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Abstract—Fully Homomorphic Encryption (FHE) presents a
paradigm-shifting framework for performing computations on
encrypted data, offering revolutionary implications for privacy-
preserving technologies. This paper introduces a novel hardware
implementation of scheme switching between two leading FHE
schemes targeting different computational needs, i.e., arithmetic
HE scheme CKKS, and Boolean HE scheme FHEW. The pro-
posed architecture facilitates dynamic switching between the
schemes with improved throughput and latency compared to
the software baseline. The proposed architecture computation
modules support scheme switching operations involving coef-
ficient conversion, modular switching, and key switching. We
also optimize the hardware designs for the pre-processing and
post-processing blocks, involving key generation, encryption, and
decryption. The effectiveness of our proposed design is verified on
the Xilinx U280 Datacenter Acceleration FPGA. We demonstrate
that the proposed scheme switching accelerator yields a 365x
performance improvement over the software counterpart.

Index Terms—Homomorphic Encryption, Scheme Switching,
FPGA acceleration

I. INTRODUCTION

The proliferation of data breaches during local devices and
cloud servers has drawn the attention of many companies and
researchers. This demand has led to an increased reliance on
established security techniques to protect sensitive data. Fully
Homomorphic Encryption (FHE) is as a highly promising
approach, as it allows for secure computations on encrypted
data without compromising confidentiality [1].

FHE is a powerful cryptographic technology that performs
computations directly on encrypted data without decrypting
it. Consequently, FHE ensures that sensitive information re-
mains confidential even when processed by third-party servers,
bridging the gap between functionality and privacy [2, 3].
Most FHE schemes are grounded in the Ring Learning with
Errors (RLWE) problem, as introduced in [2, 4]. HE can be
broadly divided into two categories: arithmetic homomorphic
encryption schemes, such as BGV [5], BFV [3] and CKKS [6],
which support homomorphic addition and multiplication, and
Boolean homomorphic encryption schemes, such as TFHE [7]
and FHEW [8]. The ability of HE schemes to perform large-
scale computations in parallel without incurring intermediate
communication overhead makes them particularly suitable for
privacy-preserving machine learning applications [9-12].

The inherent parallelism in CKKS can be exploited to
perform linear operations, e.g., convolution operations. In
contrast, the FHEW scheme is faster at performing non-linear
operations but is expensive when performing linear opera-
tions [6, 8, 13]. There are several FHE accelerator papers [14—
18], but those only support one FHE scheme. With scheme
switching, it is possible to integrate both FHE schemes by
enabling the seamless transition between schemes [19-21]. It
will be extremely suitable for applications with both linear and
nonlinear functions, such as neural networks. Built upon recent
works on hardware acceleration of FHE operations [22-25],
this work proposes an efficient FPGA-based scheme switching
architecture for switching from the CKKS ciphertext to the
FHEW ciphertext. We summarize our technical contributions
below:

o We design an FPGA-based scheme switching architecture
for switching from the CKKS ciphertext to the FHEW
ciphertext.

« We develop a low-latency fixed-point multiplication cir-
cuit and a specialized scaling unit to accelerate the
modulus operations in scheme switching.

The rest of the paper is organized as follows: We review the
background of FHE and scheme switching in Section II. In
Section III, we present the proposed architecture. We describe
the experimental results in Section IV and conclude this paper
in Section V.

II. BACKGROUND

A. Learning with Error and Ring Learning with Error

The Learning with Errors (LWE) problem is a foundational
challenge in lattice-based cryptography [4]. It involves solving
a system of noisy linear equations, where the added noise
makes it computationally difficult to recover the original
variables. Its security is based on the hardness of lattice
problems, such as finding the shortest vector in a high-
dimensional lattice [26]. The RLWE problem is an extension
of LWE, formulated over polynomial rings instead of vectors
for compact and faster operations.



B. FHE Schemes: CKKS and FHEW

CKKS [6] is designed to support approximate arithmetic
over encrypted data, making it highly suitable for real-world
applications where exact precision is not always a neces-
sity [27], such as machine learning, signal processing, and
statistical analysis. FHEW is a lattice-based scheme that pro-
vides a foundation for strong security while allowing efficient
Boolean homomorphic operations [8] with an optimized boot-
strapping technique in reducing the time complexity of each
gate operation. It empowers essential capability for practical
applications such as secure multi-party computation and low-
latency cloud computing tasks composed of multiple logic
gates [28, 29].

1) Encryption Principles for CKKS: CKKS encryption is
based on the RLWE problem. The key mathematical concepts
are as follows:

« Plaintext: m is represented as a polynomial m(z) € R,,
where R, = Z4[z]/(z™ + 1), g is the modulus, and 7 is
the degree.

« Ciphertext: ¢ = (co,c1) € RZ.

a) Encryption Process: The ciphertext is generated as:
c=(co,c1) =(a-s+ey+ A-ma), (1)

where:

e @ is a randomly sampled polynomial,

e s is the secret key,

e ¢ is Gaussian noise,

e A is a scaling factor for mapping plaintext into the
encryption domain.

b) Decryption Process: Decryption is performed as fol-
lows:
, co+ci-s modgq

m' = X : @)

where m’ approximates the plaintext m.

2) Homomorphic Property Validation for CKKS: CKKS
supports homomorphic addition and multiplication. For two
plaintexts m; and msy, and their corresponding ciphertexts c;
and cs:

Enc(mq)+Enc(ms) = (a1-s+A-mi+e1)+(ag-s+A-maotes).
3)

Decryption yields:
Dec(Enc(mq) + Enc(msz)) = m1 + ma. 4)

For multiplication, ciphertexts are expanded into three com-
ponents during the operation:

Enc(ml) . El’lC(mg) = (CQ +Cp,Co - C1 + C1 - Cp,C1 - Cl). (5)

A process called relinearization reduces the ciphertext dimen-
sion back to two components. After decryption:

Dec(Enc(my) - Enc(msg)) = my - mo. (6)

3) Encryption Principles for FHEW: FHEW encryption is
based on the Ring Learning with Errors (RLWE) problem. The
key mathematical concepts are as follows:

« Plaintext: A binary value m € {0, 1}, encoded as m' =
m - q/2, where ¢ is the modulus.

« Ciphertext: A pair ¢ = (a,b) € T™, where T represents
the torus and:

b= {(a,s)+m-q/2+e mod g, (7)

with a as a random vector, s as the secret key, and e as
Gaussian noise.

a) Encryption Process: The ciphertext is generated as:

Enc(m) = (a,b), b= {(a,s)+m-q/2+e modgq. (8)

b) Decryption Process: Decryption is performed as:

b(a,s>>7 o)

m = round (
q/2

recovering m € {0,1}.

4) Homomorphic Property Validation for FHEW: FHEW
enables homomorphic evaluation of binary gates (e.g., AND,
OR, XOR) using gate bootstrapping. Its efficient gate boot-
strapping mechanism enables this, which resets noise growth
after every gate operation.

« Addition:
Cadd = (a1 +az, by + ba) (10)
Decryption yields (m; + mz) mod g.
o Multiplication: Corresponds to logical AND:
Cmul = Bootstrap(cy, ¢2), (11)

where the bootstrapping mechanism ensures the cipher-
text remains decryptable.

C. Scheme Switching

Scheme switching is an emerging technique in FHE that
enables transitions between encryption schemes. This tech-
nique could efficiently bring the strength of multiple schemes
together in applications with diverse types of operations on
encrypted data. Scheme switching allows operations on large
datasets in BFV and decision-making in TFHE [30] or com-
bining CKKS for polynomial evaluations with CGGI and BFV
in machine learning [21]. These scheme switching algorithms
are also integrated into open-source library OpenFHE [19].
Inside scheme switching, modulus switching converts the
ciphertext modulus from one FHE scheme to another, e.g., the
CKKS modulus to the FHEW modulus. In general, the FHEW
modulus is smaller than the modulus in CKKS, which could
benefit noise management. Key switching allows ciphertext
transformation, e.g., transforming a ciphertext encrypted under
a CKKS key into a ciphertext encrypted under an FHEW
key without exposing the underlying plaintext. This process
is crucial for maintaining security while enabling flexibility in
computations that involve multiple keys.



III. FHE SCHEME SWITCHING ARCHITECTURE
A. Overall Architecture

We map our design onto an FPGA platform, as shown
in Fig. 1. The system mainly consists of four modules:
ModReduce, ModSwitch, KeySwitch, and ExtractLWE, with
the X86 host CPU managing data loading and deploying the
RTL design to the FPGA. The host CPU communicates with
the Alveo U280 FPGA via a PCle interface. Data exchange
between the host and FPGA is facilitated through an AXI4-
Lite interface.
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FPGA AXi4-lite / ct number ct number
-Counter Counter
HBM2 [+ [ P
FIFO WORK | ModReduce ModSwitch
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Fig. 1: The overall architecture of the proposed scheme
switching accelerator.

B. ModReduce

As shown in Fig. 2, the RLWE ciphertext processed by
the CKKS scheme is first input into the ModReduce mod-
ule. This module consists of several ModReduce modules
optimized for low latency. In CKKS, the initial ciphertext is
encrypted with a modulus that defines the size of the ciphertext
element. Our low-latency design is achieved by configuring
each ModReduce submodule to operate in parallel, enabling
simultaneous processing of all elements in the CKKS cipher-
text. Those submodules go through the FACTOR division
steps, each independently handling a portion of the modulus
reduction. As homomorphic operations (such as addition and
multiplication) are performed, noise accumulates within the
ciphertext. By reducing the modulus in parallel, our proposed
architecture could manage noise accumulation while main-
taining high computational efficiency, thus ensuring that the
computation is precise without introducing extra delays.

Scaling unit: Each ModReduce submodule has a spe-
cialized scaling unit designed to handle modulus reduction
efficiently during the CKKS encryption process. As shown in
Fig. 2, by dividing the modulus reduction process across these
submodules, our proposed scaling unit can manage each por-
tion of the modulus independently, completing the FACTOR
division steps in parallel. This parallelized approach maintains
computational accuracy and high throughput, ensuring precise
computation without additional delays.

[Input H—

Scaling unit
Clock]
reset| [FCIOT]
Input I

Fig. 2: The ModReduce module.

Output

C. ModSwitch

Low latency design: As shown in Fig. 3, the modulus
switching module(ModSwitch) reduces the size of the modulus
from a larger modulus ) in CKKS to a smaller modulus in
FHEW. To minimize latency, we use a parallelized architecture
to implement the ModSwitch, similar to the approach used
in ModReduce. By setting the parallel parameter correctly,
the ModSwitch could simultaneously deal with the switching
operation of all the parts in one CKKS ciphertext. This could
significantly reduce the computation time required for modulus
switching between CKKS and FHEW schemes, enhancing
overall performance.

Clocki
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Fig. 3: The ModSwitch module.

D. KeySwitch

As shown in Fig. 4, the key switching module (KeySwitch)
transforms a ciphertext encrypted under the CKKS key into
a ciphertext encrypted under the FHEW key. In our proposed
architecture, the Decompose module performs digit decom-
position on a ciphertext to facilitate key switching, following
the module switching. This process involves breaking down
large coefficients within the ciphertext polynomial into smaller
“digits” to efficiently transfer ciphertexts between encryption
keys with minimal computational overhead. This design re-
duces computation time, enhancing the overall performance
of the key switching operation.

E. ExtractLWE

This module extracts the ciphertext subresult from the
KeySwitch and ModSwitch modules and converts the ci-
phertext from RLWE to LWE format. The algorithm of
this module is based on the ExtractLWE function in the
OpenFHE library [19]. The module consists of three functions:
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Fig. 4: The KeySwitch module.

ExtractLWEpacked, ExtractLWECiphertext, and RoundqQAl-
ter. ExtractLWEpacked retrieves the necessary components,
ExtractLWECiphertext builds the LWE ciphertexts, and
RoundqQAlter ensures that the modulus switching and round-
ing are performed accurately. This module returns the fully
processed LWE ciphertexts ready for further cryptographic
operations. This process allows seamless extraction and trans-
formation of ciphertexts from CKKS to LWE format, enabling
operations across different encryption schemes.

IV. EXPERIMENTAL RESULTS

We implement our scheme switching architecture on the
Alveo U280 FPGA using the Xilinx Vivado 2023.1 and Vitis
2023.1 EDA design tools. The software implementation of
scheme switching is derived from the OpenFHE library [19],
which provides a high-level interface for lattice-based cryp-
tography. All software baseline implementations are executed
on an i7-14900K CPU, with the codebase written in C++.
The FPGA design consists of multiple functional units, in-
cluding URAMs, BRAMs, FIFOs, and control logic. Our RTL
design implements 32 memory-mapped 256-bit AXI4 master
interfaces, which enable efficient bidirectional data transfers
between the FPGA and its global memory. The FPGA has two
HBM2 stacks, each with a 4 GB capacity and up to 460 GB/s
of memory bandwidth. Data is streamed between the global
and on-chip memory using RD and WR FIFOs to ensure high
throughput and efficient utilization of the available memory
bandwidth.

As shown in Table I, our ModSwitch module on FPGA
achieves a 332 x speedup, and the KeySwitch module achieves
a 6.8x speedup when compared to their software imple-
mentations in C++. Overall, the proposed scheme switching
accelerator yields a 365x performance improvement over the
software counterpart. This speedup is particularly significant,
considering the design focuses exclusively on optimizing
scheme-switching operations, while the test cases used only
simple ciphertexts.

In addition, Table II and Table III present the FPGA
resource utilization and power consumption metrics, respec-
tively. These results provide insight into the hardware effi-
ciency of our FPGA-based implementation.

V. CONCLUSION

This paper presents an FPGA-based architecture that con-
verts CKKS ciphertexts to FHEW ciphertexts. The design
includes a low-latency fixed-point multiplication module and

TABLE I: HW and SW time consumption

Function Time C++(ns) Time FPGA(ns) Speedup
ModSwitch 5642 17 332x
Decompose 2258 50 45x%
KeySwitch 342 50 6.8

ExtrackLWEpacked 1289 20 64x
ExtractLWECiphertext 6034 17 355x%
RoundqQAlter 5225 23 227 %
Overall 76629 210 365%
TABLE II: Resource Utilized
Resource LUTs FFs DSPs BRAM
Utilized 136044 170944 55 205

TABLE III: Power Consumption

Power(W)
38.59

FPGA Power(W)
28.26

HBM Power(W)
9.97

a specialized scaling module. The design significantly accel-
erates the modulus switching operations by achieving a 365X
overall speedup compared to its software implementation.
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