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Abstract: Hydroxyl radicals (¢OH) are known as essential chemicals for cells to maintain their normal
functions and defensive responses. However, a high concentration of «OH may cause oxidative stress-
related diseases, such as cancer, inflammation, and cardiovascular disorders. Therefore, ¢OH can
be used as a biomarker to detect the onset of these disorders at an early stage. Reduced glutathione
(GSH), a well-known tripeptide for its antioxidant capacity against reactive oxygen species (ROS),
was immobilized on a screen-printed carbon electrode (SPCE) to develop a real-time detection sensor
with a high selectivity towards eOH. The signals produced by the interaction of the GSH-modified
sensor and eOH were characterized using cyclic voltammetry (CV) and electrochemical impedance
spectroscopy (EIS). The CV curve of the GSH-modified sensor in the Fenton reagent exhibited a
pair of well-defined peaks, demonstrating the redox reaction of the electrochemical sensor and
oOH. The sensor showed a linear relationship between the redox response and the concentration
of eOH with a limit of detection (LOD) of 49 uM. Furthermore, using EIS studies, the proposed
sensor demonstrated the capability of differentiating ¢OH from hydrogen peroxide (H;O5), a similar
oxidizing chemical. After being immersed in the Fenton solution for 1 hr, redox peaks in the CV curve
of the GSH-modified electrode disappeared, revealing that the immobilized GSH on the electrode was
oxidized and turned to glutathione disulfide (GSSG). However, it was demonstrated that the oxidized
GSH surface could be reversed back to the reduced state by reacting with a solution of glutathione
reductase (GR) and nicotinamide adenine dinucleotide phosphate (NADPH), and possibly reused for
oOH detection.

Keywords: hydroxyl radicals (¢OH); reduced glutathione (GSH); aryl diazonium salt; sensor regen-
eration; cyclic voltammetry (CV); electrochemical impedance spectroscopy (EIS)

1. Introduction

Reactive oxygen species (ROS) are extremely unstable molecules originating from
exogenous sources, such as environmental pollution, cigarette smoking, ionizing radiation,
and drugs or endogenous sources, such as mitochondrial enzymes and nicotinamide
adenine dinucleotide phosphate oxidases (NOXs) [1]. Hydroxyl radical (¢OH), hydrogen
peroxide (H,O,), superoxide (eO, ), alkoxy radical (ROe), peroxyl radical (ROOe), lipid
hydroperoxide (LOOH), and ozone (O3) are some examples of ROS [2]. ROS are known to
be essential molecules for maintaining the proper function of living cells [3,4]. The crucial
roles of ROS in living cells include intercellular signaling transduction [5-7], the recruitment
of immune cells [8,9], activating vital proteins [10,11], and repairing damaged DNA [12].
Even though ROS benefit living cells, an optimum level of ROS is key for maintaining their
advantages. In the human body, an imbalance between the generation and removal of ROS
leads to cellular oxidative stress, damaging adjacent proteins, lipids, and DNA [13-15].
Eventually, a high level of oxidative stress condition leads to developing serious diseases,
such as cancer, Alzheimer’s disease, and Parkinson’s disease [16-20].
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Among ROS, eOH is the most reactive and destructive species that can damage
biomolecules, including carbohydrates, lipids, nucleic acids, and amino acids, posing a
significant threat to human beings [1]. Mitochondria are the main organelles in our cells
that generate «OH via incompletely reducing molecular oxygen to produce water. The
oxygen molecule is initially reduced in the mitochondrial intermembrane to ¢O, ™, Hy,O,,
and eventually to eOH [21]. Being extremely toxic, ¢OH must be detected in order to
comprehend the disease etiology and evaluate the efficacy of therapies. However, the
identification and measurement of #OH are exceptionally challenging since they have a
lifetime of nanoseconds and are highly reactive with adjacent substrates within a short
time [22]. Furthermore, due to their extreme chemical reactivity, they can readily damage
or destroy the sensing components of detecting devices, preventing them from produc-
ing and transducing reliable signals [23-25]. Currently, several methods for detecting
o#OH have been developed, including fluorescence spectroscopy [26], mass spectrome-
try [27], high-performance liquid chromatography [28], electron spin resonance [29,30],
chemiluminescence [31,32], and electrochemical techniques [33]. However, most of these
methods have some drawbacks, such as tedious sample preparation, expensive equipment,
low sensitivity, and inaccuracy which limit their application [34]. Among different tech-
niques, electrochemical sensing has gained more attention due to its high sensitivity, simple
operation, ease of miniaturization, quick response, and low cost [35-37]. Although the
electrochemical methods have come a long way in detecting eOH, there is still room for
developing highly sensitive and selective electrochemical platforms.

Glutathione is a well-known tripeptide with biological activity found in living cells in
concentrations between 0.5 mM and 10 mM [38,39]. This sulthydryl-containing tripeptide
serves vital biological roles in living organisms, such as enzyme activity, DNA and protein
synthesis, cell protection, and metabolism [40]. Glutathione is often found in its reduced
form (GSH), which turns into its oxidized form (GSSG) under oxidative stress [40]. Because
of its capacity to donate electrons, GSH has antioxidant and radical scavenging ability with
a high affinity toward eOH [41-44]. A lack of GSH makes the cell susceptible to oxidative
damage, and in a wide variety of diseases, including cancer, HIV, and neurological illnesses,
a deficiency of GSH is observed [45]. One of the earliest signs of oxidative stress in the
human body is a change in GSH concentration or the ratio of GSH to GSSG.

Herein, an electrochemical sensor with high sensitivity and selectivity for rapid detec-
tion of eOH is fabricated with a combination of two organic layers deposited on top of a
screen-printed carbon electrode (SPCE). An SPCE was used as a transducer because of its
cost-effectiveness and compatibility with most materials. Aryl diazonium salt was used
to modify the SPCE as a linker to form the second layer consisting of GSH as a sensing
element. It is hypothesized that GSH would produce an electrical signal as a result of
the redox reaction with eOH, and the signal analyzed with cyclic voltammetry (CV) and
electrochemical impedance spectroscopy (EIS) would correspond to the €OH concentra-
tion. To the best of our knowledge, there is currently no standard technique capable of
generating real-time, accurate, and consistent results for measuring eOH. Therefore, this
study would contribute to the development of a standard measuring protocol for ¢OH. The
proposed sensor is expected to be applied in clinical settings for the detection and treatment
of disorders resulting from oxidative stress. It could also be utilized in other sectors, such
as cosmetic, food, fuel cell, and pharmaceutical industries, where the monitoring and
measurement of OH are required.

The remaining sections of this work are organized as follows. Section 2 outlines
the materials and methods used to prepare the sensor and utilize it for detecting «OH
generated from the Fenton reaction. The results of the study, including both quantitative
and qualitative findings, are discussed in Section 3. This section covers the electrochemical
analysis of the sensor, the electrochemical interaction between the sensor and eOH, the
effectiveness of the proposed sensor in detecting ¢OH, and finally, the regeneration of the
sensor. The conclusion of the study and recommendations for future research are presented
in Section 4.
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2. Materials and Methods
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2.3. Detection of «OH Produced by the Fenton Reaction Using the GSH-Modified Electrode

eOH were produced using the Fenton reaction for CV and EIS assays. By mixing
equimolar solutions of HyO, and FeSO4-7H;0 in equal volumes, the Fenton reaction
produces ®OH via the reduction of H,O, by iron (II) ions. Then, the GSH-modified electrode
was placed into the Fenton solution, followed by CV and EIS measurements to determine
the interaction between the sensor and eOH. A potential range of —0.2 Vt0 0.8 V and a
scan rate of 100 mV /s were used for the CV tests. The frequency range for EIS experiments
was 0.01-10,000 Hz, with AC and DC voltages of 5 mV and 0.23 V, respectively. The H,O,
solution was shielded with aluminum foil to prevent oxidation through UV light exposure
during the experiment. Each measurement was carried out three times for reliability.
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Additionally, EIS was used to confirm the successful immobilization of the first and
second layers of aryl diazonium salt and GSH, respectively. The frequency range was from
0.1 Hz to 100,000 Hz, and the AC and DC voltages were 5 mV and 0.23 V, respectively.
Figure 2B shows the EIS results of the bare electrode, the aryl diazonium-modified electrode,
and the GSH-modified electrode. In Nyquist plots, a linear section at lower frequencies is
attributed to a process limited by diffusion, whereas a semicircle part at higher frequencies
corresponds to a process limited by electron transfer. Moreover, the diameter of the semi-
circle at higher frequencies reflects the interfacial electron-transfer resistance (Ret) [50,51].
After modification with the aryl diazonium salt, Re; significantly increased (red curve)
compared to the bare electrode (blue curve). It is noted that the aryl diazonium-modified
electrode showed the largest diameter where the organic salt deposited on the electrode
inhibited the electron transfer, increasing the electrode resistance. Immobilizing GSH on
top of the aryl diazonium layer resulted in the smallest semicircle diameter (black curve),
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3.3. Effect of the Scan Rate on the GSH-Modified Electrode

To investigate the electrochemical reaction kinetics, the CV response of the GSH-
modified electrode to 5 mM ¢OH was studied by varying the scan rate (v) from 10 mV/s
to 100 mV/s. As shown in Figure 5A, raising the scan rate led to a eradual increase in both
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3.3. Effect of the Scan Rate on the GSH-Modified Electrode

To investigate the electrochemical reaction kinetics, the CV response of the GSH-
modified electrode to 5 mM eOH was studied by varying the scan rate (v) from 10 mV /s
to 100 mV/s. As shown in Figure 5A, raising the scan rate led to a gradual increase
in both anodic and cathodic peak currents. Figure 5B illustrates that the peak current
response of the GSH-modified electrode exhibited a linear relationship with the scan rate,
demonstrating that the electron transfer between GSH and the electrode is a classical
surface-controlled electrochemical process [53]. Figure 5A reveals that as the scan rate
increased, the cathodic and anodic peak potentials gradually shifted toward negative and
positive values, respectively, i.e., the peak-to-peak separation expanded as the scan rate
increased. Moreover, the anodic peak current change amount (Al of the GSH-modified
electrode was not equal to the cathodic peak current change amount (Al,). These results
demonstrate that the redox reaction is a quasi-reversible process [54,55]. The surface
coverage of GSH, I', on the electrode was estimated according to Equation (1) [56]:

I'=Q/nFA 1)

where the charge consumed by GSH, denoted by Q, is the area of the GSH oxidation peak,
n is the number of transferred electrons involved in GSH oxidation (n = 1), F represents the
Faraday constant, and A is the area of the working electrode. Q was determined as 13.3 nC
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the region of high concentrations. Above 0.5 mM, the increasing rate of the current slowed
down and then eventually leveled off around 18.4 pA, most likely due to the insufficient
GSH on the electrode to scavenge and detect a high concentration of «OH. In other words,
when the #OH concentration was higher than 4 mM, the sensor response plateaued as all
the GSH was oxidized with 4 mM eOH. The linear relationship between the redox response
and eOH concentration between 0.05 mM and 0.5 mM was used to determine the limit
of detection (LOD) of the GSH-modified sensor. Equation 3.3 x SD/b was applied to the
data in the linear region, where SD represents the standard deviation of the blank, and b
is the slope of the regression line [58]. The LOD of the proposed sensor was calculated as
49 uM, which is comparable to many previously reported electrochemical sensors for the
f%%ection of ¢OH [1,34,59,60]. As the normal concentration of ®OH in the blood of hgaolftllg
people is between 200 and 400 mM, and higher in case of oxidative stress conditions [61],

the proposed sensor can be used to detect #OH in blood serum.
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sensor hlghly sens1t1ve, but also it is Capable of dlfferentlatmg between OOH and other
similar ROS. In more detail, the phase angle shifts for ¢OH occurred at 0.1 and 3.16 Hz,
whereas only a change at 1.27 Hz was observed for H20.. Additionally, the stability of the
electrochemical sensor was examined by storing the GSH-modified electrode at 4 °C for a
week. The redox response of the sensor showed no significant change, revealing the s&bf 12
1stactory stability ot the proposed sensor.
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Figure 7. Bode plots for phase angle shifts for the EIS results obtained with the GSH-modified
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References

(NADPH) [62-64]. To evaluate if the GSH surface could be restored, 10 uL of a solu-
tion composed of 1 mM NADPH and GR (0.5 unit/mL) in PBS (pH = 7) was dropped on the
oxidized GSH-modified electrode and allowed to react for 2 h. After regeneration by GR
and NADPH, a pair of redox peaks reappeared in the CV curve of the regenerated sensor,
as shown in Figure 8A. Moreover, the Nyquist plot of the regenerated sensor reveals that
the diameter of the semicircle decreased after exposure to GR and NADPH, demonstrating
that the sensor regained its electrical catalytic and conductive properties. Comparing the
peak current response of the fresh sensor with that of the regenerated sensor, the percentage
of restoration was calculated as 84%.

4. Conclusions and Future Work

The GSH-modified electrode for the detection of «OH was prepared with the electro-
chemical deposition method using the aryl diazonium salt as a linker. The redox reaction
between the electrochemical sensor and eOH was demonstrated by the appearance of
two well-defined peaks on the CV curve of the sensor after modification with GSH. The
GSH-modified sensor exhibited a linear relationship between eOH concentration and the
current change in the range of 0.05 mM to 0.5 mM eOH and a LOD of 49 uM. In terms of
selectivity, the proposed sensor demonstrated the ability to differentiate between ¢OH and
a similar oxidizing chemical, such as H,O,, which is crucial for its application in complex
systems. Furthermore, electron transfer between immobilized GSH and the electrode was
found to be a classical surface-controlled electrochemical process. After exposure to ¢OH,
the immobilized GSH on the electrode was oxidized and converted to GSSG. However,
the oxidized GSH-modified sensor demonstrated the capacity to be regenerated using GR
and NADPH. In detail, 84% of oxidized GSH could be converted back to the reduced GSH.
Given the high sensitivity and specificity of the GSH-modified sensor for detecting eOH,
future research could focus on using the sensor for in vitro detection of €OH in biolog-
ical samples, such as animal cells and body fluids, including blood, plasma, urine, and
cerebrospinal fluid. Another perspective is to reduce the sensor size for in vivo detection.
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