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ABSTRACT

Skeletal fixation plates are essential components in
craniomaxillofacial (CMF) reconstructive surgery to connect
skeletal disunions. To ensure that these plates achieve geometric
conformity to the CMF skeleton of individual patients, a pre-
operative procedure involving manual plate bending is
traditionally required. However, manual adjustment of the
fixation plate can be time-consuming and is prone to geometric
error due to the springback effect and human inspection
limitations. This work represents a first step towards
autonomous incremental plate bending for CMF reconstructive
surgery  through machine learning-enabled  springback
prediction and feedback bending control. Specifically, a
Gaussian process is first investigated to complement the physics-
based Gardiner equation to improve the accuracy of springback
effect estimation, which is then incorporated into nonlinear
model predictive controller to determine the optimal sequence of
bending inputs to achieve geometric conformity. Evaluation
using a simulated environment for bending confirms the
effectiveness of the developed approach.

Keywords: Incremental bending, Model predictive control,
Gaussian process
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1. INTRODUCTION

Craniomaxillofacial (CMF) reconstructive surgery is a
critical procedure for patients suffering from conditions that
necessitate the removal of bone tissue [1]. This type of surgery
is essential for a significant number of patients, aiming not only
to restore the basic functions and appearance of the facial
structure but also to ensure the patient's quality of life is
maintained or enhanced [2].

The complexity of the facial anatomy, including the
dimensions of the bone, the function of joints, and the interaction
of muscles, underscores the necessity for precise planning and
execution of reconstructive procedures [2]. Achieving geometric
accuracy in the bending of skeletal fixation plates is therefore
paramount to ensure that the reconstructed mandible aligns with
the patient's anatomical structure, facilitating optimal recovery
and functional outcomes.

Currently, in most cases of significant reeenstruetive
erantomaxillofacial CMF reconstructive surgery, such as cases
requiring a bone graft, fixation hardware is prepared by manual
bending. As the loads on these plates both during, and in some
cases after, the healing of the bones that are held together, the
likelihood of post-surgical failure tends to increase, seen in some
large studies to be as high as 39% [3]. This approach is not only
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FIGURE 1: Flowchart of skeletal fixation plate bending enabled by machine learning and MPC, with finite element simulation as plant

time-consuming [4] but also subject to inaccuracies, potentially
resulting in sub-optimal plate shape and placement [5]. They are
primarily due to the inherent limitations of human inspection and
the physical properties of the materials involved, notably the
springback effect. This refers to the material's tendency to
partially return to its original shape after bending due to the
hysteresis in the stress strain relationship in plastic deformation,
leading to geometric discrepancies between the intended and
actual shape of the fixation plate. Such inaccuracies can
potentially affect the surgical outcome, making the quest for
precision a critical objective in the advancement of CMF
reconstructive procedures [6].

Recent advancement of sensing and simulation methods as
well as the integration of machine learning into classical model-
based control have demonstrated the potential to overcome the
limitations in human inspection as well as the difficulties in
modeling and predicting material behavior during the
manufacturing process, leading to the generation of optimal
control input signals to achieve desired manufacturing outcomes.
For example, the development of contactless 3D digitization
methods based on triangulation, such as structured light, active
stereo, and photogrammetry have demonstrated high accuracy in
capturing complex geometrics of physical objects [7-8]. More
recently, neural rendering, a technique that combines machine
learning and physics-based imaging theory has shown the
potential to enable low-cost 3D object digitization [9]. The
process data generated from these sensors and high-fidelity
simulation provides the basis to leverage the power of machine
learning for accurate modeling of complex manufacturing
processes, such as the effect of laser power and speed on melt
pool characteristics in additive manufacturing [10], and the
springback effect of sheet metal in incremental sheet forming
[11]. The improved accuracy of machine learning-enabled
process modeling has led to the improved process control
outcomes in manufacturing when combined with control
strategies such as model predictive control (MPC) [10-13].

Inspired by these prior works, this study presents an
integrated method of machine learning-enabled bending process
modeling and nonlinear model predictive control (MPC) to
enable the generation of the “optimal” sequence of bending input
angles (described as bending inputs in the remainder of the
paper) to achieve geometric conformity of skeleton fixation
plates for CMF reconstructive surgery.

Specifically, Gaussian process (GP) [14] is investigated as
the machine learning approach to improve the estimation of the
springback effect after the bending load is removed from the
plate. The motivation for investigating GP is based on the
observation that the nonlinear behavior of springback is observed
only in a certain range of bending input, while the effect of the
nonlinearity decreases as the bending input increases. GP has
shown effectiveness in dealing with such local nonlinear
characteristics [15]. In this study, it is implemented as a
compensation term for the physics-based Gardiner equation [16],
which describes the general springback effect, to capture the
nonlinear aspects not encapsulated by the physics-based model.

The GP-enhanced springback model is subsequently
incorporated into nonlinear MPC [17-18] to determine the
optimal sequence of bending inputs to achieve geometrically
accurate plates for CMF reconstructive surgery. The motivation
for selecting MPC-based approach is the property of constraint
satisfaction [19], which can be critical in avoiding control signals
that fall into ranges that are undesirable in practice. The
effectiveness of the integrated method is demonstrated in a
simulation environment, as shown in Fig. 1. The main
contributions of this study include the following:

1) Integration of GP with physics-based Gardiner equation
to improve the accuracy of springback prediction in
bending of skeletal fixation plates.

2) Incorporation of GP-enhanced prediction into nonlinear
MPC to achieve autonomous bending of skeletal fixation
plates to support CMF reconstructive procedures.
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The rest of the paper is organized as follows: Section 2
presents the theoretical background of Gardiner equation, GP,
and nonlinear MPC. In Section 3, the simulation environment for
evaluating the developed method is described. The results are
presented and discussed in Section 4, and conclusions and future
work are summarized in Section 5.

2. THEORETICAL BACKGROUND

Fig. 2 indicates the type of skeletal fixation plate
investigated in this study, generally in the form of an elongated
plate component of eyelets with webbing in between. These
eyelets are for fixing the plate onto the CMF skeleton. As a result,
conformity of the plate after incremental bending is crucial to
patients’ recovery and functional outcomes.

During each bending, one pair of neighboring eyelets are
controlled by a pair of robot grippers. Each gripper has a cone-
shaped pin that can fully engage with the eyelet geometry when
the gripper is closed, ensuring no movement of the eyelet relative
to the gripper. The main objective of this study is to determine
the optimal sequence of bending inputs to be applied by the
grippers such that the corresponding webbing will exhibit
accurate deformation conforming to the required local geometry
of the patient’s CMF skeleton. Achieving this objective requires
accurate prediction of the post-springback bending angle
(described as post-springback angle in the remainder of the
paper) that is induced by the hysteresis in the mechanics during
plastic deformation and optimization of the sequence of bending
inputs to achieve the final geometry.

Grippers

FIGURE 2: Setup for skeletal fixation plate incremental bending.
Plate consists of eyelets and webbing and bending is controlled by
the rotation torque of a pair of grippers.

2.1 Post-Springback Bending Angle Prediction

In this paper, the springback effect is modeled through the
integration of physics-based and data-driven methods. The
webbing is first abstracted into a 2D rectangular plate attached to
a wall, for which a physics-based Gardiner equation that
describes the general springback effect is used [16]. Next, data-
driven GP is investigated to compensate for aspects of the
springback effect that are not encapsulated in the Gardiner
equation [14], such as deviation from the assumptions that are
used in its derivation and the geometric complexity in the actual
plate (from 2D to 3D), to arrive at a refined, more accurate
prediction.

2.1.1 Gardiner Equation

After
springback

Before
springback

FIGURE 3: TIllustration of springback effect in metal bending,
adapted from [20]

The Gardiner equation quantifies the relationship between
two specific radii of curvature for a 2D plate, one end of which
is affixed to a vertical wall (as a slice of the 3D setup shown in
Fig. 3). It compares the radius of curvature R when an external
load (i.e., bending input) is applied, maintaining the plate at a
certain bending angle, to the radius of curvature observed post
springback 7, after the load is released [16]:

Pz () o

In Eq. (1), S and E denote the yield stress and the modulus of
elasticity of the material, respectively. t is the plate thickness.
One of the assumptions of Eq. (1) is that the length of the
centerline of the plate L remains constant during the bending
process:

L= a;R = ayr 2)
where a; corresponds to the bending input and @ is the post-
springback angle. Using Eq. (2), Eq. (1) can be expressed as:

B 4(SL)3(1>2 N 35L 3
G ="E) &) TY9T0Ee

which establishes a mathematical relationship between a; and
a; that is only dependent on the material properties and the
dimension of the plate.

Besides the constant centerline assumption, the derivation of
Eq. (1) is also based on the elastic-perfectly plastic stress-strain
relationship as well as the assumption of proportionality between
the strain and the distance from the centerline [16]. While Eq. (1)
represents the general springback effect, it is essential that
deviations in springback as predicted by this equation from the
actual physical bending process that are induced by the violation
of the assumptions are properly compensated for to achieve
accurate estimation of the springback effect. In this study,
machine learning is investigated as a methodology to capture
such deviations.

2.1.2 Gaussian Process for Improved Bending Prediction

GP is a machine learning technique where its origin can be
traced to Bayesian learning of a single layer neural network with
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Gaussian prior imposed on the network weights [14]. Intuitively,
GP itself can be considered an infinite dimensional Gaussian
distribution over a continuous function, where the function
outputs at any finite number of inputs form a multi-dimensional
Gaussian distribution.

In this study, the inputs for GP at each bending step k are
the pre-bending angle x[k] and the applied bending input
ulk]. The output is the deviation between the actual post-
springback angle x[k + 1] and the prediction from the
Gardiner equation xg[k + 1]. Following [14], the GP-enhanced
estimation for springback effect can be written as:

x[k + 1] — xg[k + 1]~GP (0, K ([x[k], u[k]], [x'[k], v’ [K]]))(4)

In Eq. (4), K is the covariance matrix that quantifies the
correlation of the deviation in post-springback angle for two
different inputs x[k],u[k] and x'[k],u'[k] in the GP-
predictor.

Denoting the training inputs consisting of pairs of
x[k],u[k] as Xiain, and the training outputs (from FEM)
consisting of the deviations between pairs of x[k + 1] and
xglk + 1] as Yyain, similarly for testing inputs X and
outputs Y., the prediction of GP for y..; can be computed as
the posterior distribution of Yo given Yiyain [14]:

p(Ytest|ytrain)~N(BC_1Ytrain:A - BC_IBT) (5)

where A is the covariance matrix computed using samples from
Xiest» € 1s the covariance matrix computed using samples from
Xirain, and B contains the correlations among samples between
Xiest and Xi,in- In this study, the radial basis function (RBF)
covariance function is used to compute the correlation between
two distinct inputs, analogous to the RBF kernel that is widely
used in the machine learning to resolve nonlinearity:

1

k(X,X’) = ¢? exp <—2—l2

K-x1) ®

In Eq. (6), 0 and [ are the two GP parameters that will be
optimized using the maximum likelihood estimation technique
[14]. Intuitively, BC™'yyqin in Eq. (5) can be considered as a
data-driven compensation term to refine the predictions that are
derived from the Gardiner equation.

For a pair of new inputs x[k],u[k], the predicted post-
springback angle will be the mean of the posterior distribution
computed using Eq. (5) plus the prediction from the Gardiner
equation xg[k + 1], which is itself a function of x[k] and u[k].

2.2 Nonlinear MPC for Incremental Bending

With the GP-enhanced predictive model for post-springback
angle, nonlinear MPC is investigated to generate an optimal
sequence of bending inputs to incrementally achieve the desired
geometry for each pair of eyelets. Specifically, nonlinear MPC is
formulated as [21]:

P-1 a 2 N2
- Z Q(x[k + j1 = xyer)” + R(ulk + 1) 70
j=0

+Q(x[k + P] — xref)z

s.tix[k + 1] = F(x[k], u[k]) (7b)
Umin =< u[k] = Umax (7C)
Xmin = x[k] < Xmax (7d)
Gripper Gripper
(for holding) (for bending)

FIGURE 4: FE simulation of bending skeletal fixation plate

where £ indexes the bend angle and bend input pairs to be
evaluated, U = {u[k],...,u[k + P — 1]} denotes the sequence
of bending inputs over the prediction horizon P. The GP-
enhanced predictive model Eq. (4) is converted into the model
given in Eq. (7b) by moving xg[k + 1] to the right-hand side.
The terms Xin, Xmax> Umin and Upmq, represent the lower
and upper bounds for the variables x and control inputs u,
respectively. The cost function to be minimized during the
optimization process consists of three terms as shown in Eq. (7a),
with the first two representing the running cost and the last term
is the terminal cost, respectively. The parameters @, R, and Qf
are the penalizing weights for the corresponding terms.

The optimal bending input u[k] at each iteration k is
determined by solving the nonlinear MPC problem through an
Interior Point OPTimizer (IPOPT) solver using CasADi, which
is an open-source numerical optimization library written in
Python [22]. The first step of the optimized control sequence U
is applied as bending input to the incremental bending process,
and then the optimization problem is solved again from the new
pending angle that results.

3. EXPERIMENTAL EVALUATION

The developed approach is evaluated in a finite element
(FE)-based simulation environment. The geometries of the
gripper and the skeletal fixation plate are first imported, and
training data is generated in the form of triplets
(x[k],u[k], x[k + 1]) by varying x[k],u[k] and recording the
simulated x[k + 1]. The training data is used to train the GP
model before it is implemented with nonlinear MPC to determine
the optimal bending inputs.

3.1 Finite Element Simulation

FE simulation of incremental bending is implemented in
Abaqus as shown in Fig. 4, using a slightly simplified gripper
geometry based on what is shown in Fig. 2. At each bending step,
a pair of neighboring eyelets are clamped by a pair of grippers,
where one of the grippers plays the role of “holding” the eyelet
during bending, and the other gripper rotates around the y-axis
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to apply the bending input based on the results from nonlinear
MPC. After each bending action, the gripper for bending is
released, allowing the actual post-springback angle to be
measured, which serves as the pre-bending angle in the next step.
Once the geometry of the current pair of eyelets is deemed
satisfactory, the grippers shift to the next pair of eyelets and
whole bending control process repeats.

In FE simulation, the pair of grippers are treated as rigid
bodies and hexahedral meshes are used to reduce the
computational cost [23]. The deformable skeletal fixation plate
is generated with tetrahedral meshes using seed 0.19, as shown
in Fig. 5 and Table 1.

FIGURE 5: Geometry and mesh of gripper and plate

Table 1 FE simulation parameters

Element type Deformable status
Fixation plate Tetrahedral Deformable
Grippers Hexahedral Rigid

When the gripper for holding engages with and clamps the
corresponding eyelet, it constrains all active structural degrees of
freedom within the region of the clamped eyelet. Encastre
boundary condition is thus applied to that specific region [24]. A
specific angular displacement is applied to the center point of the
cross-section at the end of the deformation region to simulate the
process of the gripper applying the bending input to the plate.
Fig. 6 shows the boundary condition in FE simulation and the
point of interest used to collect data.

In this study, aluminum alloy 6061 is evaluated as the
material for bending, and its material properties are shown in
Table 2. A total of 238 data samples (i.e., triplets) have
been collected from simulation using the FE program. For data
collection, specific considerations were given on the region
where elastic-plastic transition occurs, and on the differences
between calculations from the Gardiner equation and simulation
from the FE model. An 80-20 allocation was chosen for
the training and validation data sets for GP model’s training and
validation. Four trials in total were carried out.

Table 2 Material properties of Al 6061

Yield stress
276 MPa

Density
2.7g/cm?

Young’s modulus Poisson ratio
68.9 GPa 0.33

3D Deformation Region

Boundary
Condition:

Under Load
Encastre

(Before Springback)

3D Deformation Region

Boundary
Condition: Load Removal
Encastre (After Springback)

FIGURE 6: Boundary condition and point for data collection

4. RESULTS AND DISCUSSION

4.1 GP-Enhanced Model Performance

The data samples are first displayed along with prediction
from the Gardiner equation in Fig. 7. To facilitate visualization,
the triplet (x[k], u[k], x[k + 1]) is converted into a 2D plot by
using the delta between the post-springback angle x[k 4+ 1] and
the pre-bending angle x[k] as points on the y-axis while the
bending input u[k] as points on the x-axis.

It is noted from Fig. 7 that an elevated level of nonlinearity
is observed in the bending input range between -10 degrees and
10 degrees where the Gardiner equation prediction shows a
substantial deviation from FE data. This is because plastic
deformation behaves unsteadily during the entire bending
process [25]. Additionally, the nonlinearity decreases as the
amplitude of the bending input increases, leading to improved
matching between the FE data and the prediction from the
Gardiner equation.

30

o Actual Changes (FE data)
2 Changes Calculated (Gardiner Equation)
Deviation

Changes in State x[k + 1] — x[k] (deg)
o

-30 -20 -10 10 20 30

0
Control Input u[k] (deg)
FIGURE 7: Comparison of FE data and Gardiner results
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Fig. 8 plots both the deviation between the FE data and the
predictions from Gardiner model (as shown by the magenta
dashed line in Fig. 7) and the GP prediction of this deviation. It
is noted that GP predictions are closely aligned with the FE data
points, indicating its good performance in compensating for the
Gardiner model. Numerical results from 4-fold GP training and
validation indicate that the mean of the root mean squared error
(RMSE) for predicting post-springback angle using GP-
enhanced model is 0.007 rad (approximately 0.4 deg). This
represents a 63.6% improvement over the result from using the
Gardiner model alone, which shows an RMSE of 0.020 rad
(approximately 1.1 deg). This confirms the effectiveness of GP
as a machine learning method to enhance predictive modeling of
nonlinear behavior in the plate bending process.
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FIGURE 9: GP-MPC vs. MPC (without noise)

4.2 MPC Performance

The MPC methodology is evaluated in terms of its ability to
achieve a target bending angle of 20 degrees for one individual
pair of eyelets. With the GP-enhanced model, MPC iteratively
updates the bending input based on the feedback of the measured
post-springback angle at each step. The parameters for GP-MPC
are shown in Table 3.
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FIGURE 10: GP-MPC vs. MPC (with noise)

Table 3 Parameters of GP-MPC

Q R Qf umin/umax(deg) xmin/xmax(deg) Tolerance (deg)

101 10 0/+30 0/+20 +0.65

Fig. 9 shows the result comparison between MPC using only
the Gardiner equation alone as the model (denoted as MPC) and
the MPC using the GP-enhanced model (denoted as GP-MPC).
In the configuration of the two MPC systems, the prediction
horizons were set to 2 steps, and the control horizons are set at 1
step. The maximum number of steps for MPC to reach the
reference angle was set to 5 for the simulation. It is noted that the
GP-MPC benefits from the more accurate prediction obtained
using GP-enhanced model as reflected in its convergence to the
target bending angle at a faster rate than the MPC with Gardiner
equation alone (3 steps by GP-MPC as compared to 5 by MPC,
an improvement of 40%). The same comparison is carried out
under measurement noise with zero mean and a standard
deviation of 0.08 deg, based on the understanding that the
measurement noise is Gaussian distributed and the sensor's
measurement accuracy is given by the manufacturer as 0.08 deg).
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As shown in Fig. 10, similar behavior in convergence of the
two controllers is observed. This confirms the effectiveness of
the machine learning-enhanced model in improving the MPC’s
performance. The steady-state error of the GP-MPC is about
0.006 rad (approximately 0.3 deg), either with or without noise.
Furthermore, the consistency of the MPC's performance under
noise was evaluated, for which ten test runs were conducted.
The low error bars as shown in Fig. 11 indicate stable
performance of the controller.

20

o

S

Measured State (deg)

12

—-— Reference
Tolerance
—4— GP-MPC With Noise

0 1 2 3 4 5
Step

FIGURE 11: Results of 10 runs of GP-MPC with noise

Finally, the effect of increased level of the control effort on
the its performance is evaluated by increasing the ratio of the
parameter O/R (the symbol “Q” denotes the combined effect of
both O and Q) in the cost function, from 10 to 1,000. The
increase makes the cost function biased towards penalizing the
discrepancy between the measured post-springback angle and
the target bending angle, instead of the amplitude of the control
bending inputs. Figures 12 and 13 illustrate that the GP-MPC,
when employing a more aggressive control strategy, achieves
convergence to the target angle more rapidly with and without
noise. Both the GP-MPC with an aggressive control strategy and
the one with a non-aggressive control strategy demonstrate the
capability of accommodating uncertainties such as noise and
ensuring reliable operation even under suboptimal conditions.
However, the speed benefit when compared to MPC is limited
with the 100-times reduction in R.

5. CONCLUSIONS AND FUTURE WORK

In an effort to ensure the optimal fit and function of CMF
reconstructive surgery by achieving geometric conformity of the
skeleton fixation plate, an integrated method of machine
learning-enhanced  springback predictive modeling and
nonlinear MPC is presented. Specifically, a Gaussian process
(GP) model is investigated to compensate for limitations in the
physics-based Gardiner equation to arrive at a more accurate
prediction of the post-springback angle in plate bending. The
GP-enhanced prediction then serves as the model in the nonlinear
MPC formulation that is used to generate an optimal sequence of
bending inputs to achieve the desired geometry of the skeleton
fixation plate.

In the simulated case study, it is shown that the GP-enhanced
model outperforms the Gardiner equation in predicting post-
springback angle, reducing the prediction error from 1.1 degrees
to 0.4 degrees, a 63.6% reduction. Additionally, nonlinear MPC

with GP-enhanced model also demonstrated faster convergence
to the desired geometry as compared to the nonlinear MPC with
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Gardiner equation alone, reducing the needed steps from 27 to
16, representing a 40.7% reduction.

While the GP-MPC has demonstrated the ability to achieve
the desired bending angle in fewer steps than the nonlinear MPC,
repeated bending may lead to work hardening and, consequently,
fatigue failure after surgery [5]. Therefore, minimizing the
number of steps required to achieve the desired angle will be a
focus in the ongoing development of MPC design. Future work
will also investigate optimized GP models, such as sparse GP
[26] to further improve the computational efficiency of GP in
training and testing and reduce the duration needed to realize
incremental bending. Additionally, stochastic MPC formulation
will be considered based on the characteristic of GP-enhanced
model. Future work will also provide in-depth investigation of
the effect of nonlinear MPC’s parameters on the controller’s
performance, as well as on demonstrating the developed method
using a physical robot to advance the state of point-of-care
manufacturing (PCOM).
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