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Abstract—Polynomial multiplication over the quotient ring
is a critical operation in Ring Learning with Errors (Ring-
LWE) based cryptosystems that are used for post-quantum
cryptography and homomorphic encryption. This operation can
be efficiently implemented using number-theoretic transform
(NTT)-based architectures. Among these, pipelined parallel NTT-
based polynomial multipliers are attractive for cloud computing
as these are well suited for high throughput and low latency
applications. For a given polynomial length, a pipelined parallel
NTT-based multiplier can be designed with varying degrees of
parallelism, resulting in different tradeoffs. Higher parallelism
reduces latency but increases area and power consumption,
and vice versa. In this paper, we develop a predictive model
based on synthesized results for pipelined parallel NTT-based
polynomial multipliers and analyze design tradeoffs in terms of
area, power, energy, area-time product, and area-energy product
across parallelism levels up to 128. We predict that, for very long
polynomials, area and power differences between designs with
varying levels of parallelism become negligible. In contrast, area-
time product and energy per polynomial multiplication decrease
with increased parallelism. Our findings suggest that, given area
and power constraints, the highest feasible level of parallelism
optimizes latency, area-time product, and energy per polynomial
multiplication.

Index Terms—Post-quantum cryptography (PQC), number
theoretic transform (NTT), polynomial multiplication, predictive
model, parallel processing, pipelining, folding.

I. INTRODUCTION

Polynomial multiplication over the quotient ring is a foun-
dational operation in Ring Learning with Errors (Ring-LWE)
based cryptosystems [1], a class of encryption methods that
have gained prominence as resilient post-quantum alterna-
tives to classical cryptography. Ring-LWE schemes extend
the Learning with Errors (LWE) problem — a well-known
problem in lattice-based cryptography — into ring struc-
tures, allowing more efficient encryption operations without
compromising security. The significance of Ring-LWE lies
in its resistance to attacks from both classical and quantum
computers, making it a crucial component in the emerging
field of post-quantum cryptography [2].

In Ring-LWE cryptosystems, polynomial multiplication is
the most computationally intensive operation and frequently
becomes a performance bottleneck. This operation can be
efficiently implemented using the number-theoretic transform
(NTT), which converts polynomial multiplication into NTT,
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point-wise multiplication (PWM), and inverse-NTT (INTT),
significantly reducing computational complexity. NTT-based
architectures are particularly suitable for hardware implemen-
tations, where parallelism and pipelining can be leveraged
to achieve high-throughput and low-latency. Among various
NTT-based designs, pipelined parallel polynomial multipliers
are especially appealing for hardware applications due to their
ability to deliver superior computational speed with minimal
latency [3]. However, optimizing these architectures for prac-
tical deployment requires a careful evaluation of tradeoffs
associated with efficiency, resource usage, and scalability.

Increasing the level of parallelism can significantly reduce
latency by enabling more operations to be processed simulta-
neously. However, this approach requires a larger number of
processing elements (PEs), which in turn increases area and
power consumption. The area in these architectures is domi-
nated by PEs. Conversely, lower parallelism reduces area and
power requirements but results in higher latency. Furthermore,
the area in these architectures is dominated by the number
of delay elements. Achieving an optimal balance between
parallelism, area, and power consumption is thus critical for
designing an efficient architecture that meets performance
requirements without exceeding hardware constraints.

The contributions of this paper are two-fold. First, we
developed a predictive model based on synthesized results to
evaluate performance metrics, including area, area-time prod-
uct (ATP), power, energy per polynomial multiplication, and
area-energy product (AEP). Second, using insights from this
predictive model, we propose a design strategy for selecting
optimal levels of parallelism for implementation of pipelined
parallel polynomial modular multiplication.

The remainder of this paper is organized as follows. Section
IT provides background on the preliminaries of polynomial
multiplication over the quotient ring. Section III describes
the architectures of pipelined parallel polynomial multipliers
with varying levels of parallelism. Section IV introduces our
predictive model for pipelined parallel polynomial multipliers.
Section V presents our results and insights derived from the
model. Finally, Section VI concludes the paper.

II. BACKGROUND

A. Polynomial multiplication over the quotient ring

Polynomial multiplication over the quotient ring R,, , is a
critical operation in Ring-LWE based cryptosystems. R, ; =



Zy(z)/(xz™ + 1) is a quotient ring of polynomial ring Z,(x),
where the degree of the polynomial is smaller than n and the
coefficients of the polynomial are in the range of 0 to ¢ — 1.
The parameter q is the modulus and has the property of ¢ = 1
mod 2n.

A polynomial a(z) in the quotient ring Z,(x)/(z™ + 1) can
be expressed as:

a(z) =ap+ax+... Fan_12", a; €[0,g—1] (1)

Given two polynomials a(z) and b(x). The polynomial
multiplication over the quotient ring R, , is defined as:

p(z) = a(z) x b(z)

The modular reduction of (z™ + 1) and coefficient-wise
modular reduction over ¢ ensure p(z) lies within the quotient
ring R, 4. The coefficient p; of p(x) can be represented as:
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Equation 3 also represents the modular form of negative-
wrapped convolution, implying that polynomial multiplication
over the quotient ring can be interpreted as a coefficient-wise
modular negative-wrapped convolution.

It is well known that convolution can be computed effi-
ciently using the Fast Fourier Transform (FFT) with time
complexity of O(nlogn) [4]. Similarly, negative-wrapped
convolution can be computed efficiently using low-complexity
NTT and INTT, also achieving time complexity of O(nlogn)
(51, [6].

B. Low-complexity NTT and INTT

The low-complexity NTT and INTT (LC-NTT/INTT) can
be used to efficiently compute negative-wrapped convolution
[5]. By integrating pre- and post-processing weighted opera-
tions directly into the NTT/INTT butterflies, LC-NTT/INTT
eliminates the need for additional modular multipliers before
and after the butterfly stages. This approach is especially
advantageous in parallel architectures, where it reduces both
area and power.

C. Modular Reduction

Computation over the quotient ring requires coefficient-wise
modular reduction to ensure that values remain within the
quotient ring. For modular addition and subtraction, a single
conditional subtraction is applied to bring the output back to
the range [0, ¢ — 1]. For modular multiplication, one effective
approach is to use Barrett reduction [7], which replaces costly
long division with multiplication, making the operation more
efficient. Given two inputs a and b of word-length u, the
modular multiplication r of @ and b modulo ¢ is defined as:

r=axb modgq 4)

Using Barret reduction, we can rewrite Equation 4 as:

(a ><2b2)u>< m> 4 5)

=(axb)—((axbxm)>2u)xq (6)

axb modqz(axb)—(

where m = LQ%MJ and > denotes the right shift operation.

The floor function ensures that the output of Equation 6 falls
within the range [0,2¢ — 1], A conditional subtraction is then
applied to bring the result r back into the range [0, ¢ — 1].

III. PIPELINED PARALLEL POLYNOMIAL MULTIPLIER
ARCHITECTURES

A polynomial multiplier for computation over the quotient
ring consists of 3 stages, LC-NTT, point-wise multiplication
(PWM), and LC-INTT. All coefficient computations in Z,
require modular reductions. Figure 1 illustrates the high-level
block diagram of a polynomial multiplier for computation over
the quotient ring.

a(z)—> LC-NTT

LC-INTT |>p(z)

b(x)->| LC-NTT

PWM

Fig. 1: The high-level block diagram of a polynomial multi-
plier for computation over the quotient ring.

A parallel architecture [8], [9] can support varying levels
of parallelism. For a parallel LC-NTT/INTT, the parallelism
level L can take values of 2¢, where i ranges from 1 to
log, n. Within each parallel LC-NTT/INTT block, there are
s = log, n stages, and each stage contains L/2 Processing ele-
ments (PEs). Figure 2 illustrates the high-level block diagrams
of parallel LC-NTT/INTT architectures for various levels of
parallelism from 2 to L-parallel.

Each PE in LC-NTT/INTT consists of a modular multiplier
and a butterfly unit. The modular multiplier, shown in Figure
3, is designed based on Equation (6).

From [5], we can observe that the butterfly units in LC-NTT
follow the decimation-in-time form, while the butterfly units
in LC-INTT follow the decimation-in-frequency form.

In LC-NTT, the butterfly unit contains a butterfly operation
and a modular multiplier at the lower input as shown in Fig.
4(a). wy, is the n-th root of unity, where w]! = 1 (mod q). 12,
is the 2n-th root of unity, where 12" =1 (mod q) and ¥3, =
wy, (mod ¢). In LC-INTT the butterfly unit contains a butterfly
operation, a multiplication by 27! block at the upper output,
and a modular multiplier at the lower output as shown in Fig.
4(b). It is important to note that multiplications by 27! occur
at both the upper and lower outputs. These operations arise
from decomposing the n~! multiplications at the end of the
INTT into s stages. This approach is advantageous because, in
modular arithmetic, multiplication by 27! can be implemented
efficiently without performing an actual multiplication [5].
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Fig. 2: The high-level block diagrams of parallel LC-
NTT/INTT architectures for various levels of parallelism: (a)
2-parallel (b) 4-parallel (c) 8-parallel (d) L-parallel.

Fig. 3: The block diagrams of modular multiplier based on
Equation (6).

(b) 27wl yp,

Fig. 4: The block diagram of the (a) LC-NTT butterfly unit
and (b) LC-INTT butterfly unit.

The parallel architectures are designed using folding trans-
formation [10], a technique that groups operations into folding
sets—ordered sequences of tasks executed by the same func-
tional unit. Here we give a simple example of the folding
transformation of a 2-parallel 4-point LC-NTT. Given the
folding sets below:

A={Ap, A1} B={B1,By}

we can derive the data-flow graph (DFG) of the 2-parallel 4-
point LC-NTT (Figure 5a). Each circle in the DFG represents a
multiply-and-butterfly operation prior to folding. For instance,
(Ao, A;) are folded into the same processing element, PE A.
The numbers above each circle denote the specific time at

which each operation is executed. From the derived DFG, we
can construct the 2-parallel 4-point LC-NTT architecture, as
shown in Figure 5b. Between the PEs, a commutator circuit,
implemented as a delay-switch-delay (DSD) unit, is used for
intermediate data reordering.
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Fig. 5: The 2-parallel 4-point LC-NTT (a) DFG (b) derived
architecture.

Table I summarizes the pipelined parallel polynomial mul-
tiplier architectures in terms of the number of PEs, delay
elements, and PWMs in each architecture for various levels
of parallelism. The delay elements include the delay elements
in DSD, and additional pipelining cutsets inserted into both the
PEs and the PWMs. The parameter p represents the number
of pipelining cutsets within each butterfly unit, while the
pointwise multiplier contains p — 1 pipelining cutsets.

TABLE I: The summary of the number of blocks

Design | #PEs® #DEs? in DSD #DEs” in pipe #PWMs
2-parallel| 3logyn 3n—6 (3loggmn +2)p — 2 2
4-parallel| 6logy n 3n —12 (6loggn+4)p —4 4
L-parallel| 3 Llogon| 3n—(3L) [(3Llogym+L)p—L[ L

“: Processing elements
#: Delay elements

IV. PREDICTIVE MODEL FOR PIPELINED PARALLEL
POLYNOMIAL MULTIPLIER

In this section, we present our predictive model for the
pipelined parallel polynomial multiplier. The model is built
using a custom fitting function and actual synthesized area and
power data. The custom fitting function is created based on
Table I in terms of parameters n, L, p, pa, ma, d4. Here, p4,
ma, and d 4 denote the area of PE, PWM, and a delay element.
In our proposed predictive model, the area of a pipelined L-
parallel design A(n, L) is defined by the equation:

3
A(n,L) = aapa <§Llog2 n) + Bamal
3
+ vada ((Sn —4L) + <§Llog2 n+ L) p) +ba (7

where a4, B4, 74, and by are coefficients that account for
the routing and optimizations applied during the synthesis step
for the complete pipelined parallel polynomial multiplier. A
similar equation can be used to define the power of a pipelined
L-parallel design, P(n, L), by replacing the terms related to
area with their power counterparts:



3
P(n,L) = appp (§Llog2 n) + BpmpL

3
+ vpdp ((3n —4L) + (ELlog2 n + L) p) +bp (8

Leveraging Equations (7) and (8), we can construct a non-
linear predictive model for the pipelined parallel polynomial
multiplier using data points from fully synthesized blocks.
In the next section, we present the implementation of the
predictive model and discuss the major findings derived from
its results.

V. RESULTS

In this section, we explain the implementation of the model
and discuss the findings from the results. The first step of
implementing the model is obtaining the data points from
fully synthesized blocks. We map and synthesize complete
2-parallel and 4-parallel polynomial modular multipliers to a
28nm technology (global operation voltage at 0.9 VDD) node
using SystemVerilog HDL and Synopsys Design Compiler. We
evaluate different parameter sets, fixing the size of ¢ at 30 bits,
frequency f at 500 MHz, and varying the polynomial length
from 16 to 4096. Tables II and III summarize the area and
power consumption of the 2-parallel and 4-parallel polynomial
multipliers.

TABLE II: Area and power of 2-parallel polynomial mdoular
multipliers

n 16 64 256 1024 4096
Area (mm?) 0.062 0.099 0.168 0.365 1.074
Power (mW) | 14.093 | 24.188 | 54.695 | 166.94 | 604.316

TABLE III: Area and power of 4-parallel polynomial modular
multipliers

n 16 64 256 1024 4096
Area (mm?) 0.121 0.184 | 0.282 0.513 1.292
Power (mW) | 27.132 | 42.345 | 78.52 | 196.664 | 648.203

The next step is to obtain the parameters p4, ma, da, ba,
pp, mp, dp, and bp in Equations (7) and (8). We achieve
this by mapping and synthesizing one PE, PWM, and delay
element individually, fixing the size of ¢ at 30 bits, and
frequency at 500 MHz. Table IV summarizes the area and
power consumption of the individual blocks

TABLE IV: Area and power consumption of the individual
blocks

Block PE PWM | Delay element
Area (um?) | 4236.75 | 3512.5 71.82
Power (mW) 1.428 1.025 0.053

After obtaining the synthesized data points and the required
parameters for fitting, we use the MATLAB fittype function to
design the predictive model. The predictive model is created
using nonlinear least squares fitting to the synthesized data
points, specifically using the bisquare weights method. Table

V summarizes the model coefficient values obtained through
nonlinear least squares fitting. These model coefficient val-
ues complete our predictive model for the pipelined parallel
polynomial multiplier. The model can be used to evaluate
performance metrics for different values of n and L.

TABLE V: Model coefficient values

mp dp bp
2.704 | 0.8845 | -4.028

ma | da | ba pp
0.563 | 1.027 | -2941 | 0.3542

Coef. | pa
Value | 1.007

Figure 6 illustrates the area and power versus polynomial
length fitting plot for different levels of parallelism (with L up
to 16 and n up to 22°). The y-axis is plotted on a logarithmic
scale (base 10), while the x-axis (n) is plotted on a logarithmic
scale (base 2). The blue circles represent the synthesized data
points. When n is small, the area and power are proportional
to L. However, as n increases, the area and power values
converge to the same value independent of L. This is because,
when n is small, the design is PE-dominant. However, as n
increases, the design becomes delay element-dominant, as the
number of delay elements grows linearly.

Figure 7 illustrates the ATP and energy versus polynomial
length fitting plot for various L. ATP is defined as the area-
block processing period (BPP) product, where BPP is the
time period required to generate n sample outputs after the
first sample is produced. For a pipelined parallel polynomial
multiplier, the BPP is ((n/L) - (1/f)). Energy represents
the energy required to compute one length-n polynomial
multiplication over the quotient ring, which is calculated as the
power-BPP product. Unlike area and power, ATP and energy
for various L show minimal differences when n is small.
However, as n increases, the ATP and energy are inversely
related to L.

4 6 8 10 12 14 1 18 20 4 6 8 10 12 14 16 18 20
loga(n) loga(n)

(a) Area versus log, n. (b) Power versus log, n.

Fig. 6: Area and power versus polynomial length.

Utilizing this model, we can further predict architectures
with even higher levels of parallelism. Figure 8§ illustrates the
area, power, ATP, and energy versus polynomial length for
L < 128. The trends observed in Figure 8 align with those
shown in Figures 6 and 7. The major finding from these figures
is that given area and power constraints, the highest feasible
level of parallelism optimizes latency, area-time product, and
energy per polynomial multiplication. For example, assume a
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Fig. 7: ATP and energy versus polynomial length.

5mm? area constraint (Figure 8a) and a 1 W power constraint
(Figure 8b). The designs that satisfy both constraints are those
with L ranging from 2 to 16. Considering the performance
metrics of latency (BPP), ATP (Figure 8c), and energy per
polynomial multiplication (Figure 8d), the 16-parallel design
provides the optimal solution.
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(a) Area versus log, n. (b) Power versus log, n.
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Fig. 8: Area, power, ATP, and energy versus polynomial length
for L < 128.

In addition to the four performance metrics, we also con-
sider the area-energy product (AEP). There are three AEP
variants: area-energy product, area®-energy product, and area-
energy? product. Figure 9 illustrates the AEP for n = 1024
and n = 4096. For n = 1024, the optimal L values for the
three variants are 4, 2, and 16, respectively. When n = 4096,
the plots shift to the right, and the optimal L values become

16, 8, and 64, respectively.
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(a) n = 1024. (b) n = 4096.

Fig. 9: AEP versus levels of parallelism (log, L).

VI. CONCLUSION

In this work, we have presented a predictive model for
pipelined parallel NTT-based polynomial multipliers. Our
analysis reveals that increasing parallelism significantly re-
duces latency but comes at the cost of higher area and power
consumption. However, for very long polynomial lengths,
the differences in area and power across various parallelism
levels become negligible, while the area-time product and
energy consumption decrease inversely with parallelism. These
findings highlight the importance of selecting the optimal
level of parallelism, balancing area, power, and performance
tradeoffs to achieve efficient hardware.
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