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ABSTRACT 
Skeletal fixation plates are essential components in 

craniomaxillofacial (CMF) reconstructive surgery to connect 
skeletal disunions. To ensure that these plates achieve geometric 
conformity to the CMF skeleton of individual patients, a pre-
operative procedure involving manual plate bending is 
traditionally required. However, manual adjustment of the 
fixation plate can be time-consuming and is prone to geometric 
error due to the springback effect and human inspection 
limitations. This work represents a first step towards 
autonomous incremental plate bending for CMF reconstructive 
surgery through machine learning-enabled springback 
prediction and feedback bending control. Specifically, a 
Gaussian process is first investigated to complement the physics-
based Gardiner equation to improve the accuracy of springback 
effect estimation, which is then incorporated into nonlinear 
model predictive controller to determine the optimal sequence of 
bending inputs to achieve geometric conformity. Evaluation 
using a simulated environment for bending confirms the 
effectiveness of the developed approach. 

Keywords: Incremental bending, Model predictive control, 
Gaussian process 
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1. INTRODUCTION
 Craniomaxillofacial (CMF) reconstructive surgery is a 
critical procedure for patients suffering from conditions that 
necessitate the removal of bone tissue [1]. This type of surgery 
is essential for a significant number of patients, aiming not only 
to restore the basic functions and appearance of the facial 
structure but also to ensure the patient's quality of life is 
maintained or enhanced [2]. 

The complexity of the facial anatomy, including the 
dimensions of the bone, the function of joints, and the interaction 
of muscles, underscores the necessity for precise planning and 
execution of reconstructive procedures [2]. Achieving geometric 
accuracy in the bending of skeletal fixation plates is therefore 
paramount to ensure that the reconstructed mandible aligns with 
the patient's anatomical structure, facilitating optimal recovery 
and functional outcomes. 

Currently, in most cases of significant reconstructive 
craniomaxillofacial CMF reconstructive surgery, such as cases 
requiring a bone graft, fixation hardware is prepared by manual 
bending. As the loads on these plates both during, and in some 
cases after, the healing of the bones that are held together, the 
likelihood of post-surgical failure tends to increase, seen in some 
large studies to be as high as 39% [3]. This approach is not only 
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time-consuming [4] but also subject to inaccuracies, potentially 
resulting in sub-optimal plate shape and placement [5]. They are 
primarily due to the inherent limitations of human inspection and 
the physical properties of the materials involved, notably the 
springback effect. This refers to the material's tendency to 
partially return to its original shape after bending due to the 
hysteresis in the stress strain relationship in plastic deformation, 
leading to geometric discrepancies between the intended and 
actual shape of the fixation plate. Such inaccuracies can 
potentially affect the surgical outcome, making the quest for 
precision a critical objective in the advancement of CMF 
reconstructive procedures [6]. 

Recent advancement of sensing and simulation methods as 
well as the integration of machine learning into classical model-
based control have demonstrated the potential to overcome the 
limitations in human inspection as well as the difficulties in 
modeling and predicting material behavior during the 
manufacturing process, leading to the generation of optimal 
control input signals to achieve desired manufacturing outcomes. 
For example, the development of contactless 3D digitization 
methods based on triangulation, such as structured light, active 
stereo, and photogrammetry have demonstrated high accuracy in 
capturing complex geometrics of physical objects [7-8]. More 
recently, neural rendering, a technique that combines machine 
learning and physics-based imaging theory has shown the 
potential to enable low-cost 3D object digitization [9]. The 
process data generated from these sensors and high-fidelity 
simulation provides the basis to leverage the power of machine 
learning for accurate modeling of complex manufacturing 
processes, such as the effect of laser power and speed on melt 
pool characteristics in additive manufacturing [10], and the 
springback effect of sheet metal in incremental sheet forming 
[11]. The improved accuracy of machine learning-enabled 
process modeling has led to the improved process control 
outcomes in manufacturing when combined with control 
strategies such as model predictive control (MPC) [10-13]. 

Inspired by these prior works, this study presents an 
integrated method of machine learning-enabled bending process 
modeling and nonlinear model predictive control (MPC) to 
enable the generation of the “optimal” sequence of bending input 
angles (described as bending inputs in the remainder of the 
paper) to achieve geometric conformity of skeleton fixation 
plates for CMF reconstructive surgery. 
 Specifically, Gaussian process (GP) [14] is investigated as 
the machine learning approach to improve the estimation of the 
springback effect after the bending load is removed from the 
plate. The motivation for investigating GP is based on the 
observation that the nonlinear behavior of springback is observed 
only in a certain range of bending input, while the effect of the 
nonlinearity decreases as the bending input increases. GP has 
shown effectiveness in dealing with such local nonlinear 
characteristics [15]. In this study, it is implemented as a 
compensation term for the physics-based Gardiner equation [16], 
which describes the general springback effect, to capture the 
nonlinear aspects not encapsulated by the physics-based model.  
 The GP-enhanced springback model is subsequently 
incorporated into nonlinear MPC [17-18] to determine the 
optimal sequence of bending inputs to achieve geometrically 
accurate plates for CMF reconstructive surgery. The motivation 
for selecting MPC-based approach is the property of constraint 
satisfaction [19], which can be critical in avoiding control signals 
that fall into ranges that are undesirable in practice. The 
effectiveness of the integrated method is demonstrated in a 
simulation environment, as shown in Fig. 1. The main 
contributions of this study include the following: 

1) Integration of GP with physics-based Gardiner equation 
to improve the accuracy of springback prediction in 
bending of skeletal fixation plates. 

2) Incorporation of GP-enhanced prediction into nonlinear 
MPC to achieve autonomous bending of skeletal fixation 
plates to support CMF reconstructive procedures. 

  
FIGURE 1: Flowchart of skeletal fixation plate bending enabled by machine learning and MPC, with finite element simulation as plant 
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 The rest of the paper is organized as follows: Section 2 
presents the theoretical background of Gardiner equation, GP, 
and nonlinear MPC. In Section 3, the simulation environment for 
evaluating the developed method is described. The results are 
presented and discussed in Section 4, and conclusions and future 
work are summarized in Section 5. 
 
2. THEORETICAL BACKGROUND 

Fig. 2 indicates the type of skeletal fixation plate 
investigated in this study, generally in the form of an elongated 
plate component of eyelets with webbing in between. These 
eyelets are for fixing the plate onto the CMF skeleton. As a result, 
conformity of the plate after incremental bending is crucial to 
patients’ recovery and functional outcomes. 

During each bending, one pair of neighboring eyelets are 
controlled by a pair of robot grippers. Each gripper has a cone-
shaped pin that can fully engage with the eyelet geometry when 
the gripper is closed, ensuring no movement of the eyelet relative 
to the gripper. The main objective of this study is to determine 
the optimal sequence of bending inputs to be applied by the 
grippers such that the corresponding webbing will exhibit 
accurate deformation conforming to the required local geometry 
of the patient’s CMF skeleton. Achieving this objective requires 
accurate prediction of the post-springback bending angle 
(described as post-springback angle in the remainder of the 
paper) that is induced by the hysteresis in the mechanics during 
plastic deformation and optimization of the sequence of bending 
inputs to achieve the final geometry. 

 
2.1 Post-Springback Bending Angle Prediction 

In this paper, the springback effect is modeled through the 
integration of physics-based and data-driven methods. The 
webbing is first abstracted into a 2D rectangular plate attached to 
a wall, for which a physics-based Gardiner equation that 
describes the general springback effect is used [16]. Next, data-
driven GP is investigated to compensate for aspects of the 
springback effect that are not encapsulated in the Gardiner 
equation [14], such as deviation from the assumptions that are 
used in its derivation and the geometric complexity in the actual 
plate (from 2D to 3D), to arrive at a refined, more accurate 
prediction. 

 
2.1.1 Gardiner Equation  

 The Gardiner equation quantifies the relationship between 
two specific radii of curvature for a 2D plate, one end of which 
is affixed to a vertical wall (as a slice of the 3D setup shown in 
Fig. 3). It compares the radius of curvature 𝑅 when an external 
load (i.e., bending input) is applied, maintaining the plate at a 
certain bending angle, to the radius of curvature observed post 
springback 𝑟, after the load is released [16]: 

 
𝑅
𝑟
ൌ 4 ൬

𝑅𝑆
𝐸𝑡
൰
ଷ

െ 3 ൬
𝑅𝑆
𝐸𝑡
൰ ൅ 1 ሺ1ሻ 

      
In Eq. (1), 𝑆 and 𝐸 denote the yield stress and the modulus of 
elasticity of the material, respectively. 𝑡 is the plate thickness. 
One of the assumptions of Eq. (1) is that the length of the 
centerline of the plate 𝐿 remains constant during the bending 
process: 

 
𝐿 ൌ  𝛼௜𝑅 ൌ  𝛼௙𝑟 ሺ2ሻ 

where 𝛼௜ corresponds to the bending input and 𝛼௙ is the post-
springback angle. Using Eq. (2), Eq. (1) can be expressed as: 
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which establishes a mathematical relationship between 𝛼௙ and 
𝛼௜  that is only dependent on the material properties and the 
dimension of the plate. 

Besides the constant centerline assumption, the derivation of 
Eq. (1) is also based on the elastic-perfectly plastic stress-strain 
relationship as well as the assumption of proportionality between 
the strain and the distance from the centerline [16]. While Eq. (1) 
represents the general springback effect, it is essential that 
deviations in springback as predicted by this equation from the 
actual physical bending process that are induced by the violation 
of the assumptions are properly compensated for to achieve 
accurate estimation of the springback effect. In this study, 
machine learning is investigated as a methodology to capture 
such deviations. 
 
2.1.2 Gaussian Process for Improved Bending Prediction 

GP is a machine learning technique where its origin can be 
traced to Bayesian learning of a single layer neural network with 

  
FIGURE 2: Setup for skeletal fixation plate incremental bending. 
Plate consists of eyelets and webbing and bending is controlled by 
the rotation torque of a pair of grippers. 

 
FIGURE 3: Illustration of springback effect in metal bending, 
adapted from [20] 
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Gaussian prior imposed on the network weights [14]. Intuitively, 
GP itself can be considered an infinite dimensional Gaussian 
distribution over a continuous function, where the function 
outputs at any finite number of inputs form a multi-dimensional 
Gaussian distribution. 

In this study, the inputs for GP at each bending step 𝑘 are 
the pre-bending angle 𝑥ሾ𝑘ሿ  and the applied bending input 
𝑢ሾ𝑘ሿ . The output is the deviation between the actual post-
springback angle 𝑥ሾ𝑘 ൅ 1ሿ  and the prediction from the 
Gardiner equation 𝑥ୋሾ𝑘 ൅ 1ሿ. Following [14], the GP-enhanced 
estimation for springback effect can be written as: 

 
𝑥ሾ𝑘 ൅ 1ሿ െ 𝑥ୋሾ𝑘 ൅ 1ሿ~𝐺𝑃ሺ0,𝐾൫ൣ𝑥ሾ𝑘ሿ,𝑢ሾ𝑘ሿ൧, ൣ𝑥ᇱሾ𝑘ሿ,𝑢ᇱሾ𝑘ሿ൧൯ሻሺ4ሻ 
 
In Eq. (4), 𝐾  is the covariance matrix that quantifies the 
correlation of the deviation in post-springback angle for two 
different inputs 𝑥ሾ𝑘ሿ,𝑢ሾ𝑘ሿ  and 𝑥ᇱሾ𝑘ሿ,𝑢ᇱሾ𝑘ሿ  in the GP-
predictor.  

Denoting the training inputs consisting of pairs of 
𝑥ሾ𝑘ሿ,𝑢ሾ𝑘ሿ  as 𝑋train , and the training outputs (from FEM) 
consisting of the deviations between pairs of 𝑥ሾ𝑘 ൅ 1ሿ  and 
𝑥ୋሾ𝑘 ൅ 1ሿ  as 𝒚train , similarly for testing inputs 𝑋test  and 
outputs 𝒚test, the prediction of GP for 𝒚test can be computed as 
the posterior distribution of 𝒚test given 𝒚train [14]: 

 
𝑝ሺ𝒚test|𝒚trainሻ~𝑁ሺ𝐵𝐶ିଵ𝒚train,𝐴 െ 𝐵𝐶ିଵ𝐵்ሻ ሺ5ሻ 

 
where 𝐴 is the covariance matrix computed using samples from  
𝑋test, 𝐶 is the covariance matrix computed using samples from 
𝑋train, and 𝐵 contains the correlations among samples between 
𝑋test and 𝑋train. In this study, the radial basis function (RBF) 
covariance function is used to compute the correlation between 
two distinct inputs, analogous to the RBF kernel that is widely 
used in the machine learning to resolve nonlinearity: 
 

𝑘ሺ𝑋,𝑋ᇱሻ ൌ  𝜎ଶ exp ൬െ
1

2𝑙ଶ
‖𝑋 െ 𝑋ᇱ‖ଶ൰ ሺ6ሻ 

 
In Eq. (6), 𝜎  and 𝑙  are the two GP parameters that will be 
optimized using the maximum likelihood estimation technique 
[14]. Intuitively, 𝐵𝐶ିଵ𝒚train in Eq. (5) can be considered as a 
data-driven compensation term to refine the predictions that are 
derived from the Gardiner equation. 

For a pair of new inputs 𝑥ሾ𝑘ሿ,𝑢ሾ𝑘ሿ , the predicted post-
springback angle will be the mean of the posterior distribution 
computed using Eq. (5) plus the prediction from the Gardiner 
equation 𝑥ୋሾ𝑘 ൅ 1ሿ, which is itself a function of 𝑥ሾ𝑘ሿ and 𝑢ሾ𝑘ሿ. 

       
2.2 Nonlinear MPC for Incremental Bending 

With the GP-enhanced predictive model for post-springback 
angle, nonlinear MPC is investigated to generate an optimal 
sequence of bending inputs to incrementally achieve the desired 
geometry for each pair of eyelets. Specifically, nonlinear MPC is 
formulated as [21]: 
 

min
௎

෍
𝑄൫𝑥ሾ𝑘 ൅ 𝑗ሿ െ 𝑥௥௘௙൯

ଶ
൅ 𝑅ሺ𝑢ሾ𝑘 ൅ 𝑗ሿሻଶ

൅𝑄௙൫𝑥ሾ𝑘 ൅ 𝑃ሿ െ 𝑥௥௘௙൯
ଶ

௉ିଵ

௝ୀ଴

ሺ7𝑎ሻ 

 s. t: 𝑥ሾ𝑘 ൅ 1ሿ ൌ 𝐹ሺ𝑥ሾ𝑘ሿ,𝑢ሾ𝑘ሿሻ ሺ7𝑏ሻ 

 𝑢௠௜௡ ൑ 𝑢ሾ𝑘ሿ ൑ 𝑢௠௔௫ ሺ7𝑐ሻ 

𝑥௠௜௡ ൑ 𝑥ሾ𝑘ሿ ൑ 𝑥௠௔௫ ሺ7𝑑ሻ 

 
where k indexes the bend angle and bend input pairs to be 
evaluated,  𝑈 ൌ ሼ𝑢ሾ𝑘ሿ, … ,𝑢ሾ𝑘 ൅ 𝑃 െ 1ሿሽ denotes the sequence 
of bending inputs over the prediction horizon 𝑃 . The GP-
enhanced predictive model Eq. (4) is converted into the model 
given in Eq. (7b) by moving 𝑥ୋሾ𝑘 ൅ 1ሿ to the right-hand side. 
The terms 𝑥௠௜௡ , 𝑥௠௔௫ , 𝑢௠௜௡  and 𝑢௠௔௫  represent the lower 
and upper bounds for the variables 𝑥  and control inputs 𝑢 , 
respectively. The cost function to be minimized during the 
optimization process consists of three terms as shown in Eq. (7a), 
with the first two representing the running cost and the last term 
is the terminal cost, respectively. The parameters 𝑄, 𝑅, and 𝑄௙ 
are the penalizing weights for the corresponding terms. 

The optimal bending input 𝑢ሾ𝑘ሿ  at each iteration 𝑘  is 
determined by solving the nonlinear MPC problem through an 
Interior Point OPTimizer (IPOPT) solver using CasADi, which 
is an open-source numerical optimization library written in 
Python [22]. The first step of the optimized control sequence 𝑈 
is applied as bending input to the incremental bending process, 
and then the optimization problem is solved again from the new 
pending angle that results. 
 
3. EXPERIMENTAL EVALUATION 

The developed approach is evaluated in a finite element 
(FE)-based simulation environment. The geometries of the 
gripper and the skeletal fixation plate are first imported, and 
training data is generated in the form of triplets 
(𝑥ሾ𝑘ሿ,𝑢ሾ𝑘ሿ,𝑥ሾ𝑘 ൅ 1ሿሻ by varying 𝑥ሾ𝑘ሿ,𝑢ሾ𝑘ሿ and recording the 
simulated 𝑥ሾ𝑘 ൅ 1ሿ. The training data is used to train the GP 
model before it is implemented with nonlinear MPC to determine 
the optimal bending inputs. 

 
3.1 Finite Element Simulation 

FE simulation of incremental bending is implemented in 
Abaqus as shown in Fig. 4, using a slightly simplified gripper 
geometry based on what is shown in Fig. 2. At each bending step, 
a pair of neighboring eyelets are clamped by a pair of grippers, 
where one of the grippers plays the role of “holding” the eyelet 
during bending, and the other gripper rotates around the y-axis 

  
FIGURE 4: FE simulation of bending skeletal fixation plate 
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to apply the bending input based on the results from nonlinear 
MPC. After each bending action, the gripper for bending is 
released, allowing the actual post-springback angle to be 
measured, which serves as the pre-bending angle in the next step. 
Once the geometry of the current pair of eyelets is deemed 
satisfactory, the grippers shift to the next pair of eyelets and 
whole bending control process repeats. 

In FE simulation, the pair of grippers are treated as rigid 
bodies and hexahedral meshes are used to reduce the 
computational cost [23]. The deformable skeletal fixation plate 
is generated with tetrahedral meshes using seed 0.19, as shown 
in Fig. 5 and Table 1. 

Table 1 FE simulation parameters 
 Element type Deformable status 

Fixation plate Tetrahedral Deformable 
Grippers Hexahedral Rigid 

 
When the gripper for holding engages with and clamps the 

corresponding eyelet, it constrains all active structural degrees of 
freedom within the region of the clamped eyelet. Encastre 
boundary condition is thus applied to that specific region [24]. A 
specific angular displacement is applied to the center point of the 
cross-section at the end of the deformation region to simulate the 
process of the gripper applying the bending input to the plate. 
Fig. 6 shows the boundary condition in FE simulation and the 
point of interest used to collect data.  

In this study, aluminum alloy 6061 is evaluated as the 
material for bending, and its material properties are shown in 
Table 2. A total of 238 data samples (i.e., triplets) have 
been collected from simulation using the FE program. For data 
collection, specific considerations were given on the region 
where elastic-plastic transition occurs, and on the differences 
between calculations from the Gardiner equation and simulation 
from the FE model. An 80-20 allocation was chosen for 
the training and validation data sets for GP model’s training and 
validation. Four trials in total were carried out. 

 

Table 2 Material properties of Al 6061 

Density Young’s modulus Poisson ratio Yield stress 

2.7g/cm3 68.9 GPa 0.33 276 MPa 

 

4. RESULTS AND DISCUSSION 

 
4.1 GP-Enhanced Model Performance 

The data samples are first displayed along with prediction 
from the Gardiner equation in Fig. 7. To facilitate visualization, 
the triplet (𝑥ሾ𝑘ሿ,𝑢ሾ𝑘ሿ, 𝑥ሾ𝑘 ൅ 1ሿሻ is converted into a 2D plot by 
using the delta between the post-springback angle 𝑥ሾ𝑘 ൅ 1ሿ and 
the pre-bending angle 𝑥ሾ𝑘ሿ as points on the y-axis while the 
bending input 𝑢ሾ𝑘ሿ as points on the x-axis. 

It is noted from Fig. 7 that an elevated level of nonlinearity 
is observed in the bending input range between -10 degrees and 
10 degrees where the Gardiner equation prediction shows a 
substantial deviation from FE data. This is because plastic 
deformation behaves unsteadily during the entire bending 
process [25]. Additionally, the nonlinearity decreases as the 
amplitude of the bending input increases, leading to improved 
matching between the FE data and the prediction from the 
Gardiner equation. 

 
FIGURE 5: Geometry and mesh of gripper and plate 

 
FIGURE 6: Boundary condition and point for data collection 

  
FIGURE 7: Comparison of FE data and Gardiner results 
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Fig. 8 plots both the deviation between the FE data and the 
predictions from Gardiner model (as shown by the magenta 
dashed line in Fig. 7) and the GP prediction of this deviation. It 
is noted that GP predictions are closely aligned with the FE data 
points, indicating its good performance in compensating for the 
Gardiner model. Numerical results from 4-fold GP training and 
validation indicate that the mean of the root mean squared error 
(RMSE) for predicting post-springback angle using GP-
enhanced model is 0.007 rad (approximately 0.4 deg). This 
represents a 63.6% improvement over the result from using the 
Gardiner model alone, which shows an RMSE of 0.020 rad 
(approximately 1.1 deg). This confirms the effectiveness of GP 
as a machine learning method to enhance predictive modeling of 
nonlinear behavior in the plate bending process. 

4.2 MPC Performance  

The MPC methodology is evaluated in terms of its ability to 
achieve a target bending angle of 20 degrees for one individual 
pair of eyelets. With the GP-enhanced model, MPC iteratively 
updates the bending input based on the feedback of the measured 
post-springback angle at each step. The parameters for GP-MPC 
are shown in Table 3. 

 
Table 3 Parameters of GP-MPC 

𝑄 𝑅 𝑄௙ 𝑢௠௜௡/𝑢௠௔௫ሺdegሻ 𝑥௠௜௡/𝑥௠௔௫ሺdegሻ Tolerance ሺdegሻ 
10 1 10 0/൅30 0/൅20 േ0.65 

 
 Fig. 9 shows the result comparison between MPC using only 
the Gardiner equation alone as the model (denoted as MPC) and 
the MPC using the GP-enhanced model (denoted as GP-MPC). 
In the configuration of the two MPC systems, the prediction 
horizons were set to 2 steps, and the control horizons are set at 1 
step. The maximum number of steps for MPC to reach the 
reference angle was set to 5 for the simulation. It is noted that the 
GP-MPC benefits from the more accurate prediction obtained 
using GP-enhanced model as reflected in its convergence to the 
target bending angle at a faster rate than the MPC with Gardiner 
equation alone (3 steps by GP-MPC as compared to 5 by MPC, 
an improvement of 40%). The same comparison is carried out 
under measurement noise with zero mean and a standard 
deviation of 0.08 deg, based on the understanding that the 
measurement noise is Gaussian distributed and the sensor's 
measurement accuracy is given by the manufacturer as 0.08 deg).  

   
FIGURE 8: GP predicted deviation between FE & Gardiner equation 

 
FIGURE 10: GP-MPC vs. MPC (with noise) 

 
FIGURE 9: GP-MPC vs. MPC (without noise) 
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As shown in Fig. 10, similar behavior in convergence of the 
two controllers is observed. This confirms the effectiveness of 
the machine learning-enhanced model in improving the MPC’s 
performance. The steady-state error of the GP-MPC is about 
0.006 rad (approximately 0.3 deg), either with or without noise. 
Furthermore, the consistency of the MPC's performance under 
noise was evaluated, for which ten test runs were conducted.  
The low error bars as shown in Fig. 11 indicate stable 
performance of the controller.  

Finally, the effect of increased level of the control effort on 
the its performance is evaluated by increasing the ratio of the 
parameter Q/R (the symbol “Q” denotes the combined effect of 
both Q and Qf ) in the cost function, from 10 to 1,000. The 
increase makes the cost function biased towards penalizing the 
discrepancy between the measured post-springback angle and 
the target bending angle, instead of the amplitude of the control 
bending inputs. Figures 12 and 13 illustrate that the GP-MPC, 
when employing a more aggressive control strategy, achieves 
convergence to the target angle more rapidly with and without 
noise. Both the GP-MPC with an aggressive control strategy and 
the one with a non-aggressive control strategy demonstrate the 
capability of accommodating uncertainties such as noise and 
ensuring reliable operation even under suboptimal conditions. 
However, the speed benefit when compared to MPC is limited 
with the 100-times reduction in R.  
 
5. CONCLUSIONS AND FUTURE WORK 

In an effort to ensure the optimal fit and function of CMF 
reconstructive surgery by achieving geometric conformity of the 
skeleton fixation plate, an integrated method of machine 
learning-enhanced springback predictive modeling and 
nonlinear MPC is presented. Specifically, a Gaussian process 
(GP) model is investigated to compensate for limitations in the 
physics-based Gardiner equation to arrive at a more accurate 
prediction of the post-springback angle in plate bending. The 
GP-enhanced prediction then serves as the model in the nonlinear 
MPC formulation that is used to generate an optimal sequence of 
bending inputs to achieve the desired geometry of the skeleton 
fixation plate. 

In the simulated case study, it is shown that the GP-enhanced 
model outperforms the Gardiner equation in predicting post-
springback angle, reducing the prediction error from 1.1 degrees 
to 0.4 degrees, a 63.6% reduction. Additionally, nonlinear MPC 

with GP-enhanced model also demonstrated faster convergence 
to the desired geometry as compared to the nonlinear MPC with 

 
FIGURE 13: GP-MPC with increased ratio of cost function 

parameter Q/R (with noise) 

 
FIGURE 12: GP-MPC with increased ratio of cost function 

parameter Q/R (without noise) 

  
FIGURE 11: Results of 10 runs of GP-MPC with noise 
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Gardiner equation alone, reducing the needed steps from 27 to 
16, representing a 40.7% reduction.  

While the GP-MPC has demonstrated the ability to achieve 
the desired bending angle in fewer steps than the nonlinear MPC, 
repeated bending may lead to work hardening and, consequently, 
fatigue failure after surgery [5]. Therefore, minimizing the 
number of steps required to achieve the desired angle will be a 
focus in the ongoing development of MPC design. Future work 
will also investigate optimized GP models, such as sparse GP 
[26] to further improve the computational efficiency of GP in 
training and testing and reduce the duration needed to realize 
incremental bending. Additionally, stochastic MPC formulation 
will be considered based on the characteristic of GP-enhanced 
model. Future work will also provide in-depth investigation of 
the effect of nonlinear MPC’s parameters on the controller’s 
performance, as well as on demonstrating the developed method 
using a physical robot to advance the state of point-of-care 
manufacturing (PCOM). 

 
ACKNOWLEDGEMENTS 

The authors gratefully acknowledge support from the NSF 
Engineering Research Center for Hybrid Autonomous 
Manufacturing: Moving from Evolution to Revolution (ERC-
HAMMER) under award EEC-2133630. 
 
REFERENCES  
[1] Shayesteh Moghaddam, N., Taheri Andani, M., Amerinatanzi, A., 

Haberland, C., Huff, S., Miller, M., Elahinia, M. and Dean, D., 
2016. Metals for bone implants: Safety, design, and efficacy. 
Biomanufacturing Reviews, 1, pp.1-16. 

[2] Zeller, A.N., Neuhaus, M.T., Weissbach, L.V.M., Rana, M., 
Dhawan, A., Eckstein, F.M., Gellrich, N.C. and Zimmerer, R.M., 
2020. Patient-specific mandibular reconstruction plates increase 
accuracy and long-term stability in immediate alloplastic 
reconstruction of segmental mandibular defects. Journal of 
Maxillofacial and Oral Surgery, 19, pp.609-615. 

[3] Van Der Rijt, E.E.M., Noorlag, R., Koole, R., Abbink, J.H. and 
Rosenberg, A.J.W.P., 2015. Predictive factors for premature loss 
of Martin 2.7 mandibular reconstruction plates. British Journal of 
Oral and Maxillofacial Surgery, 53(2), pp.121-125. 

[4] Mazzoni, S., Marchetti, C., Sgarzani, R., Cipriani, R., Scotti, R. 
and Ciocca, L., 2013. Prosthetically guided maxillofacial surgery: 
evaluation of the accuracy of a surgical guide and custom-made 
bone plate in oncology patients after mandibular reconstruction. 
Plastic and reconstructive surgery, 131(6), pp.1376-1385. 

[5] Vazquez-Armendariz, J., Olivas-Alanis, L.H., Mahan, T., 
Rodriguez, C.A., Groeber, M., Niezgoda, S., Morris, J.M., Emam, 
H., Skoracki, R., Cao, J. and Ripley, B., 2023. Workflow for 
Robotic Point-of-Care Manufacturing of Personalized 
Maxillofacial Graft Fixation Hardware. Integrating Materials and 
Manufacturing Innovation, pp.1-13. 

[6] Weitz, J., Bauer, F.J.M., Hapfelmeier, A., Rohleder, N.H., Wolff, 
K.D. and Kesting, M.R., 2016. Accuracy of mandibular 
reconstruction by three-dimensional guided vascularised fibular 
free flap after segmental mandibulectomy. British Journal of Oral 
and Maxillofacial Surgery, 54(5), pp.506-510. 

[7] Jacobs, L., Dvorak, J., Cornelius, A., Zameroski, R., No, T. and 
Schmitz, T., 2023. Structured light scanning artifact-based 
performance study. Manufacturing Letters, 35, pp.873-882. 

[8] Galantucci, L.M., Pesce, M. and Lavecchia, F., 2015. A stereo 
photogrammetry scanning methodology, for precise and accurate 
3D digitization of small parts with sub-millimeter sized features. 
CIRP Annals, 64(1), pp.507-510. 

[9] Zhang, J., Liu, S., Gao, R. and Wang, L., 2023. Neural rendering-
enabled 3D modeling for rapid digitization of in-service products. 
CIRP Annals. 

[10] Asadi, F., Olleak, A., Yi, J. and Guo, Y., 2021. Gaussian process 
(gp)-based learning control of selective laser melting process. In 
2021 American Control Conference (ACC) (pp. 508-513). 

[11] Lu, H., Kearney, M., Li, Y., Liu, S., Daniel, W.J. and Meehan, P.A., 
2016. Model predictive control of incremental sheet forming for 
geometric accuracy improvement. The International Journal of 
Advanced Manufacturing Technology, 82, pp.1781-1794. 

[12] Ay, M., Schwenzer, M., Stemmler, S., Rüppel, A., Abel, D. and 
Bergs, T., 2022, July. Practical Nonlinear Model Predictive 
Control of a CNC Machining Center with Support Vector 
Machines. In 2022 IEEE/ASME International Conference on 
Advanced Intelligent Mechatronics (AIM) (pp. 1625-1631). IEEE. 

[13] Allwood, J.M., Duncan, S.R., Cao, J., Groche, P., Hirt, G., Kinsey, 
B., Kuboki, T., Liewald, M., Sterzing, A. and Tekkaya, A.E., 2016. 
Closed-loop control of product properties in metal forming. CIRP 
Annals, 65(2), pp.573-596. 

[14] Williams, C.K. and Rasmussen, C.E., 2006. Gaussian processes for 
machine learning (Vol. 2, No. 3, p. 4). Cambridge, MA: MIT press. 

[15] Zhang, J., Liu, C. and Gao, R., 2022. Physics-guided Gaussian 
process for HVAC system performance prognosis. Mechanical 
Systems and Signal Processing, 179, p.109336. 

[16] Gardiner, F.J., 1957. The spring back of metals. Transactions of the 
American Society of Mechanical Engineers, 79(1), pp.1-7. 

[17] Gros, S., Zanon, M., Quirynen, R., Bemporad, A. and Diehl, M., 
2020. From linear to nonlinear MPC: bridging the gap via the real-
time iteration. International Journal of Control, 93(1), pp.62-80. 

[18] Kamel, M., Burri, M. and Siegwart, R., 2017. Linear vs nonlinear 
mpc for trajectory tracking applied to rotary wing micro aerial 
vehicles. IFAC-PapersOnLine, 50(1), pp.3463-3469. 

[19] Hewing, L., Wabersich, K.P., Menner, M. and Zeilinger, M.N., 
2020. Learning-based model predictive control: Toward safe 
learning in control. Annual Review of Control, Robotics, and 
Autonomous Systems, 3, pp.269-296. 

[20] CUSTOMPART.NET: Spring Back Calculator. Available online: 
https://www.custompartnet.com/calculator/bending-springback 
(accessed on 02-09-2024). 

[21] Zanelli, A., Quirynen, R., Jerez, J. and Diehl, M., 2017. A 
homotopy-based nonlinear interior-point method for NMPC. 
IFAC-PapersOnLine, 50(1), pp.13188-13193. 

[22] Nonlinear programming, https://web.casadi.org/docs/ (accessed on 
02-10-2024) 

[23] Karpik, A., Cosco, F. and Mundo, D., 2023. Higher-Order 
Hexahedral Finite Elements for Structural Dynamics: A 
Comparative Review. Machines, 11(3), p.326. 

[24] Smith, M 2009, ABAQUS/Standard User's Manual, Version 6.9. 
Dassault Systèmes Simulia Corp, Providence, RI. 

[25] Li, H., Yang, H., Song, F.F. and Li, G.J., 2013. Springback 
nonlinearity of high-strength titanium alloy tube upon mandrel 
bending. International Journal of Precision Engineering and 
Manufacturing, 14, pp.429-438. 

[26] Luo, H., Nattino, G. and Pratola, M.T., 2022. Sparse additive 
Gaussian process regression. Journal of Machine Learning 
Research, 23(61), pp.1-34.

8 Copyright © 2024 by ASME




