88 50.97

ConPL+MI 88.10 83.03 73.19 65.21 59.77 60.99 58.88 52.98 ↑ 2.01

CPL 86.27 81.55 73.52 68.96 63.96 62.66 59.96 57.39

CPL+MI 85.67 82.54 75.12 70.65 66.79 65.17 61.25 59.48 ↑ 2.09

Table 1: Accuracy (%) of different BERT-based methods after training for each task on TACRED and FewRel in

5-shot settings. We highlight the rows corresponding to our method. The best result in each group is in bold.

**Results of ConPL are reproduced (see Section 5.1)

tive features derived from sparse data streams and

memory buffers. This biased behavior can make

the model seriously overfit and rapidly lose prior

knowledge from the pre-trained backbone and, thus,

hinder the final performance.

Therefore, we propose an MIM strategy that ex-

ploits the overlooked LM head to solve the draw-

backs of existing FCRE methods. Intuitively, lever-

aging knowledge from pre-trained LM heads will

support the primary classifier, aiding the model in

capturing information more holistically and better

preserving old knowledge of the pre-trained back-

bone. In particular, inspired by (Guo et al., 2022),

we aim at maximizing Mutual Information (MI) be-

tween latent representations on the LM head branch

and on our main classifier branch as follows:

MI = I[gϕ(x), g
LM
Φ (x)] (1)

where gϕ corresponds to the class-discriminative

feature representation at the classification head,

gLMΦ denotes the representation at the LM head.

According to (van den Oord et al., 2018):

MI ≥ logB + InfoNCE({xi}
B
i=1;h) (2)

where we have defined

InfoNCE({xi}
B
i=1;h) =

1

B

B∑

i=1

log
h(gϕ(xi), g

LM
Φ (xi))∑B

j=1 h(gϕ(xi), g
LM
Φ (xj))

,

h(gϕ(xi), g
LM
Φ (xj)) = exp

gϕ(xi)
TWgLMΦ (xj)

τ
(3)

where τ is the temperature, B is mini-batch size

and W is a trainable parameter. Then, the MI loss

function in our implementation is:

LMI = −
∑

(xi,yi)∈Dk

train

InfoNCE({xi}
B
i=1;h)

(4)

Therefore, the objective function of the model

can be summarized as:

L = L0 + LMI (5)

where L0 is the loss function of the original method.

In this work, to demonstrate the effectiveness of our

method, we integrate it into three existing methods

CPL (Ma et al., 2024), ConPL (Chen et al., 2023)

and SCKD (Wang et al., 2023) (see Appendix A.2).

Discussion: Although using pre-trained LM

heads directly in downstream tasks is challeng-

ing, this does not hinder us from tapping into their

wealth of knowledge to enhance our model perfor-

mance in FCRE.
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• First, maintaining the LM heads while fine-

tuning them with a carefully controlled learn-

ing rate encourages the pre-trained backbones

to retain prior knowledge and inherent be-

haviors. Thus, this strategy can mitigate the

risk of overfitting, especially when models are

trained on limited data for each task, enhanc-

ing their overall robustness and reliability.

CPL CPL+MI

Figure 4: t-SNE visualization for representation of 10

relations from Task 1 on the main classification branch

after the last task (FewRel 10 way - 5shot).

• Second, applying MIM on different represen-

tation layers of the data will be a powerful

aid for L0 in learning representations. Specifi-

cally, the mutual information of samples with

the same label will be enhanced, while the

information corresponding to features of dif-

ferent labels will be restricted. As a result,

feature vectors of the same class will become

more condensed, and representations of differ-

ent classes will be more separated.

4.2 Exploiting LLMs for FCRE

Motivations and Research questions Pre-

trained LLMs (Touvron et al., 2023; Jiang et al.,

2023) are known for containing rich knowledge

with billions of parameters, which have achieved

impressive results in auto-regressive text genera-

tion tasks. These models have also been extensively

examined in classification-based problems (Zhao

et al., 2021; Wei et al., 2023). However, these

models often do not outperform discriminative en-

coder models such as BERT because their orig-

inal generation-focused mechanism, which gen-

erates answers over a large vocabulary, may not

capture task-specific patterns as efficiently as label-

supervised BERT models. To address this draw-

back, recent work (Li et al., 2023) proposed di-

rectly extracting latent representations from the

final LLaMA decoder layer and mapping them into

the label space through feed-forward layers. Specif-

ically, the LLM heads, which have been found in-

effective, are removed and replaced by a classifi-

cation head trained from scratch using CrossEn-

tropy loss. This approach has shown promising

results. However, exploration in the area of Con-

tinual Learning, specifically Few-shot Continual

Relation Extraction (FCRE), has not yet been thor-

oughly investigated. Therefore, in this work, we

conduct extensive experiments to answer the fol-

lowing research questions (RQs):

• RQ1: How the performance would LLMs

yield in FCRE tasks? Will it yield signifi-

cantly better results compared to conventional

BERT-based models? How will the limited

data in the FCRE scenario impact the gener-

alization of this model class? It would be in-

teresting to examine the behavior of an LLM,

which contains rich prior knowledge in the

context of the FCRE problem, where each

task only has very little data, and the model

will usually be forgotten and severely overfit.

• RQ2: Our study also aims to assess the ef-

fectiveness of employing our MIM strategy

for LLMs, particularly in addressing the chal-

lenges of forgetting prevention and overfitting

reduction. Does using LLM heads according

to our strategy eliminate the prejudice about

the unsuitability of LLMs in classification-

based problems, specifically FCRE?

How to adapt BERT-based FCRE methods to

LLMs? Because current FCRE methods are used

for BERT-based backbones, which are "encoder-

only" language models. It is essential to modify

their original design to adapt to "decoder-only"

LLMs like LLAMA2-7B (Touvron et al., 2023),

Mistral-7B (Jiang et al., 2023), which operate in

the auto-regressive mechanism (Xie, 2017; Yang

et al., 2019; et al, 2023). See illustration in Figure

6, Appendix. In particular:

• (i) The prompted inputs will be in the form of:

"[Original sentence]. The relation between

[Entity 1] and [Entity 2] is [Answer]";

• (ii) The embedding used for the main classi-

fier (i.e., gϕ(·)) is now the embedding of the

word "is" in the corresponding input, instead

of "[MASK] embedding" in Figure 3.

5 Experimental Results

In this part, we first present the experiment setup

in Section 5.1, followed by the results that demon-

strate the effectiveness of our proposed method
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Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

ConPL + MI 88.10 83.03 73.19 65.21 59.77 60.99 58.88 52.98

w.o MI (ConPL) 88.77 69.64 57.50 52.15 58.19 55.01 52.88 50.97

w.o Lcc† 88.15 83.01 73.11 65.16 58.70 60.06 58.61 52.69

w.o Ldc† 88.10 82.67 73.10 65.06 58.70 60.36 58.71 52.84

w.o Lfc† 88.06 81.15 72.04 63.15 56.26 59.30 57.69 50.10

freeze LM head 88.22 80.27 77.15 67.72 59.62 57.75 54.73 52.10

SCKD + MI 87.55 79.39 70.70 66.78 61.94 59.81 55.10 53.63

w.o MI (SCKD) 88.42 79.35 70.61 66.68 60.47 58.05 54.41 52.11

w.o Ldst† 87.61 77.15 67.21 62.21 57.11 54.98 50.53 50.38

w.o aug† 87.66 78.06 69.29 66.16 61.06 59.71 55.05 53.38

w.o Ldst and aug† 87.37 76.81 65.88 62.03 56.81 52.87 49.41 46.09

freeze LM head 87.61 78.41 70.62 65.98 61.33 58.90 55.19 51.99

CPL + MI 85.67 82.54 75.12 70.65 66.79 65.17 61.25 59.48

freeze LM head 86.17 80.52 73.84 69.03 64.33 62.36 60.19 57.99

Table 3: Ablation study on TACRED in the 5-way-5- shot setting. †The components in the ablation study of the

existing methods are described in Appendix A.2.

FewRel TACRED

Original + MI Original + MI

SCKD 62.98 63.45 52.11 53.63

Llama2-7B-SCKD 65.14 66.58 54.26 55.17

ConPL 62.46 64.50 50.97 52.98

Llama2-7B-ConPL 63.97 65.18 54.72 56.07

CPL 64.50 66.27 57.39 59.48

Llama2-7B-CPL 69.87 72.08 58.03 62.04

Mistral-7B-CPL 71.89 75.02 64.11 65.48

Table 4: Final Accuracy (%) of methods after training

the final task in the 5-shot settings.

tent changes during the task learning process, with

certain tasks demonstrating performance improve-

ments while others exhibit declines. We hypoth-

esize that in specific cases, the LM’s pretraining-

derived general knowledge can facilitate recogniz-

ing specific relations. Consequently, fine-tuning

the model on domain-restricted data might compro-

mise this capability. Conversely, for other relations,

the general knowledge of the pretraining stage may

not hold significant value.

5.3 Using LLM for FCRE

RQ1: How the performance would LLMs yield

in FCRE tasks? Table 4 depicts the increase in

final accuracy after learning 8 FCRE tasks when

the BERT-based backbone is replaced by the LLM

backbone. Specifically, improvements can be as

much as 3.75% in the case of LLAMA-2-7B, and

8.75% for Mistral-7B across both datasets. In addi-

tion, Table 6 shows the full results of FCRE mod-

els on both datasets. Mostly, during the training

of eight tasks, the LLMs tend to provide higher

accuracy than the BERT-based models. For some

immediate tasks, LLAMA2-7B can achieve up to

16% higher accuracy than BERT-based models in

TACRED, although their accuracy can be slightly

lower in other cases. Besides, the differences in

performance after training the first task and the last

task (Accuracy drop - column ∆ ↓) in LLMs are

smaller than in BERT-based models, from 2 to 5%

in the case of LLAMA2-7B and as much as 8% for

Mistral-CPL. These experimental results confirm

the general superiority of LLM in solving FCRE

compared to the class of conventional BERT-based

models.

On the other hand, pre-trained LLMs are known

to be knowledge-rich models with high generaliza-

tion capabilities. However, for the first task, LLMs

achieve accuracies of around 96% on FewRel and

around 86% on TACRED, having no clear advan-

tage over BERT-based models. Besides, the results

in Table 6 clearly demonstrate the degradation of

prior knowledge when applying pre-trained LLM

in FCRE. In particular, the model’s accuracy can

drop by 30 - 32% for LLAMA2-7B and by 20 -

25% for Mistral-7B, after training 8 tasks.

Thanks to thorough training on large datasets,

LLMs with billions of parameters contain a wealth

of knowledge and have great potential in down-

stream tasks. However, in some cases, with the

current operating mechanism of an autoregressive

decoder, employing such a model with billions of

parameters, as opposed to one with hundreds of
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FewRel (10-way–5-shot)

Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 ∆ ↓

SCKD 94.75 82.83 76.21 72.19 70.61 67.15 64.86 62.98 31.77

SCKD + MI 94.75 83.88 76.71 72.34 70.78 67.36 65.08 63.45 31.30

Llama2-7B-SCKD 95.63 82.76 76.04 74.91 70.10 66.52 64.89 65.14 30.49

Llama2-7B-SCKD + MI 95.22 85.01 76.63 76.50 72.19 67.47 67.03 66.58 28.64

ConPL∗∗ 95.18 79.63 74.54 71.27 68.35 63.86 64.74 62.46 32.72

ConPL + MI 95.02 81.42 77.23 74.21 69.64 67.74 66.44 64.50 30.52

Llama2-7B-ConPL 94.72 82.43 75.07 73.95 72.67 65.80 63.41 63.79 30.93

Llama2-7B-ConPL + MI 94.50 83.75 77.61 74.78 72.83 68.01 63.98 65.18 29.32

CPL 94.87 85.14 78.80 75.10 72.57 69.57 66.85 64.50 30.37

CPL + MI 94.69 85.58 80.12 75.71 73.90 70.72 68.42 66.27 28.42

Llama2-7B-CPL 95.73 85.87 80.57 78.60 77.30 73.95 71.35 69.87 25.86

Llama2-7B-CPL + MI 95.63 87.14 83.25 80.59 79.20 76.41 74.62 72.08 23.55

Mistral-7B-CPL 96.57 86.80 83.31 79.45 77.17 74.24 73.59 71.89 24.68

Mistral-7B-CPL + MI 96.55 90.77 84.81 83.08 78.92 77.27 77.05 75.02 21.53

TACRED (5-way-5-shot)

Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 ∆ ↓

SCKD 88.42 79.35 70.61 66.78 60.47 58.05 54.41 52.11 36.31

SCKD + MI 87.55 78.39 69.70 66.88 61.94 59.81 55.10 53.63 33.92

Llama2-7B-SCKD 88.67 84.48 72.53 63.10 62.01 59.38 57.18 54.26 34.41

Llama2-7B-SCKD + MI 88.35 84.90 74.32 63.48 63.37 60.20 59.64 55.17 33.18

ConPL∗∗ 88.77 69.64 57.50 52.15 58.19 55.01 52.88 50.97 37.80

ConPL + MI 88.10 83.03 73.19 65.21 58.77 60.99 58.88 52.98 35.12

Llama2-7B-ConPL 87.26 81.72 73.04 65.67 60.96 58.47 56.49 54.72 32.54

Llama2-7B-ConPL + MI 86.88 83.11 73.83 67.58 61.87 60.31 56.83 56.07 30.81

CPL 86.27 81.55 73.52 68.96 63.96 62.66 59.96 57.39 28.88

CPL + MI 85.67 82.54 75.12 70.65 66.79 65.17 61.25 59.48 26.19

Llama2-7B-CPL 86.76 75.94 70.65 68.64 67.44 65.12 60.27 58.03 30.23

Llama2-7B-CPL + MI 85.55 77.91 76.49 74.99 69.15 68.19 64.19 62.04 23.51

Mistral-7B-CPL 86.67 80.98 77.16 73.24 70.05 67.70 67.04 64.11 22.56

Mistral-7B-CPL + MI 86.32 81.00 77.71 75.48 71.92 71.02 67.69 65.48 20.84

Table 5: Accuracy (%) of methods using different LMs after training for each task. We highlight the rows

corresponding to our proposed method. The best result in each group is in bold. **Results of ConPL are reproduced.

Columns ∆ ↓ present Accuracy drop after learning 8 tasks.

millions (BERT), proves exceedingly expensive for

only marginal improvements in accuracy. Even on

TACRED, the final accuracy of LLAMA2-7B-CPL

is lower than that of CPL+MI, indicating that our

method with the BERT-based model can effectively

replace the LLM in this case. These findings neces-

sitate the development of more effective method-

ologies to ensure the effectiveness of LLMs within

this challenging setting

RQ2: The effectiveness of exploiting our MIM

strategy for LLMs in FCRE tasks Figure 1 and

Table 6 clearly show that our strategy significantly

mitigates accuracy drop in LLMs, which could

reach up to 6% on TACRED and 4% on FewRel,

and better than on BERT-based models. Besides,

Figure 2 consistently illustrates the effectiveness of

our method in reducing overfitting. It can be said

that with our proposed strategy, LLM heads are

no longer an obstacle when applying pre-trained

LLMs to classification tasks. On the contrary, using

LLMs demonstrates the clearest and most signifi-

cant improvement in mitigating catastrophic forget-

ting and reducing overfitting.
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6 Conclusion

In this work, we introduce a novel method that

utilizes pre-trained language model heads to main-

tain the generalization of LMs in FCRE problems.

By making use of this often ignored component

through a mutual information strategy, our ap-

proach also significantly improves the comprehen-

siveness of the representation on the main classi-

fier. Additionally, we present comprehensive exper-

imental results that demonstrate the impact of using

LLMs for FCRE and provide valuable insights to

the community.

Limitations

• First, our proposed method and current inves-

tigations in this paper apply only to high-level

RE tasks, where all entities are assumed to be

given. Therefore, to achieve more practical

results, it is motivating to consider end-to-end

RE problems, covering entity recognition to

relation extraction between entities in the fu-

ture.

• Another potential limitation could arise from

the fact that pre-trained LMs used in our work

might inherit biases from their pre-training

data. These biases can manifest in various

forms, such as gender, racial, or cultural bi-

ases, and could be exacerbated in scenarios

with limited labeled data, as in FCRE tasks.

Our method endeavors to transfer the knowl-

edge within the LMs to the classification

head by leveraging Mutual Information (MI),

which could inadvertently perpetuate biased

representations. Such biased representations

may have adverse consequences, potentially

resulting in misidentifying relations associ-

ated with biased information. This raises an

open question for the research community to

investigate further, exploring the impact of

bias on FCRE tasks when utilizing LLMs.
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A Implementation details

For each reported result, we conduct 6 in-

dependent runs with different random seeds

and report the mean. Our code is available at

https://github.com/thanhnx12/CRE-via-MMI

Note: As discussed in (Li et al., 2023), LLaMA-

2-7B model gives better results compared with

LLaMA-2-13B. Therefore, we opt to use LLaMA-

2-7B to examine in our experiments.

A.1 Datasets

Our experiments utilize the following two bench-

marks:

• FewRel (Han et al., 2018) includes 100 rela-

tions with 70,000 samples. Following Qin and

Joty (2022), we employ a setup with 80 rela-

tions, partitioned into 8 tasks, each compris-

ing 10 relations (10-way). Task T 1 includes

100 samples per relation, whereas the remain-

ing tasks are characterized as few-shot tasks

conducted under 5-shot settings.

• TACRED (Zhang et al., 2017) encompasses

42 relations with 106,264 samples extracted

from Newswire and Web documents. Consis-

tent with the approach outlined by Qin and

Joty (2022), we exclude instances labeled as

"no_relation" and allocate the remaining 41

relations across 8 tasks. Task T 1 comprises 6

relations, each with 100 samples, while each

subsequent tasks involve 5 relations (5-way)

in 5-shot setups.

A.2 Baselines

In this work, we showcase our approach through

thorough experiments using three recent SOTA

methods in FCRE as the baselines, including:

• SCKD (Wang et al., 2023): adopts a system-

atic strategy for knowledge distillation, which

aims to preserve old knowledge from previ-

ous tasks. Besides, this method employs con-

trastive learning techniques with pseudo sam-

ples to enhance the distinguishability between

representations of different relations.

In this paper, to conduct the ablation study in

Table 3, we denote Ldst as the representative

of all the losses serving the distillation and

contrastive learning mentioned above and aug

as the augmentation technique on the memory

buffer.

• ConPL (Chen et al., 2023) proposes a method

that consists of three fundamental modules:

a prototype-based classification module, a

memory-enhanced module, and a novel con-

sistent learning module that enforces distribu-

tion consistency to prevent forgetting. Addi-

tionally, ConPL leverages prompt learning to

improve representation learning and incorpo-

rate focal loss to alleviate confusion among

closely related classes.

This paper conducts the ablation study in Ta-

ble 3where the role of each component of

ConPL’s objective function is analyzed. In par-

ticular, Lcc helps constrain the consistency be-

tween samples and corresponding prototypes

of old tasks, Ldc forces the consistency regard-

ing the distribution of samples and prototypes,

and Lfc is a focal loss that alleviates the dif-

ficulty of choosing negative classes during

inference.

• CPL (Ma et al., 2024) CPL proposes a Con-

trastive Prompt Learning framework, which

designs prompts to generalize across cat-

egories and uses margin-based contrastive

learning to handle hard samples, thus reduc-

ing catastrophic forgetting and overfitting. Be-

sides, the authors employ a memory augmen-

tation strategy to generate diverse samples

with ChatGPT, further mitigating overfitting

in low-resource scenarios of FCRE.

A.3 Evaluation Protocol

Metric We use final average accuracy to evaluate

methods in our experiments. The average accuracy

at task Tj is calculated as follows:

ACCj =
1

j

j∑

i=1

ACCj,i

where ACCj,i is the accuracy on the test set of

task Ti after training the model on task Tj .

Prediction mechanism As mentioned in 5.1, our

methods follow the evaluation strategy in the set-

ting of SCKD and CPL. Specifically, during the

testing phase, the learned model is required to eval-

uate all classes/ relations it has been trained on so

far.

Note that in the original code repository of

ConPL (e.g., Lines 18-53 in this file), this method

follows a different evaluation process. In particu-

lar, after training on task T k, the model has been
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FewRel (10-way–5-shot)

Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 ∆ ↓

SCKD 94.75 82.83 76.21 72.19 70.61 67.15 64.86 62.98 31.77

SCKD + MI 94.75±0.37 83.88±0.67 76.71±2.48 72.34±1.43 70.78±0.82 67.36±0.73 65.08±2.43 63.45±2.44 31.30

Llama2-7B-SCKD 95.63±0.56 82.76±2.26 76.04±4.22 74.91±.77 70.10±3.63 66.52±2.9 64.89 2.85 65.14±1.52 30.49

Llama2-7B-SCKD + MI 95.22±0.53 85.01±2.4 76.63±1.19 76.50±1.28 72.19±1.4 67.47±1.87 67.03±2.97 66.58±2.11 28.64

ConPL∗∗ 95.18±0.73 79.63±1.27 74.54±1.13 71.27±0.85 68.35±0.86 63.86±2.03 64.74±1.39 62.46±1.54 32.72

ConPL + MI 95.02±0.4 81.42±1.93 77.23±1.01 74.21±1.5 69.64±1.19 67.74±1.52 66.44±1.91 64.50±1.15 30.52

Llama2-7B-ConPL 94.72±1.15 82.43±1.69 75.07±1.62 73.95±2.75 72.67±1.51 65.80±1.46 63.41±2.15 63.79±2.76 30.93

Llama2-7B-ConPL + MI 94.50±0.57 83.75±1.05 77.61±1.27 74.78±3.19 72.83±2.74 68.01±2.23 63.98±3.1 65.18±1.99 29.32

CPL 94.87 85.14 78.80 75.10 72.57 69.57 66.85 64.50 30.37

CPL + MI 94.69±0.7 85.58±1.88 80.12±2.45 75.71±2.28 73.90±1.8 70.72±0.91 68.42±1.77 66.27±1.58 28.42

Llama2-7B-CPL 95.73±0.92 85.87±1.46 80.57±1.74 78.60±3.31 77.30±2.41 73.95±1.54 71.35±3.75 69.87±2.32 25.86

Llama2-7B-CPL + MI 95.63±1.08 87.14±1.94 83.25±2.14 80.59±2.37 79.20±1.36 76.41±2.13 74.62±1.73 72.08±3.18 23.55

Mistral-7B-CPL 96.57±0.40 86.80±2.53 83.31±1.94 79.45±2.53 77.17±2.2 74.24±1.96 73.59±2.00 71.89±1.97 24.68

Mistral-7B-CPL + MI 96.55±0.43 90.77±2.11 84.81±1.09 83.08±1.5 78.92±1.35 77.27±2.06 77.05±2.3 75.02±1.67 21.53

TACRED (5-way-5-shot)

Method T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 ∆ ↓

SCKD 88.42 79.35 70.61 66.78 60.47 58.05 54.41 52.11 36.31

SCKD + MI 87.55±0.48 78.39±2.18 69.70±1.75 66.88±1.56 61.94±2.87 59.81±1.56 55.10±3.63 53.63±2.31 33.92

Llama2-7B-SCKD 88.67±0.56 84.48±2.26 72.53±4.22 63.10±4.77 62.01±3.63 59.38±2.90 57.18±2.85 54.26±1.52 34.41

Llama2-7B-SCKD + MI 88.35±1.11 84.90±2.59 74.32±3.73 63.48±2.03 63.37±2.44 60.20±3.54 59.64±3.19 55.17±2.68 33.18

ConPL∗∗ 88.77±0.84 69.64±1.93 57.50±2.48 52.15±1.59 58.19±2.31 55.01±3.12 52.88±3.66 50.97±3.41 37.80

ConPL + MI 88.10±0.68 83.03±3.38 73.19±1.57 65.21±3.04 58.77±3.45 60.99±1.61 58.88±2.52 52.98±1.68 35.12

Llama2-7B-ConPL 87.26±1.22 81.72±2.54 73.04±2.92 65.67±2.07 60.96±4.39 58.47±3.32 56.49±3.2 54.72±2.24 32.54

Llama2-7B-ConPL + MI 86.88±1.03 83.11±3.46 73.83±2.88 67.58±2.04 61.87±4.16 60.31±4.41 56.83±2.57 56.07±3.45 30.81

CPL 86.27 81.55 73.52 68.96 63.96 62.66 59.96 57.39 28.88

CPL + MI 85.67±0.8 82.54±2.98 75.12±3.67 70.65±2.75 66.79±2.18 65.17±2.48 61.25±1.52 59.48±3.53 26.19

Llama2-7B-CPL 86.76±1.58 75.94±4.76 70.65±2.57 68.64±3.03 67.44±2.95 65.12±3.85 60.27±3.79 58.03±1.98 30.23

Llama2-7B-CPL + MI 85.55±0.74 77.91±2.8 76.49±2.79 74.99±2.69 69.15±3.65 68.19±2.29 64.19±3.01 62.04±1.1 23.51

Mistral-7B-CPL 86.67±0.81 80.98±5.42 77.16±4.96 73.24±3.63 70.05±2.5 67.70±3.95 67.04±3.12 64.11±3.68 22.56

Mistral-7B-CPL + MI 86.32±1.25 81.00±3.2 77.71±2.31 75.48±2.59 71.92±3.09 71.02±2.84 67.69±3.58 65.48±1.97 20.84

Table 6: Accuracy (%) of methods using different LMs after training for each task. We highlight the rows

corresponding to our proposed method. The best result in each group is in bold. **Results of ConPL are reproduced.

Columns ∆ ↓ present Accuracy drop after learning 8 tasks.

trained on a set of R̃t relations. However, for each

relation r, ConPL defines a set of negative can-

didate classes Mr, so that predictions are made

on the set (R̃t ∩Mr). This means that the model

does not make predictions with all the classes it

has learned so far but rather with a predefined sub-

set specific to each relation. While enhancing the

performance reported for ConPL, this targeted pre-

diction approach does not align with the practical

requirements of CL. In this challenging scenario,

each model has to dynamically adapt and make

predictions across the expanding set of relations

without relying on some fixed set of classes. There-

fore, despite its efficacy in controlled evaluations,

the ConPL method is impractical for real-world

continual learning applications.
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