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Abstract

Earth’s energy imbalance (EEI) is a fundamental metric of global Earth system change,
quantifying the cumulative impact of natural and anthropogenic radiative forcings and
feedback. To date, the most precise measurements of EEI change are obtained through
radiometric observations at the top of the atmosphere (TOA), while the quantification
of EEI absolute magnitude is facilitated through heat inventory analysis, where ~90% of
heat uptake manifests as an increase in ocean heat content (OHC). Various international
groups provide OHC datasets derived from in situ and satellite observations, as well as
from reanalyses ingesting many available observations. The WCRP formed the GEWEX-
EEI Assessment Working Group to better understand discrepancies, uncertainties and rec-
oncile current knowledge of EEI magnitude, variability and trends. Here, 21 OHC datasets
and ocean heat uptake (OHU) rates are intercompared, providing OHU estimates ranging
between 0.40+0.12 and 0.96+0.08 W m~2 (2005-2019), a spread that is slightly reduced
when unequal ocean sampling is accounted for, and that is largely attributable to differing
source data, mapping methods and quality control procedures. The rate of increase in OHU
varies substantially between —0.03+0.13 (reanalysis product) and 1.1+0.6 W m~2 dec™!
(satellite product). Products that either more regularly observe (satellites) or fill in situ
data-sparse regions based on additional physical knowledge (some reanalysis and hybrid
products) tend to track radiometric EEI variability better than purely in situ-based OHC
products. This paper also examines zonal trends in TOA radiative fluxes and the impact of
data gaps on trend estimates. The GEWEX-EEI community aims to refine their assessment
studies, to forge a path toward best practices, e.g., in uncertainty quantification, and to for-
mulate recommendations for future activities.
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Article Highlights

e GEWEX-EEI compares 21 ocean heat content time series from reanalysis, in situ and
satellite observations

e We find substantial spread in ocean heat uptake and variable skill in tracking radiomet-
ric EEI variability

e Follow-on investigations and recommendations are proposed to reconcile estimates and
their uncertainties

1 Introduction

Detection and understanding of climate change rely on research investigations by a broad
international science community utilizing a vast array of climate models and Earth obser-
vations ranging from in situ measurements made in the deep ocean to satellite measure-
ments made at the top of the atmosphere (TOA). Improvements to our understanding of the
state of Earth’s climate and projected future changes are communicated to society through
several governmental channels such as the climate assessments of the Intergovernmental
Panel on Climate Change (e.g., [PCC 2021; Forster et al. 2021; Gulev et al. 2021) or the
annual World Meteorological Organization (WMO) State of the Global Climate Reports,
which in 2022 (WMO 2023) focused on key climate indicators, such as greenhouse gasses,
temperature, sea level rise, ocean heating and acidification, sea ice and glacier melt. Iden-
tifying and examining indicators that robustly and comprehensively measure change to the
climate and the impact of current and future anthropogenic activities is a crucial aspect of
the first Global Stock Take under the Paris Agreement (Peeters 2021; Forster et al. 2023).

The most holistic picture of heat accumulation by the Earth system is gained by quanti-
fying and assessing change in Earth’s radiative Energy Imbalance (EEI) at the TOA, rep-
resenting the cumulative effect of radiative forcings and feedbacks. At present, Earth’s heat
uptake or inventory, respectively, serves to constrain EEI absolute magnitude over decadal
timescales (e.g., von Schuckmann et al. 2016, 2023; Trenberth et al. 2016; Johnson et al.
2016; Meyssignac et al. 2019; Cheng et al. 2022a, b). According to the latest GCOS assess-
ment of Earth’s heat inventory, the absolute magnitude of EEI for the period 20062020 is
0.76 0.2 W m~2, which combines ensemble estimates of ocean heat uptake (OHU), ter-
restrial as well as atmospheric heat storage, and the heat energy required to melt land and
sea ice and evaporate water to increase atmospheric moisture content (von Schuckmann
et al. 2023). About 90% of Earth’s heat surplus is stored in the ocean; hence, assessments
of EEI magnitude and uncertainty largely depend on accurate OHU estimates. To date,
standard approaches to estimating OHU (e.g., Hakuba et al. 2021; Cheng et al. 2022a, b)
are: (a) to derive ocean heat content (OHC) changes from direct subsurface ocean tempera-
tures observations through hydrographic profiles (e.g., Levitus et al. 2012); (b) to derive
the oceans’ thermosteric expansion through sea level budget assessment using geodetic
observations from space (e.g., Marti et al. 2022); and (c) to estimate the ocean state using
global ocean models and reanalyses that assimilate various ocean and atmosphere observa-
tions (e.g., Balmaseda et al. 2015; Forget et al. 2015; Zuo et al. 2019).

Since circa 2005, when Argo reached critical spatiotemporal coverage, experts
across the globe have been examining Argo profiling float array observations (Riser
et al. 2016) along with other ocean in situ observations (e.g., reviewed in Meyssignac
et al. 2019; Cheng et al. 2022a, b) to estimate global OHC time series. More recently,
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geodetic satellite observations have been used for estimating OHU and its variabil-
ity (Marti et al. 2022; Hakuba et al. 2021). Despite the lack of vertical resolution and
requiring independent knowledge of seawater’s heat expansion efficiency, the combina-
tion of near-global satellite-based estimates of ocean mass and total sea level change
has proven successful in matching positive trends in EEI and its year-to-year variability
with Clouds and Earth’s Radiant Energy System (CERES) Energy Balanced and Filled
(EBAF) net radiative flux at the TOA (Marti et al. 2022; Hakuba et al. 2021). Reanaly-
ses that assimilate ocean observations into physically consistent ocean models also pro-
vide OHU together with complete ocean state estimates, the latter enabling the study of
heat exchanges, distributions and their causes (Storto et al. 2019).

Beyond being a fundamental metric for tracking change in Earth’s climate, EEI also
represents a target value in global climate model tuning (Cheng et al. 2016a, b; Hourdin
et al. 2017; Smith et al. 2015; Schmidt et al. 2023) and serves in constraining Earth’s
equilibrium climate sensitivity (e.g., Sherwood et al. 2020; Chenal et al. 2022) and cli-
mate feedback parameter (Meyssignac et al. 2023a). Improved understanding of EEI and
a robust estimate of its uncertainty is vital in reconciling global energy and water cycles
using consistent budgets and optimization processes (L’Ecuyer et al. 2015; Roberts
et al. submitted to this issue), which is one of the key goals of the Global Energy and
Water Exchanges (GEWEX) community (Stephens et al. 2023). EEI monitoring alone
is not sufficient for understanding the implications that natural and anthropogenic com-
position changes impose on Earth’s energy budget. Characterizing and attributing EEI
changes and their drivers on seasonal (Johnson et al. 2023a, b; Pan et al. 2023) as well
as interannual and longer timescales (Cheng et al. 2019a, b; Loeb et al. 2021, 2024, this
issue; Stephens et al. 2022) require extensive use of ancillary surface and atmospheric
property information as well as radiative transfer and global climate models to help
interpret the role of climate forcings and climate feedbacks (e.g., Raghuraman et al.
2021). Although EEI is a global metric of Earth system change, regional investigations
of ocean heat distribution and transports (e.g., Meyssignac et al. submitted to this issue;
Trenberth et al. 2019) as well as the processes driving heat uptake in the atmosphere
and at the surface (Mayer et al. 2024, this issue) are key aspects of holistic EEI assess-
ments. One way to reconcile data from all available observing networks and their scale
of variability is through Earth system reanalysis capable of ingesting all observational
information, i.e., TOA radiation, OHC, altimetry, gravimetry (Stammer et al. 2016;
Storto et al. 2017; de Rosnay et al. 2022).

Due mainly to calibration and retrieval uncertainties that are one order of magnitude
larger than EEI itself, EEI absolute magnitude cannot be derived from radiometric observa-
tions such as provided by the Clouds and Earth’s Radiant Energy System (CERES; Wiel-
icki et al. 1996) and the Solar Radiation and Climate Experiment (SORCE; Rottman 2005),
unless adjustments are made to match the global net radiative flux to independent esti-
mates of long-term planetary heat uptake (Loeb et al. 2018). These adjustments do not
affect the time variability nor trend in radiometrically derived EEI significantly. Figure 1
contrasts the EEI time series from single-scanner Terra data with the energy balanced
(EBAF) multi-platform (Terra, Aqua, NOAA20) climate data record. Although the Terra
record suggests unrealistically high EEI absolute magnitude (time series mean), irreconcil-
able with heat uptake estimates and current knowledge of radiative forcings and feedbacks
that shape EEI (Loeb et al. 2009a), both show near-identical time variability and trend over
March 2000 to July 2023. The offset correction in EBAF is commensurate with an esti-
mate of EEI absolute magnitude at 0.71 W m~2 over 2005-2015 according to Johnson et al.
(2016).
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Fig.1 EEI (12-month running mean) derived from CERES observations. The CERES single-scanner net
radiative flux from Terra (blue) provides unrealistically high EEI, irreconcilable with heat uptake estimates
and current knowledge of radiative forcings and feedbacks that shape EEI (Loeb et al. 2009a). EBAF com-
bines data from multiple platforms (Aqua, Terra, NOAA20) and is anchored to an independent estimate of
EEI from heat uptake analysis (Loeb et al. 2018)

Although satellite measurement absolute accuracy is insufficient to close the TOA
energy balance, the unparalleled measurement precision and stability of current CERES
and future Libera measurements allows for the study of EEI time variations and trends. As
of 2021, the trend in EEI over 2005-2019 is 0.50+0.47 W m~2 dec™! (5-95% confidence
intervals) according to CERES EBAF analysis, indicating an approximate doubling of EEI
in this 14-year period (Loeb et al. 2021; Cheng et al. 2024a). This tendency agrees with
global OHU from combined in situ and altimetry measurements (Loeb et al. 2021), as well
as satellite-based OHU time series (Marti et al. 2022; Hakuba et al. 2021).

Although comprehensive assessments of EEI and OHU exist (e.g., von Schuckmann
et al. 2020; 2023; Meyssignac et al. 2019; Cheng et al. 2019b, 2022a), there is a lack of
systematic intercomparison across different methods and products. Methodological differ-
ences and assumptions across in situ-based OHC estimates alone are various and range
from different data sources, quality control procedures, mapping/interpolation techniques
and prior statistics, to mathematical assumptions in the derivation of OHC and OHU from
temperature and salinity profiles, and sampling considerations (Boyer et al. 2016; Cheng
et al. 2016a, b, 2022b). Furthermore, measurements of OHC (geodetic or in situ) and net
radiative flux (satellite) represent inherently different temporal and spatial scales due to
different sampling frequencies and processing, e.g., spatial and temporal interpolation,
which need to be better understood and quantified. Recognizing the need for a better under-
standing of the data products available, their discrepancies, uncertainties as well as sources
thereof, the WCRP initiated the formation of the GEWEX-EEI assessment working group
to intercompare different OHC and OHU estimates in conjunction with other sinks of heat
(e.g., atmospheric heat storage) and EEI variability from radiation budget data. GEWEX-
EEI aims to (1) facilitate OHC and OHU intercomparison on global and regional scales by
the international community, (2) formulate recommendations and best practices to enable
“apples-to-apples” intercomparison across products and their uncertainties, (3) improve

@ Springer



Surveys in Geophysics (2024) 45:1721-1756 1725

EEI central and uncertainty estimates, and (4) improve understanding of EEI variability.
In spring 2023, the community met for the first time at a joint WCRP-ESA EEI assessment
workshop at ESA-ESRIN, Frascati, Italy, bringing together experts in radiometric remote
sensing, satellite altimetry, space gravimetry, ocean in situ measurements and ocean rea-
nalysis/ocean state modeling to assess and intercompare estimates of EEI, their time vari-
ability and uncertainties (Meyssignac et al. 2023b). Key findings and recommendations are
presented and discussed in Sect. 4.

As part of this EEI assessment effort, the community was asked to share global annual
mean OHC series as produced in-house at respective institutions to highlight the spread
incurred by different approaches. Based on data available at the time of analysis, this paper
intercompares the different OHC estimates, their variability and their trends expressed as
OHU in TOA-equivalent W m~2 together with uncertainties (Sect. 3.1). Comparison of
OHU interannual variability and CERES global net radiative flux (EEI) is presented in
Sect. 3.1. Section 3.3 assesses zonal trends in net radiative flux using CERES EBAF data
to elucidate regional variations and their co-variability with trends in clear-sky and cloud
radiative effects as well as cloud properties.

The critical need to enable seamless climate continuity observations from space has
been recognized by the international satellite community (KISS Continuity Study Team
2024) and both GEWEX-EEI and the Global Climate Observing System (GCOS) Working
Group on energy cycle closure recommend addressing looming gaps. Section 3.2 demon-
strates the impact of data gaps on OHU estimates and EEI trends, highlighting the need for
global coverage and seamless continuity to ensure trend estimates are reliable and trend
uncertainties remain as low as possible.

2 Methods and Data
2.1 Approach

To intercompare OHU estimates and trends over 2005-2020, we analyze an ensemble of
21 OHC datasets, comprised of ten OHC datasets based on in situ observations, two satel-
lite-based OHC datasets combining satellite altimetry and space gravimetry measurements,
three hybrid methods combining in situ measurements with satellite information and six
ocean reanalysis products. OHC estimates from in situ data originate from EN4 (Good
et al. 2013), the In Situ Analysis System (ISAS20; Gaillard et al. 2016), Scripps Institution
of Oceanography (SIO, Roemmich and Gilson 2009), Cheng and Zhu analysis (IAP, Cheng
and Zhu 2016; Cheng et al. 2017; Cheng et al. 2024b), NOAA NCEI (Levitus et al. 2012),
PMEL (Lyman and Johnson 2008), JAMSTEC (Hosoda et al. 2008), LocalGP (Giglio
et al. 2024), JMA (Ishii et al. 2017) and von Schuckmann and Le Traon (2011), hereaf-
ter vS&LT. Satellite-based OHC is provided by Jet Propulsion Laboratory (JPL, Hakuba
et al. 2021) and Legos-Magellium (Marti et al. 2022). The hybrid estimates originate from
CNR-ISMAR (Storto et al. 2022) and PMEL, namely from PMEL-combined (Lyman and
Johnson 2014) and RFROM (Lyman and Johnson 2023) analyses. The six reanalysis data-
sets considered are ECCOv4 (Forget et al. 2015), OCCA?2 (Forget 2024), SODA3 (Carton
et al. 2018), CIGAR (Storto and Yang 2024), ORAS-5 (Zuo et al. 2019) and the Coperni-
cus Global Reanalysis Ensemble Product (GLORYS2V4, Lellouche et al. 2018; ORAS-
5; C-GLORSvV7, Storto and Masina 2016). The datasets are summarized in Table 1 and
described in more detail in the supplementary information (SI T1).
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Many of these datasets were provided to the GEWEX-EEI assessment via https://sites.
google.com/magellium.fr/eeiassessment/data-records/, while ECCOv4, SI10, JAMSTEC,
SODA3, ORAS-5, Copernicus, OCCA2, CIGAR, vS&LT and RFROM data were either
directly provided by the data producer or downloaded from the data producer website.
Most of the OHC datasets were provided as global annual averages (JPL, Legos-Magel-
lium, ECCO, ORAS-5, CNR-ISMAR, EN4, ISAS20, NCEI, PMEL, PMELc, LocalGP,
Ishii, OCCA2, TAP, vS&LT, Copernicus, CIGAR) and/or as monthly gridded data (SIO,
ORAS-5, SODA3, JAMSTEC, RFROM, ECCO, Legos, EN4, IAP, Ishii, NCEI). From
monthly OHC, we compute annual averages based on bin-averaging of the monthly values.
Gridded datasets are globally integrated to obtain global values in J. All OHC products
are converted to ZJ and interpolated in time such that each annual mean is centered on the
middle of the year. SODA3, JAMSTEC and SIO do not provide OHC datasets but gridded
temperature and salinity profiles. For those, we derive the OHC from the temperature and
salinity by vertical integration of the specific heat of seawater multiplied by the local den-
sity of seawater and the oceanic temperature using the TEOS-10 GSW software (McDou-
gall and Barker 2011) as, e.g., in Melet and Meyssignac (2015).

Some products only cover the ocean down to 2000 m depth (LocalGP, PMEL, PMELc,
ISAS, NCEI, EN4, Ishii, SIO, JAMSTEC, RFROM, vS&LT). For consistency across OHU
estimates, we add a constant <2000 m heating rate of 0.06 W m~2+0.04 W m~2 (Purkey
and Johnson 2010; Johnson et al. 2023b). OHU time series are derived from the time deriv-
ative of OHC, using centered differences, which applies a light filtering of the data, slightly
reducing the noise compared to first differences, and are normalized by Earth’s surface area
at the TOA: 5.14 x 10" m? at 20 km above the Earth’s surface.

The trend and acceleration of OHC are calculated using an ordinary least squares (OLS)
estimator. Uncertainties in the trend and acceleration are given by the variance of the esti-
mator which is derived from each dataset’s OHC uncertainties. For some of the OHC data-
sets, at the time of manuscript submission, uncertainty estimates were not available, and
the OHU and OHU trend uncertainties are derived from the linear fit. Some other OHC
datasets (CNR-ISMAR, EN4, NCEI, PMEL, ECCO, Copernicus, OCCA2, CIGAR, IAP,
ORAS-5, vS&LT, ISAS, LocalGP and Ishii) provide annual estimates of uncertainty or
ensemble spread without providing the time correlation across annual uncertainties; hence,
their trend and acceleration uncertainties ignore any potential temporal correlation effects.
A few OHC datasets (JPL and Legos-Magellium) provide a variance—covariance matrix
that describes the annual uncertainties and their time correlation.

As part of our analysis, we investigate the impact of ocean sampling discrepancies
on the OHU estimates (or OHC trend in W m™2), OHU trends (or OHC acceleration in
W m~2 dec™!) and OHU correlation (R) with CERES EBAF net radiative flux for 12 grid-
ded OHC datasets made available to us. We apply a restrictive ocean sampling (ROS) mask
that covers ocean areas common to all products (SI, Fig. S1), largely masking shelf areas,
coastal areas, shallow seas (>300 m), marginal seas and polar oceans beyond +60° lat-
itude, which are generally not sufficiently sampled by Argo profiling floats. In addition,
we test the impact of a mask limited to areas covered by satellite altimetry (i.e., limited
to £+ 66° latitude) to obtain first-order estimates of sampling uncertainty.

2.2 In Situ Observations

Historically, ship-based observations have been the main source of subsurface ocean
temperature information. The Argo Program, designed in 1998 (Argo Science Team
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1999; Roemmich et al. 2009), was transformational for subsurface ocean observing,
enabling high-quality data (Wong et al. 2020) to be obtained nearly anywhere in the
ocean, thus reducing geographical and temporal (seasonal) biases of ship-based obser-
vation systems. Argo first achieved significant coverage in both hemispheres in 2005
and reached its initial goal of 3000 profiling floats in November 2007. Its present cover-
age of about 3880 floats is close to the target of 4000 and is becoming more prevalent in
marginal seas, seasonally ice-covered regions and the deep ocean below 2000 m (Jayne
et al. 2017). Argo’s near-global uniform coverage has resulted in a dramatic reduction
of the uncertainty of global OHC changes. Other subsurface observing systems contrib-
ute significant subsurface temperature data from 2005 to present, and in some cases,
they are the main source of data (mainly in areas shallower than 2000 m depth, mar-
ginal seas and ice-covered areas). Observations from research ships (mainly conduc-
tivity—temperature—depth—CTD—casts) and ships of opportunity (mainly expendable
bathythermographs—XBT drops from merchant ships), moored buoys (especially the
tropical moored buoy arrays in the Pacific, Atlantic and Indian Oceans), ice-tethered
profilers (in the high Arctic), gliders (mainly on and near continental shelves) and even
instrumented pinnipeds all augment and extend the observations provided by the Argo
array (Abraham et al. 2013; Meyssignac et al. 2019; Cheng et al. 2022a).

To estimate global integrals of OHC, algorithms are developed to grid temperature
and/or OHC data, cope with data-sparse regions, and smooth the temporal and spatial
fields. These algorithms are generally referred to as “mapping methods” and represent
a leading source of uncertainty (Gregory et al. 2004; Boyer et al. 2016) in global OHC
estimation, especially in data-sparse regions and eddy-rich regions with large spatiotem-
poral variability (Wang et al. 2018).

The ten in situ-based datasets used here (NCEI, LocalGP, IAP, Ishii, JAMSTEC,
SI10, EN4, PMEL, ISAS and vS&LT) are listed in Table 1 and described in more detail
in SITI.

2.3 Geodetic Observations

The derivation of geodetic OHC is rooted in analysis of Earth’s sea level budget (Marti
et al. 2022; Hakuba et al. 2021). To obtain global steric sea level change, global mean sea
level (altimetry) and ocean mass change (gravimetry) observations are differenced, con-
sidering geophysical corrections such as related to glacial isostatic rebound effects (Caron
et al. 2018). The steric change is translated into OHC and OHU using estimates of the
ocean’s expansion efficiency of heat. Full details on the geodetic OHC products used here
(JPL and Legos, see Table 1) are provided in SI T1.

2.4 Ocean State Estimates and Reanalysis

Ocean reanalyses combine multiple data sources through data assimilation in a numerical
model (Storto et al. 2019). The types of datasets being assimilated as well as the models
and assimilation methods vary between reanalyses. In our comparison, we focus on the six
datasets described in SI T1 (ECCOv4, OCCA2, SODA3, CIGAR, ORAS-5, Copernicus;
Table 1), which continue to be improved and extended.
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2.5 Earth Radiation Budget Data

CERES (Wielicki et al. 1996) currently flies multiple instruments on Terra, Aqua, S-NPP
and NOAAZ20 satellite platforms, collecting and processing broadband shortwave (SW) and
longwave (LW) radiances since March 2000. Here, we make use of the CERES Energy
Balanced and Filled (EBAF) Ed4.2 product (Loeb et al. 2018), providing global solar
incoming, and Earth outgoing net, shortwave (SW) and longwave (LW) radiative fluxes,
as well as cloud properties (derived from MODIS and VIIRS radiances) at monthly and
1-degree spatial resolution. Detailed descriptions of the data products and a wide range
of publications applying the data in climate analyses can be found here: https://ceres.larc.
nasa.gov/. The solar irradiances are derived from time-varying instantaneous total solar
irradiance measurements from various sources (Loeb et al. 2018). In our comparisons with
OHU variability, we consider the period 01/2005-12/2020. In EBAF, the long-term mean
EEI (global long-term mean net radiative flux) is adjusted to match with planetary heat
uptake derived from largely in situ observations by applying an offset such that its mean
value over the period 2005-2015 is consistent with the mean in situ estimate of 0.71 after
Johnson et al. (2016). This offset correction anchors the satellite data to the in situ EEI esti-
mate and does not affect the trend or interannual variability of the EBAF time series (see
also Fig. 1); thus, temporal variations in radiometric EEI remain independent of those from
the OHU data (Loeb et al. 2021).

3 Results
3.1 Global Ocean Heat Content and Heat Uptake Intercomparison

Figure 2 intercompares annual mean OHC time series, highlighting the two satellite-
based products (a), the six series from reanalysis (b), the hybrid products that merge
in situ with altimetry and other satellite information (c), and ten OHC time series based on
in situ observations—four ingesting Argo data primarily (SIO, LocalGP, ISAS and JAM-
STEC), and the remaining six using all available ocean temperature data (d). For refer-
ence, we also include planetary heat content derived from integrating CERES EBAF net
radiative flux (black lines), which itself has been anchored to PMEL-combined OHU and
non-oceanic heat uptake estimates and is therefore not independent. Figure 4a combines
all OHC time series and provides a summary of the individual OHC long-term trends or
OHU, respectively, including trend uncertainties expressed in W m™2 (Fig. 4c). The OHU
estimates are normalized with respect to Earth’s entire surface area at the TOA, approxi-
mately 20 km above Earth’s surface: 5.14x 10" m% The OHU derived from OLS trend
analysis is comparable but not identical to OHU derived from differencing the last and first
years of smoothed OHC time series (e.g., Cheng et al. 2022a, b; von Schuckmann et al.
2023) or deriving the mean OHU from the time-differenced dOHC/dt times series as in
Fig. 3e-h (e.g., as done by Loeb et al. 2022). The trend estimate represents the annual rate
of OHC change due to both natural and anthropogenic influences over the period of consid-
eration, which means both forced secular and internal variability (e.g., ENSO) contribute
to the change observed and ideally require separation. The observed rate of OHC change
or OHU, respectively, has been acknowledged as a clear indication of continued warming
of the ocean commensurate with observed increase in greenhouse gas emissions, partially
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Fig.4 a Ocean heat content (OHC) series (ZJ) derived from 21 data products. b Taylor diagram illustrat-
ing each detrended OHU time series’ standard deviation and correlation coefficient (R) with CERES net
radiative flux over 2005-2019. Squares indicate a negative correlation. ¢ OHC trend or OHU, respectively,
including trend uncertainty derived from covariance matrix (), annual OHC mapping standard errors or
ensemble spread (f), and trend line residuals (y) in terms of 90% and 68% confidence intervals using gen-
eralized least squares regression analysis. OHC trends for the JPL and Legos products are calculated three
ways left to right using approaches a,  and y, respectively. (d) Same as (c) but for OHC acceleration or
OHU trend, respectively

compensated by direct aerosol effects, and their radiative forcing (Tokarska et al. 2019;
Charles et al. 2020).

The full-column central OHU estimates over 2005-2020 derived from the 21 OHC
products vary between 0.40 and 0.96 W m™, indicating a significant spread with the
lowest heating rate obtained from the ECCO ocean state estimate and the largest value
derived from CIGAR. The two geodetic OHU estimates agree within uncertainties
(0.89 W m~2), exceeding most estimates except for CIGAR. While the reanalysis systems
SODA3 and ORAS-5 are in close agreement (0.65-0.67 W m_z), OHU estimates from
ECCO (0.40+0.12 W m‘z) and CIGAR (0.96+0.12 W m™) are exceptionally low and
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high, respectively, representing the lower and upper limit of all estimates provided here.
Although not as pronounced as for the reanalysis estimates, the spread across in situ esti-
mates is substantial, from 0.51 (ISAS20 and EN4) to 0.74 (LocalGP) W m™2 (amounting to
45% of the lower value) and is significant considering the non-overlapping trend uncertain-
ties at the 90% confidence level in Fig. 3c). In part, the discrepancies across in situ values
are associated with different mapping/interpolation techniques, as well as decisions made
in the quality control and bias correction of in situ profiles considered (Boyer et al. 2016;
Cheng et al. 2016b, 2022b; Tan et al. 2023). Sampling considerations pertaining to the
lack of ocean profiles in notoriously under-sampled areas of the ocean, e.g., shallow seas
(>300 m), polar, coastal and shelf areas, yield different coverage areas and ocean volumes
considered in the OHU calculations across products, especially between products that use
Argo data alone versus products that include profiles from gliders, ice-tethered profilers,
XBTs and other in situ observations (e.g., von Schuckmann et al. 2014; Meyssignac et al.
2019; Abraham et al. 2013). Hakuba et al. (2021) found that Argo-only datasets produced
larger OHU rates than Argo+other in situ products, which is not strictly the case in the
present analysis; however, the primarily Argo-ingesting LocalGP and JAMSTEC products
indeed reside at the upper range of in situ-based OHU estimates. Discrepancies in ocean
area/volume sampled accounts for some of the spread in OHU across in situ datasets (see
Sect. 3.2). Similarly, geodetic observations are constrained to ocean areas equatorward of
+66° latitude given the availability of altimetry data (Marti et al. 2022). Thus, except for
ocean reanalyses, and the TAP, Ishii, EN4 and NCEI data products, none of the observed
OHC and OHU changes is truly representative of the full global ocean. In Sect. 3.2, we
investigate the impact of applying a restrictive ocean sampling mask (Fig. S1) to a subset
of twelve gridded OHC dataset and of a mask that limits the calculation of near-global
OHC to the satellite sampling for insight on potential sampling uncertainties and their
implications for the intercomparison.

From the time derivative (centered differences) dOHC/dt, we derive annual mean OHU
time series (Figs. 3, 5, 6). OHU time series are expected to track year-to-year variability in
global mean TOA net radiative flux on annual timescales, when the Earth system is near
energetic equilibrium and year-to-year heat uptake variations in other Earth system com-
ponents are assumed to be small (e.g., Loeb et al. 2012, 2021). We assess the agreement
in detrended year-to-year variability by providing each products’ correlation coefficient
with detrended CERES EBAF net radiative flux in the Taylor diagram (Figs. 4b, 5 sub-
panel legends) together with each time series’ average amplitude expressed as the standard
deviation of the time series. Correlation coefficients exceeding 0.44 are obtained for the
PMEL-combined (0.47), RFROM (0.44), ORAS-5 reanalysis (0.47), ECCO ocean state
estimate (0.55), JPL (0.62) and Legos geodetic OHU (0.46) time series. Correlation coeffi-
cients smaller than +0.15 are found for the in situ datasets JAMSTEC, IAP, SIO, LocalGP,
NCEI, EN4, vS&LT and the CIGAR and SODA reanalysis. Largest standard deviations
exceeding the CERES variability by more than 0.1 W m~2 are found for the JPL geodetic
OHU time series, PMEL in situ, NCEI, OCCA2, CIGAR and SIO datasets. Eight of the
time series produce standard deviations smaller than in CERES EBAF (0.34 W m~?) at
this annual timescale. The amplitude and trend in JPL geodetic OHU are sensitive to the
estimate of expansion efficiency needed to translate derived steric sea level change to OHC
and OHU; hence, the large amplitude in OHU variability in the JPL product is at least par-
tially the result of a smaller expansion efficiency considered (derivation in Hakuba et al.
2021) compared to that in the Legos product (Marti et al. 2022). Further study is needed to
find consensus on the magnitude and variability of this critical conversion factor in order
to improve both global and regional OHC and OHU estimates from geodetic observations.

@ Springer



1734 Surveys in Geophysics (2024) 45:1721-1756
JPL Legos CIGAR
1.0 —e— CERES EBAF: 0.52Wm2dec~ | —e— CERES EBAF: 0.52Wm~2dec~ —e— CERES EBAF: 0.52Wm~2dec-!
o5 OHU: 1.11Wm~2dec!,R = 0.62 | OHU: 0.41Wm~2dec!,R =0.46 OHU: 0.14Wm~2dec™!,R =0.14
~ \
b
£ 00 LA {1 G 1 7\//\[ - ) e 8
z 7 7N A
-0.5 1 1
-1.0 1
Copernicus ECCO OCCA2
1.01 —— CERES EBAF: 0.52Wm2dec™! 1 —e— CERES EBAF: 0.52Wm?dec™!
o OHU: 0.02Wm~2dec!,R = 0.22 ol A OHU: 0.54Wm~2dec™!,R=0.55
~ / ol ol L~
g 00 — " V. = AN
2 os 1 —e— CERES EBAF: 0.52Wm~*dec*
-1.0 { OHU: 0.78Wm~2dec~!,R=0.17
ORASS5 SODA CNR-ISMAR
1.01 —— CERES EBAF: 0.52Wm2dec! | —e— CERES EBAF: 0.52Wm~Zdec"! —e— CERES EBAF: 0.46Wm~2dec™!
05 OHU: ~0.03Wm~2dec~!,R =0.47 // | OHU: 0.36Wm~2dec!,R = 0.08 OHU: 0.31Wm~2dec,R =0.39 =
L oo / LA ~
g 00{ — /- - E I 2/ A A .
2 s \/ 4 2
-1.0
PMEL-RFROM PMELc EN4-c14
1.01 —— CERES EBAF: 0.52Wm-2dec { —e— CERES EBAF: 0.52Wm~2dec! —e— CERES EBAF: 0.52Wm-2dec-!
05 OHU: 0.52Wm~2dec!,R = 0.44 | OHU: 0.44Wm~2dec!,R = 0.47 OHU: 0.33Wm~2dec™!,R = - 0.28
% ! 4 = B /\,,/
e 00{ A —aE 1 = 1 A\?"' o
% s N 1 /\\[
-1.0 {
IAP ISAS ISHII
1.0 —e— CERES EBAF: 0.52Wm*dec"! | —e— CERES EBAF: 0.52Wm~2dec~!
; b ke . 2Pl Rk
5 OHU: 0.40Wm2dec™’,R=-0.08 _, | | OHU: 0.52Wm~2dec~!,R =0.17
~
| / = o9
£ 00 ks 1 —ya ,X, = \ /\ /—
3 /A\/ /
-0.5 1 —e— CERES EBAF: 0.52Wm~2dec™!
=40 1 OHU: 0.46Wm~2dec!,R =0.17
JAMSTEC LocalGP NCEI
1.01 —— CERES EBAF: 0.52Wm-2dec~! —e— CERES EBAF: 0.52Wm~2dec™!
05 OHU: 0.16Wm~2dec!,R =023 | OHU: 026Wm-2dec™!,R =0.08
T o0 /\//,\r// : Wt //j
£ s N XN
3 -o0s [ —e— CERES EBAF: 0.52Wm~2dec!
~10 OHU: 0.30Wm~2dec",R = 0.07
PMEL slo VS&LT
1.0 —e— CERES EBAF: 0.52Wm~2dec™* —e— CERES EBAF: 0.52Wm~?dec™!
o5 OHU: 027Wm-2dec!,R =0.18 | OHU: 0.11Wm~2dec!,R = - 0.15
n M
| x ,
E o0 / V\,/_/‘ . ~N A ~| W
H 4
-0.5 1 —e— CERES EBAF: 0.52Wm2dec™!
~10 | OHU: 0.78Wm~2dec~, R = 0.07

O R

S 9

g 0 @ @t O @ °

o P @0 @ et 9 @ @°

Fig.5 Annual OHU anomaly time series (dAOHC/dt from centered differences, long-term mean removed)
derived from 21 OHC products and compared to CERES net radiative flux (black line). Green lines indicate
the trend line through the OHU series. Trend magnitude and detrended correlation coefficient are provided
in the legend of each sub-figure. Gray shading in the JPL sub-panel indicates the GRACE-FO data gap dur-
ing which the annual means are based on less than 12 months of data

In terms of co-variability, it is evident that products exploiting temporal and spatial
patterns of OHC anomalies and their local correlation with sea surface height (PMEL-
combined), and with sea surface height and SST (RFROM), as well as the two satel-
lite-based estimates and the ECCO and ORAS-5 reanalysis exhibit largest correlations
(>0.44) with CERES EBAF. All of these products either observe or fill in data-sparse
regions based on additional physical knowledge to avoid relaxation of OHC maps back
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Fig.6 Same as Fig. 5 but for 13 products comparing annual means at 6-month increments centered mid-
year (January—December) and end of year (July—June) akin to analysis in Loeb et al. (2021), their Fig. 1,
and reproduced in the panel titled “PMELc.” Gray shading in the JPL sub-panel indicates the GRACE-FO
data gap during which the annual means are based on less than 12 months of data

to a climatological mean (Durack et al. 2018; Cheng et al. 2019a, b; Lyman and Johnson
2023).

The co-variability of 13 OHU annual mean time series at 6-month increments cen-
tered mid-year (January—December) and end of year (July—June) akin to analysis in Loeb
et al. (2021) is shown in Fig. 6 and shows that all correlation coefficients slightly increase
except for the IAP and NCEI data, by up to +0.19 JAMSTEC). In line with Loeb et al.
(2021), we find good agreement in both correlation and OHU trend between EBAF and
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the PMEL-combined OHU series and provide an update in the respective panel of Fig. 6.
Again, largest correlations exceeding 0.4 are common for reanalysis, satellite and the SSH/
SST-informed mapping methods, and are now even more pronounced (up to 0.78 for the
JPL product).

In terms of OHU trends, or OHC accelerations (W m~> dec™!, Figs. 4d, 5, 6), respec-
tively, all products yield increase over the observational period, albeit some estimates
are not significant at 90% confidence (Legos, ORAS-5, CNR-ISMAR, CIGAR, Fig. 3c¢).
Trends near or below 0.25 W m~2 dec™!, and therefore less than 50% of the CERES trend,
are obtained for the ORAS-5, CIGAR, Copernicus, vS&LT and JAMSTEC products. Cen-
tral OHU trend estimates exceeding the CERES trend in net radiative flux originate from
SIO, JPL, ECCO and OCCAZ2 products. Considering the OHU trend uncertainty derived
by Loeb et al. (2021) at 0.50+0.47 W m~2 dec™! and by data product, these discrepancies
are not significant at the 90% confidence level and indicative of accelerated ocean warming
or increase in EEI, respectively.

Applying a low-pass filter (Lanczos) with a cutoff period of 3 years as in Marti et al.
(2022) removes high-frequency content related to intrinsic ocean variability (Palmer and
McNeall 2014) and the mesoscale activity that is visible in altimetry but not in gravimetry,
and improves the co-variability of the satellite-based Legos product with CERES net radia-
tive flux (Fig. 7), from 0.62 (annual at 6-month increments) to 0.66. Different smoothing
filters and their advantages are under investigation by multiple groups (e.g., Trenberth et al.
2016; Lyman and Johnson 2023; Marti et al. 2022), but their improvement of year-to-year
variability, compared to CERES data, is not expected to exceed or fully meet the positive
impact of more complete spatiotemporal sampling (e.g., geodetic) or regional filling (e.g.,
PMEL-combined, RFROM). However, both the “running average” at 6-month increments
(Fig. 6) and the low-pass filter provide enhanced R coefficients, ascertaining that varia-
tions at timescales shorter than 1-3 years are non-representative of EEI variability, impede
the direct comparison with CERES data and ought to be considered, minimized and better
understood.

Ocean Heat Uptake

—— Ocean heat uptake from CERES-EBAF
—— Ocean Heat Uptake from Legos-Magellium MOHeaCAN product - R=0.77
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Fig.7 MOHeaCan (Legos) time series of OHU (blue) and 90% of CERES EBAF net radiative flux (black).
Both time series are low-pass-filtered at three-year cutoff time (Lanczos) to remove high-frequency noise
related to intrinsic ocean variability (Palmer and McNeall 2014)

@ Springer



Surveys in Geophysics (2024) 45:1721-1756 1737

Across the 21 different OHC products, we find (1) that CERES net flux and OHU year-
to-year variability agrees remarkably well for the satellite-based, two reanalysis, as well
as the in situ+satellite hybrid products, suggesting a key to agreement is as complete a
spatiotemporal ocean coverage as possible; (2) that datasets that match CERES variability
(R>0.44) also agree with a positive trend similar in magnitude, reinforcing the notion of
accelerated ocean warming and increase in EEI; (3) that spatial sampling considerations
impact the validity of our intercomparison as well as the interpretation of global OHU esti-
mates, OHU trends and correlations with CERES data (see Sect. 3.2); and (4) that smooth-
ing short-term variability in OHU and running averages at the sub-annual scale improve
the co-variability with CERES data.

3.2 How Gaps Impact Trend Estimates and Their Accuracy
3.2.1 Ocean Sampling Considerations

To investigate the impact of inconsistent ocean sampling across data products on OHU
estimates, OHU trends and their correlations with CERES data, we subsample twelve grid-
ded OHC datasets with the very same restrictive ocean sampling (ROS) mask (SI Fig. 1)
prior to computing “global” OHU (orange dots in Fig. 8). Likewise, we apply a mask that
limits the near-global OHC calculation to the satellite coverage (+66° latitude, green dots)
and compare the results to the unrestricted OHU estimates based on the original gridded
data products and their native ocean coverage (blue dots, Fig. 8c). Applying the satel-
lite mask, the OHC trends or OHU, respectively, are reduced in reanalysis products, by
about 5% (0.04 W/m?; relative to SODA3 OHU), while the impact on in situ data, which
in many cases do not exceed coverage beyond + 60° latitude (except NCEI), is marginal
as expected. For reanalyses that much depend on assimilated observations, uncertainties
are largest in under-sampled areas, impeding on the interpretation of this result. In addi-
tion, a 5% sampling uncertainty is well within OHU uncertainty of most data products
(Fig. 4). Subsampling with the ROS mask affects all estimates, reducing satellite-based
OHU by 17% (0.15 W m™2; relative to Legos OHU) and OHU from reanalysis by similar
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Fig. 8 Restrictive ocean sampling (ROS) mask experiment: a Percentage of Earth’s surface covered by each
gridded product (blue dots), after applying the satellite mask (+66° latitude) (green dots) and after applying
the ROS mask (orange dots). b Each product’s correlation of OHU time series with CERES net radiative
flux using different masks, ¢ same as (b) but for OHC trend or OHU, respectively. d Same as (b) and (¢) but
for the resulting OHU trend or OHC acceleration, respectively
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amounts. In situ-based OHU is at most reduced by 16% for EN4 and by no more than 6%
for the Argo-only ISAS20 product. For the in situ OHU estimates, after applying the same
ROS mask, the spread across the seven products (EN4, IAP, ISAS, Ishii, JAMSTEC, SIO,
NCEI) reduces by 30% from 0.51-0.71 to 0.44-0.60 W m~2, indicating that a common
mask is required for the purpose of intercomparison and to reduce systematic differences in
OHU across in situ products due to sampling considerations. The remaining discrepancies
across Argo-only and across all in situ OHU estimates are dominated by differing source
data, mapping techniques, varying baseline climatologies, quality control and bias correc-
tion procedures (Boyer et al. 2016; Schuckmann et al. 2014; Meyssignac et al. 2019). At
the same time, this experiment highlights the need for as complete a global ocean coverage
as possible to represent a true global estimate of OHU, such that no heat is “missed” by
under-sampling.

Subsampling with the ROS mask, excluding shallow, coastal and marginal seas, also
impacts the OHC acceleration or OHU trend, respectively, in W m™2 dec™! (Fig. 8d),
as well as the correlation between the OHU time series and CERES net radiative flux
(Fig. 8b). The impact on the correlations is most evident for the spatially more complete
satellite-based and reanalysis OHU series. For the satellite-based Legos product and ECCO
reanalysis, the correlations decrease, potentially indicating the more complete coverage
enhances the correlation with CERES; however, the correlations for SODA3 and ORAS-5
increase when applying the ROS mask. Sampling according to the ROS mask, increases
the OHU trends for most products overall (except NCEI and ECCO), suggesting a larger
OHU trend is observed when the ocean is sampled by the Argo system alone, and could
potentially be slightly skewed toward sampling regions of faster warming (Fig. 8d). Mask-
ing out the polar regions poleward of +66° latitude affects neither correlations nor OHU
trends significantly in any of the data products, including the reanalysis products, suggest-
ing the polar OHU changes might, currently, play less of a role for tracking global OHU
change and the co-variability with CERES EBAF.

Spatial sampling considerations clearly impact the spread between products in our inter-
comparison of OHC products, the magnitude of “global” OHU estimates, the OHU cor-
relations with CERES net radiative flux and OHU trends in different ways, which require
further investigation. Applying the ROS mask reduces spread across products slightly,
enabling a more consistent comparison, while at the same time reducing agreement with
CERES variability and the OHU magnitude. This suggests more complete ocean volume
coverage is instrumental in capturing the “true” global OHU magnitude and change.

3.2.2 Gapsin OHC and EEI Time Series

Here, we investigate the impact of hypothetical data gaps in OHC and EEI climate data
records to better understand what implications observing gaps might incur on trend analy-
sis. Currently there is no plan for a follow-on Earth Radiation Budget mission post-Libera,
which will be launched in 2027 on JPSS-4 and has a projected lifetime of 5 years (Harber
et al. 2023; Hakuba et al. 2024). The in situ ocean observing system (e.g., Argo) is unlikely
to suffer from sudden and complete interruptions that would create gaps in a global record,
while satellite-based geodetic observations theoretically are.

We quantify the impact of artificial gaps on OHU estimates and EEI trend magnitude
and uncertainty, omitting the role of measurement uncertainty. The analysis does not con-
sider (time-varying) calibration uncertainties (e.g., accounted for by Loeb et al. 2009b;
Wielicki et al. 2013) nor absolute calibration shifts in the data record after the gap (Loeb
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et al. 2009b). This analysis therefore solely demonstrates a lower margin of statistical
uncertainty introduced by gaps of different lengths (1-25 months) and gap location in the
data record.

Our starting point is monthly anomalies of ocean heat content (Fig. 9a) from NOAA
NCEI (Levitus et al. 2012). We introduce a gap of at least 1 month and at most 25 months
long in the OHC record, varying the gap starting point between the beginning and end
of the time series. For each gap ensemble member, we calculate the OHC trend (OHU)
and trend uncertainty (95% confidence level, CI95) expressed in Wm™2, which is
0.58 W m™2+0.06 W m~2 for the gap-free record. Figure 9a shows the OHC time series
including a 1-year gap (gray line). The red line indicates the linear regression performed to
obtain the OHC trend or OHU, respectively, expressed in W m~2 with respect to the global
surface area. Figure 9b scatters the trend bias in % for all gap-afflicted OHC series against
the gap length and is colored by the gap starting year. With increasing gap length, the mean
absolute bias (black line) as well as the maximum and minimum biases by gap length (gray
envelope) increase, reaching a maximum bias at —9% for a 2-year gap length placed at
around 2020. The trend bias expressed in % of the original CI95 is shown in Fig. 9b. It
appears that gaps placed toward the end of the record lead to negative biases, while largely
positive biases occur with gaps at the beginning of the time series. This is probably related
to the flatter increase in OHC at the beginning versus an accelerated increase toward the
end of the OHC record. Similarly, but less linearly, the absolute bias in trend uncertainty
(95% confidence interval) increases with gap length, reaching maxima near — 12% when
placed near the middle of the record (Fig. 9d). Positive biases exceeding +6% occur for
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Fig.9 a OHC monthly anomalies (NOAA NCEI), together with an example gap of 1-year length (black
line) and the linear regression trend line (red). b OHC trend biases in percent of the original, gap-free trend
magnitude (0.58 W m~2) as a function of gap length and gap starting year (color bar). The black line indi-
cates the mean absolute trend bias, the gray line envelopes the maximum and minimum biases incurred
by the gaps. ¢ Same as (b) but for OHC trend biases in % of the original, gap-free trend uncertainty (95%
confidence interval, CI95: +0.06 W m~2). d Same as (b) but for the trend uncertainty (CI95) bias in percent
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gaps placed at the beginning of the record, a period of modest global OHC increase and
variability.

Next, we examine trends in the monthly anomalies of global mean net radiative flux
(CERES EBAF Ed.4.2). Same as above, we introduce a gap of at least 1 month and at
most 25 months, varying the gap starting point between the beginning and end of the time
series. For each gap of different starting times, we calculate the mean absolute bias, maxi-
mum and minimum biases in % of the gap-free trend (0.50+0.15 W m~2 dec™'). We do
the same for the trend uncertainty (CI95). Figure 10a shows the time series including a
6-month gap indicated by the gray line. The red line illustrates imputation of the missing
values by linear interpolation as a form of uninformed gap filling. Figure 10b presents the
trend biases by gap length with gaps omitted in the trend calculation (no fill, black line in
Fig. 10a) and is colored by the gap location starting year. Omitting the gap appears to, on
average, introduce trend bias of up to 3% for gaps up to 25 months long, the maximum
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Fig. 10 a CERES EBAF EEI monthly anomalies, together with an example gap of 6-month length (black
line) and a linear interpolation line across the gap (red). b EEI trend biases in percent of the original, gap-
free trend magnitude (0.50 W m™2) as a function of gap length and gap starting year (color bar). The black
line indicates the mean absolute trend bias, the gray line envelopes the maximum and minimum biases
incurred by the gaps. ¢ Same as (b) but for EEI trend biases in % of the original, gap-free trend uncertainty
(95% confidence interval, CI95:+0.15 W m~2). d Same as (b) but for the trend uncertainty (CI95) bias in
percent. e-g Same as (b), (¢), (d) but for time series with gaps imputed using linear interpolation (e.g., red
line in a)
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trend bias incurred is up to 20% for a 25-month gap toward the end of the data record in
2021 (Fig. 10b). Clearly, the longer the gap, the larger the trend bias incurred. This rela-
tionship is more pronounced when the gaps are imputed by linear interpolation rather than
being omitted (Fig. 10e). The linear interpolation completely disregards the true natural
variability during the gap and appears to bias the trend even more, on average by up to
8% for a 25-month gap and at maximum by 54% for a 20-month gap at the beginning of
the record. Note that the internal variability (in terms of standard deviation, not shown) is
slightly larger in the first half of the record compared to the second, which might explain
the sensitivity to gaps at the beginning of the record. Non-informed gap filling can worsen
the situation, and gaps of 2 months or longer require more sophisticated, data and physics-
informed imputation to not degrade the trend quality as much.

Trend uncertainty (Fig. 10d, g) is sensitive to the gaps as well and shows a near-linear
increase with gap length, with enhanced trend accuracy biases toward the end and begin-
ning of the record. Likewise, uninformed gap imputation through linear interpolation
increases bias in trend uncertainty even further.

The trend biases normalized by the trend uncertainty derived for the gap-free record
(Fig. 10c) indicate that none of the trend biases is significant within trend uncertainty, but
2-year gaps placed toward the end of the record come close to, inducing trend bias of up to
70% of the trend uncertainty. As expected, for the imputed gaps of 15 months and longer,
trend biases exceed trend uncertainty (Fig. 10f), implying significant impact of data gaps
with uninformed imputation.

Assuming a gap is incurred because of measurement discontinuity or switch to a differ-
ent measurement platform, then calibration uncertainty and differing instrument charac-
teristics will certainly impede on the quality of trends without overlap or intercalibration
capability (Loeb et al. 2009b), potentially making it impossible to tie time series together
and derive meaningful trends. This analysis shows that a data gap in a record assumed to be
free of measurement uncertainty and inhomogeneities can increase trend uncertainty sig-
nificantly as a function of gap length and location alone. It also shows that gap imputation
can worsen the impact of gaps if done improperly. The gap impacts are more pronounced
when identifying trends in EEI from the CERES record, compared to the gap impacts on
OHU from the OHC series. This is not surprising but indicates that the impact of gaps is
also a function of signal-to-noise ratio; hence, it depends on how reliable the trend is to
begin with. The rise in OHC is 20 times larger than the residual standard error, while the
EEI trend exceeds the standard error by a factor of six only. The CERES team examined
the feasibility of using less accurate imager retrievals to compute radiative fluxes and tie
ERB time series before and after a data gap together (RBSP 2018). It was found that this
“bridging” method yields uncertainty in net TOA flux that is too large to detect meaningful
decade-to-decade changes in EEI. As of now, no comprehensive study exists on potentially
suitable methods to bridge gaps and minimize their impact on satellite-derived EEI trends.

3.3 Zonal Trends in Net Radiative Flux

To identify regional patterns of change in net radiative flux (NET), we examine zonal dis-
tributions of +20-year trends in NET, absorbed shortwave (SW) and absorbed longwave
(LW) radiation. We compare observed global and area-weighted zonal trends in all-sky,
clear-sky and cloud radiative effects (CRE), as well as in snow/ice cover and cloud proper-
ties. Studies that attribute observed radiative and EEI changes to geophysical processes,
forcings and feedbacks require supplemental analysis of climate model experiments (e.g.,
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Raghuraman et al. 2021), radiative kernel techniques (Kramer et al. 2021) and radiative
perturbation analysis (Loeb et al. 2021, 2024).

In Fig. 11, we show area-weighted zonal trends (March 2000-June 2023, 1° latitude
bands) in radiative flux anomalies normalized by the average zonal area. This way, the
arithmetic average of area-weighted zonal trends equals the area-weighted global mean
trend, enabling relative comparison of trends across latitudes and with the global mean.
The radiation data as well as surface, atmospheric and cloud properties are taken from the
most recent CERES EBAF Ed.4.2 and SYN Ed.4.1 data records. Figure 11a shows the
area-weighted zonal trends for net radiative flux (NET) as well as the clear-sky (b) and
cloud radiative effect (CRE, c) components. The all-sky NET trends are positive through-
out all zones, implying the increase in EEI is evident across the globe. Zonal peak trends
of 0.5 W m2 dec™! (global mean trend is 0.50+0.15) or larger (orange dots), which are
statistically significant at the 95% level (purple dots), occur in the deep tropics of the
southern hemisphere (SH), tropics and subtropics of the northern hemisphere (NH), and
at SH high latitudes poleward of 58° South. Figure 11b and c suggests the global mean
NET trend (green line) is almost solely established through a positive NET clear-sky trend
(0.48 +£0.12), partially complemented by a small positive NET CRE trend (0.02+0.13),
and largely associated with change in absorbed clear-sky SW radiation (0.35+0.10;
Fig. 11e). Near both poles and the NH mid-latitudes, the zonal distribution of clear-sky
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SW trends appears to primarily correspond to decreases in snow and ice cover (Fig. 11k).
Negative changes in aerosol optical depth (AOD, Fig. 11j) appear to add to the positive
clear-sky SW trends between 15° and 40° North. Positive clear-sky LW trends are most
pronounced in the tropics and shape the NET clear-sky changes in this region, aligning
with the expected and regionally enhanced “super greenhouse effect” (Stephens et al. 2016;
Raghuraman et al. 2019). Positive trends South of, and negative trends North of 30° N
appear to largely cancel in the global mean, resulting in a global clear-sky absorbed LW
trend at 0.12+0.10 W m™ dec ™.

The near-zero global NET CRE trend originates from regional cancelations (Fig. 1c)
with significant negative trends poleward of 60° North and South, and in the NH trop-
ics that partially, but incompletely, compensate for positive clear-sky trends in these
regions, most evidently in the NH polar region. The deep tropical “dip” in CRE trends
could be associated with an observed narrowing and intensification of the tropical con-
vection zone (e.g., Wodzicki and Rapp 2016, 2022; Su et al. 2017; Byrne et al. 2018).
Significant positive NET CRE trends primarily occur in the NH mid-latitudes. The
zonal distribution of NET CRE trends correlates more strongly with SW CRE trends
(R=0.93) than with LW CRE trends (R=-0.69). On the global scale and by latitude,
SW CRE (0.40+0.13 W m™* dec™") and LW CRE (- 0.38+0.06 W m™* dec™") trends
nearly cancel each other, with the overall positive SW CRE dominating the NET CRE
changes. Zonal trends in cloud fraction (global trend: —0.20+0.10 W m™2 dec™!,
Fig. 111) largely align with the zonal changes in NET CRE (R=-0.36), but the zonal
trends in cloud optical depth (COD, global trend: 0.02+0.02 W m~2 dec™!, Fig. 12a)
exhibit a higher correlation with zonal NET CRE trends (—0.63), underscoring the rel-
evance of cloud microphysical change in potentially driving the net radiative changes
observed (see also Stephens et al. 2024, this issue). To further investigate the SW and
LW CRE cancelation effects in the tropics, we contrast the positive NET CRE trends in
the SH tropics (5°-20° South) with the negative CRE changes in the NH tropics (0°-15°
North). Figure 12c-h shows three scatter plots per region, each exploring the relation-
ship between LW and SW CRE regional trends, with the dots (regional trends) colored
by either cloud fraction (CF, %), cloud optical depth (COD) and cloud top pressure
(CTP) trends. It is evident for both tropical regions, even though the resulting zonal
NET CRE trends are opposite, that the relationship between regional LW and SW CRE
trends is very similar, with the CRE trends being negatively correlated (R=—0.8) and
dominated by SW CRE effects as indicated by the negative and smaller than 1 slope of
the regression line. This means, on average, positive SW CRE trends tend to overcom-
pensate for negative LW CRE trends, and negative SW CRE largely outweigh positive
LW CRE trends. In both regions, positive SW CRE trends that outweigh negative LW
CRE trends (orange triangle) are largely associated with a decrease in cloud cover, as
well as decreased cloud thickness and height. Likewise, the negative SW CRE trends
overcompensating for positive LW CRE trends (green triangle) are associated with an
increase in cloud cover and clouds getting both thicker and higher. The latter appears
to be the case for the deep tropical dip region which coincides with the mean loca-
tion of the ITCZ (~12° North, e.g., Wodzicki and Rapp 2016). In the NH mid- and
high latitudes, the inverse relationship between LW and SW CRE trends is not as pro-
nounced (not shown). The overall positive NET CRE trends in the mid-latitudes is dom-
inated by positive SW CRE trends associated with a decrease in cloud cover and cloud
thickness. Likewise, negative NET CRE trends at high latitudes are mostly associated
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Fig. 12 a and b Same as in Fig. 11, but for cloud optical depth (a) and cloud top height (b). c—e Scatter
plots of LW versus SW CRE regional +20-year trends in the tropical regions between 0° and 15° North,
and are colored by trend in cloud fraction (c), cloud optical depth (d) and cloud top height (e). f~h Same as
c—e but for tropical regions between 5° and 20° South

with negative SW CRE trends (not shown). The tropical cases suggest that the thin-
ning and thickening of clouds plays an important role in modulating SW and NET CRE
changes, which is further investigated for the tropics by Stephens et al. (2024). Zonal
and regional NET CRE trends show no clear relationship with changes in cloud height
(R=0.02), but more so with cloud cover (R=-10.36) and mostly with cloud thickness
trends (R=—0.63), further underpinning the role of SW CRE and the optical proper-
ties of clouds. It is furthermore interesting to note that the zonal distribution of trends
in COD and AOD are very much alike (R=0.8) which may suggest that indirect aero-
sol effects are shaping the changes in COD (e.g., Oreopoulos et al. 2020) and impact
the zonal distribution of SW and NET CRE trends. While our trend analysis suggests
SW clear-sky trends may be an important contribution to the EEI changes observed,
radiative perturbation studies and model analysis find that significant positive contri-
butions by cloud changes are of at least equal importance (Loeb et al. 2021; Raghura-
man et al. 2021). Furthermore, Stephens et al. (2022) demonstrate that high-latitude
surface changes play a subordinate role in modulating Earth’s reflectivity. We recog-
nize the need for radiative perturbation analysis to adequately quantify the relative role
of clear-sky and CRE processes driving change in zonal radiative flux. Assessing and
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intercomparing zonal and regional changes, not only in TOA radiation, but also OHU, is
a key recommendation of GEWEX-EEI (Sect. 4).

4 Discussion, Conclusions and Recommendations

Under the umbrella of the GEWEX-EEI assessment, we intercompare 21 OHC time series
and OHU estimates (2005-2020) from various sources and institutions, as well as OHU
trends and OHU correlations with CERES net radiative flux variability. The goals of this
effort are a better understanding of discrepancies and their sources, and to forge a path
toward best practices that may enable apples-to-apples comparison across methods, which
ultimately improves our estimate of EEI and its uncertainties, a key indicator of global cli-
mate change.

Our study shows a significant spread in central OHU estimates (normalized to Earth’s
TOA surface area) ranging from 0.51 to 0.74 W m™ for in situ-based estimates, generally
larger values from satellite-based OHC (0.89 W m~?), and 0.40-0.96 W m™? across six
ocean reanalyses. The in situ-based OHC products do not capture the deep ocean below
2000 m, and an estimate of 0.06+0.04 W m~2 (Johnson et al. 2023b) for deep OHU has
been added to be representative of the full ocean column. Using a subset of gridded OHC
products, we demonstrate substantial influence of sampling considerations, with Argo-like
sampling generally reducing OHU estimates from satellite and reanalysis data. Assumption
of satellite sampling alone (+66° latitude) reduces OHU estimates from reanalysis data
only slightly. It is likely that more complete coverage as, for example, provided by satel-
lite observations is beneficial in representing near-global OHU, but neither satellite dataset
achieves full global coverage, missing OHU in the polar regions. Fully global data col-
lection would require spacecrafts in polar orbit, as well as enhanced observing systems to
more densely sample OHC below sea ice across the full seasonal cycle. Ocean models and
reanalysis systems do sample all of the ocean, but are reliant on observational coverage as
well, yielding larger uncertainty where direct observations are lacking (e.g., below 2000 m
depth and in under-sampled regions; Storto et al. 2019). Clearly, the ocean coverage, both
geographically and vertically, plays a substantial role in achieving apples-to-apples com-
parison, suggesting use of a common mask. However, in terms of portraying the global
OHU adequately and its variability with respect to CERES data, it is more complete cover-
age that should be strived for.

Temporal variability in annual mean OHU at both 12- and 6-month increments is com-
pared against CERES EBAF net radiative flux variability. It stands out that both satellite-
based, two reanalyses and the in situ 4 satellite hybrid products, RFROM and PMEL-com-
bined, exhibit correlations with CERES EBAF net radiative flux of 0.44 or larger, while
most of the largely in situ-based OHU series do not agree as well. This may suggest that
enhanced spatiotemporal sampling and physically informed regional filling is important for
matching the interannual variability and trend found in CERES data.

For the in situ-based OHU fields, quality control choices for the observed data are a
critical factor not only in reducing measurement error, but in reducing the representation
error, the difference between a point source measurement and the wider spatial area rep-
resented in the gridded fields used for the OHU calculations. This also applies to reanaly-
sis products, which rely on external (observations processing centers) and internal quality
control procedures (see, e.g., Storto et al. 2016). The mapping method used to calculate
uniform gridded fields from heterogeneous measurements in time and space is also crucial
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to addressing representation error. The representation error for temperature in the ocean
is larger than the measurement error (Oke and Sakov 2008). The International Quality-
controlled Ocean Database (IQuOD) project brings together the international community
working on data rescue, quality control, bias correction and uncertainty quantification
for ocean temperature data. The Argo program uniformly monitors measurements from
deployed floats, assigning measurement uncertainties and quality flags (Wong et al. 2020).
The outcomes of these community-wide efforts will result in a uniformly quality-controlled
ocean temperature dataset homogenizing the measurement errors across different in situ-
based OHU calculations.

The MapEval4OceanHeat project, an objective assessment of mapping methods used
to estimate ocean heat content change, is aiming to improve our understanding of differ-
ent interpolation/mapping techniques (including the uncertainty estimates some provide),
by systematically applying different methods to the very same set of synthetic input data
(sampled from a high-resolution model) and comparing the output maps with the actual
model fields. While the project is ongoing, a protocol has been released (Giglio et al. 2023)
describing which experiments are being conducted.

Deriving OHU from OHC data, and their resulting correlation with CERES, is impacted
by assumptions such as the differencing method (e.g., first versus centered differences) and
temporal sampling/smoothing (monthly vs. annual vs. low-pass-filtered). For example,
most annual mean OHU time series show better agreement with CERES net radiative flux
at 6-month intervals than at 12-month intervals. A smoothing filter as applied by Marti
et al. (2022) improves the correlations with the Legos product, by suppressing interannual
variations in atmospheric heat storage and energy divergence at time resolutions smaller
than 2-3 years (Palmer and McNeall 2014). The EEI community has recognized that even
though global long-term mean atmospheric heat storage is comparably small, it exhibits
significant interannual variability and, in combination with OHU, improves the co-variabil-
ity with CERES EEI substantially at seasonal timescales (Johnson et al. 2023a, this issue).

A major concern for satellite-derived OHC products is the adequate knowledge of sea-
water’s expansion efficiency of heat, which acts as a scaling factor for OHU variations and
significantly affects the magnitude of internal variability and trend in OHU. Hakuba et al.
(2021) derived an inverse efficiency of 0.52+0.065 W m~> mm year™' which is signifi-
cantly larger than the 0.43 W m~2 mm year™' derived by Marti et al. (2022). We recom-
mend reassessing the magnitude, variability and uncertainty of global, regional and ocean
profile efficiencies, also in light of producing adequate satellite-based regional OHC esti-
mates that would significantly add to our understanding of regional discrepancies and vari-
ations in OHC and OHU. For example, Hakuba et al. (2021) found the largest basin-wide
discrepancy in steric sea level compared to in situ data in the Indo-Pacific, which has yet to
be explained and assessed in terms of OHU. Regional assessments would furthermore help
to address a sudden dip in OHU near the year 2016 which is evident in many of the in situ-
based OHU time series and yet to be understood.

There is substantial spread not only in OHU central estimates, but the OHU error bars
as well (Fig. 4). For example, uncertainties derived for geodetic OHU exceed the error
bars derived for in situ-based OHU. While the geodetic community has partially esti-
mated and combined major uncertainties in altimetry and gravimetry observations (e.g.,
Blazquez et al. 2018; Ablain et al. 2019), the uncertainties for in situ OHC are often not
fully quantified or combined. For example, uncertainties due to instrument bias correction
or sampling considerations would ideally flow into comprehensive OHU uncertainty esti-
mates. As many before them, Meyssignac et al. (2019) determined OHC trend uncertain-
ties from trend residuals alone, accounting for lag-1 autocorrelation, but state that the trend
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uncertainties ought to be at least doubled to account for sampling uncertainty. We therefore
recommend establishing a roadmap toward comprehensive and consistent uncertainty esti-
mation for OHC, OHU and EEI trend estimates, due to all (known) sources of error and
their co-variances, across all approaches discussed—in situ, reanalysis, satellite and hybrid
approaches.

Estimating EEI via heat inventory analysis is to date the most viable approach to closing
the Earth’s energy budget and largely possible due to the unprecedented coverage of the
ocean by Argo floats. It is therefore critical to maintain and expand the ocean observing
system to improve coverage geographically and vertically into the deepest and notoriously
under-sampled layers of the ocean, which Deep Argo regional pilot arrays have demon-
strated is feasible (e.g., Jayne et al. 2017), although funding is not yet identified for a global
expansion. Additional avenues to monitor EEI independently and directly from space at the
TOA are under investigation by several groups around the world (e.g., Schifano et al. 2022;
Hakuba et al. 2019), but the feasibility to achieve such unprecedented accuracy requires
further study. Such missions would provide additional rapport on EEI magnitude and
change from year to year.

The study of zonal trends in net radiation with CERES data has revealed several key
regions of change across the tropics, subtropics and at high latitudes. The analysis suggests
a primary contribution to positive EEI trends from absorbed SW radiation, in line with
previous studies (e.g., Loeb et al. 2021; Stephens et al. 2022). Although SW accumulation
is a leading factor, it has to be noted that climate model, kernel and radiative perturba-
tion analyses are consistent in pointing out that LW forcing, although masked by compet-
ing climate responses, is the fundamental cause for initiating positive and negative climate
responses and feedbacks (Raghuraman et al. 2021; Kramer et al. 2021), which on the one
hand mute LW absorption and on the other hand amplify energy uptake driven by positive
SW changes. Continued investigation of EEI change and its causes is needed to resolve
any disparate conclusions on potential drivers of EEI change and variability (e.g., Stephens
et al. 2022; Loeb et al. 2021, 2024; Raghuraman et al. 2021; Kramer et al. 2021).

The gap impact analysis performed ignores the role of measurement uncertainties and
potential shifts between non-overlapping parts of a data record, and requires further inves-
tigation to include observing system characteristics. The analysis reveals that gaps of any
length (between 1 and 25 months) can have a significant impact on deduced trend magni-
tude and uncertainty, depending on the location of the gap in the data record. The impact is
larger for EEI than OHC trends, given the more linear and robust increase in OHC, while
EEI trends are more sensitive to the period considered and the interannual variability that
substantially shapes the >20-year EEI record. The gap impacts on trend are at the lower
end of impact expected, ignoring intercalibration and bridging issues that would make
trend detection likely infeasible for years to come (e.g., Loeb et al. 2009a). It is therefore of
utmost importance to prevent data gaps, investigate “bridging” methods and ensure seam-
less monitoring of EEI change well into the future. Studies to explore observing system
requirements, ways to meet them, critical ancillary information and the role of data gaps
are likely of great relevance toward a maintained and improved EEI monitoring system and
research framework (KISS Continuity Study Team 2024).

The four approaches for estimating OHC and OHU as well as the radiometric observa-
tions of TOA radiative flux intercompared here represent the core of today’s EEI monitor-
ing system, whereby in situ OHC has been the most vital for constraining EEI magnitude
and, together with reanalysis, provides unparalleled insight into the distribution of heat
across the ocean volume. Geodetic satellite observations provide enhanced spatiotemporal
coverage estimating full-column OHC and confirm the positive EEI trend derived from
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TOA radiation measurements. Scanning radiometry not only provides insight into EEI var-
iability at high precision and stability but allows us to study the radiative processes that
perturb EEI e.g., the role of cloud and aerosol radiative effects.

The first GEWEX-EEI Assessment Workshop held in spring 2023, yielded recommen-
dations (Meyssignac et al. 2023b) that in part have been touched upon in this paper and are
summarized as follows:

1. Discrepancies among EEI and OHU products, methods and their origin, ought to be
systematically assessed and improved upon.

2. Regional, zonal and basin-scale intercomparisons are recommended to better understand
global discrepancies and the impact of differing ocean volumes sampled. With respect to
regional geodetic OHC analysis, in-depth assessment of expansion efficiency is required.

3. Best practices to enable apples-to-apples comparison—e.g., sampling considerations,
uncertainty quantification, OHU derivation—ought to be established and shared with
the community.

4. Beyond improving our knowledge of EEI with existing observations, ensuring seamless
continuity of these systems and data products should be a priority, as well as efforts to
expand those for improved coverage of the ocean, land and cryosphere (see also von
Schuckmann et al. 2023).

5. Novel techniques ought to be explored to provide independent and direct measurements
of EEI at the TOA.

6. Understanding EEI changes and their attribution is as important as the comprehensive
quantification and characterization of EEI and its variability.

The next steps for the GEWEX-EEI assessment involve the intercomparison of OHC
and OHU trends at the regional scale and establishing comprehensive and consistent uncer-
tainty quantification of at least the most dominant error sources. While all methods inter-
compared agree on positive OHU values between 0.40 and 0.96 W m~2, higher confidence
and temporal precision is needed to comfortably track changes from year to year, especially
if climate mitigation strategies and their impact are to be monitored and understood.
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