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Abstract—Fair prediction across protected groups is an impor-
tant consideration in federated learning applications. In this work
we propose a general framework for provably fair federated
learning. In particular, we explore and extend the notion of
Bounded Group Loss as a theoretically-grounded approach for
group fairness that offers favorable trade-offs between fairness
and utility relative to prior work. Using this setup, we propose
a scalable federated optimization method that optimizes the
empirical risk under a number of group fairness constraints.
We provide convergence guarantees for the method as well as
fairness guarantees for the resulting solution. Empirically, we
evaluate our method across common benchmarks from fair ML
and federated learning, showing that it can provide both fairer
and more accurate predictions than existing approaches in fair
federated learning.

Index Terms—Fairness, Federated Learning

I. INTRODUCTION

Federated learning (FL) is a training paradigm that aims to fit

a model to data generated by, and residing in, a set of disparate

data silos, such as a network of remote devices or collection

of organizations [1, 2, 3]. Many real world FL applications

require performing fair prediction across protected groups (e.g.,

age, gender, race) where the data of each group is distributed

across different silos. For example, in applications of cross-silo

FL such as learning across hospitals or financial institutions,

it is natural to consider fairness constraints with respect to

subgroups of patients or users [4, 5, 6]. While many methods

have been proposed to incorporate group fairness constraints

in centralized settings [e.g., 7, 8, 9, 10], group fairness in

cross-silo federated settings remains relatively unexplored.

Unfortunately, existing approaches that have been proposed

for group fair FL rely on solving objectives that equalize the

losses across groups [4, 6, 11, 12]. Such approaches have

a number of deficiencies. First, as prediction difficulty can

vary between groups, these methods may artificially cause

one group’s utility to drop in order to enforce equal prediction

quality between two groups. For example, as we show in Figure

1, when there is noise in the data from one group, enforcing

equal loss may increase the loss of the other group, even if the

data of the other group does not change—resulting in a model

with low utility. Prior works in centralized fair ML [13, 14]

have similarly shown that fairness notions like Demographic

Parity and Equalized Odds [7] can harm the utility of both

groups. In practice, FL applications often have strict utility

constraints, and significantly compromising the performance of

Fig. 1: Existing fair FL approaches that equalize losses may
significantly decrease utility. Here we fit a linear regression model with
synthetic data from two groups. While using a solver that equalizes
two group’s losses (FedFair [4]) reduces the loss gap, it results in
strictly worse utility for both groups and roughly the same gap as our
method (PFFL).

one or multiple groups may not be desired. For example, when

the silos are hospitals that own private patient data, it may be

critical to ensure that the worst group loss according to some

protected demographic (e.g., age, race, gender) is no worse

than a certain threshold. Finally, despite promising empirical

performance in certain settings, prior works in fair FL typically

lack formal guarantees surrounding the resulting fairness of the

solutions (Section II). This is problematic as it is unclear how

the methods may perform in real-world FL deployments; as

we show, in practice existing heuristics for fair FL can in fact

result in solutions that not only sacrifice utility but also fail to

provide the fair performance they seek to optimize (Section V).

In this work, we instead propose Bounded Group Loss

(BGL) [15] and its variations as compelling fairness criteria

for federated learning. Instead of enforcing equal prediction

quality between two groups, BGL sets an upper bound for the

loss associated with every protected group, thus ensuring that

the worst group’s performance meets a pre-defined threshold.

As a result, BGL can prevent the model performance from

drastically dropping in order to satisfy fairness criteria. Beyond

empirical benefits, BGL also has strong theoretical guarantees;

the scalable method we propose (PPFL) provably finds the

optimal predictor in a hypothesis class subject to the criterion

of BGL. Empirically, we demonstrate the effectiveness of our

approach relative to existing methods on common benchmarks

140

2024 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)

979-8-3503-4950-4/24/$31.00 ©2024 IEEE
DOI 10.1109/SaTML59370.2024.00015

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 05,2025 at 14:48:55 UTC from IEEE Xplore.  Restrictions apply. 



from both fair machine learning and federated learning. We

summarize our main contributions below:

• We propose a novel group fair cross-silo federated learning

framework for a range of group fairness notions. Our

framework models the fair FL problem as a saddle point

optimization problem and leverages variations of Bounded

Group Loss [15] to capture common forms of group fairness.

We also extend BGL to consider a new fairness notion called

Conditional Bounded Group Loss (CBGL), which may be

of independent interest and utility in non-federated settings.

• We propose a scalable federated optimization method for our

group fair FL framework. We provide a regret bound analysis

for our method under convex machine learning objectives

to demonstrate formal convergence guarantees. Further, we

provide fairness and generalization guarantees on the model

for a variety of fairness notions.

• Finally, we evaluate our method on common benchmarks

used in fair machine learning and federated learning. In

all settings, we find that our method can improve fairness

in terms of worst group performance without drastically

compromising the overall utility. Additionally, though we do

not directly optimize certain group fairness constraints such

as Demographic Parity and Equal Opportunity, we find that

our method provides competitive fairness-utility trade-offs

relative to existing approaches evaluated on these metrics,

including those proposed specifically for these criteria.

The remainder of the paper is organized as follows. We

discuss related work in fair machine learning and federated

learning in Section II. In Section III, we formalize our fairness

definition via Bounded Group Loss and provide intuition for the

use of the objective for addressing group fair FL. In Section

IV we present a scalable algorithm to solve the proposed

objective in federated settings, and provide formal convergence

and fairness guarantees for our objective and algorithm. In

Section V we evaluate our approach on benchmarks from fair

and federated learning, demonstrating that our method provides

favorable fairness-utility trade-offs in practice across a number

of fairness metrics relative to existing approaches.

II. BACKGROUND AND RELATED WORK

Algorithmic fairness in machine learning aims to identify

and correct bias in the learning process. In federated learning,

definitions of fairness can take many forms. A common notion

of fairness is representation parity [16], whose application in

FL typically requires the model’s performance across all clients

to have small variance [17, 18, 19, 20, 21, 22, 23]. In this work

we instead focus on notions of group fairness, in which every

data point in the federated network belongs to some (possibly)

protected group, and we aim to find a model that doesn’t

introduce bias towards any group. As shown in Figure 2, in

cross-silo federated settings where data is distributed across

different data silos such as hospitals or financial institutions,

applying fair methods locally only ensures fairness for each

silo rather than the entire population. Developing effective

and efficient techniques for globally group fair FL is thus an

important area of study.

To develop principled approaches for group fair FL, a

natural starting point would be to leverage existing work in

the centralized setting. However, in order to find the optimal

predictor subject to a fairness constraint such as equalized odds

[7], many centralized algorithms require solvers for optimal

cost-sensitive classifiers [9], the Bayes-optimal predictor [7],

or a multi-calibrated predictor [24]. These solvers either do not

exist or are too demanding to assume in a federated setting.

In addition, achieving fairness in federated settings inherits

common challenges that already exist in centralized settings.

For example, the criterion of loss parity, which requires equality

of losses across groups, often leads to non-convexity even if

the underlying loss function is convex [25].

In response to these issues, recent works have proposed

various heuristics for achieving group fairness in FL. Zeng

et al. [12] consider a bi-level optimization objective that

minimizes the difference between each group’s loss while

finding an optimal global model. Similarly, several works

propose using a constrained optimization problem that aims to

find the best model subject to an upper bound on the group loss

difference [4, 6, 26, 27]. Unlike these approaches, our method

focuses on a fairness constraint based on upperbounding the

loss of each group with a constant, which we show can help

to improve fairness while avoiding significant drops in utility

relative to approaches that aim to equalize performance. More

closely related to our work, Papadaki et al. [28] weighs the

empirical loss given each group by a trainable vector λ and

finds the best model for the worst case λ. Though similar

to our method for ζ = 0, this approach fails to achieve both

strong utility and fairness performance under non-convex loss

functions (see Appendix V-D). Zhang et al. [29] also propose

a similar objective to learn a model with unified fairness.

Among these works, Zeng et al. [12] and Cui et al. [6] also

provide simplified convergence and fairness guarantees for their

methods. However, these works lack formal analyses around

the convergence for arbitrary convex loss functions as well

as the behavior of the fairness constraint over the true data

distribution. Ours is the first work we are aware to provide

such guarantees in the context of group fair federated learning.

III. FAIR FL VIA BOUNDED GROUP LOSS

In this section we first formalize the group fair federated

learning problem and a fairness-aware objective solving this

problem (Section III-A). We then provide several examples of

group fairness based on the notion of BGL and show how to

incorporate them into our framework (Section III-B).

A. Setup: Group Fair Federated Learning

Following standard federated learning scenarios [1], we

consider a network with K different clients. Each client k ∈
[K] has access to training data D̂k := {(xi, yi, ai)}i=1,··· ,mk

141

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 05,2025 at 14:48:55 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: Left: Due to data heterogeneity in federated networks, the
data distribution conditioned on each protected attribute (specified
by different colors) may differ across clients. The purpose of fair
federated learning is to learn a model that provides fair prediction
on the entire true data distribution. Right: Empirical results on ACS
dataset also show that training with local fairness constraint induce
both higher error rate and worse fairness guarantee then training with
global fairness constraint. This motivates the development of methods
that can enable global group fairness in federated settings.

sampled from the true data distribution Dk, where xi is an

observation, yi ∈ Y is the label, ai ∈ A is the protected

attribute. Let the hypothesis class be H and for any model

h ∈ H, and define the loss function on data (x, y, a) to be

l(h(x), y). Federated learning applications typically aim to

solve:

min
h∈H

F(h) = min
h∈H

E(x,y)∼D [l(h(x), y)] . (1)

In practice, Dk is estimated by observing

{(xi, yi, ai)}i=1,··· ,mk
, and we solve the empirical risk:

min
h∈H

F (h) = min
h∈H

1

K

K∑

k=1

1

mk

mk∑

i=1

l(h(xk,i), yk,i) . (2)

For simplicity, we define fk(h) =
1

mk

∑mk

i=1 l(h(xk,i), yk,i)
as the local objective for client k. Further, we assume h is

parameterized by a vector w ∈ R
p where p is the number of

parameters. We will use F (w) and fk(w) to represent F (h)
and fk(h) intermittently in the remainder of the paper.

Fairness via Constrained Optimization. When a centralized

dataset is available, a standard approach to learn a model

that incorporates fairness criteria is to solve a constrained

optimization problem where one tries to find the best model

subject to a fairness notion [15, 30]. We formalize a similar

learning problem in the federated setting, solving:

minh∈H F (h) subject to R(h) ≤ ζ, (3)

where R(h), ζ ∈ R
Z encodes the constraint set on h. For

instance, the z-th constraint could be written as Rz(h) ≤ ζz
where ζz is a fixed constant. This formulation is commonly

used to satisfy group fairness notions such as equal opportunity,

equalized odds [7], and minimax group fairness [14].

To solve the constrained optimization problem (3), a common

method is to use Lagrange multipliers. In particular, let λ ∈ R
Z
+

be a dual variable with positive values and assume λ has

‖ · ‖1 at most B. The magnitude of B could be viewed as the

regularization strength for the constraint term. Objective (3) can

then be converted into the following saddle point optimization

problem:

min
w

max
λ∈R

Z
+
,
∑

i λ
Z
i=1

≤B
G(w;λ) = βF (w) + λT

r(w) ,

(Main Objective)

where the q-th index of r encodes the q-th constraint from

R (i.e., rq(w) := Rq(w) − ζq) and β is a fixed constant.

In other words, the objective finds the best model under the

scenario where the fairness constraint is most violated (i.e.,

the regularization term is maximized).

There are two steps needed in order to provide meaningful

utility and fairness guarantees for the model found by solving

Main Objective: (1) showing that it is possible to recover a

solution close to the ‘optimal’ solution, (2) providing an upper

bound for both the risk (F (w)) and the fairness constraint

(r(w)) given this solution. To formally define what an ‘optimal’

solution is, in this work we focus on the case where G(w;λ)
is convex in w for any fixed λ.

Since G is linear in λ, given a fixed w0, we can find

a solution to the problem maxλ G(w0;λ), denoted as λ∗,

i.e., G(w0;λ
∗) ≥ G(w0;λ) for all λ. When G is convex

in w, given a fixed λ0, there exists w∗ that satisfies w∗ =
argminw G(w;λ0), i.e., G(w∗;λ0) ≤ G(w;λ0) for all w.

Therefore, (w∗,λ∗) is a saddle point of G(·; ·), which is

denoted as the optimal solution in our setting.

B. Formulation: Bounded Group Loss and Variants

Many prior works in fair FL consider instantiating R(h)
in (3) as a constraint that bounds the difference between any two

groups’ losses, which is a common technique used to enforce

group fairness notions such as equalized odds and demographic

parity [4, 6, 12]. This results in G(w;λ) becoming nonconvex

in w [25]. Such nonconvexity can be problematic as it increases

the likelihood that a solver will find a local minima that either

does not satisfy the fairness constraint or achieves poor utility.

Instead of enforcing equity between the prediction quality

of any two groups, we explore using a constraint based on

Bounded Group Loss (BGL) [15] which enforces an upper

bound for all groups’s losses, and propose new variants that

can retain convexity assumptions while satisfying meaningful

fairness notions. We explore three instantiations of group

fairness constraints R(h) below.

Instantiation 1 (Bounded Group Loss). We begin by

considering fairness via the Bounded Group Loss (defined

below), which was originally proposed by Agarwal et al. [15].

Different from applying Bounded Group Loss in a centralized

setting, BGL in the context of federated learning requires that

for any group a ∈ A, the average loss for all data belonging

to group a is below a certain threshold. As we discuss in

Section IV this (along with general constraints of FL such as

communication) necessitates the development of novel solvers

and analyses for the objective.
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Definition III.1 (Bounded Group Loss (BGL) Agarwal et al.

[15]). A classifier h satisfies Bounded Group Loss (BGL)

at level ζ under distribution D if for all a ∈ A, we have

E [l(h(x), y)|A = a] ≤ ζ.

In practice, we could define empirical bounded group loss

constraint at level ζ under the empirical distribution D̂ =
1
K

∑K
k=1 D̂k to be ra(h) :=

∑K
k=1 ra,k(h) ≤ 0, where

ra,k(h) =
1

ma

∑

ak,i=a

l(h(xk,i), yk,i)−
ζ

K
. (4)

Benefits of BGL. BGL enforces an upper bound for all

groups’ losses, and thus ensures the prediction quality for each

group to meet a pre-specified level. Compared to other common

fairness criteria such as equalized odds and loss parity, BGL

has two main advantages. First, BGL ensures convexity in

the problem objective, which facilitates provable guarantees in

the federated setting. Further, when the data are not equally

predictive across groups, BGL can avoid artificial drops in

accuracy across every group for the purpose of matching

performance of the worst group (see Section V).

Instantiation 2 (Conditional Bounded Group Loss). In

some applications one needs a stronger fairness notion beyond

ensuring that no group’s loss is too large. For example, in the

scenario of binary classification, a commonly used fairness

requirement is equalized true positive rate or false positive

rate [7]. In the context of optimization for arbitrary loss

functions, a natural substitute is equalized true / false positive

loss. In other words, any group’s loss conditioned on positively /

negatively labeled data should be equalized. Therefore, similar

to BGL, we propose a novel fairness definition known as

Conditional Bounded Group Loss (CBGL) defined below:

Definition III.2 (Conditional Bounded Group Loss (CBGL)). A

classifier h satisfies Conditional Bounded Group Loss (CBGL)

for y ∈ Y at level ζy under distribution D if for all a ∈ A,

E [l(h(x), y)|A = a, Y = y] ≤ ζy .

In practice, similar to Equation 4, we could define the

empirical CBGL by viewing the tuple (a, y) as a group and take

the difference between the average of all examples belonging

to one group and its pre-defined threshold. Note that satisfying

CBGL for all Y is a strictly harder problem than satisfying

BGL alone. In fact, we can show that a classifier that satisfies

CBGL at level [ζy]y∈Y also satisfies BGL at level Ey∼ρa
[ζy]

where ρa be the probability density of labels for all data from

group a.

Relationship between CBGL and Equalized Odds. For

binary classification tasks in centralized settings, a common

fairness notion is Equalized Odds (EO) [7], which requires the

True/False Positive Rate to be equal for all groups. Our CBGL

definition can be viewed as a relaxation of EO. Consider a

binary classification example where Y = {0, 1}. Let the loss

function l be the 0-1 loss. CBGL requires classifier h to satisfy

Pr[h(x) = y|Y = y0, A = a] ≤ ζy0
for all a ∈ A and y0 ∈ Y .

EO requires Pr[h(x) = y|Y = y0, A = a] to be the same for

all a ∈ A given a fixed y0, which may not be feasible if the

hypothesis class H is not rich enough. Instead of requiring

equity of each group’s TPR/FPR, CBGL only imposes an upper

bound for each group’s TPR/FPR. Similar to the comparison

between BGL and loss parity, CBGL offers more flexibility

than EO since it does not force an artificial increase on FPR

or FNR when a prediction task on one of the protected groups

is much harder. In addition, for applications where logistic

regression or DNNs are used (e.g., CV, NLP), it is uncommon

to use the 0-1 loss in the objective. Thus, CBGL can provide

a relaxed notion of fairness for more general loss functions

whose level of fairness can be flexibly tuned.

Instantiation 3 (MinMax Fairness). Recently, Papadaki

et al. [28] proposed a framework called FedMinMax by solving

an agnostic fair federated learning framework where the weight

is applied to empirical risk conditioned on each group. Note

that using BGL as the fairness constraint, our framework could

reduce to FedMinMax as a special case by setting β = 0, B = 1
and ζ = 0.

Definition III.3. Use the same definition of ra(h) as we had in

Instantiation 1. FedMinMax [28] aims to solve for the following

objective:

min
h

max
λ∈R

|A|
+

,‖λ‖1=1

∑

a∈A

λara(h) (5)

Note that a key property of FedMinMax is the constant ζ
used to upper bound the per group loss is set to 0. From a

constrained optimization view, the only feasible solution that

satisfies all fairness constraints for this problem is a model

with perfect utility performance since requiring all losses to

be smaller than 0 is equivalent to having all of them to be

exactly 0. Such a property limits the ability to provide fairness

guarantees for FedMinMax. Fixing B and ζ also limits its

empirical performance on the relation between fairness and

utility, as we will show later in Section V-D.

IV. PROVABLY FAIR FEDERATED LEARNING

In this section, we first propose Provably Fair Federated

Learning (PFFL), a simple, scalable solver for our Main Objec-

tive, presented in Algorithm 1. We provide formal convergence

guarantees for the method in Section IV-B. Given the solution

found by PFFL, in Section IV-C we then demonstrate the

fairness guarantee for different examples of fairness notions

defined in Section III (BGL, CBGL).

A. Algorithm

To find a saddle point for Main Objective, we follow the

scheme from Freund and Schapire [31] and summarize our

solver for fair FL in Algorithm 1. Our algorithm is based off of

FedAvg [1], a common scalable approach in federated learning.

While [15] also follows a similar recipe to ensure BGL,

our method needs to overcome additional challenges in the
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Algorithm 1 PFFL: Provably Fair Federated Learning

1: Input: number of each FedAvg rounds T , number of

gradient ascent rounds E, SGD lr ·w, exponentiated

gradient ascent lr ·θ, model initialization (w0, w̄ = 0,

¸0 = 0), slacks in fairness constraints ζ, convergence

threshold ν, bound B
2: for i = 1, · · · , E do

3: Set λa = B
exp(θi

a)

1+
∑

a′ exp(θi
a′ )

4: for t = 0, · · · , T − 1 do

5: Server broadcasts wt to a set of clients St.

6: for all k in St in parallel do

7: Each client updates weight wk for J iterations

wt+1
k = wt − ·w

(
∇wt

(
fk(w

t) + λT
r(wt)

))

8: Each client sends gt+1
k = wt+1

k −wt
k and r

t
a,k back

to the server.

9: end for

10: Server computes wt+1 = wt + 1
K

∑K
k=1 g

t+1
k .

11: Update w̄ =
∑T

t=1 w
t and set w0 = wT

12: end for

13: Server updates ¸ which would be later used to update

the dual variable λ

¸(i+1)
a = ¸ia + ·θ

∑

k

r
t
a,k

14: end for

15: Server updates w̄ ← 1
ET

w̄
16: Output w̄ if maxa ra ≤ M+2ν

B
, and null otherwise.

federated settings. In particular, the method in Agarwal et al.

[15] optimizes w by performing exact best response, which is in

general infeasible when data is distributed across private silos.

Our method overcomes this challenge by applying a gradient-

descent-ascent style optimization process that utilizes the output

of a FL algorithm as an approximation for the best response.

In Algorithm 1, we provide an example in which the first step

is achieved by using FedAvg to solve minw F (w) + λT
r(w)

(L 4-12). After we obtain a global model from a federated

training round, we use exponentiated gradient descent to update

λ, following Alg 2 in [15]. This completes one training round.

At the end of training, we calculate and return the average

iterate as the fair global model.

Note that the ultimate goal in solving Main Objective is to

find a w such that it minimizes the empirical risk subject to

r(w) ≤ 0. Thus, at the end of training, our algorithm checks

whether the resulting model w̄ violates the fairness guarantee

by at most some constant error M+2ν
B

where M is the upper

bound for the empirical risk and ν is the upper bound provided

in Equation 7. We will show in the Lemma IV.8 that this is

always true when there exists a solution w∗ for Problem 3.

However, it is also worth noting that the Problem 3 is not

always feasible. For example when we set ζ = 0, requiring

r(w) ≤ 0 is only feasible when the loss is 0 for every data

in the dataset. In this case, our algorithm will simply output

null if the fairness guarantee is violated by an error larger than
M+2ν

B
.

Privacy Aspects of PFFL. Compared to FedAvg, we note

that our solver communicates losses conditioned on each group

in addition to model updates. This is common in prior works

that solve a min-max optimization problem in FL [e.g., 12, 32].

Although not the main focus of this work, we note that our

method could be easily extended to satisfy example-level DP

for FL by performing DP-SGD locally for each client (see

Appendix C), and can similarly yield natural client-level DP

and LDP variants.

Using a different solver. While FedAvg is a natural

solver for our Main Objective, prior works have proposed

general federated saddle point optimization solvers which

could potentially be used [32, 33]. These works either assume

strong concavity in the dual variable [33], which does not hold

for our objective, or do not support partial participation [32].

These works also require more hyperparameter tuning than our

simple framework, which we find to be sufficient to achieve

competitive performance in our experiments (Section V).

However, for completeness we provide a comparison between

our method and Hou et al. [32] in the case of full client

participation in Appendix F.

B. Convergence guarantee

Different from Agarwal et al. [15], while our algorithm

handles arbitrary convex losses in federated setting by replacing

the best response with the FedAvg output, we aim to understand

how close our solution is to the actual best response after

running finitely many rounds. In this section, we provide a

no regret bound style analysis for our PFFL algorithm. To

formally measure the distance between the solution found

by our algorithm and the optimal solution, we introduce ν-

approximate saddle point as a generalization of saddle point

(See Remark in Section III-A) defined below:

Definition IV.1. (ŵ, λ̂) is a ν-approximate saddle point of G
if

G(ŵ, λ̂) ≤ G(w, λ̂) + ν for all w

G(ŵ, λ̂) ≥ G(ŵ,λ)− ν for all λ
(6)

As an example, the optimal solution (w∗,λ∗) is a 0-

approximate saddle point of G. To show convergence, we

first introduce some basic assumptions below:

Assumption IV.2. Let fk be μ-strongly convex and L-smooth

for all k = 1, · · · ,K.

Assumption IV.3. Assume the stochastic gradient of fk has

bounded variance: E[‖∇fi(w
k
t ; ξ

k
t ) − ∇fk(w

k
t )‖2] ≤ σ2

k for

all k = 1, · · · ,K.

Assumption IV.4. Assume the stochastic gradient of fk is

uniformly bounded: E[‖∇fk(w
k
t ; ξ

k
t )‖2] ≤ G2 for all k =

1, · · · ,K.
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These are common assumptions used when proving the

convergence for FedAvg [e.g., 34]. Now we present our main

theorem of convergence:

Theorem IV.5 (Informal Convergence Guarantee). Let As-

sumption IV.2-IV.4 hold. Define γ=max{8κ, J}, κ=L
µ

, step

size ·Q= 2
(β+B)µ(γ+t) , ·θ= 1√

ET
, and assume ‖r‖∞ ≤ ρ. Let-

ting w̄= 1
ET

∑ET
t=1 w

t, λ̄= 1
ET

∑ET
t=1 λ

t
, ∆T =maxλ G(w̄;λ)−

minw G(w; λ̄), for constant C we have:

∆T ≤ 1

T

T∑

t=1

κ

γ + t− 1
C +

B(log(Z + 1) + ρ2)√
ET

. (7)

The upper bound in Equation 7 consists of two parts: (1) the

error for the FedAvg process to obtain w̄ which is a term of

order O(log T/T ); (2) the error for the Exponentiated Gradient

Ascent process to obtain λ̄ which converges with a rate of

O(1/
√
ET ). Following Theorem IV.5, we could express the

solution of Algorithm 1 as a ν-approximate saddle point of G
by picking appropriate ·θ and T :

Corollary IV.6. Let T ≥ 2κC(γ−1)
ν(γ+1)−2κC and

E ≥ 2B2(ν(γ+1)−2κC)(log(Z+1)+ρ2)2

ν2κC(γ−1) , then (w̄, λ̄) is a

ν-approximate saddle point of G.

We provide detailed proofs for both Theorem IV.5 and

Corollary IV.6 in Appendix A. Unlike the setting commonly

considered in prior FedAvg analyses [e.g., 34], in our case the

outer minimization problem changes as λ gets updated. Thus,

our analysis necessitates considering a more general scenario

where the objective function could change over time.

C. Fairness guarantee

In the previous section, we demonstrated that our Algorithm 1

could converge and find a ν-approximate saddle point of the

objective G. In this section, we further motivate why we care

about finding a ν-approximate saddle point. The ultimate goal

for our algorithm is to: (1) learn a model that produces fair

predictions on training data, and (2) more importantly, produces

fair predictions on test data, i.e., data from federated clients

not seen during training.

Before presenting the formal fairness and generalization

guarantees, we state the following additional assumption,

which is a common assumption for showing the generalization

guarantee using the Rademacher complexity generalizations

bound [17].

Assumption IV.7. Let F be upper bounded by constant M .

We first show the fairness guarantee on the training data.

Lemma IV.8 (Empirical Fairness Guarantee). Let Assumption

IV.7 holds. Assume there exists w∗ satisfies r(w∗) ≤ 0Z , we

have

max
j

rj(w̄)+ ≤ M + 2ν

B
. (8)

Lemma IV.8 characterizes the upper bound for the worst

fairness constraint evaluated on the training data. Given a fixed

ν, one could increase B to obtain a stronger fairness guarantee,

i.e., a smaller upper bound. Combining this with Corollary IV.6,

it can be seen that when B is large, additional exponentiated

gradient ascent rounds are required to achieve stronger fairness.

Next we formalize the fairness guarantee for the entire

true data distribution. Define the true data distribution to be

D = 1
K

∑K
k=1 Dk. We would like to formalize how well our

model is evaluated on the true distribution D as well as how

well the fairness constraint is satisfied under D. This result is

presented below in Theorem IV.9.

Theorem IV.9 (Full Fairness and Generalization Guarantee).

Let ErrF (ŵ) = F(w̄)−F(w∗) and (ŵ, λ̂) be ν-approximate

saddle point of G. Then with probability 1 − δ, either there

doesn’t exist solution for Problem 3 and Algorithm 1 returns

null or Algorithm 1 returns ŵ that satisfies

ErrF (ŵ) ≤ 2ν + 4Rm(H) +
√∑K

k=1
2M2

mkK2 log
(
2
δ

)
,

rj(w̄) ≤ M+2ν
B

+Genr,j

(9)

where w∗ is a solution for Problem 3 and Genr is the

generalization error.

The first part for Equation 9 characterizes how well our

model performs over the true data distribution compared to the

optimal solution. As number of clients K increases, we achieve

smaller generalization error. The second part for Equation 9

characterizes how well the fairness constraints are satisfied

over the true data distribution. Note that the upper bound could

be viewed as the sum of empirical fairness violation and a

generalization error. Based on our fairness notions defined

in Section III-B, we demonstrate what generalization error is

under different fairness constraints r.

Proposition 1 (r encodes BGL at level ζ). There are in

total |A| fairness constraints, one for each group. Define the

weighted Rademacher complexity for group a as Ra(H) =

ESk,σ

[
suph∈H

∑K
k=1

1
ma

∑
ak,i=a σk,il (h(xk,i), yk,i)

]
. In

this scenario, we have:

Genr,a = 2Ra(H) +
M

ma

√
K

2
log(2|A|/δ).

Note that the fairness constraint for group a under true

distribution in Equation 9 is upper bounded by O
(√

K
ma

)
. For

any group a0 with sufficient data, i.e., ma0
is large, the BGL

constraint with respect to group a0 under D has a stronger

formal fairness guarantee compared to any group with less data.

It is also worth noting that this generalization error grows as

the number of clients K grows. Recall that the generalization

error becomes smaller when K grows; combing the two results

together provides us a tradeoff between fairness notion of BGL

and utility over the true data distribution in terms of K.

Proposition 2 (r encodes CBGL at level [ζy]y∈Y ).

There are in total |A||Y | fairness constraints, one for
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each group and label. Define the weighted Rademacher

complexity for group a conditioned on y as Ra,y(H) =

ESk,σ

[
suph∈H

∑K
k=1

∑
ak,i=a,yk,i=y

σk,i

ma,y
l (h(xk,i), y)

]

where ma,y is the number of all examples from group a with

label y. In this scenario, we have:

Gen
r,(a,y) = 2Ra,y(H) +

M

ma,y

√
K

2
log(2|A||Y |/δ).

Similar to Proposition 1, in order to achieve strong fairness

guarantees for any specific constraint on the true data distribu-

tion, we need a sufficient number of samples associated with

that constraint.

We provide details and a proof for Theorem IV.9 in Appendix

B. Different from the analysis performed in Agarwal et al. [15],

we analyze the generalization behaviour in a federated setting

where we introduce the generalization bound as a function of

number of clients K. We then further formally demonstrate

the tension between utility and fairness performance evaluated

on the true data distribution induced by K, which has not been

studied previously to the best of our knowledge.

V. EXPERIMENTS

We evaluate our approach on common benchmarks from

fair ML and FL, including Communities & Crime, a dataset

commonly studied in fair ML [15, 35]; the US-wide ACS

PUMS data, a recent group fairness benchmark dataset [36]; and

CelebA [37], a common federated learning dataset. We compare

our method with prior methods that aim to enforce other

fairness notions (Demographic Parity and Equal Opportunity)

in terms of performance associated with each group in Section

V-A, and explore other fairness metrics like DP and EO relative

to prior works in Section V-B. We explore the empirical

difference between training with our global BGL constraint vs.

local BGL constraints in Section V-C, and directly compare

to the special case of FedMinMax in Section V-D. Finally we

provide detailed ablation studies of the hyperparameters of our

method in Section V-E.

Setup. For all experiments, we evaluate performance metrics

for each group on test data that belongs to all silos. To reflect

the federated setting, we use heterogeneous data partitions to

create data silos. Communities & Crime and ACS Employment

is naturally partitioned into states in US; CelebA are manually

partitioned in a non-IID manner into a collection of data silos. A

detailed description of datasets, models, and partition schemes

can be found in Table II. For all experiments, we use grid

search for hyperparameter tuning; details of hyperparameters

can be found in Section V-E. We also perform experiments

under the scenario where each silo is treated as a distinct group

in Appendix E.

A. BGL improves worst group performance

We first explore how the performance of each group differs

as we use different fair FL methods. To be consistent with

our method and theoretical analysis, we exclude the protected

attribute ai for each data as a feature for learning the predictor.

For PFFL we select the hyperparameter pair (B, ζ) that

yields the best performance in terms of both groups. For

additional hyperparameter details, please see Appendix V-E.

We show group 1 performance, group 2 performance, and

their difference in Table I. We compare with prior works that

aim to promote equal prediction quality between two groups,

including FedFair [4], FairFed [11], and FedFB [12]1. Since

FairFed and FedFB rely on binary label information, we do not

consider these baselines for Communities & Crime regression

task.

On all datasets, while prior methods are able to reduce

the gap between the two group’s performance, that usually

comes with compromising not only the performance of better

performing group but also that of the worst performing group.

For example, FedFair achieves near perfect fair prediction

across two groups in ACS Employment. However, the test

accuracy of both groups suffers from significant drop compared

to non fair baseline such as FedAvg, and can in fact result in

solutions that are less fair in terms of accuracy difference than

the simple FedAvg baseline (e.g., on CelebA). Compared to

these approaches, our method can substantially improve the

worst group performance across all datasets (Group 2 for ACS

Employment and CelebA, Group 1 for Communities & Crime).

Meanwhile, we observe that in order to boost the worst group

performance, our method does not necessarily sacrifice the

other group’s performance, compared to the FedAvg baseline.

B. BGL/CBGL evaluated on other fairness notions

Another common fairness notion considered in the fair

FL literature is to optimize the difference between every

two groups’ losses (possibly conditioned on the true label)

with the aim of achieving Demographic Parity or Equal

Opportunity [4, 6, 7, 12]. Formally, consider the case where

the protected attribute set A = {0, 1}. Define ∆DP =
|Pr(h(X) = 1|A = 0)− Pr(h(X) = 1|A = 1)|, ∆EO =
|Pr(h(X) = 1|A, Y = 0, 1)− Pr(h(X) = 1|A, Y = 1, 1)|.
These works aim to train a model that achieves small ∆DP

or small ∆EO, depending on the fairness constraint selected

during optimization. As discussed in Section III-B, CBGL can

be viewed as a more general definition of Equal Opportunity

and Equalized Odds.

In this section, we compare our method with FedFB [12],

FairFed [11], FedFair [4], and FCFL [6], all of which aim

to optimize ∆DP and ∆EO. We evaluate ∆DP and ∆EO for

all approaches on ACS Employment and CelebA, with results

shown in Figure 3. We also conduct additional experiments on

COMPAS; results are shown in Appendix D. Similar to Figure

4, we show points lying on the pareto frontier for our method.

Although PFFL with BGL and CBGL was not directly

designed for these fairness criteria (i.e., it does not directly

1FedFB applies when each client has data from all the groups, which does
not hold for our CelebA partitioning.
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FedAvg AFL FedFair FairFed FedFB PFFL (ours)

ACS-E
Group 1 Acc (↑) .7599± .0009 .7193± .0019 .7297± .0005 .7533± .002 .7413± .0022 .7637± .0019
Group 2 Acc (↑) .7375± .0002 .6733± .003 .7261± .0025 .7388± .0023 .7173± .0025 .7473± .0028
Acc Difference (↓) .0234± .0002 .046± .0015 .0025± .0013 .0156± .0008 .024± .0006 .0164± .0018

CelebA
Group 1 Acc (↑) .9429± .0002 .9481± .0021 .9466± 0.0008 .9403± .0013 - .9462± 0.0011
Group 2 Acc (↑) .9394± .0004 .9292± .0028 .9394± .0016 .9352± .002 - .9424± .0018
Acc Difference (↓) .0035± .004 .0192± .0011 .0072± .0009 .0051± .0015 - .0049± .0009

Crime
Group 1 RMSE (↓) .2005± .0321 .3041± .0707 .2897± .0707 - - .1918± .02
Group 2 RMSE (↓) .1265± .02 .1718± .0707 .1865± .02 - - .1261± .0141
RMSE Difference (↓) .074± .0326 .1323± .0949 .1032± .0894 - - .0657± .02

TABLE I: Comparison between PFFL and prior methods in terms of the test performance metric associated with each group. The method
that achieves the best performance is bolded. Unlike other works which equalize performance at the expense of utility, we see that PFFL can
significantly improve the worst group’s test performance while maintaining average performance across groups. We also note that prior works
that aim only to equalize performance can behave unexpectedly—sometimes worse than simple baselines such as FedAvg.

Fig. 3: Comparison between PFFL and prior works on ACS and CelebA for ∆DP and ∆EO. Although PPFL was not directly designed to
optimize Demographic Parity/Equal Opportunity, we see that it outperforms the baseline of FedAvg, and performs comparably to/better than
prior works designed for these objectives.

enforce the loss or prediction parity of two groups’ losses to

be close), we see that our method is still able to outperform

training a FedAvg baseline, and in fact performs comparably

or better than prior methods which were designed specifically

for these criteria. Given this empirical performance, studying

whether BGL can provide any provable guarantees in terms

of Demographic Parity and Equal Opportunity would be an

interesting direction of future study.

C. FL with global fairness constraint vs local fairness con-

straint

In FL, applying fair training locally at each data silo

and aggregating the resulting model may not provide strong

population-wide fairness guarantees with the same fairness

definition [12]. Here, we explore the relationship between test

accuracy and max group loss under local BGL and global BGL

constraints. The results are shown in Figure 4.

TABLE II: Details of datasets/models used in our experiments.

Dataset # of Silos Model Protected Attribute Partition Type Task Type

ACS 50 Logistic Regression Race Natural partition by States Binary classification
CelebA 40 4-layer CNN Gender Manual partition Binary classification
Communities & Crime 50 Linear Model Race Natural partition by States Linear Regression
COMPAS 10 Logistic Regression Gender Manual partition Binary classification
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BGL CBGL, Y = 1 CBGL, Y = 0

Fig. 4: Empirical results when using BGL (column 1), CBGL for Y = 1 (column 2), and CBGL for Y = 0 (column 3) on CelebA (row
1), ACS Employment (row 2), and COMPAS (row 3). We find in all settings that our proposed method (PPFL with Global BGL) not only
enables a flexible fairness/utility trade-off, but can in fact achieve both stronger fairness and better utility (lower error) than baselines.

On all datasets, we see that there exists a natural tradeoff

between error rate and the fairness constraint: when a model

achieves stronger fairness (smaller max group loss), the model

tends to have worse utility (higher error rate). However, in all

scenarios, our method not only yields a model with significantly

smaller maximum group loss than vanilla FedAvg, but also

achieves higher test accuracy than the baseline FedAvg which

is unaware of group fairness. Meanwhile, for all datasets and

fairness metrics, as expected, PFFL with Global BGL achieves

improved fairness-utility tradeoffs relative to PFFL with Local

BGL. Therefore, our PFFL with Global fairness constraint

framework yields a model where utility can coexist with fairness

constraints relying on Bounded Group Loss.

D. Comparison with FedMinMax

As mentioned in Section III-B, FedMinMax [28] can be

viewed as a special case of our PFFL with BGL with fixed

hyperparameters. However, different from our Algorithm 1, the

original FedMinMax solver proposes to fix the FedAvg training

epoch T = 1 whereas our PFFL proposes to training enough

number of FedAvg rounds. We compare PFFL with FedMinMax

w.r.t worst group accuracy (Table III), max group loss (Figure

6), and demographic parity gap (Figure 5). Similar to Figure 4,

we only plot the pareto frontier of our method. Although PFFL

with BGL could reduce to FedMinMax, fixing hyperparameters

(e.g. β,B, ζ, T ) limits FedMinMax’s flexibility to trade off

between fairness and utility.

FedMinMax PFFL (ours)

ACS-E
Group 1 Acc (↑) .7481± .0052 .7637± .0019
Group 2 Acc (↑) .7415± .0044 .7473± .0018
Acc Difference (↓) .0045± 0.0031 .0162± .0018

Crime
Group 1 RMSE (↓) .2175± .0707 .1918± .02
Group 2 RMSE (↓) .1432± .014 .1261± .0141
RMSE Difference (↓) .0743± .0689 .0657± .02

TABLE III: Comparison between PFFL and FedMinMax in terms
of test accuracy and RMSE on each group for ACS Employment and
Communities & Crime.

E. Hyperparameters

In order to get the fairest model given a certain test error rate,

we apply random grid search over two key hyperparameters

in our experiment: the strength of regularizer B and the

constant used to bound our fairness constraint (ζ when BGL

is the fairness constraint and ζy when CBGL conditioned on

Y = y is the fairness constraint). For all our experiments

with respect to PFFL with BGL and PFFL with CBGL,

we select B ∈ {0.1, 0.5, 1, 5, 10, 20, 50, 100, 200, 500}. For
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ACS-E B = 1 B = 5 B = 10 B = 20 B = 50 B = 100 B = 200

ζ = 0.1 .6974 .6895 .7376 .7226 .7194 .7276 .7255
ζ = 0.3 .6785 .7180 .7052 .7408 .7470 .7430 .7425
ζ = 0.5 .6917 .7062 .6959 .7120 .7106 .7399 .7348
ζ = 0.7 .6774 .7121 .7061 .6995 .6996 .7399 .7216
ζ = 0.9 .6961 .6811 .6870 .7197 .7248 .7239 .7058

TABLE IV: Effect of hyperparameters, B and ζ, on the worst group accuracy for ACS Employment. We observe that best worst group
accuracy occurs when choosing large B. ζ should be chosen to be close to the actual max group loss.

Fig. 5: Comparison between PFFL and FedMinMax in terms of ∆DP . Our method is able to outperform FedMinMax on all three datasets in
terms of fairness utility tradeoff.

Fig. 6: Comparison with FedMinMax in terms of max group loss. Our method achieves comparable / better performance compared to
FedMinMax.

CelebA, we select ζ ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3},

ζ1 ∈ {0, 0.05, 0.1, 0.2, 0.3, 0.5}, and ζ0 ∈
{0, 0.05, 0.1, 0.15, 0.2}. For ACS Employment,

we select ζ, ζ1 ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9} and

ζ0 ∈ {0, 0.1, 0.3, 0.5, 0.7}. For Communities & Crime,

we select ζ ∈ {0, 0.01, 0.05, 0.1}. For COMPAS, we select

ζ, ζ1 ∈ {0, 0.1, 0.3, 0.5, 0.7} and ζ0 ∈ {0, 0.1, 0.3, 0.5}. We

use the same learning rate, total training rounds for all

methods including ours and prior works for each dataset. In

Table IV, we provide ablation study on ACS-E dataset to

study how different hyperparameter combinations affect the

worst group performance.

Here we observe two trends: (1) stronger regularization

strength (larger B) is beneficial in improving the worst group

accuracy for all ζ, and (2) using a ζ too small or too large

leads to suboptimal worst group accuracy. In general, while

more complex hyperparameter optimization methods could

be used, we find that simple grid search over a small set of

hyperparameter values with these trends in mind is sufficient

to achieve strong empirical performance.

VI. LIMITATIONS AND CONCLUDING REMARKS

In this work, we propose a fair learning objective for

federated settings via Bounded Group Loss. We then propose

a scalable federated solver to find an approximate saddle point

for the objective. Theoretically, we provide convergence and

fairness guarantees for our method. Empirically, we show

that our method can provide high accuracy and fairness

simultaneously across tasks from fair ML and federated

learning. In addition to strong empirical performance, ours is

the first work we are aware of to provide formal convergence

and fairness/generalization guarantees for group fair federated

learning with general convex loss functions.

The notion of fairness in machine learning is highly problem-

specific, depending not only on aspects of the problem setting

but also on values of those who are invoking the fair ML

approaches. Indeed, it is well-known that various fairness

criteria can in fact be incompatible with one another. Our aim

in this work is not to suggest that the notion of Bounded Group

Loss and our resulting method for fair federated learning (PFFL)

are the only appropriate approaches for ensuring fairness in

federated settings, but rather to present the benefits/limitations
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of our framework and explain scenarios in which it can be 
effectively applied in practice. Our results show in particular 
that fairness can be at odds with other natural concerns in 
FL, such as overall utility or privacy (Appendix C). While our 
proposed objective and solver provide improvements relative 
to existing fair FL approaches along these axes, it is important 
to not apply our framework (or any other approach for fair 
ML) blindly, but to carefully consider such trade-offs for the 
application at hand.

In future work we are interested in investigating additional 
benefits that could be provided by using our framework, 
including applications in non-federated settings. We are also in-

terested in extending our analyses to further provide theoretical 
guarantees for non-convex concave saddle point optimization. 
Additionally, similar to prior works in group fair FL, our 
method communicates additional parameters beyond standard 
non-fair FL (e.g., via FedAvg); while we show that our method 
is compatible with differentially private training (Appendix C), 
further studying how privacy interacts with fairness and 
accuracy in the context of federated learning would be an 
interesting direction of future work enabled by our framework.
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APPENDIX A

PROOF OF THEOREM IV.5

We first present the formal version for Theorem IV.5.

Theorem A.1 (Formal Convergence Guarantee). Let Assumption IV.2-IV.4 hold. Define κ = L
µ

, γ = max{8κ, J} and

step size ·Q = 2
(β+B)µ(γ+t) , ·θ = 1√

ET
, and assume ‖r‖∞ ≤ ρ. Letting w̄ = 1

ET

∑ET
t=1 w

t, λ̄ = 1
ET

∑ET
t=1 λ

t
, ∆T =

maxλ G(w̄;λ)−minw G(w; λ̄), there exists constant C1, C2 such that:

∆T ≤ 1

T

T∑

t=1

κ

γ + t− 1

(
2C1

(β +B)μ
+

(β +B)μγ

2
C2

)
+

B(log(Z + 1) + ρ2)√
ET

. (10)

To prove Theorem A.1, we introduce the following lemma.

Lemma A.2 (Li et al. [34]). Let Γ = F ∗ − ∑
i piF

∗
i , κ = L

µ
, γ = max{8κ, J} and the learning rate ·t = 2

µ(γ+t) . Then

FedAvg with partial device participation such that |St| = K satisfies

1

T

T∑

t=1

F (wt)− F ∗ ≤ 1

T

T∑

t=1

κ

γ + t− 1

(
2C

μ
+

μγ

2
E[‖w1 − w∗‖2]

)

where

C =

N∑

i=1

p2iσ
2
i + 6LΓ + 8(J − 1)2G2 +

4

K
J2G2.

Proof for Theorem A.1. Let ma,k be the number of data with protected attribute a for client k. By Assumption IV.2, we have

Gi be (β+
∑

a λa
ma,k

ma
)μ-strongly convex and (β+

∑
a λa

ma,k

ma
)L-smooth. Since ‖λ‖1 ≤ B, we have Gi be (β+B)μ-strongly

convex and (β +B)L-smooth. We first present the regret bound for wt

1

ET

ET∑

t=1

G(wt;λt)−min
w

1

ET

ET∑

t=1

G(w;λt) =
1

ET

(
ET∑

t=1

G(wt;λt)−min
w

ET∑

t=1

G(w;λt)

)
(11)

=
1

ET

(
E−1∑

i=0

T∑

t=1

G(wiT+t;λi)−min
w

ET∑

t=1

G(w;λt)

)
(12)

≤ 1

ET

(
E−1∑

i=0

(
T∑

t=1

G(wiT+t;λi)−min
w

T∑

t=1

G(w;λi)

))
(13)

=
1

E

E−1∑

i=0

(
1

T

T∑

t=1

G(wt;λi)−G∗(λi)

)
(14)

≤ 1

ET

E−1∑

i=0

T∑

t=1

κ

γ + t− 1

(
2Ci

μ
+

μγ

2
E[‖w1,i − w∗,i‖2]

)
(15)

≤ 1

T

T∑

t=1

κ

γ + t− 1

(
2maxi Ci

μ
+

μγ

2
max

i
E[‖w1,i − w∗,i‖2]

)
(16)

Now we present the regret bound for λt ∈ R
Z
+. For any λt, let’s define λ̃

t ∈ R
Z+1
+ such that λ̃

t
satisfies ‖λ̃t‖1 = B and

the first Z entries of λ̃
t

is the same as λt. Let r̃t ∈ R
Z+1 such that the first Z entries of r̃

t is the same as r
t and the last

entry of r̃t is 0. Therefore, we have

λT
r
t = λ̃

T
r̃
t (17)

for all λ.

By Shalev-Shwartz et al. [38], for any λ̃, we have

ET∑

t=1

λ̃
T
r̃
t ≤

ET∑

t=1

(λ̃
t
)T r̃t +

B log(Z + 1)

·θ
+ ·θρ

2BET (18)

=
ET∑

t=1

(λt)T rt +
B log(Z + 1)

·θ
+ ·θρ

2BET (19)
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Therefore, we have

min
λ

1

ET

ET∑

t=1

G(wt;λ)− 1

ET

ET∑

t=1

G(wt;λt) = min
λ

1

ET

ET∑

t=1

λT
r
t − 1

ET

ET∑

t=1

(λt)T rt (20)

≤ B log(Z + 1)

·θET
+ ·θρ

2B (21)

Hence, we conclude that

min
λ

1

ET

ET∑

t=1

G(wt;λ)−min
w

1

ET

ET∑

t=1

G(w;λt) (22)

≤ 1

T

T∑

t=1

κ

γ + t− 1

(
2maxi Ci

(β +B)μ
+

(β +B)μγ

2
max

i
E[‖w1,i − w∗,i‖2]

)
+

B log(Z + 1)

·θET
+ ·θρ

2B (23)

By Jensen’s Inequality, G( 1
ET

∑ET
t=1 w

t;λ) ≤ 1
ET

∑ET
t=1 G(wt;λ) and set ·θ = 1√

ET
. Therefore, we have

min
λ

G(w̄;λ)−min
w

G(w; λ̄) ≤ 1

T

T∑

t=1

κ

γ + t− 1

(
2maxi Ci

(β +B)μ
+

(β +B)μγ

2
max

i
E[‖w1,i − w∗,i‖2]

)
(24)

+
B(log(Z + 1) + ρ2)√

ET
(25)

Let C1 = maxi Ci and C2 = maxi E[‖w1,i − w∗,i‖2], we get Theorem A.1.

Next we prove Corollary IV.6.

Proof for corollary IV.6. Note that log(t+ 1) ≤ ∑t
n=1

1
n
≤ log(t) + 1. Let

C =
2maxi Ci

(β +B)μ
+

(β +B)μγ

2
max

i
E[‖w1,i − w∗,i‖2] (26)

we have

min
λ

G(w̄;λ)−min
w

G(w; λ̄) ≤ κC
T

(log(γ + T − 1) + 1− log(γ + 1)) +
B(log(Z + 1) + ρ2)√

ET
. (27)

Denote the right hand side as νT . Pick T ≥ 2κC(γ−1)
ν(γ+1)−2κC and E ≥ 2B2(ν(γ+1)−2κC)(log(Z+1)+ρ2)2

ν2κC(γ−1) .

νT ≤ κC
T

γ + T − 1

γ + 1
+

B(log(Z + 1) + ρ2)√
ET

(28)

≤ ν

2
+

B(log(Z + 1) + ρ2)√
ET

(29)

≤ ν

2
+

B(log(Z + 1) + ρ2)
√
ν(γ + 1)− 2κC√

2κC(γ − 1)E
(30)

≤ ν

2
+

ν

2
(31)

= ν (32)

APPENDIX B

PROOF FOR THEOREM IV.9

We first introduce a few lemmas necessary for the proof of Theorem IV.9.

Lemma B.1. Let

Rm(H) = ESk∼Dmk
k

,σ

[
sup
h∈H

1

K

K∑

k=1

1

mk

mk∑

i=1

σk,il (h(xk,i), yk,i)

]
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then for any h ∈ H, with probability 1− δ, we have

|F(h)− F (h)| ≤ 2Rm(H) +
M

K

√√√√
K∑

k=1

1

2mk

log(1/δ) (33)

Proof for lemma B.1. Lemma B.1 directly follows Theorem 2 in Mohri et al. [17] with λk = 1
K

.

Lemma B.2 (Lemma 1 in Agarwal et al. [9]). Let (w̄, λ̄) is a ν-approximate saddle point, then

λ̄
T
r(w̄) ≥ Bmax

z∈Z
rz(w̄)+ − ν (34)

where x+ = max{x, 0}.

Lemma B.3 (Lemma 2 in Agarwal et al. [9]). For any w such that r(w) ≤ 0Z , F (w̄) ≤ F (w) + 2ν.

Lemma B.4 (Generation for BGL). Let

Ra(H) = ESk∼Dmk
k

,σ

[
sup
h∈H

K∑

k=1

1

ma

∑

ai=a

σk,il (h(xk,i), yk,i)

]

then for any h ∈ H and all a ∈ A, with probability 1− δ, we have

|ra(h)− ra(h)| ≤ 2Ra(H) +
M

ma

√
K

2
log(|A|/δ) (35)

Lemma B.5 (Generation for CBGL). Let

Ra(H) = ESk∼Dmk
k

,σ

⎡
£sup
h∈H

K∑

k=1

1

ma,y

∑

ai=a,yk,i=y

σk,il (h(xk,i), yk,i)

¤
⎦

then for any h ∈ H and all a ∈ A and y ∈ Y , with probability 1− δ, we have

|ra(h)− ra(h)| ≤ 2Ra(H) +
M

ma,y

√
K

2
log(|A||Y |/δ) (36)

Denote the right hand side of Lemma B.4 and B.5 for constraint j to be Genr,j(δ).

Proof for lemma IV.8. Note that

F (w̄) +Bmax
z∈Z

rz(w̄)+ − ν ≤ F (w̄) + λ̄
T
r(w̄) (37)

= G(w̄, λ̄) (38)

≤ min
w

G(w, λ̄) + ν (39)

≤ G(w∗, λ̄) + ν (40)

= F (w∗) + λ̄
T
r(w∗) + ν (41)

≤ F (w∗) + ν. (42)

Therefore, we have

F (w̄) ≤ F (w∗) + 2ν. (43)

Hence,

Bmax
z∈Z

rz(w̄)+ ≤ F (w∗)− F (w̄) + 2ν (44)

≤ M + 2ν. (45)

Note that Lemma IV.8 tells us when there exists a solution for Problem 3, the empirical fairness constraint violates by at most

an error of M+2ν
B

. In other words, this guarantees that our Algorithm 1 always outputs a model when Problem 3 has a solution.

Now we provide a proof of Theorem IV.9.
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Proof for Theorem IV.9. When there exists a solution to Problem 3: w∗, by Lemma B.1, IV.8, we have with probability 1− δ/2

F(w̄) ≤ F (w̄) + 2Rm(H) +
M

K

√√√√
K∑

k=1

1

2mk

log(2/δ) (46)

≤ F (w∗) + 2ν + 2Rm(H) +
M

K

√√√√
K∑

k=1

1

2mk

log(2δ) (47)

≤ F(w∗) + 2ν + 4Rm(H) +
2M

K

√√√√
K∑

k=1

1

2mk

log(2/δ). (48)

Combined with Lemma B.4, B.5, and IV.8, we have for all rj that encodes a fairness constraint, with probability 1− δ/2

rj(w̄) ≤ rj(w̄) +Genr,j(δ/2) (49)

≤ M + 2ν

B
++Genr,j(δ/2) (50)

Therefore, Theorem IV.9 holds with probability 1− δ in this case.

When there doesn’t exist a solution to Problem 3, Algorithm 1 outputs w̄ only when maxa∈A ra(w̄) ≤ M+2ν
B

. In certain

scenarios, we are still able to obtain

ra(w̄) ≤
M + 2ν

B
+Genr,j(δ/2) (51)

by applying Lemma IV.8. Since w∗ doesn’t exist, the following holds vacuously:

F(w̄) ≤ F(w∗) + 2ν + 4Rm(H) +
2M

K

√√√√
K∑

k=1

1

2mk

log(2/δ) (52)

Therefore, Theorem IV.9 holds for both cases.
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APPENDIX C

ALGORITHM WITH EXAMPLE-LEVEL PRIVACY

Fig. 7: Given fixed privacy budget ε, we
pick the model that yields the lowest max
group loss (best fairness). For both datasets,
as we require for more privacy (smaller ε),
it becomes harder to ensure the utility of
the worst performing group.

In cross-silo federated learning, it is common to ensure privacy through example-level

differential privacy, as the private entities are typically examples in each silo (e.g.,

patients in a hospital, clients in a bank) [39]. We provide an extension of our PFFL

method with example-level privacy in Algorithm 2. Our implementation is based off

of DP-SGD [40]. Empirically, we show the privacy-fairness trade-off on two datasets

in Figure 7. Here we observe that we can provide differential privacy with our fair FL

framework, noting that the fairness guarantee is reduced as we require more privacy

(smaller ε). Following standard private SGD proof, we also provide privacy guarantee

to our algorithm 2 in Theorem C.1. While not the focus of this work, further studying

relationships between privacy and fairness in the setting of federated learning is an

interesting research question enabled by our framework.

Theorem C.1. Assume M ≥ Cr + ζ , and fk is L-Lipschitz such that L ≥ Cw. Further sssume there are in total n samples and

local update subsampling rate is q for all the clients, there exists constants c1, c2, c3, c4 such that for any ε < max{c1ET, c2E},

Algorithm 2 is (ε, δ)− example-level differentially private if we choose

σw =
c3L

√
ET log(1/δ)

nε
(53)

σr =
c4
√
2M

√
E log(1/δ)

nε
(54)

Lemma C.2. Let the gr(D) = [
∑

k r̃1,k, · · · ,
∑

k r̃Z,k] be the gradient of λ. Then the �2 sensitivity of the gradient ascent step

∆2gr satisfies:

∆2gr =
√
2Cr (55)

Proof for Lemma C.2.

∆2gr = sup
adjacent D,D′

‖gr(D)− gr(D
′)‖2

= sup
i,j

√√√√
(
∑

k

r̃i,k −
∑

k

r̃′i,k

)2

+

(
∑

k

r̃j,k −
∑

k

r̃′j,k

)2

Assume the supremum is achieved by swapping (x, y, i) to some (x′, y′, j), then we can rewrite

(
∑

k

r̃i,k −
∑

k

r̃
′
i,k

)2

=

((
1

mi

− 1mi 
=1
1

mi − 1

)
Si +

1

mi

�(w;x, y, i)

)2

(
∑

k

r̃j,k −
∑

k

r̃
′
j,k

)2

=

((
1

mj + 1
− 1mj 
=0

1

mj

)
Sj +

1

mj + 1
�(w;x′, y′, j)

)2

where Si =
∑

al=i
xl,yl 
=x,y

�(w;xl, yl, i), Sj =
∑

al=j

xl,yl 
=x′,y′

�(w;xl, yl, j). Consider the case where mi = 1 and mj = 0, we have

Si = Sj = 0. Hence, ‖gr(D)− gr(D
′)‖2 =

√
2Cr Consider the case where mi > 1 and mj > 0, we have

‖gr(D)− gr(D
′)‖2 =

√((
1

mi

− 1

mi − 1

)
Si +

Cr

mi

)2

+

((
1

mj + 1
− 1

mj

)
Sj +

Cr

mj + 1

)2

≤
√(

mi − 2

mi(mi − 1)
Cr

)2

+

(
mj − 1

mj(mj + 1)
Cr

)2

≤
√
2
(
(3− 2

√
2)Cr

)2

= (3
√
2− 4)Cr

Note this is less than
√
2Cr. Hence the supremum is achieved when mi = 1,mj = 0. Therefore ∆2gr =

√
2Cr.
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Algorithm 2 PFFL-P: Provably Fair Federated Learning with Example-Level Privacy

1: Input: T , ·w, ·θ,σw, σr, Cw, Cr, w0, M , ν, B, β, ζ, ¸0 = 0, w̄ = 0

2: for i = 1, · · · , E do

3: Set λa = B
exp(θi

a)

1+
∑

a′ exp(θi
a′ )

4: for t = 0, · · · , T − 1 do

5: Server broadcasts wt to all the clients.

6: for all k in parallel do

7: Each client updates its weight wk for J iterations

hk(w
t, xi,k) = fk(w

t, xi,k) +
∑

a

1ai,k=aλa ·
1

ma

fk(w
t
k, xi,k)

wt+1
k = wt

k − ·w
1

Nk

·
(

Nk∑

i=1

ClipCw

(
∇wt

k

(
hk(w

t, xi,k)
))

+N (0, σ2
wC

2
wI)

)

8: Compute private r
t
a,k:

r̃
t
a,k =

1

ma

∑

ai,k=a

ClipCr
(fk(w

t
k, xi,k)) +N (0, σ2

r
C2

r I)

9: Each client sends gt+1
k = wt+1

k − wt
k and r̃

t
a,k back to the server

10: end for

11: Server aggregates the weight wt+1 = wt + 1
K

∑K
k=1 g

t+1
k .

12: Update w̄ =
∑T

t=1 w
t and set w0 = wT

13: end for

14: Server updates ¸ which would be later used to update the dual variable λ

¸(i+1)
a = ¸ia + ·θ

∑

k

r̃
t
a,k

15: end for

16: Server updates w̄ ← 1
ET

w̄
17: Output w̄ if maxa ra ≤ M+2ν

B
, and null otherwise.

Now we know the gradient descent step has sensitivity Cw ≤ L and noise multiplier σw. The gradient ascent step has

sensitivity
√
2Cr ≤

√
2M by Lemma C.2 and noise multiplier σr. Further note that we perform gradient descent step with ET

steps and gradient ascent step with E steps. Following proof from Theorem 1 in Yang et al. [41], Theorem C.1 holds.
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APPENDIX D

FULL EXPERIMENTAL RESULTS

In this section, we show the results of group 1 / group 2 utility for three aditional datasets: ACS Income (ACS-I), ACS

Public Coverage (ACS-P), and COMPAS, comparing other baseline methods. We see that on ACS-I and ACS-P, our method

improves the worst group performance without significantly compromising the other group’s performance (unlike AFL on

ACS-I). While we do not achieve the smallest accuracy difference on these two tasks compared to FedFB, our method achieves

better performance on both groups. On COMPAS, we observe that all group fair methods have similar performance, improving

the worst group performance compared to FedAvg.

FedAvg AFL FedFair FairFed FedFB PFFL (ours)

ACS-I
Group 1 Acc (↑) .6693 .637 .6619 .6502 .6598 .6684
Group 2 Acc (↑) .6344 .7582 .6301 .6248 .6451 .6529
Acc Difference (↓) .0349 .1212 .0318 .0254 .0147 .0155

ACS-P
Group 1 Acc (↑) .6699 .6744 .6682 .6739 .6525 .6774
Group 2 Acc (↑) .6306 .633 .6252 .633 .6244 .6371
Acc Difference (↓) .0393 .0414 .043 .0409 .0281 .0403

COMPAS
Group 1 Acc (↑) .7661 .7431 .7431 .7431 .7431 .7431
Group 2 Acc (↑) .7094 .7143 .7123 .7143 .7152 .7143
Acc Difference (↓) .0567 .0288 .0308 .0288 .0279 .0288

TABLE V: Comparison between PFFL and prior methods in terms of the test performance metric associated with each group on three
additional datasets.

APPENDIX E

SCENARIO WHERE EACH CLIENT IS A DISTINCT GROUP

Fig. 8: Comparison between PFFL, GI-
FAIR, and q-FFL on COMPAS.

In this work we aim to develop a general group fair federated learning framework

applicable to cross-silo federated learning—a scenario where each client/silo contains

multiple data points, each belonging to a possibly different underlying group. In the

limiting scenario where all data points in each silo belong to the same group (i.e.,

we can treat each client/silo as a distinct group), our method can be viewed as a

generalized version of AFL [17] where we allow the constraint term to encode different

values of ζ. We compare our method with GIFAIR [20] and q-FFL [18], a variant of

AFL that encourages providing fair utility performance across all the clients. For fair

comparison, we plot the average test accuracy w.r.t the largest client’s loss for both

methods. Our method achieves comparable results with prior works in this setting,

and both methods yield models that are both fairer and more accurate than vanilla

FedAvg. As discussed in Section II, unlike q-FFL/GIFAIR/AFL, the focus of this work

is instead to capture group fairness constraints across clients, where a client contains

multiple data points and each data point for a particular client belongs to a protected group.

APPENDIX F

COMPARISON BETWEEN DIFFERENT SOLVERS

In this section we compare our suggested PFFL solver with the general-purpose saddle point optimization solver (FedAvg-S)

proposed in Hou et al. [32]. We refer to FedAvg-S on our objective as PFFL-S. We tune p ∈ {0.25, 0.5, 0.75, 1} (when p = 1, it

reduces to Peng et al. [42]) and pick the one with the strongest fairness guarantee given same error rate. The results are shown

in Figure 9. Our solver is comparable / better than PFFL-S in all settings except when using BGL for the ACS Employment

dataset. Our simple solver has the following advantages over FedAvg-S. First, our method supports partial client participation,

which is not true in FedAvg-S. Further, FedAvg-S requires an extra hyerparameter p whereas our solver avoids this additional

hyperparameter tuning step. While we therefore suggest using the PFFL solver for the BGL objective due to these practical

benefits, we note that the fairness/utility results for our BGL objective may be improved even further over existing baselines if

a user wishes to optimize over both solvers.
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Fig. 9: Comparison between PFFL and PFFL-S on COMPAS and ACS.

APPENDIX G

COMPARISON WITH CENTRALIZED BASELINE

We show the results of comparing our PFFL with BGL method with BGL in centralized setting method in Figure 10 on

COMPAS. As expected, centralized BGL is able to produce a model that is both fairer and more accurate than PFFL with

Gloabl BGL.

Fig. 10: Comparison between PFFL and using BGL on centralized dataset on COMPAS.
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