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Abstract: In the paper, we study the spectral volume (SV) methods for scalar hyperbolic conser-
vation laws with a class of subdivision points under the Petrov-Galerkin framework. Due to the
strong connection between the DG method and the SV method with the appropriate choice of the
subdivision points, it is natural to analyze the SV method in the Galerkin form and derive the
analogous theoretical results as in the DG method. This paper considers a class of SV methods,
whose subdivision points are the zeros of a specific polynomial with a parameter in it. Properties
of the piecewise constant functions under this subdivision, including the orthogonality between the
trial solution space and test function space, are provided. With the aid of these properties, we are
able to derive the energy stability, optimal a priori error estimates of SV methods with arbitrary
high order accuracy. We also study the superconvergence of the numerical solution with the correc-
tion function technique, and show the order of superconvergence would be different with different
choices of the subdivision points. In the numerical experiments, by choosing different parameters
in the SV method, the theoretical findings are confirmed by the numerical results.
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1 Introduction

Hyperbolic systems of conservation laws are a class of partial differential equations which arise in
several areas of continuum physics, such as the description of the conservation of mass, momentum
and energy in mechanical systems. The solutions to the hyperbolic conservation laws are often
with low regularity and may even contain discontinuities, which is quite challenging to manipulate.
As it is almost impossible to write down the explicit formula of the exact solution, the numerical
approximation would be a natural choice to compute the solution. In the past several decades, nu-
merical algorithms of conservation laws have been extensively investigated. One of the well-known
methods is the Godunov method [18], which gives rise to many successive numerical methods,
such as the monotonic upstream-centered scheme for conservation laws (MUSCL) [36, 37], general-
ized Riemann problems (GRP) [1, 42], total variation diminishing (TVD) methods [21], essentially
non-oscillatory (ENO) [22] and weighted essentially non-oscillatory (WENO) [25], discontinuous
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Galerkin (DG) methods [12, 11, 10, 9, 13], spectral volume/difference (SV/SD) methods [39, 26],
flux reconstruction (FR) or correction procedure via reconstruction (CPR) [23, 40, 17], just to name
a few.

Among various kinds of algorithms above, some of them have close connections, such as the DG
methods, SV/SD methods and FR/CPR methods. For the linear problems, with careful choices of
the solution points and flux reconstruction functions, the DG method can be viewed as a special
case of the SV method, while the SV method can be incorporated in the FR/CPR framework. we
refer the readers to [43, 34, 15, 28, 41] for more details. The SV method was first proposed in [39]
to solve the hyperbolic conservation laws on unstructured grids, in which the numerical solution
is represented by piecewise constant functions on the control volumes (CVs) in the finite volume
(FV) manner, and it is more efficient than the traditional FV method in terms of both memory
and CPU requirements. During the past two decades, the SV method has been used widely for a
variety of problems such as shallow water equations, Navier-Stokes equations, advection-diffusion
equation and electromagnetic field, see e.g. [7, 27, 30, 20, 14] and the references cited therein. Also,
the mathematical theory for the SV method has been extensively investigated since it was born. In
[43], Zhang and Shu performed Fourier type analysis on the SV method and obtained the stability,
accuracy and convergence. In [31, 33, 32], Van den Abeele et al. analyzed the SV method in 1D
and 2D by using dispersion and dissipation analysis, and by using the matrix method for the SV
method on tetrahedral grids. It is worth noting that Abeele et al. pointed out that the SV method
and the SD method are equivalent in 1D [34], thus the theory of the SD method could apply to the
SV method at least in one dimension. Van den Abeele et al. studied the accuracy and stability of
the SD method based on wave propagation analysis in [35]. Jameson gave a proof of the stability
of the SD method in a Sobolev-type norm, provided that the interior flux points are the zeros of
the corresponding Legendre polynomial [24]. More recently, Cao and Zou in [6] analyzed the SV
method for 1D linear scalar hyperbolic equations and obtained the L? stability, error estimates and
superconvergence for two kinds of interior flux points.

As mentioned before, there is a relation between the SV method and DG method, hence it is
natural to expect some of the theoretical results in the DG method can be extended to the SV
method. In fact, the authors in [6] studied the SV method for 1D linear scalar conservation laws with
two specific distributions of subdivision points in the Galerkin form. In this paper, we consider the
SV method with a broader class of the subdivision points, which are the zeros of a polynomial with
a varying parameter in it, and show the energy stability and error estimates in the discontinuous
Petrov-Galerkin (DPG) framework. Some review and development of DPG method can be found
in e.g. [16, 3, 2]. By making use of the properties of the Legendre polynomials, we can show the
distribution of the zeros of the given polynomial under a suitable range of the parameter, and the
orthogonality of the basis functions between the trial solution space and test function space. We
also show that the specific form of energy can be obtained if and only if the subdivision points are
the zeros of the corresponding polynomial. Based on these facts, we are able to derive the energy
stability, optimal a priori error estimates and superconvergence of the numerical solution. Note that
when the parameter of the given polynomial is chosen appropriately, the energy norm is equal to
the standard L? norm and the SV method reduces to the DG method, therefore all the theoretical
analysis of DG method can apply. When the parameter varies, the energy norm is equivalent to
the L? norm and our analysis shows that the order of the superconvergence will be different due to
the exactness of the quadrature with the subdivision points as the quadrature points. To verify the
theoretical findings, we conduct some numerical experiments to show the optimal error estimate,
superconvergence with different choices of the subdivision and the polynomial degree of the trial



solution space.

The outline of the paper is organized as follows. In Section 2, we introduce the SV method for
scalar conservation laws, and present one- and two-dimensional SV schemes as illustrating examples.
In Section 3, we first show the subdivision points of the SV method, and some properties with
these subdivision points in several lemmas. We then derive the energy stability and error estimates
for linear scalar conservation laws in one and two dimensions with the help of these properties.
Particularly, we show that the order of superconvergence will be one order higher only with a
specific choice of the subdivision points. In Section 4, we present some numerical tests with various
choices of the subdivision points and the polynomial degree of trial solution space. The concluding
remarks are given in Section 5.

2 Spectral Volume Methods for Scalar Conservation Laws

Let us consider the scalar hyperbolic conservation laws as follows:

up 4+ divf(u) =0, (z,t) € Qx (0,77, 2.1)
u(zx,0) = up(x), x €1, .
with periodic or compactly supported boundary conditions. The domain Q C RY, & = (z1, 22, ...,24)"

and f(u) = (fl(u),fQ(u),...,fd(u))T. Assume the partition of the computational domain is
Q = U;T;, and each element T; is divided into subcells named control volumes (CVs), denoted
by C; . Integrate (2.1) on C; ¢, with the divergence theorem we can obtain

/ utdaz+/ divf(u)d:c:/ utdm—k?{ n- f(u)dS =0, (2.2)
Cie Cie Cie 9C; ¢

where mn is the unit outward normal of the boundary 9C;, of the CV C;,. Now we define the
cell-averaged state variables as

1
0= 1) d
W; g |Ci,€|/cw u(x,t) de

where ‘CM‘ is the volume of C; g, then (2.2) becomes

d 1
Bl A n- f(u)ds = 0.
de Cie| Joc, )

The spectral volume (SV) scheme for (2.1) is defined as follows: Seek up(-,t) € V}, such that

d 1 —
—(Un)ig + 7= n- fluy)dS =0, Vil/, 2.3
Gt g g (2.3

where ()i ¢ is the cell average of up, on Cj g, and 77\]“ (up) is taken as the monotone flux along
the interface dC; . Note that the trial space V}, consists of piecewise smooth polynomials on each
element 7;. The number of subcells C; ¢ in each cell T; is equal to the degree of freedom (DoF') of
the polynomials on 7;.

For the convenience of analysis, we rewrite the SV scheme (2.3) in the framework of the discon-
tinuous Petrov-Galerkin (DPG) method. To this end, we define the test function space as

Wa = {wn € L2@) s wnlc,, € P(Ci), Vi),



The SV scheme (2.3) is equivalent to

—

/&ﬂm Xc;, de + n - f(uy)dS
¢ (2.4)

—

/ (Bvtn + div £ (un) )x de + f (72 F(un) — - F(un)) dS,
T; 8CZZ

where X, ,(x) is the characteristic function on the control volume C;y, and f(un)|ac;, is the one-
side limit from inside of C;,. Therefore, for any function wy, = »_;(ws)iexc,, € Wi where (wp )iy
are constants, then from (2.4) we have

/ (Orup, + div f(up))wy de + 7{

oT;

(rFlun) —m- Flwn) Jwy dS

/ atuh + d1Vf(uh)) %:(wh ieXC; AT + Z %902 /_, flup) —n- f(Uh))U/h ds (2.5)
— %: [/Tz (Oup + div f (un)) xc, , dee + %90,-,@ (n/\f(uh) —n- f(%)) dS} _

Here we use the fact ﬁ (up) = n- f(up) at the subcell interfaces U,0C; 0\OT; in the first equality
of (2.5) due to the continuity of V}, inside T;. Now we define the SV scheme (2.3) in the DPG form:
Seek up(+,t) € V3, such that

/ (at'LLh + divf(uh))wh dx + 7{
T;

(TT\f(uh) —n- f(uh)>wh dS =0, Yw,e W, (2.6)
oT;

Note that the dimension of the trial solution space V} should be matched with that of the test
function space W, so that the scheme (2.6) is well-defined.

From [6], we know the SV methods are quite different if we choose different subdivisions T; =
UeCie. In the following, we present the SV methods in one dimension and two dimensions with
Cartesian grid, which would be studied carefully in this paper.

2.1 Spectral Volume Scheme for 1D Hyperbolic Conservation Laws

Consider the hyperbolic conservation law (2.1) in one dimension (d = 1)
w+ fu)e =0,  (x,t) € 2 x (0,7, (2.7)
Take partition of Q2 = (a,b) into N cells and we have

a=2T1 <x§<---<a:N+;:b, h = max h;,
2 2 2 7

1 (2.8)
I = (1}'—%75’3%%)’ hi = Tipl =T 1, Ti= 5(331_% —I-ZEH_%).
And each cell I; is divided into k + 1 CVs that
Tinl =00 ST < S Tikdl = Tig L (2.9)

Lig = (i, Tigs1), hig=xigp1 —zi0, 0<L<E.



In the SV scheme (2.6), we take the trial solution space V}, as follows:
Vi, = Vil = {vy € L*(a,b) : vl € PR(L), i=1,...,N}, (2.10)

where P¥(I;) denotes the set of all polynomials of degree at most k on I;. And the test function
space Wy, is given as follows:

Wy, = Wy = {w € L*(a,b) : w1, € P°(I;y), Vi, ¢}, (2.11)

i.e., the test function space is the collection of piecewise constant functions. The semi-discrete SV
scheme (2.6) becomes: Seek up(-,t) € V¥ such that

/Ii (Ovun + Ox f (un) )wp dz + (fH% - f((uh);_%))(wh);_% .12)
— (Fiey = F(@n)f ) ) wn)f s =0, Yy € W,
2 2
where fH% = f‘((uh);%, (uh):r%) is the monotone flux and (uh)i% =uy (:cir%,t) are the left and
right limits of uj, at # = z;, 1. The SV scheme (2.12) can also be simplified into the following form:
2

/ (Brup)wn dz + fior (wn);peq — Frelwn)f, =0, Yw, e W VI<i< N, 0<L<k, (213)
I e

where (wy,);, (resp. (wp);,) is the left (resp. right) limit of the discontinuous function wy, at the
subdivision point z = z; 4, i.e. (wh)ﬁ = wy (:Eiié), and the numerical flux ﬁ,g = f((uh);g, (uh)jg)
with fA’H_% = f;’k_l’_l = ﬁ+1,0. Since uy, stays smooth inside I;, then by the consistency of the

monotone flux, we have f is continuous at the subcell interfaces inside the cell I;, i.e. ﬁg =

~

f((uh);,za (uh):g) = f(uh(xi,bt)) for £=1,....k.

2.2 Spectral Volume Scheme for 2D Hyperbolic Conservation Laws

Now we consider two-dimensional conservation law (2.1) (d = 2) in the following;:
U + f(u)l" + g(u)y =0, (JZ’, yvt) € 1 x (OaT]7 (214)

on the squared domain Q = (a,b) x (¢, d). For simplicity, we take the Cartesian grid as the partition
of Q, i.e.

Q= U@jK@j, Ki,j =1I; x Jj, h = max(hf, hz;),

= X. — X

Li=(zgmigy), bi=wp—w1, w=g(e 1 +o0), (2.15)

2

1
J— ¥y _ R
Jj = (yj,%,yﬂ%), h]’ =Yl Y1 Y= §(yj,% —I—ijr%)-

We then continue to take the Cartesian grids inside the element K; ;, with k4 2 subdivision points
in the z-direction and y-direction respectively, then we have (k4 1)? subcells on each element K; ;,
denoted as K ¢, in the following.

Kijom =Lig % Jjm:  Lig= (zig,zies1)s  Jjm = WjmsYjme1), 0<Lm <k, (2.16)

Ti_1 = Tip <xin < < Tyl = Tipls, Y1 =Yjo <Yj1 < <Yjk+1 = Yj+l-

5



We consider the trial solution space as the tensor product of V}, defined in (2.10), as well as the
test function space. The SV scheme (2.6) for (2.14) is presented as follows: Seek up(-,t) € V¥ x V£
such that Vi, 7 and Vwy, € WF x WF, it holds that

/ (Bvun + 0w f (un) + Byg(up))wy dzdy

Kij
Tird ny” (2.17)
+ /Jj (f— f(Uh)>wh E;Zj dy + /I (?— g(uh))wh Ex::';’; dz =0,

where fand g are the monotone numerical fluxes defined on the element interfaces. Similarly, the
SV scheme (2.17) can be rewritten as follows: V4,5 and Vw;, € WF x WF, seek uy(-,t) € ViF x VF
such that

($ZZ+179) N (x’y;7n+1)
dy + / gwp
I

+
wi,é,y 1,4

/ (Opup)wp dedy + [ fuwp
K

i,5,6,m Jj,m

eyl

with the internal fluxes are given as

-~

):J/C\

) = f(uh(l‘i,f)y)t))a 1<l<LE,

(”szy ("%févy

o~

(e,
3 Analysis of the Spectral Volume Methods

Q)

(x’y;fm) = g(uh(xvyj,mat))a 1<m<k.

In this section, we will study a class of the SV schemes (2.6) for linear scalar conservation law, i.e.
f(u) = a-Vu in (2.1) with a constant vector @ = (ay,--- ,aq)” € R Without loss of generality,
we take @ = (1,--- ,1)7. Throughout the paper, we take the notation A < B which means that
there exists a constant ¢y > 0 independent of h such that A < ¢gB. With a specific setting of the
subdivision points, we are able to derive the energy-boundedness and a priori error estimates of the
numerical solution in the semi-discrete analysis. In particular, we adopt the so-called correction
function technique in [5, 6] to deduce the superconvergence of the numerical solution. Before we
proceed, let us first define a class of subdivision points which lays the foundation for everything
that follows.

3.1 Preliminaries

Let us consider the distribution of the subdivision points {xi,g}ifig defined in (2.9) on the element
I; in one dimension. By a linear transformation oy = 2(x;¢ — x;)/h;, we have transformed the
subdivision points to {Oég}?i& on the reference element [—1, 1] with —1 = ap < ag < ... < a1 = 1.

Now we define the space of piecewise constant functions on [—1, 1] that

W= {w € L*([-1,1)) | w| y€PYL=0,... Kk} (3.1)

Qp,Qpy1



And then we define a projection P : P¥([—1,1]) — W such that for any given function p(s) €
P¥([—1,1]), we have Pp € W which satisfies

1
/_ (=Pp)gds =0, Vge PI(L)), )

Pp(—1) = p(-1).

To obtain the well-posedness of the projection P, we suppose p(s) = Zf:o pist and Pp(s)|(a1,141) =
q, 1 = 0,...,k. Taking ¢q(s) = s', I = 0,...,k — 1, successively, the projection (3.2) can be
represented in the matrix-vector form

Ap =By,
with 7= (po,p1,.--.pk)", = (90,01, .., qx)" and
a1 — Qo Qo — A1 — O
A = . k: N . k: i . i . i ’
rlof —ag) glag —af) -+ glogy, —og)
1 0 0
iﬂ%, i=0,---,k—1 and mod (i +j,2) =0,
B;j =14 0, i=0,---,k—1 and mod (i +j,2) =1,
(_1)ja i = k.

Bi;; is the entry of the matrix B at the i-th row and j-th column. Since

a1 — Qg g —aQyp e Qg1 — Qg Qa1 Qg ot Qg
Det(A) = : : : _ : :
1 1 1
%(O‘]f —ag) %(O‘é —af) - %(O/EH - ag) Eo‘lf EO‘IS U E%4
1 0 o 0 1 1 ... 1
(—1)F
= II (ej—a)#0
T1<i<g<k+l

Therefore, ¢ = A~'Bp. Once the subdivision is given, the projection Pp can be defined uniquely.
This indicates the operator P defined above is well-posed.
Now we take a series of piecewise constant functions Q),,, € W that

Qm(s) =PLy(s), m=0,...,k, (3.3)

and L, (s) is the Legendre polynomial of degree m on [—1,1]. Some properties and formulas of the
Legendre polynomials can be found in Appendix A.1. With the definition of the projection P, we
immediately have Q,,(—1) = L, (—1) = (—1)™. Moreover, we have the following lemma.

Lemma 3.1. The following relations

/l Li(s)Qm(s)ds=0, m=0,...,k—1,
! (3.4)

1
/ Lk(S)Qk(S) ds =2C;, Ci>0.
-1

7



hold if and only if the subdivision points {ag}éle are the zeros of the polynomial

Rils) = Lu(s) + c(s + DIL(s), > —k<kl+1) (3.5)

1

To prove this lemma, we first need to make sure the zeros of the polynomial Rj(s) are within
(—1,1), which is ensured by the next lemma. The proof of Lemma 3.1 is given in Appendix A.2.

1
Lemma 3.2. Under the condition ¢ > L) the given polynomial Ry(s) defined in (3.5) has

k distinct zeros, and all of them are located within (—1,1).

The proof of Lemma 3.2 is given in Appendix A.3.

In Figure 1, we plot the function Rg(s) with & = 1,2,3,4 for various values of c. We can see
that when ¢ > —m, the function Rjy(s) does have k distinct solutions in (—1,1), coinciding
with our analysis. While if ¢ < —ﬁ, the number of zeros of Ry(s) within (—1,1) would be less
than k, then the dimension of the trial space does not match that of the test function space. Thus,

1

we only consider the case ¢ > R in the following.

20[ . 30F

Figure 1: Plots of the function Ry (s) for various values of c¢. Solid line, ¢ = — 2= ; dotted line,

E(E+1)
—0 ; _ 1
c = 0; dashed line, ¢ = o



Combining (3.2) and (3.4) together, we can see the Legendre polynomials L,,(s) and the piece-
wise constant functions @Q,,(s) = PL,,(s), m =0, ...,k satisfy the following conditions:

1
2
/_1 Ly(s)Qm(s)ds 5gm2£+ 1 0<t,m<k, (£,m)# (k,k),

! B 2 (3.6)
/1 Li($)Qu(s)ds = a5
¢

Qe(—1) = Ly(—1) = (-1)",

As we shall see later, these conditions play a crucial role in the deduction of the energy-boundedness
of the SV scheme (2.6).
Now let us give the definition of the subdivision points as follows.

Definition 3.3. The subdivision is called an admissible subdivision if the transformed subdivision
points {a}s_, are taken as the zeros of the polynomial Ry (s) defined in (3.5).

3.2 Spectral Volume Method for 1D Linear Scalar Conservation Law

In this subsection, we will consider the spectral volume (SV) method with an admissible subdivision
for the one-dimensional linear scalar hyperbolic conservation law. We then study the properties of
the numerical scheme, including energy-boundedness, optimal error estimates and superconvergence
result.

The SV scheme (2.12) for the linear scalar hyperbolic conservation law u; + u; = 0 is

/ (&,uh)wh dr + Bi(uh,wh) =0, VYwy€ Wflf, i1=1,..., N, (3.7)
I;

with the upwind numerical flux (up);, 1 = (uh)’i_+l in (2.12) and
2 3

Bi(uh, wh) = / (&Cuh)wh dx + [[’U,h]]i_% (wh);%, (38)

i

and [[v]]F% = v(x:r_l) - v(:c;_l) denotes the jump of v at the element interface x = T 1.

Take wy, = 1 in (3.7) and sum it over 7, we immediately obtain the conservation of uy, as follows:

d b

a up(z,t)de =0. (3.9)

3.2.1 Energy-boundedness

Now let us proceed to obtain the stability of the SV scheme (3.7). Define a projection P, : V), — W,
on each cell I;, such that for a given function v, € Vj, Prvp € W), satisfies

/ (Uh — thh)rh dr =0, Vrye€e Pk_l(fi),
I (3.10)

+
(vh — ]P’hvh)F% =0,



which is similar to the projection P defined in (3.2), thus the results in the previous subsection can
be applied directly. Now we take the test function wy, = uy := Pruy in (3.7) and sum it over ¢, we
then obtain

Z/I (Opup)up da + ZBi(Uh, up) = 0. (3.11)

By using the definition of the projection Pj, in (3.10) and the periodic or compactly supported
boundary conditions, we can obtain

Z Bi(up,up) = Z Bi(un, up, — up) + Z Bi(up, up,)
_ Z (/ (@run)un da + [unl,_y (un)fy)  (by (3.8) and (3.10))
- Zi () = () 2lend g ) 12
= 305 () ety =20 )
=3 5l 20
We take the Legendre polynomials {¢; ¢}5_, as the basis functions of V}, on I;:

2(x —
(;%g(:E) =1Ly ((:L’h.%')>, £=0,....,k, z€l, (3.13)

where L;(x) is the Legendre polynomials defined on [—1, 1] of degree £. And we assume the numer-
ical solution wuj has the following form

k
)= uilt) die(z). (3.14)
i £=0
We also take
pio(w) =Proie(z) € WY, £=0,... k. (3.15)

With (3.6) and (3.10), we have that

h;
20+1

/(bz@ szm( )dx—(slm y 0§£7m§k7 (E,m)#(k,k),

N

/Ii Gik(2)pi k() de = (1+k‘)}zl+ck¢) 7 (3.16)
Pie(Ti—1/2) = (-1)%, (=0,.... k.
On the other hand, from the definition of uy, we can obtain
k
up, = Ppup, = Z Z wi 0i0(). (3.17)

1 4=0

10



Therefore,

k
Al(atuh Uhdx:/lz<z Uz ¢ t¢2€ ><Zuzm§02m )d
kok
:ZZ sztuzm/¢z€ Sozm( )d
eoms (3.18)
=Y (uio)tuie | Gip(x)pie(z)da
Chd (&1 1 )
2&(; 501\ o0 (1+k)(1+ck)(ui’k) )
Define the energy function F(uy) as
— 1 1
_ . 32 32
B(un) gjhz(%% 1+ ) (3.19)

Then, plugging (3.18) and (3.12) into (3.11), we can obtain the energy-boundedness of uy, i.e.

1 2

Remark 3.4. Due to the fact that the coefficient of ¥ in the Legendre polynomial Ly, is (Qkk'lw =
m, the energy E(up) can be written as
B(up) = Z /[ () + 5 (un) ) da
where B is given as
b= <h§>2k ((2k: : 1)!!)2 ((1 T k:)h T ok) 2I<:1+ 1) (3:20)

This form of energy can also be found in the VCJH scheme [38]. In fact, the VCJH scheme is
stmilar to the scheme proposed here although they appear in different forms. The decay of the
energy function E(-) with respect to time shows the SV scheme (3.7) is energy stable. In fact, the
SV scheme is stable in the L? norm as well because of the equivalence between \/E(-) and the L*
norm || - || in Vj,.

Remark 3.5. With the suitable choices of ¢ in (3.5), there are two special cases of the polynomial
Ryi.(x), which have been studied in [6].

1. When ¢ =0, Ri(s) = Li(s) and {am}% _; are the Gauss-Legendre quadrature nodes. In this
case,

k—1
) = S ( gty s+ ) 321

11



1
2. When ¢ = e e claim that {am}F,_, are the right Gauss-Radau quadrature nodes. To

verify this claim, we need to show the relation between Ry(s) and Lyyi1(s) — Li(s). By the
properties of Legendre polynomials in Appendiz A.1, we have

+ F 1 (s+ 1)L, (s)

= ﬁ( k1 (s) + Ly(s))

71((2/1@ + 1)Li(s) + (2(k — 1) + 1) Lg—1(s) + - - - + Lo(s)).

—_

-
=+

Given the property (A.9), we have

(2m 4+ 1)(s = 1)L (s) = (m + 1) (Lyng1(8) — Lin(s)) — m(Lim(s) — Lp—1(s)).

Thus, by this recurrence relation we have

Ri(s) = o — ((k: + 1) (L (3) — Lu(s)) — k(Lr(s) — L (s))

k+1s—1

+ k(Li(s) = Li-1(s)) — ( )(Lk 1(s) = Ly—2(s)) + -+~

+2(La(s) = Li(s)) = (La(s) = Lo(s)) + (s = 1) Lo(s))
:%HS L (k4 1)(Lisa(s) — Lu(s)) = i(;;kﬂ(s) ~ Li(s)).

In this case,

k
1
:Zh’(;_;%

where || - || is the L? norm on (a,b). Moreover, the scheme (3.7) is equivalent to the standard
DG scheme, see e.g. [6] for more details.

{0202 = (3.22)

3.2.2 An a priori error estimate

We present the optimal error estimate of the semi-discrete SV scheme (3.7), stated in the following
theorem.

Theorem 3.6. Assume the SV scheme (3.7) has the admissible subdivision defined in Definition

3.8. If the exact solution v € WhH>® (O,T; Wk+1’°°(Q)), then we have the following optimal error
estimate

(- t) = un (1) S (8 + 1AM, (3.23)
with an appropriate initialization.

Proof. Since the exact solution u satisfies the SV scheme (3.7), then we can obtain the error equation
as follows.

/ (Ore)wp dz + Bi(e,wy) =0, Ywy € Wk, (3.24)
I;

12



where e = uj, —u and B(-,-) is given in (3.8). Define an interpolation operator Ij, : WkT1.0(Q) —
V¥ such that for any w € WH+1.0(Q)

Thw(z;,) =w(zig), 1<L0<k+1,VYi, (3.25)

where {z; g}k—H are the subdivision points given in (2.9). Therefore, by the standard approximation

theory [8], we have ||w — Inw| < h¥*!. Now we denote
€ =€ —Eh, E€EpR=Ulp— ]Ihu, EpL=U— ]Ihu. (3.26)

Then the error equation (3.24) can be rewritten as follows.

/ (8teh)wh dr + Bi(eh,wh) = / (6t€h)wh dx + Bi(ah,wh), Ywy € W;]f . (3.27)
Iz' Ii

Assume e, = ), Z];:O eio ®io(x), and we define €}, := Pre), = Zj Z’Z:O eiopie(z) € W[f, where
the projection Py, is defined in (3.10). By taking wy, = €, in (3.27) and summing it over 4, then the
LHS of (3.27) becomes

Z </1 (Oren)en + Bi(e}“gh)) %%E(eh) + ;z:[[eh]]iré : (3.28)

And the terms on the right-hand side of (3.27) become

> / (Bren)en dx = el [Enl] S R/ Elen) (3.29)

i YL

ZBi(ehaeh = (
<Z€z, (en)z pieda + [en],_ (@L)j_é)

oo (3.30)
(;::OQMZ%AI / )odx + [en];_ (eh)j_§>

= Z €h)l ; + (é“h);;%(eh):;% + [[é“h]]i_%(eh):;%) =0.

2

zepdr + [en];_ %(%):F_%)

grb\

kol

The inequality in (3.29) is based on the equivalence relation between y/E(-) and the L? norm in
V.. Finally, plugging (3.28) — (3.30) into (3.27) we obtain

é%E(eh( 1)) S BN E(en(-, 1)) . (3.31)

By Gronwall’s inequality we can obtain \/E(ep(-,t)) < /E(en(,0)) + th*T1. Now we take the
initialization uy (z,0) = I,ug, and since E(-) is equivalent to the L? norm, then we obtain |lep, (-, )| <
t h*+1. With the property of the projection and triangle inequality, we obtain the desired result. [

13



3.2.3 Superconvergence

In this subsection, we consider the superconvergence property of the SV scheme (3.7). Denote
o0 = €p = u — Ipu defined in (3.26). Then we can define a series of correction functions {oy m }
on I; as follows: Vm > 1, op,, € V,f satisfies

k
Z Ohm (Tis) (wh
s=1

=0,

Ii,s—l) =/ (&tah,mq - (atah,mq)i)wh do, Yw, € WE,

foe I (3.32)

(Uh,m)l_’_%

where (w); denotes the cell average of w on I;. Note that the DoF of O'h’m‘ ;. 18 k+ 1, while
the constraints (3.32) has k + 2 conditions. Fortunately, the first equation always holds when wy,

equals to the same constant in the subcells I; ¢, £ = 1,2,...,k + 1. . Therefore, 0}, € V,f can be
determined. In fact, we can obtain the values of oy, ,, at the subdivision points x; ¢, ¢ = 1,2,..., k+1
by (3.32). To be specific, (Uh,m);r; =0 gives op m(xi k1) = 0. And if we take

2

0, € (20, Tir)
wy, =
L, € (Tig, Tigt1)

in (3.32), then we have

Tipl _

Uh,m(wi,é) = / : <8t0'h,m71 - (ato'h,mfl)l) de, £=1,...,k—1
TiL

Therefore, the polynomial o, ,,, could be obtained via interpolation on z; ¢, £ = 1,2,...,k+1. Thus

the definition (3.32) is well-defined. The main result of superconvergence is stated in the following

theorem.

Theorem 3.7. Assume the SV scheme (3.7) has the admissible subdivision defined in Defini-
tion 3.3. Suppose the exact solution of (2.7) uw € WMot2:o0(0, T; WHHLeo(Q)) n Wmotleo (0, T
W2k+100(Q)), and uy, is the numerical solution of the SV scheme (3.7). The initial data is chosen
as up(x,0) = Tpuo + Zzn:(’frl one, and we then have

mo
Up — ]Ihu—i— E Oht
=1

SJ " hmin{k+2+m0,k0+1} , (333)

where ko is the degree of exactness of the quadrature rule with the quadrature nodes {ag}fill.

Before the proof of this theorem, we need some estimation for the correction functions, shown
as in the following two lemmas:

Lemma 3.8. The correction function oy, has the following estimation:
Hah:m”L?(Ii) Sh Hatah,mfluﬂ([i)’ Hatah,mHB(Ii) Sh HatQthm*lHB(]i)’ m > 1. (3.34)
Lemma 3.9. The estimation of the cell averages of the correction functions are given as follows:
(@ong), S KL =0, m—1,

where kg is the degree of exactness of the quadrature rule with the quadrature nodes {Oze}?ill defined

1
in Section 3.1, and ko = 2k when ¢ = P otherwise kg = 2k — 1.

14



The proof of Lemma 3.8 and Lemma 3.9 are given in Appendix A.4 and Appendix A.5, respectively.
Next, we start to prove Theorem 3.7.

Proof. First, we add the correction functions to both sides of the error equation (3.27) and obtain

/ Oy <€h + Zah,€>wh dx + Bi(eh,wh) = / 8,5(20’}%@) wyp, dx + Bi(ah,wh), Ywy, € W}’f
I; I; /—0

=1
(3.35)
From the definition of the correction functions in (3.32), we have
/ (3t0hm 1 — (Oeonm—1) )whdx
I;
k
= ZUh,m(xz‘,s) (wn|, —wn|, 1) - (Uh,m);r (wn), ! + (on,m); 1 (wh);:l
i,8 1,8— 2 2
(3.36)

= —th\l Tnan(Tist1) = Ohm(Tis)) = [onm];— 1 (wn)] s

= _/[ wh(axamm)dl' — [[Uh,m]]i_%(wh);r_% = —Bi(U}%m,wh), Ywy, € W}lf

With B;(ep, wp) = 0 and (3.36), (3.35) can be transformed into the following form:

m m m—1
/ O (eh + Z Jh,g> wp dx + B; <eh + Z Oh,t wh> = / <8tcrh7m Z 8t(7h Y >wh dz. (3.37)
I; I;

(=1 (=1

To have the higher order estimates, we need Lemmas 3.8 and 3.9 for the estimation of the right-
hand side of (3.37), i.e. Oiop,, and (8t0h74)i, £=0,...,m— 1. These two lemmas are crucial in
obtaining the superconvergence result. With Lemma 3.8, we have

Hatah,mHm([i) Sh Hafah»mleLZ)(Ii) SRS hmHa?HUh»OHLQ(E)‘
This indicates
e e e P ] (3.39
From Lemma 3.9, we have the estimates of the cell averages of the correction functions that
(Oonye), SH™F, 0=0,...,m—1. (3.39)

Now we take wy, = Py, (eh + > O'h’g) =én+ >y 0ns in (3.37) and summing it over i, with
(3.38) and (3.39) we can obtain

thE<€h+Z‘7“> Z[[eh—i-iah,e]r

i =1 i+3

m
< hmin{k+1+m,ko+1} E <€h + Z Th £> ’

By the Gronwall’s inequality, we have

E<6h +y Uh,é) () S| E <6h +)° ah,e> (0) + ¢ pmintktltmkotl}
=1 =1
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Now we take the initialization that uy(z,0) = Iyuo(x) — > )% one(2,0), we can obtain

m
E (eh + Z on Z> (t) <t hmin{k+1+m,ko+l} '
=1

This indicates ||e, + > jo; ool S t RRM{FFIHMEF} que to the equivalence of the \/F(-) and the L?
norm ||-|| in V. From the Lemma 3.8, we have ‘|Uh,m“L2(Ii) <h H(?tah,m,le([_) < hmuagnshum(m,

hk—l—l—l—m

then we get ||opml| S . By the triangle inequality, we have

m—1 m
ent+ D one| < |len+ Y ongl| + llonml| S thmmEEEm L (3.40)
(=1 (=1
Set m = mg + 1 in (3.40), we obtain the desired result. O

Therefore, if we take mg > kg — k — 1, then we can obtain

mo t h2k+1 c= L
up, — Ipu + Z ohell S t hFotl — ’ E+1’ (3.41)
— 2k .
=1 th=", otherwise.
Corollary 3.10. Under the conditions of Theorem 3.7, we have
Cuc S (1 + t)hmin{k+2+mo,k0+1}7 Cup 5 t hk+%, (3‘42)

where ey . and e, p are given as

1
1 1 2\ 2
= (TR o)) =mrle e

3.3 Spectral Volume Method for Multi-dimensional Linear Scalar Conservation
Laws

In this subsection, we proceed to extend the previous 1D results to multi-dimensional linear scalar
conservation law. For simplicity, we consider the two-dimensional case, and the results can be
extended to the higher dimensions without any difficulties.

The SV scheme (2.17) can be rewritten as follows: Vwy, € WF x WF, seek up(-,t) € VF x V}F
such that

/ (Oeun)wp, dzdy + By (un, wn) + Bg{j(uh, wy) =0, (3.43)
K;

»J

where BY ;(up,wp,) and BY ;(up, wy) are defined as

(Opup)wp dﬁ?der/J [[Uh]](xi_%,y) wh(xj_%vy) dy,
J

B} i (up, wp) = /

Kij

ng(uh,wh) :/ (ayuh)whdxdy—i—/l[[uh]](m,yj%) wh(x,yf_ )dx,

1
) J=3
i,j

(3.44)

16



with [us] (z,;_ 1 y) = up(z’

)

173/7t)—u (xi_lay7t> and[[uh]]('x y 1)—Uh($y t) h( y_% t)
2
Now let us c0n51der the case that {(zie, yjm)}, 1 < €,m < kareroots of the equatlon Ry () E’ (y) =
0 where Rf; () and RY, (y) are defined as:

Rij(x) = Ry (W) , RY(y) = Ry (W) , (3.45)
J

%

and Ry (z) is the polynomial given in (3.5) with possibly different parameters ¢, and ¢,.
By taking wp = 1 in (3.43) and summing it over ¢, j, we can obtain the conservation of uy as
follows:

d

e / up(z,y,t)dedy = 0. (3.46)

3.3.1 Energy-boundedness

We take the basis functions {(ﬁz () Pj.m( )} on Kj; ; and assume the numerical solution wuy has the
following form:

:C y, Z Z U'L,]Zm ¢z f( )¢],m(y) (347)

i,j 0<l,m<k

Denote the function up = Qpuy, as

Quun(z,y, ) =PEPLun(e,y, ) =D D tijem(t) pie(2)ejm(y). (3.48)

1,j 0<bm<k
Here, ¢; ¢(z) = P{¢;o(x) and @;jm(y) = P} é;m(y) are the functions obtained by the 1D projection
(3.2) on z- and y-direction, respectively. Plugging w;, = uy, into (3.43), we then obtain

/ (Opun)up, dady + By ;(up, up) + B ;(un, up) = 0. (3.49)
K

0]

Let us consider BY;(up,up) at first. We separate BY;(up, up) into two parts:
B j(un, un) = By j(un, un) + By j(un, un — up). (3.50)

For the convenience of analysis, we introduce the following notations:

N

-1 k

Up = Z (u%*(ﬂf, y) + u%k(x)(pj,k(y))a uz}i*(xa y) = uy7m(x>¢j,m(y)7 u%m(.’lf) = Z Ui, j,6,m (bi,é(x)v
1,7 m=0 =0
o k-1 o k
up =Y (UZ,*(:U, y) + uz,k(ﬂf)@j,k(y)), ul (2,y) = D (@)em(y),  uj,(3) =D Uijempie(x)
i m=0 (=0

Then we immediately obtain

ZBZj(Uhvuh) = ;Z/Jﬂ“h]ﬁ(xwgvy) dy
:Z/ up I Titl 1Y) dy + (2k+1)zhy[[ hk]]Q 1

(3.51)
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Different from the one-dimensional case, in two dimensions we have B’ (uh, up, —

by repeatedly utilizing (3.6), we have
> BF;j(un, up, — un)
2%
= Z B (un,ufy , +uf 1 (2)pin(y) —up , —uf 1 (2)dik(y))

= Z BY (ull o (@)66(y), wl () 5(y) — ul (@)1 (y)

i

- Z/J G5k () (9i0(y) — $jk(y)) </] (Ouf ) uhj, Ao + [uf 0,1 (),

k(1 —cy(k —|— 1))
= hY[
2k +1)(2k + 1 cyk: +1 Z [h A1

Therefore, with (3.50) - (3.52) we have

1 vl
ZB (un, un) Z/ w I ity ’y)dy+ 2(k 4+ 1)(cyk + 1) Zh

Similarly, we have

1 X X
ZB (un, up) Z/ Uh* (z Yl 1) dx + (k+1)(czk+1)zhi[[uh,k]]

where uj . and uj , are defined as

+

11—

k
up, (2, y) Z up ((Y)Pie(x),  up(y) = Z Ui gt Pjm(Y) -
m=0

Therefore, from (3.53) and (3.54) we then obtain
S B (un, @) + > BY(up, @) > 0
4. i,j

1
k(k+1)
On the other hand, with the help of (3.6), we can define the energy

E(up) Z/ uhuhdxdy—z Z cem b

1,7 0<t¢,m<k

provided by ¢;,cy > —

where ¢, > 0 are given as

(
(2€+1)z2m+1)’ 0<tm<k-1
1
Com = (2€+1)(k+11)(cyk+1)’ 0<(<k—-1,m=k
2m +1)(k+ 1) (czk + 1)’ =k 0<m<k-—1
1
(k+ 1)2(cok + 1)(cyk + 1) (=m=k
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2
z+2

2

A
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(3.53)

(3.54)

(3.55)
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With (3.49), (3.55) and (3.56), we get

1d
——FE(up) Z/ (Opup)up dedy = — ZB (up, up) ZB (up,up) <0, (3.57)

which implies the SV scheme is energy stable.

3.3.2 An a priori error estimate

In this subsection, we consider the error estimates of the SV scheme (3.43). We adopt some
notations the same as in the 1D case for convenience and hope it would not cause any ambiguities.
Since the exact solution satisfies the numerical scheme (3.43), then we can have the error equation
as follows:

/ (Ore)wp, dzdy + BY (e, wn) + B ;(e,wy) =0, Vuwy, € WEx Wi, (3.58)
K

2%
where e = uj, —u. We also define the projection I: W+1(Q) — th X th such that
th(xi,fa y],m) = w(xi,Za yj,m)a 1< Evm < k+ ]-7 v@,] . (359)
We still denote
€ = €ep — Ep, Ep = Up — ]Ihu, Ep = U — ]Ihu. (360)
Then the error equation (3.58) becomes
/ (Oren)wn dzdy + B j(en, wn) + BYj(en, wh)
Kid (3.61)
= / (Btsh)wh dzdy + B (€h,wh) + B (eh,wh) Ywy € W}]: X W}I: .
K

0]

Let us define

eh=3_ Y Cijum®ie@bim®), = > eijemPie(@)pim(y).

1,j 0<bm<k 1,7 0<Um<k

From the stability analysis, if we take wj, = €, in the LHS of (3.61) and sum it over ¢,j we can
obtain

Z (/K (Orep) e, dxdy + B (eh, én) + B (eh, eh))

i3 i

1d 2 1 yr.oy 12
thE ¢h) Z/J * Tipl ’y)) dy + 2(k+1)(cyk+1) Zhj[[eh,k]]i-i-%

nd (3.62)
1 z 1 i
+2;/Ii [[eh,*]](%yj-i-%)) dx + 20k + D)(cak + 1 Zj:h [[hk]]ﬁ—
1d
el iaE(eh)
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where e} ey ., e% o e% 5 are given as

k1 k
ei’*(l‘,y) = eﬁf(y)gi)i,f(l'); e:ﬁ,é(y) = Z €i5.0,m ¢],m(y), 0 < 14 < k,
£=0 m=0
k-1 k
e (,y) =Y el (@)dmy), e ()= eijumdielz), 0<m<k.
m=0 =0
Also, we have
S [ @enundady < l0ellonl S H (363)
— JK, .
7,7 “J

Therefore, it is crucial to estimate By ;(en, wn) + Bg’j (en, wp,). Our goal is to obtain

S (BEj(enwn) + B (enwn)) S B . (3.64)

0]

Now we consider v = Tu + Ru on K;; for any Tu € P**1(K; ;) which is a (k + 2)-th order
approximation of u, i.e. |Rul| = ||u—Tul| < h**2||ul| grs2. since e, = u—Tpu = Tu+ Ru—1T(Tu+
Ru), then (3.64) is equivalent to

> (Bgfj (Tu — Iy(Tw), wy) + BY (Tu — 1(Tu), wh))

(3.65)
+ 3 (B (Ru—T(Ru). wn) + BYj(Ru — Tn(Ru),w) ) S B .
2y

A direct calculation leads to

3 (Bgfj(Ru — In(Ru), wy) + BY;(Ru — I(Ru), wh)> < B aoy]|.
4.J

Therefore, (3.65) holds true if BY;(Tu — In(Tu), wy) + sz(Tu — I(Tu),wp) = 0. Since I} is a

polynomial preserving operator, then it suffices to show that ¢; = 2**1,3#+1 satisfy
BY(qr — Tnar, wn) + BY (g1 — Tngr,wn) =0,  Ywy, € Wy x Wi (3.66)

When ¢; = zF*!, by the definition of the projection I, we have (qI — ]Ihql)(:civg,y) =0, Vi,
1 </¢<k+1, thus we have

k
BY;(ar — Inqr, wy) = /J > ((ar = Tnan) (@410 9) = (ar = Tnar) (27, 9)) wa(,9)|,c; , dy = 0.
i 6=0 '

(3.67)

And since 9y(qr — Ingr) =0, [gr — Inar] (CL‘,ijr%) = 0, then we have

Bg{j(q[ — thI, wh) =0. (368)
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Hence (3.66) holds true for q; = 2**1. Similarly, we can also prove (3.66) for ¢; = y**!. Plugging
(3.62) — (3.64) into (3.61), we can obtain

1d

L8 Blen) S B S AV E ). (3.69)
By the Gronwall’s inequality we can obtain /E(ep)(t) < /E(en)(0) + t h?:2. By taking the

initialization wuy(z,y,0) = Inup and since \/E(:) is equivalent to the L? norm, we then obtain
len(®)|| < th*+1. With the property of the projection and triangle inequality, we can obtain the
optimal error estimate for the SV scheme (3.43), stated in the following theorem.

Theorem 3.11. Assume the SV scheme (3.43) has the admissible subdivision in both x- and y-
direction, with the initialization up(z,y,0) = Iyug defined in (3.59). If the exact solution u €
Wwhee (O,T; Wk“’OO(Q)), then we have the following optimal error estimate:

() = un (0l S (8 + DR (3.70)

4 Numerical Tests

In this section, we conduct some numerical experiments to verify the theoretical results given in
Section 3. We consider the one-dimensional problems only for illustration purpose. We adopt the
Gauss-Legendre quadrature with 6 nodes to compute the error in L? norm. For smooth problems,
as the spatial error is quite small, we use the ninth order Runge-Kutta method [19] in time dis-
cretization and take the quadruple precision in the computation. While for nonsmooth problems,
we use the third order total variation diminishing Runge-Kutta (TVDRK) method [29] in time dis-
cretization. Different choices of ¢ are taken in Ry(x) to see the performance of different subdivision
in the SV method.

Example 4.1. Consider the linear scalar conservation law that f(u) = u in (2.7) on [0, 27| with
the initial condition ug(x) = cosx and periodic boundary condition. The final time is T = 1.2.

In Table 1, we can see the L? error and order ||u — uyl| is O(RFT!), while |juj, — Iul| is one
order higher than ||u — uy| as the mesh is refined. With the correction functions, the L? error of
llen + 22:1 onell is O(h?%), and e, . is O(h%), which coincide with the theoretical results presented
in Section 3. The convergence order of e,;, is k + 2, a half order higher than the theoretical
prediction. The numerical results in Table 1 are similar to the one in Table 3, with ¢ = 0 and 1,
respectively. When ¢ = 1/(k 4+ 1), from Table 2 we can see the convergence orders of ||u — up||,
|up, —Ipul|, €q,p are similar to ¢ = 0, 1, but it is one order higher in the L? errors of ||ey, +Z§:1 onell
and e, .. Table 4 shows the L? errors and orders in the nonuniform mesh (10% random perturbation
of the uniform mesh) and ¢ = 1/4. Thus in Table 4, for k = 2,4, the convergence orders are similar
as in Table 1 and Table 3, and for k£ = 3, the convergence orders are similar as in Table 2.

Example 4.2. Consider the linear scalar conservation law that f(u) = u in (2.7) on [0, 27| with

sin (2x 03r <z <1llm
the initial condition ug(x) = (22), - " and periodic boundary condition. The
cosx — 0.5, otherwise

final time is T = 10.

In Fig. 2, we show the energy norm /E(-) and L? norm || - | of the numerical solution against
time, with different choices of ¢ in Ry (z) defined in (3.5). Due to the linearity of the SV schemes,
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Table 1: Errors and convergence orders of ||[u —uy||, |len|| = ||un — Lpul|, |len + 25:1 hells €ue, and
eup in Example 4.1, with a uniform mesh h; = 27/N, ¢ = 0.
‘ k ‘ N H |lu — up|| order ‘ |lup, — Ipul||  order ‘ llen +Z§:1 one|l order ‘ Euc order Eup order ‘
24 || 2.441E-04 - 1.769E-05 - 9.249E-06 - 4.479E-06 - 1.262E-05 -
48 || 3.049E-05 3.001 | 1.113E-06 3.990 5.782E-07 4.000 | 2.903E-07 3.947 | 7.970E-07 3.985
9 72 | 9.033E-06 3.000 | 2.203E-07 3.995 1.142E-07 4.000 | 5.802E-08 3.972 | 1.578E-07 3.994
96 || 3.810E-06 3.000 | 6.977E-08 3.997 3.614E-08 4.000 | 1.846E-08 3.980 | 4.998E-08 3.996
120 || 1.951E-06 3.000 | 2.860E-08  3.997 1.480E-08 4.000 | 7.587E-09 3.985 | 2.048E-08 3.998
144 || 1.129E-06 3.000 | 1.380E-08  3.998 7.138E-09 4.000 | 3.667E-09 3.988 | 9.882E-09 3.998
24 || 4.029E-06 - 1.595E-07 - 5.095E-09 - 2.474E-09 - 1.209E-07 -
48 || 2.518E-07 4.000 | 4.982E-09 5.001 7.961E-11 6.000 | 4.000E-11 5.951 | 3.812E-09 4.987
3 72 || 4.975E-08 4.000 | 6.561E-10 5.000 6.989E-12 6.000 | 3.551E-12 5.973 | 5.048E-10 4.986
96 || 1.574E-08 4.000 | 1.557E-10 5.000 1.244E-12 6.000 | 6.356E-13 5.981 | 1.200E-10 4.995
120 || 6.448E-09 4.000 | 5.101E-11  5.000 3.261E-13 6.000 | 1.672E-13 5.985 | 3.937E-11 4.994
144 || 3.109E-09 4.000 | 2.050E-11  5.000 1.092E-13 6.000 | 5.610E-14 5.988 | 1.583E-11 4.996
24 || 5.306E-08 - 1.588E-09 - 1.481E-12 - 7.194E-13 - 1.141E-09 -
48 || 1.659E-09 4.999 | 2.482E-11 6.000 5.774E-15 8.002 | 2.902E-15 7.954 | 1.782E-11 6.001
4 72 || 2.184E-10 5.000 | 2.179E-12  6.000 2.253E-16 8.000 | 1.145E-16 7.973 | 1.567E-12 5.995
96 || 5.184E-11 5.000 | 3.878E-13  6.000 2.256E-17 8.000 | 1.152E-17 7.981 | 2.789E-13 6.000
120 || 1.699E-11 5.000 | 1.017E-13  6.000 3.784E-18 8.000 | 1.940E-18 7.985 | 7.313E-14 5.999
144 || 6.827E-12 5.000 | 3.405E-14  6.000 8.801E-19 8.000 | 4.521E-19 7.988 | 2.449E-14 5.999

Table 2: Errors and convergence orders of ||u — up||, ||up — Ipul|,
Example 4.1, with a uniform mesh h; = 27/N, ¢ =1/(k + 1).

len + 351 onells €ues and e, in

‘ k ‘ N H |lu —up|| order ‘ |lup, — Ipul|  order ‘ llen + 25:1 opell  order ‘ €uc order Cup order ‘
24 || 1.552E-04 - 7.612E-06 - 3.625E-07 - 1.901E-07 - 5.092E-06 -
48 || 1.940E-05 3.000 | 4.752E-07 4.002 1.135E-08 4.998 | 5.926E-09 5.004 | 3.246E-07 3.971

9 72 || 5.748E-06 3.000 | 9.385E-08 4.001 1.495E-09 4.999 | 7.793E-10 5.004 | 6.467E-08 3.979
96 || 2.425E-06 3.000 | 2.969E-08 4.000 3.547E-10 5.000 | 1.848E-10 5.003 | 2.052E-08 3.989
120 || 1.241E-06 3.000 | 1.216E-08 4.000 1.162E-10 5.000 | 6.052E-11 5.002 | 8.425E-09 3.990
144 || 7.185E-07 3.000 | 5.865E-09  4.000 4.672E-11 5.000 | 2.431E-11 5.002 | 4.068E-09 3.993
24 || 2.496E-06 - 8.682E-08 - 1.270E-10 - 6.717E-11 - 5.925E-08 -
48 || 1.561E-07 3.999 | 2.713E-09  5.000 9.925E-13 7.000 | 5.209E-13 7.011 | 1.848E-09 5.003

3 72 || 3.083E-08 4.000 | 3.573E-10 5.000 5.809E-14 7.000 | 3.039E-14 7.008 | 2.436E-10 4.998
96 || 9.756E-09 4.000 | 8.479E-10 5.000 7.754E-15 7.000 | 4.049E-15 7.006 | 5.871E-11 5.000
120 || 3.996E-09 4.000 | 2.778E-11  5.000 1.626E-15 7.000 | 8.483E-16 7.005 | 1.894E-11 5.000
144 || 1.927E-09 4.000 | 1.117E-11  5.000 4.538E-16 7.000 | 2.366E-16 7.004 | 7.613E-12 4.999
24 || 3.238E-08 8.803E-10 2.703E-14 1.428E-14 6.363E-10
48 || 1.012E-09 4.999 | 1.376E-11  6.000 5.251E-17 9.008 | 2.764E-17 9.013 | 9.931E-12 6.002

4 72 || 1.333E-10 5.000 | 1.208E-12  6.000 1.365E-18 9.001 | 7.159E-19 9.011 | 8.729E-13 5.997
96 || 3.164E-11 5.000 | 2.150E-13  6.000 1.025E-19 8.999 | 5.363E-20 9.008 | 1.554E-13  6.000
120 || 1.037E-11 5.000 | 5.636E-14  6.000 1.376E-20 9.001 | 7.188E-21 9.006 | 4.073E-14 6.000
144 | 4.167E-12 5.000 | 1.887E-14 6.000 2.667E-21 9.000 | 1.392E-21 9.005 | 1.364E-14 5.999

spurious oscillations would appear inevitably for problems with discontinuous solutions. Various
treatments were designed to eliminate the spurious oscillations, such as TVD/TVB limiters [39]
and the damping technique [44]. In this example, since we concentrate on the time evolution of

the energy and L? norm, no extra treatments are applied on the SV methods.

Though we only

conduct the semi-discrete analysis of the SV schemes, we can still see all of them decay as time
evolves when the SV scheme (3.7) coupled with the 3rd order TVDRK time discretization. This
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Table 3: Errors and convergence orders of ||u — up||, [[up — Lpull, |len + Zlgzl Thells €ue, and ey p in
Example 4.1, with a uniform mesh h; = 27/N, ¢ = 1.

‘ k ‘ N H |lu — up|| order ‘ |lup, — Ipul||  order ‘ Heh+zlgzl one| order ‘ €uc order ‘ Cup order ‘
24 || 1.380E-04 - 1.036E-05 - 6.165E-06 - 3.013E-06 - 7.781E-06 -
48 || 1.724E-05 3.002 | 6.604E-07  3.972 3.854E-07 4.000 | 1.940E-07 3.957 | 4.930E-07 3.980
9 72 || 5.106E-06 3.001 | 1.314E-08 3.983 7.614E-08 4.000 | 3.871E-08 3.974 | 9.778E-08 3.990
96 || 2.154E-06 3.000 | 4.172E-08  3.987 2.409E-08 4.000 | 1.231E-08 3.982 | 3.099E-08 3.994
120 || 1.103E-06 3.000 | 1.712E-08  3.990 9.868E-09 4.000 | 5.059E-09 3.986 | 1.271E-08 3.996
144 || 6.381E-07 3.000 | 8.271E-09 3.992 4.759E-09 4.000 | 2.445E-09 3.988 | 6.132E-09 3.997
24 || 2.226E-06 - 8.953E-08 - 3.821E-10 - 1.865E-09 - 6.676E-08 -
48 || 1.391E-07 4.000 | 2.792E-09 5.003 5.972E-13 6.000 | 3.004E-11 5.956 | 2.107E-09 4.986
3 72 || 2.748E-08 4.000 | 3.677E-10  5.000 5.242E-14 6.000 | 2.665E-12 5.974 | 2.793E-10 4.984
96 || 8.696E-09 4.000 | 8.724E-11  5.000 9.330E-15 6.000 | 4.768E-13 5.982 | 6.644E-11 4.992
120 || 3.562E-09 4.000 | 2.859E-11  5.000 2.446E-15 6.000 | 1.254E-13 5.986 | 2.180E-11 4.993
144 || 1.718E-09 4.000 | 1.149E-11  5.000 8.191E-16 6.000 | 4.208E-14 5.988 | 8.772E-12 4.994
24 || 2.917E-08 - 8.823E-09 - 1.186E-12 - 5.779E-13 - 7.760E-09 -
48 || 9.117E-10 5.000 | 1.379E-11  6.000 4.623E-15 8.003 | 2.325E-15 7.958 | 1.211E-11 6.002
4 72 | 1.201E-10 5.000 | 1.210E-12 6.000 1.802E-16 8.002 | 9.162E-17 7.975 | 1.064E-12  5.998
96 || 2.849E-11 5.000 | 2.154E-13  6.000 1.805E-17 7.999 | 9.222E-18 7.981 | 1.893E-13  6.000
120 || 9.336E-12 5.000 | 5.646E-14  6.000 3.028E-18 8.000 | 1.552E-18 7.986 | 4.962E-14 6.001
144 || 3.752E-12 5.000 | 1.891E-14 6.000 7.041E-19 8.001 | 3.617E-19 7.989 | 1.662E-14 5.999

Table 4: Errors and convergence orders of ||u — up||, [Jup, — Lpull, |len + Z?:l hell, euc, and ey, in
Example 4.1, with 10% random perturbation of the uniform mesh, ¢ = 1/4.

‘ k ‘ N H |lu —up|| order ‘ |lup, — Ipul|  order ‘ llen —O—ZLI opell  order ‘ €uc order ‘ Cup order ‘
24 || 1.759E-04 - 9.381E-06 - 1.702E-06 - 8.297TE-07 - 9.317E-06 -
48 || 2.285E-05 3.240 | 6.087E-07 3.856 1.032E-07 4.409 | 5.132E-08 3.827 | 6.551E-07 3.848
9 72 || 6.619E-06 2.968 | 1.188E-07 4.199 2.056E-08 3.867 | 1.060E-08 4.109 | 1.385E-07 3.770
96 || 2.818E-06 2.970 | 3.648E-08 3.928 6.490E-09 4.293 | 3.309E-09 4.204 | 3.967E-08 4.822
120 || 1.429E-06 3.247 | 1.535E-08 4.075 2.644E-09 4.014 | 1.369E-09 3.928 | 1.754E-08 3.281
144 || 8.176E-07 2.615 | 7.239E-09 4.333 1.266E-09 4.088 | 6.592E-10 3.757 | 9.307E-09 4.065
24 || 5.534E-06 - 2.471E-07 - 1.442E-10 - 7.934E-11 - 8.385E-08 -
48 || 2.994E-07 4.037 | 7.045E-09 5.323 7.601E-13 7.835 | 6.651E-13 7.233 | 3.185E-09 4.764
3 72 || 6.497TE-08 3.979 | 8.104E-10 5.184 4.107E-14 7.083 | 3.702E-14 7.134 | 4.747TE-10 4.707
96 || 2.115E-08 3.929 | 2.376E-10 4.211 5.494E-15 7.464 | 5.163E-15 7.144 | 1.179E-10 5.470
120 || 8.840E-09 4.060 | 8.279E-11  4.826 1.181E-15 6.708 | 1.050E-15 7.340 | 4.093E-11 4.529
144 || 4.332E-09 4.106 | 3.096E-11 5.118 3.214E-16 7.307 | 2.870E-16 7.107 | 1.696E-11 5.336
24 || 3.288E-08 - 1.123E-09 - 2.685E-13 - 1.050E-13 - 1.464E-09 -
48 || 1.143E-09 5.379 | 1.578E-11  5.772 8.491E-16 8.366 | 4.695E-16 8.505 | 2.316E-11 5.878
4 72 || 1.471E-10 4.873 | 1.500E-12  6.847 3.655E-17 7.831 | 1.805E-17 8.346 | 1.938E-12 6.118
96 || 3.459E-11 5.205 | 2.623E-13  6.125 3.494E-18 7.654 | 1.908E-18 8.578 | 3.345E-13 6.083
120 || 1.200E-11 4.909 | 6.902E-14 5.501 5.855E-19 9.097 | 3.383E-19 7.242 | 9.016E-14 5.972
144 || 4.628E-12 5.053 | 2.206E-14 6.420 1.417E-19 7.570 | 7.524E-20 8.373 | 3.109E-14 6.288

also confirms our theoretical results.

5 Concluding Remarks

In this paper, we study a class of spectral volume (SV) methods for linear scalar conservation
laws, where the subdivision points are the zeros of a specific polynomial with a parameter in it.
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Figure 2: The energy norm and L? norm of the numerical solution in Example 4.2. k = 2, N = 288.
Solid line, ¢ = 0; dashed line, ¢ = 1/3; dash-dotted line, ¢ = 1.

With different choices of the parameter, the subdivision points are also changed accordingly, as
well as the SV method. For some specific choices of parameters, the SV method could reduce
to some existing schemes, such as the discontinuous Galerkin (DG) method, thus it is natural to
analyze the SV method in the Galerkin framework. By writing the SV scheme into the Petrov-
Galerkin form, we mimic the standard semi-discrete analysis of the DG method, and show the
energy stability and error estimates for one- and two-dimensional problems. The key ingredient
of the analysis is the orthogonality property between the selected functions in the trial solution
space and the test function space, which is determined by the zeros of the specific polynomial. By
adopting the so-called correction function technique in [5], we then obtain the superconvergence
results of the numerical solution. The error between the numerical solution and projection of the
exact solution would be O(h?**1) with a specific subdivision (when the SV method is equivalent
to the DG method) or it would be O(h?*) otherwise, depending on the exactness of the quadrature
with the subdivision points as the quadrature points. To verify the theoretical results, we show
some numerical tests with different choices of parameters and the numerical results coincide with
the theoretical results well. The technique proposed here is not directly applicable to nonlinear
conservation laws, since the orthogonality property cannot be used when treating the nonlinear
term. Therefore, the extension of the current analysis to nonlinear conservation laws would be one
of future works.

A Some formulas and proofs of some lemmas

In this section, we present some basic formulas and the proofs of some lemmas used in the paper.

A.1 Properties of the Legendre polynomials

Here, we give some properties of the Legendre polynomials we used in our analysis.

Prop 1. Orthogonality:



Prop 2. Point values:

Ln(_l) = (_1)77,’ Ln(l) =1 (A 2)
Prop 3. Rodrigues’ formula: .
Lnls) = g (52— 1) (A.3)
Prop 4. Explicit representations:
n 2
Ly(s) = 2% n;) (Z) (s —1)" (s +1)™ (A.4)
Prop 5. Recurrence relations:
52 —
( n YLt 9) = sLals) -~ Lo (o). (A-5)
nr1(s) = (n+1)Ln(s) + sL;,(s), (A.6)
nr1(s) = (2n +1)Ln(s) + (2(n = 2) + 1)Ln2(s) + (2(n = 4) + 1) Lp—a(s) + -+ (A7)
(2n + 1) Ln(s) = Ly 11 (s) = Ly 1 (s), (A.8)
(n+1)Lpt1(s) = 2n+ 1)sLy(s) —nLy—1(s). (A.9)

A.2 Proof of Lemma 3.1

Suppose {a,}5_, are roots of Ry(s). Denote a polynomial Sy 1(s) = (s—1)Ry(s) on [-1,1]. Hence,
Skr1(ar) = -+ = Spy1(ar) = Skr1(1) = 0 and Sy 1(—1) = —2Lk(—1) = 2(—1)**+1. Moreover, for
Qmn(s) defined in (3.3), we assume

Qm(s)’(ae,awl) = qmue, £=0,...,k,

then we have

1 k
/ S (6)Qn ()5 = Yt St (I3 = —(—1)" 2D
- n=0

[ 2, mod(k+m,2) =0,
| -2, mod(k+m,2)=1.

(A.10)

On the other hand, using the properties of the Legendre polynomial in Appendix A.1, we have

Spi1(s) =(s — 1)Ly (s) + c(s* — 1)L),(s)
=(s — 1)Ly(s) 4+ ck(sLi(s) — Li_1(s)).

By taking the derivative of S11(s), we can obtain

Sir1(s) = (1 + ck)Ly(s) + (1 + ck)sLy(s) — Li(s) — ckLj,_;(s)
(1 + ck)Lg(s) + (1 + ck) (Lj1(s) — (k4 1)Li(s)) — Ly(s) — ckLj_,(s)
(1+ ck)Lg(s) + (14 ck) ((2k 4+ 1)Li(s) + Lj,_1(s) — (k + 1) Li(s)) — L, (s) — ckLj,_,(s)

+
+
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=1+ ck)(k + 1)Ly (s) — Ly.(s) + L_1(s)
= (1+ ck)(k+1)Li(s) — (2(k — 1) + 1) Lp_1(s) — (2(k

—3)+ DL as) —
+ (205 — 2) + 1) Ly_a(s) + (2(k — 4) + 1) Lyp_a(s) + - -

Hence, we have

1

1
/ S (5)Qun(s) ds = (14 )+ 1 | mo@n(s

-1

1
em) [ La(Qa(s) =2 mod(k—m.2) = 0.m £k (A11)

1
+ —(2m—|—1)/ Lon()Qm(s) = =2, mod(k —m,2) = 1:
-1

0, m = k.

Comparing (A.10) with (A.11), we have

1 0, m=0,...,k—1,
| Lo@n(s)ds = 2 -

-1

1

(1+k)(1+ck)
Conversely, suppose (3.4) holds. Define a polynomial on [—1, 1]:

i.e., (3.4) holds with Cj, =

Siri(s) = ails — ar) -+ (s — ap) (s — 1),

k+1

where ay, is a scaling constant such that Sjy1(—1) = 2(—1)*1. Therefore,

L ~
[ Ba(6)@m(s) ds = —mpSa(-1) = 21+ (A12)

On the other hand, since {L,(s)}}_, is a set of basis functions of polynomial degree at most k,
then S, (s) can be presented as

k
Sir1(s) = beLy(s).
=0
Then we have

1 k 1
/ Si1(8)Qm(s)ds = by / Li()Qm(s) ds
-1 (=0

-1

5 (A.13)
by, m=0,....k—1,
=< 2m+1
2CLb,, m=k.

Comparing (A.12) with (A.13), we obtain

om + 1
m; 2(—1)Ftm = (~1)Fm(2m 4+ 1), m=0,.... k-1,
S 2(—1)%k ! k
—2(— =—. m==k.
2C, Cy’



Therefore, by the properties of the Legendre polynomials given in Appendix A.1, we have

Ss1(s) = Ch Lk( ) = (2(k = 1) = 1)Ly_1(s) — (2(k = 3) = 1) Ly—3(s) —
4 (20k — 2) + 1) Ly_a(s) + (2(k — 4) + 1) Lyp_a(s) + - -

kam )~ Li(s) + L1 (9)
- @Lm )~ L(s) — eIy (5) + (14 k) (L (s) — (26 + 1) La(s))
@Lk( s) — Lj(s) — ckLj,_1(s) + (L + ck) ((k + 1) Ly(s) 4 sLj,(s) — (2k + 1) Ly(s))
<c1*k (14 k) (k + 1)) Li(s) + (1 + ek)sLi(s) — Li(s) — ckLi1(5))
By taking ¢ = W — % so that (;k — (14 ck)(k+1) =0, then we have

Sp1(s) = (14 ck)sLy(s) — Li(s) — ckLy_1(s) + C
= (s — 1)(Li(s) + (s + 1)L (s)) + C,

where C' is a constant. Since §k+1(1) = 0 implies C = 0, then we have

ap (s —aq) (s —ag) = Li(s) + c(s + 1)L (s) = Ri(s),
which indicates {a,}%_, are the roots of Rj(s).
A.3 Proof of Lemma 3.2

First, we prove that Rj(s) given in (3.5) has k distinct zeros in (—1,1). Since

k+1

(s ) (s - 1)
k k
— % <(S—|— 1)%(82 o 1)k’> o %(82 o l)k

k

=1 (2ks(s + 1)(s? = 1)F 1 — k(s? — l)k)

Therefore, combining with the property (A.3), we can have

2" kIR, (s) = c(likk <(s —DF 4 2cks(s+1)(s2 — 1) — ck(s® — 1)k)
k
:% [(s — 1R (s + )R (1 + ck)s — (1 — ck))} ,
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Note that s = —1 and s = 1 are the roots of the polynomial Gog(s) = (s — 1) 1(s + 1)"((1 +
ck)s—(1— ck:)) with multiplicity k£ and k — 1, respectively. Hence, by repeatedly using the Rolle’s
theorem, we have Ry (s) has at least (k — 1) different roots between -1 and 1. Given the expression
(A.4), we know that

= 3 () (k= = 1 o 1) s = 1 1)
m=1

1 _ 1 _
+ k(s + DRy ekl = k-1,
This tell us that L} (1) = 3k(k + 1), and Ry(1) = Lg(1) + 2¢Lj (1) = 1+ ck(k + 1) > 0 when

c> —m. On the other hand, we know that Ry(—1) = Li(—1) = (—1)¥. Therefore, if k is odd,

then we have Ri(—1) = (—1)¥ = —1 < 0 and Ry(1) > 0, and it indicates Ry (s) has odd zero points
in (—1,1). From above deduction, we know Rj(s) has at least (k — 1) different roots between -1
and 1 and has at most k roots, thus Ry(s) has k distinct roots within (—1,1). Similarly, if % is
even, then Ryp(—1) = (—=1)* =1 > 0 and Ry(1) > 0, Ri(s) has even zero points. Consequently,
Ry (s) has k distinct zeros in (—1,1).

A.4 Proof of Lemma 3.8

Let us estimate oy, ,,, first. Assume oy, ,,, = ZIZ:O(O'h’m)i,g¢iyg<$) on I;, and {(ﬁi,g}fzo are defined in
(3.13). It suffices to estimate the coefficients (op,m)i¢, 0 < € < k. From (3.36), we obtain

| Bi(oh,ms wn)| < 1000hm—1ll 21, lwnll L2z, - (A.14)
Now let us take wp, = @; 4+ i k-1 in Bi(oh m, wp) where {QDM}];:O are given in (3.15), then we have
Bi(Ohm> ik + ik—1) = (Ohm), k/ G i Pik—1 de. (A.15)
b} Il
Since fIi ¢ ) Pik—1dz = 2, then by (A.14) and (A.15) we have

1
’(Uh,m)i,k’ < h2 \\8tah7m_1]]L2(Ii) . (A.16)
Now taking wy, = @i k-1 + @ik—2 in Bi(oh,m,wn), we have
Bi(oh,ms @ik—1 + Pik—2)

= / ((Onm)ikdin + (Onm)ik-10i k1) (Pig-1 + Pig—2) dz (A.17)

=2(0nm)ik +2(Ohm)ik—1-
Thus, from (A.14), (A.16) and (A.17) we can obtain
1
‘(Uh,m)i,k—l‘ 5 h2 Hato'h,m—l HLQ([i) .
Similarly, we have the estimates for the coefficients (o )ie, 1 <€ <k —2:

[(Ohm)ie] S h%HatO'h,m—lHLz([i)y 1<¢<k-2.

By the constraint (Uh,m)i—% = 0, then we can also have ‘(oh,m)i,0| < h3 H&‘/ahvm—luﬁ(h)' Finally,
with the estimation of the coeflicients (o, )¢, We can obtain HahvaLQ(Ii) <h H@tahm_lHLQ(m.
By taking the time derivative of (3.32) and follow the same lines above, we can also obtain
[0l 2,y S h HanfT_le(zi)'
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A.5 Proof of Lemma 3.9
First let us define an interpolation
I:C%-1,1]) = PH([~1,1]), Tw(oy) =w(a), £=1,...,k+1,

where {ozm}]”]L are the zeros of the polynomial (s — 1)Rj(s). Then we have

/1 (p—]Ip) ds =0, VpEPkO([—l,l]), (A.18)
-1

1
P otherwise kg = 2k — 1.
To obtain the degree of exactness of the quadrature rule, we can check the representation of (s —
1)Rk(s) by the Legendre polynomials (see e.g. [4, Theorem 6.1.1]). The quadrature rule with

where the degree of exactness kg = 2k when ¢ =

nodes {ay}itl is exact for PF+H1H7([—1,1]) if there exist the numbers fi,41, ..., ux41 such that
k+1
(s = DRi(s) = Y Ly (A.19)
v=r+1

By the properties of the Legendre polynomials in Appendix A.1, we have
(s = 1)Rp(s) = (s — 1) Lp(s) + c(s* — 1)L},(s)
=5sLy(s) — Ly(s) + ck(sLi(s) — Ly—1(s))
1+ ck
= — ckLi_1(s) — Li(s) + ((k + 1) Lyy1(s) + kLy_1(s)) (A.20)

2k +1
k(1 ;kc(f;r D) p )= L) 4 & +2c:)+(k1+ 1)

k+1(8) -

1
Therefore, for ¢ = Pl we have r = k — 1 in (A.19), otherwise r = k — 2. As kg = k+ 1+ s,

then we have obtained the degree of exactness of the quadrature rule.
Now we proceed to prove Lemma 3.9. From the definition of I, in (3.25), we immediately have

(Btah 0 h / atu — ]Ihatu) dz < photl,
For 1 < ¢ <m — 1, we define a class of polynomials

9 - -
Q0 = 532 Yi0, Pig =03 (®ieo1 — (Pie)i), £>1,
(

)

where 9, 'w(z) = [7 , w(y) dy is an antiderivative of w, and clearly ®; is a polynomial of degree

=3

¢+ 1. Assume op, ¢ = Z’;zo(ah74)i,5¢i,s(x) on I;, then we have

Q(atO'h’g)i = 2(8750'}%@)2',0 = / atah’g 8I<I>Z~,0 dx = —Bi(atah,g, 890(1)2'70) (Similar to (336))
I
= / (070ie—1 — (0}0ie-1),) Pipde = / 070i0-1(Pio — (Pig)i) dz
I—L' Iz'

= / Ofcrh,g_l 0, P 1 de = —Bi(&?au_l, 0,®;1) (Similar to (3.36))
I;
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— .. = / a?gh’ei2 8ch)1-72 der=.-.-- = / 8f+10'h,0 ar(I)M dz .
Ii Ii

We also have the remainder for the interpolation I, given as

k+1af+1 k+1
8t€+10h,0 — 8f+1u - ]Ihaf—i-lu — am at u(ﬁ(az)) H(‘T - «Tz‘,s)-

(k+1)! :
k+1
From (A.20), we know that [[(z — x;,) L P*=%=1(L). Since 0,®;, € P‘(I;), then for any
s=1

q € PFo—F=1=¢(1,) we have

/&fﬂah,o 0y ;0 dz :/ i H(x—:ci7s)(9$‘1>i,e($) dr

I; I; (k+1)! e Aol
= z —q(x T —i5) 0P 0(x) dz,
I; (k+1)! i
For x € I;, we have
: Ok o (g (x)) ookt |TT k1 -1
qepkor—%l_nl—f(l-) ‘ (/; +1)! B q(:v)’ SR ' H(‘T —@is)| S P |0pi(@)] S PTT

s=1

This indicates ‘ Ir 8f+lah70 0Py dx‘ < h*ot1! by plugging the above estimates into (A.21), and it
results in ‘(&tah’g)i! < hko+l thus completes the proof.
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