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ABSTRACT
In contemporary production settings, reliable but efficient

pick-and-place robots are frequently used. The automation and
optimization of the pick and place procedures utilizing various
path-planning approaches thereby support the expansion of ap-
plication areas. Yet, the design of a controller faces significant
difficulties due to the nonlinearities of robotic manipulators and
the unpredictable nature of the ambient factors. In place of
the classic model predictive control (MPC), this paper presents
the Nonlinear Model Predictive Controller (NLMPC) as an ac-
ceptable control mechanism for real-time optimization and ro-
bust stability of the Kinova Gen3 robotic arm. The developed
NLMPC-based method ensures that the robotic arm does not
run into obstacles in the workplace or with itself while reaching,
gripping, selecting, and placing the necessary items. To acquire
the next control input trajectory, the optimization in NLMPC is
solved repeatedly with each newly measured state. When input
constraints are available, the modeled system tracks reference
trajectories to achieve the aim of recognizing and organizing dis-
tinct objects. After the NLMPC is successfully developed, a sim-
ulation environment is built and finally brought to life by combin-
ing all the processes into one using a MATLAB Stateflow chart.

Keywords: Automation, optimization, path-planning, non-
linear model predictive controller, kinova Gen3, stateflow

1 INTRODUCTION
Understanding the major aspect and application of the ma-

nipulators, which is pick and place, is highly beneficial in im-
proving and enhancing robot manipulator operations. In to-

day’s manufacturing environments, pick-and-place robots are
widespread and their automation shortens the time it takes to
pick up parts or things and move them to new locations. This
technique can be automated to help boost manufacturing rates.
Pick-and-place robots take care of repetitive jobs, allowing hu-
mans to focus on more complicated tasks [1]. Therefore, select-
ing and implementing a path planning approach that corresponds
to the defined application of pick and place which is robust in its
design and can work immensely and effectively with the robotic
arm is quite helpful. The primary goal of path planning is to gen-
erate a reasonable and smooth trajectory by extracting waypoints
from the start to the destination address point. The waypoints are
divided into numerous center coordinate positions between the
extracted map linkages [2].

Model Predictive Control (MPC) is a highly established
technique today and it is also safe to state that it is the most
common method for establishing limited, multivariable control
in today’s process industries [3]. MPC can also be used to solve
control problems where computing off-line control laws is dif-
ficult or impossible [4]. One of the important characteristics of
this sort of control is its capacity to deal with severe limits on
controls and states [5]. In contrast, nonlinear Model Predictive
Control puts a focus on performance by solving an online finite
horizon optimum control problem and applying the first element
of the calculated open-loop input trajectory to the system [6].
To acquire the next control input trajectory, the optimization in
NLMPC is solved repeatedly with each newly measured state [7].
As the name implies, model predictive control is heavily reliant
on the model of the robotic manipulator employed for the de-
sired task. According to research, the KINOVA Gen3 robotic
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arm model is NLMPC technique compatible [8].
Oleinikov et.al., presented a nonlinear model predictive con-

trol technique for real-time planning of point-to-point motions
of serial robot manipulators who share their workspace with a
human. In their paper, the NLMPC law, which is based on
a kinematic model, solves a nonlinear program online and en-
sures safety by restricting the robot speed within the time-varying
boundaries established by the speed-and-separation-monitoring
(SSM) principle [9].

Elsisi et.al., worked on the effective nonlinear model predic-
tive control which is tuned by an improved neural network (NN)
for robotic manipulators. According to their research, the non-
linearities of robotic manipulators as well as the uncertainties of
their parameters, provide significant difficulties to controller de-
sign. Furthermore, the major goal of the robotic reaction is to
track regular and irregular trajectories with fewer overshoots, a
quick settling time, and a minimal steady-state error. As a re-
sult, instead of using the standard MPC, this work introduces the
nonlinear MPC as an appropriate control approach for nonlinear
systems [10].

Another work by Nikou et.al., dealt with a nonlinear model
predictive control strategy for cooperative manipulation with sin-
gularity and collision avoidance. The paper discusses the sub-
ject of cooperative transportation of a firmly gripped object by N
robotic agents. The study proposes a Nonlinear Model Predic-
tive Control strategy that ensures object navigation to a desired
posture in a restricted workspace with obstacles while adhering
to specific agent input saturations [11].

Tang et.al., worked on trajectory tracking of robotic manip-
ulators with constraints based on model predictive control. This
paper describes a model predictive control scheme for robotic
manipulators in trajectory tracking in the presence of input con-
straints, which provides convergent tracking of reference trajec-
tories and robustness to model mismatch. Finally, the suggested
control scheme’s convergence is demonstrated using the univer-
sal robot (model-UR5) in simulation [12].

The majority of previously published efforts in this field fo-
cus on developing a nonlinear model predictive control or other
path planning methodologies for robotic arms other than the KI-
NOVA Gen3. As a result, researching the NLMPC path plan-
ning approach for the KINOVA Gen3 robotic arm is beneficial,
and this study explicitly addresses this benefit by applying the
NLMPC path planning method to the Kinova Gen3 robotic arm.
It would also be possible to execute the results of this work by
gaining access to the controllers of Kinova Gen3’s robot drive,
which allows for the adjustment of controller gains to obtain im-
proved dynamics and precision [13].

The methodologies utilized to carry out the research are cov-
ered in Section 2 of the paper. The procedures taken to imple-
ment the research and the results are covered in Section 3. The
final section presents a summary of the overall paper and sug-
gests potential directions for further research.

FIGURE 1. KINOVA GEN2 ROBOTIC ARM MOUNTED ON
JACKAL GROUND VEHICLE.

2 METHODOLOGY
2.1 Robot Manipulator

Since the robotic arm, KINOVA Gen3 is a crucial part of
this study, it is worth taking a closer look at it. Kinova’s robot
is durable and simple to operate, making it a good foundation
for prototyping. In terms of hardware, the new Gen3 appears to
have grown in size, delivering an even more powerful thump as
a research tool. The Gen3 embedded controller makes it simple
and easy to connect our robot in a variety of ways, and it can be
customized to fit the needs of a wide range of applications.

It is possible to operate the robot in different ways, including
bypassing the controller and regulating each individual actuator
directly with closed-loop control at 1KHz control feedback in or-
der to prevent jerky motion [14]. Kinova’s Gen3 robot can also
be programmed to do simple or sophisticated grasping and ma-
nipulation tasks at different levels of skill. High-level and low-
level control, intelligent actuators with built-in torque sensors, an
optional 2D/3D vision module, a flexible end-effector interface
module, and limitless rotation on all joints are among Kinova
Gen3’s basic characteristics [15]. Figure 1 shows an overview of
the Kinova Gen2 robotic arm mounted on the Clearpath Jackal
ground vehicle, which is available at North Carolina A&T State
University (NCAT) and is one model prior to the Kinova Gen3
robot.

2.2 Implementation Environment
The MATLAB toolboxes Model Predictive Control Tool-

box and Optimization Toolbox are utilized to build the nonlin-
ear model predictive control path planning technique employed
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FIGURE 2. BLOCK DIAGRAM OF THE MODEL PREDICTIVE
CONTROL SYSTEM.

in this research, which is used to create collision-free, optimum
paths for the manipulator to follow. The high-level tasks are
scheduled, and they are passed from one to the next, using MAT-
LAB Stateflow. Designing 3D components for the simulation
environment is aided by the use of SOLIDWORKS. Finally, the
manipulator is modeled, simulated, and shown using the MAT-
LAB Robotics System Toolbox, which also checks for collisions.

2.3 Path Planning Approach
The path followed by the robotic manipulator is planned us-

ing model predictive control. Model predictive control is a type
of control technique in which the current control action is de-
termined by solving a finite horizon, open-loop, and optimum
control problem with the plant’s current state as the initial state
at each sampling instant. Figure 2 shows a block schematic of
the model predictive control system.

Two user-defined functions are used to make up the predic-
tion model for the nonlinear MPC controller: state function and
output function. The state function predicts the evolution of plant
states across time. The output function calculates plant outputs
in terms of state and input variables. The state function in the
discrete-time prediction model is the state update function, and
it is given by:

x(k+1) = f (x(k),u(k)) (1)

Where: f (x(k),u(k)) is implicitly defined by the originating dif-
ferential equation that has an equilibrium point at the origin (i.e.,
f (0,0) = 0). u(k) ∈Rr is the vector of controlled variables to be
determined by the controller. x(k) ∈Rr is the state vector at time
k. u(k) ∈ U and x(k) ∈ X must be satisfied by the control and
state sequences. U is usually a convex, compact subset of Rr and
X is a convex, closed subset of Rn, with the origin in the interior
of each set.

Prior to configuring the nonlinear model predictive con-
troller, it is important to get the number of joints from the Robot

FIGURE 3. STEPS IN SETTING UP THE NLMPC.

as well as the number and kind of obstacles. Because the Ki-
nova Gen3 robotic arm used in this research has 7 degrees of
freedom (DOF), 7 joints are taken into account when develop-
ing the controller. In order to ensure a precise approximation of
the constraint Jacobian in the definition of the nonlinear model
predictive control technique, the obstacles are represented as a
rectangle and cylinder.

Based on the type of robot and the obstacles the current
robot pose and the final end-effector pose are defined next. The
nonlinear model predictive controller is created using the MAT-
LAB model predictive control toolbox. During controller devel-
opment, the maximum number of iterations for the optimization
solver is set to 5 in order to save computation time. However,
increasing the iteration value is recommended for more accurate
and reliable results. Furthermore, the lower and upper bound-
aries for the joint position, velocity, and acceleration are ex-
plicitly set. The processes involved in configuring the nonlinear
model Predictive controller are summarized in Fig. 3.

Double integrators are used to characterize the robot joints
model. The states of the model are x = [q, q̇], where q repre-
sents the 7 joint locations and q̇ represents their velocities. The
model’s inputs are the joint accelerations u = q̈. The dynamics
of the model are determined by:

ẋ =
[

0 I7
0 0

]
x+

[
0
I7

]
u (2)

Where I7 denotes the 7x7 identity matrix. The output of the
model is defined as:

y =
[
I7 0

]
x (3)

As a result, there are 14 states, 7 outputs, and 7 inputs in the
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nonlinear model predictive controller, where:

Inputs (nu = q̈), joint acceleration = 7 inputs
Outputs (ny = q), joint position = 7 outputs
States (nx = [q, q̇]), joint position and velocity = 14 states

The next stage in the NLMPC setup is to define the cost
function. A cost function uses design variable values to analyze
our design requirements. The cost function is utilized at the com-
mand line after writing and saving it for estimation, optimization,
or sensitivity analysis. The cost function employed is a custom
nonlinear cost function defined as a quadratic tracking cost plus
a terminal cost.

J =
∫ T

0
(pre f − p(q(t)))′Qr(pre f − p(q(t)))+u′(t)Quu(t)dt+

(−p(q(T )))′Qt(pre f − p(q(T )))+ q̇′(T )Qvq̇(T ) (4)

The matrices Qr, Qu, Qt , and Qv are constant weight ma-
trices. The importance of each of the control objectives in the
cost function is determined by these weights. The cost weights
that are employed in the model are: running cost weight (Qr),
terminal cost weight (Qt), input cost weight (Qu), and terminal
joint velocity cost weight (Qv). On desired end-effector pose
[x,y,z, phi, theta, psi], the running (Qr) and terminal (Qt) cost
weights are utilized, whereas the input cost weight (Qu) is used
on joint acceleration (q̈), and the terminal joint velocity cost
weight (Qv) is used on joint velocities (q̈).

After setting the cost weights, the next stage is to define the
prediction model sample time (Ts), the prediction horizon (p),
and the control horizon (c). For prediction, the controller em-
ploys a discrete-time model with sample time Ts. Sample time for
the prediction model is provided as a positive finite scalar. The
control interval time (Ts) should be chosen first, and then held
constant as other controller properties are adjusted. If it becomes
clear that the original choice was poor, Ts must be updated. Other
settings may need to be retuned as well. Qualitatively, as Ts low-
ers, rejection of unknown disturbances typically improves before
remaining stable. The Ts value at which performance reaches a
plateau is determined by the dynamic features of the plant. The
computational effort, on the other hand, rises considerably as Ts
decreases. As a result, a compromise between performance and
computational effort is the best option.

The prediction horizon, p, is also an important factor in
Model Predictive Control. The number of steps in the predic-
tion horizon is given as a positive integer. The prediction time is
calculated as the product of the prediction Horizon and the pre-
diction model sample time. If the prediction horizon duration
(the product p ∗Ts) is kept constant, p must fluctuate in inverse
proportion to Ts. The size of many arrays is proportional to p. As
p grows, the controller memory requirements and the quadratic

programming solution time increase. Quadratic programming is
the problem of optimizing a quadratic objective function and is
one of the simplest forms of non-linear programming [16]

The following should be kept in mind when selecting Ts, p,
and c:

1. Run at least one simulation to check if Ts improves unmea-
sured disturbance rejection significantly. If this is the case,
Ts should be revised.

2. See the result by setting Ts < 1.
3. It is recommended to increase the prediction horizon (p) un-

til it has only a tiny effect on performance.
4. The control horizon (c) is located between 1 and p.

The following values are determined by considering the
above parameters:

1. Prediction model sample time (Ts) = mpc time step = 0.55
2. Prediction horizon (p) = 2
3. Control horizon (c) = 1

The NLMPC solver functions must now be configured. Af-
ter that, a closed-loop trajectory optimization is used to build
reference trajectories. The NLMPC solver functions that must be
configured are the model state function, model output function,
and the NLMPC cost function with their Jacobian. Optimization
solver options must also be configured. The function tolerance,
step tolerance, maximum iteration, and constraint tolerance are
the optimization solver options that must be configured.

Following that, a constraint on states and plant-manipulated
variables (MV) is specified. When using the MPC command to
build a controller object, there are no constraints by default. The
relevant controller property must be set to integrate a constraint.
Tab. 1 lists the maximum and minimum constraint values for the
14 states while Table 2 lists the maximum and minimum con-
straints for the seven manipulated variables.

The next stage is to generate the reference trajectories.
When using closed-loop trajectory optimization to create refer-
ence trajectories, the initial conditions for the current robot setup,
as well as the maximum iteration number must be first deter-
mined. The maximum iteration is set to 50, which means that it
will compute the optimal trajectory for the robotic arm to follow
within this iteration. Then arrays to hold the results of position,
velocity, and acceleration can be created. After initializing the
arrays of position, velocity, and acceleration to store results, the
next step is to run the NLMPC iteratively across the specified
time horizon until the goal is achieved or the maximum number
of iterations is reached. During this operation, the initial state
and time must be adjusted for the next iteration. The trajectory
points will then be saved, and the target will be checked to see if
it was met.

Now that the aim of computing a feasible trajectory has been
fulfilled, the reference trajectories for location, velocity, and ac-
celeration can be outputted. Finally, the running cost, terminal
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TABLE 1. THE MAXIMUM AND MINIMUM CONSTRAINT
VALUES FOR THE 14 STATES.

States (joint position and velocity)

Fields Minimum Maximum

1 -174.5300 174.5300

2 -2.2000 2.2000

3 -174.5300 174.5300

4 -2.5656 2.5656

5 -174.5300 174.5300

6 -2.0500 2.0500

7 -174.5300 174.5300

8 -0.8727 0.8727

9 -0.8727 0.8727

10 -0.8727 0.8727

11 -0.8727 0.8727

12 -0.8727 0.8727

13 -0.8727 0.8727

14 -0.8727 0.8727

cost, and total cost (sum of running and terminal cost) will all
be calculated. Jacobians will be initialized as well, including the
robot Jacobian, the running cost Jacobian, and the terminal cost
Jacobian.

3 IMPLEMENTATION AND RESULTS
The output of the developed NLMPC is evaluated in a simu-

lated scenario that includes the Kinova Gen3 robotic arm, a table,
a trashcan, and trash. The developed NLMPC approach assures
that the robotic arm does not collide with itself or with barriers
in the workplace while reaching, grabbing, picking, and placing
the items that are required. The 3D components of the simu-
lation environment are created using the computer-aided design
tool SOLIDWORKS and MATLAB built-in toolboxes. The sim-
ulation is finally brought to life by combining all the processes
into one using a MATLAB Stateflow chart.

The aim is for the Kinova Gen3 robotic arm to approach the
trash while avoiding collisions with obstacles, including itself,
using the path generated by the developed NLMPC controller.
Once it has arrived at the trash, it will pick it up and dispose of it
in the trashcan by following the path generated by the NLMPC.
Using the black broken lines, we can observe the route formed

TABLE 2. THE MAXIMUM AND MINIMUM CONSTRAINTS
FOR THE SEVEN MANIPULATED VARIABLES.

Manipulated variables

Fields Minimum Maximum

1 -1 1

2 -1 1

3 -1 1

4 -1 1

5 -10 10

6 -10 10

7 -10 10

FIGURE 4. PATH FOLLOWED BY THE ROBOT WHILE PICK-
ING UP THE TRASH.

by the NLMPC controller during the activity. Figure 4 and Fig.
5 show the path taken by the robotic arm while picking up trash
from its initial position and placing it in a trashcan, respectively.

The simulation demonstrates that the route planning algo-
rithm was developed successfully and that the robot can success-
fully follow the path defined by the NLMPC controller.

The velocity and acceleration vs time plots, as the robot
advances to the home position, picking approach position, and
placement approach position, are shown in addition to the simu-
lation findings in Figs. 6-8.

The plot relates the end effector velocity and acceleration to
the overall robot velocity and acceleration, which is the average
of the 7 joints. The graphs clearly show that the end effector is
functioning in harmony with the overall robot movement and will
finally asymptote to zero (stops) at the same time as the robot.
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FIGURE 5. PATH FOLLOWED BY THE ROBOTIC ARM WHEN
DISPOSING OF THE TRASH.

FIGURE 6. VELOCITY AND ACCELERATION VS TIME PLOT
WHEN ROBOT MOVES TO THE HOME POSITION.

FIGURE 7. VELOCITY AND ACCELERATION VS TIME PLOT
WHEN ROBOT MOVES TO THE PICKING APPROACH POSITION.

The deflection of the values in the graph occurs due to obstacles,
and as the robot approaches the obstacles, it automatically man-
ages its deceleration and begins moving to reach the target after
avoiding them.

FIGURE 8. VELOCITY AND ACCELERATION VS TIME PLOT
WHEN ROBOT MOVES TO PLACEMENT APPROACH POSITION.

4 CONCLUSION

The goal of the research presented is to design a controller
for planning and control of the Kinova Gen3 robotic arm based
on a Nonlinear Model Predictive Controller, as well as to develop
elements of a 3D simulation environment using SOLIDWORKS
and MATLAB to show the control technique. The NLMPC is
developed and implemented effectively in the research, and as a
consequence, it works in conjunction with other MATLAB states
produced to achieve the goal of picking and placing objects.

Nonlinear optimization algorithms, on the other hand, have
a large computational load, preventing them from being em-
ployed as a controller for quick plans or when a fast action,
such as trajectory tracking, is required. To tackle the trajectory
tracking problem in the future, it is preferred to use the Quasi-
Linear Parameter Varying (Quasi-LPV) representation, which
combines the Nonlinear Model Predictive Control approach with
the presence of input saturation and un-modeled dynamics. As
a consequence, typical Quadratic Programming optimization ap-
proaches for the online optimization issue may be used, result-
ing in faster and more efficient convergence to the optimal solu-
tion [17].

Finally, when it comes to putting the results into action,
job safety is a major problem for many industrial organizations
where human eyes or presence are not permitted, such as the boil-
ing place and nuclear power plants. Machine learning and image
processing technologies might be used extensively to circumvent
these constraints [18]. To achieve the image processing features
a depth camera and a 3D Lidar can be utilized with 2D and 3D
image processing machine learning models. Additionally, after
choosing the required object, a robotic arm mounted on a ground
robot as shown in Fig. 1 might be employed in a joint application
to solve the issues with distance. [19].

As a result, implementing the results of this work on an ac-
tual Kinova Gen3 is planned for the future while taking the afore-
mentioned crucial elements into account.
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