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Abstract

This paper develops energy-preserving discontinuous Galerkin (DG) methods for the

Vlasov-Ampère (VA) system coupled with the Dougherty-Fokker-Planck (DFP) collision

operator. While the classical VA system has been extensively studied, the inclusion of the

collision operator introduces new challenges in conserving the total energy of the system.

To address this, we design two energy-conserving temporal discretization methods: a

second-order explicit scheme and a second-order implicit-explicit (IMEX) scheme. These

schemes are coupled with the DG method, specifically using the local DG (LDG) method

for the DFP part. We prove that the fully discrete schemes conserve the total particle

number and total energy of the VA-DFP system at the fully discrete level. We further

establish the L2 stability of the fully discrete explicit scheme. Numerical experiments

are conducted to assess the accuracy, conservation property, and performance of the

proposed schemes.
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1 Introduction

The study of plasma, an ionized state of matter that plays a crucial role in various scientific

fields such as space physics and fusion energy, has always been a focal point in mathematical

modeling. In plasma physics, one of the fundamental mathematical representations is the

Vlasov-Ampère (VA) system, which describes the time evolution of the electron distribution

function, capturing the behavior of charged particles in a plasma. When coupled with the

Dougherty-Fokker-Planck (DFP) collision operator [23], the VA equation becomes an essential

model for studying plasma dynamics. In this paper, we present a novel approach for solving

the VA system with the DFP operator, the VA-DFP system, with energy-conserving numerical

schemes.

After non-dimensionalization, the VA-DFP system is given by

Btf ` v ¨∇xf ` E ¨∇vf “ νQpfq, px,vq P Ω “ Ωx ˆ Ωv, (1.1a)

BtE “ ´J “ ´

ż

Ωv

vf dv, (1.1b)

where fpt,x,vq is the probability density function of electrons at position x with velocity v at

time t, and the electric field E is driven by the current density J. The constant ν represents

the collision frequency. The DFP collision operator, denoted by Qpfq, models the effects of

Coulomb collisions on the particle distribution. It is given by

Qpfq “ ∇v ¨ pT∇vf ` pv ´ uqfq , (1.2)

with the density ρ, the average velocity u, and the temperature T defined as

ρ “

ż

Ωv

f dv, u “
J

ρ
, T “

1

ρd

ż

Ωv

|v ´ u|2f dv, (1.3)

where d represents the number of dimensions.R2 The VA-DFP system is defined on the domain

Ω “ Ωx ˆ Ωv, where Ωx denotes the physical domain and Ωv “ Rd represents the velocity

domain. The boundary conditions are assumed to be periodic in x for simplicity and f Ñ 0

for |v| Ñ 8. It is worth mentioning that in practice, Ωv is truncated to a finite region taken

large enough such that the solution f « 0 at BΩv.

It can be verified that the DFP operator conserves the massR2 particle numberR2, momen-

tum, and energy
ż

Ωv

Qpfq dv “

ż

Ωv

vQpfq dv “

ż

Ωv

|v|2

2
Qpfq dv “ 0. (1.4)

The VA-DFP system (1.1) conserves the total particle number
ş

Ω
f dx dv, and the total energy

TE “

ĳ

ΩxˆΩv

1

2
|v|2f dv dx`

1

2

ż

Ωx

|E|2 dx, (1.5)
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which consists of the kinetic energy and electric energy.

When the collision frequency ν is zero, the VA-DFP system (1.1) simplifies to the classical

VA system, which is regarded as the zero-magnetic limit of the Vlasov-Maxwell (VM) system

and is also equivalent to the Vlasov-Poisson (VP) system under certain conditions. In the

context of Vlasov solvers, one approach is the popular particle-in-cell (PIC) methods [36, 6, 7],

which involve advancing macro-particles in a Lagrangian framework, while solving the field

equations using mesh-based methods. Another approach is the deterministic solvers, which

directly compute solutions under an Eulerian or semi-Lagrangian framework. These solvers

have gained attention for their ability to provide highly accurate results without introducing

statistical noise. Works in this approach include semi-Lagrangian methods [8, 50, 51, 49, 52,

46, 22, 47, 48, 5, 43], the weighted essentially non-oscillatory (WENO) method coupled with

Fourier collocation [63], finite volume methods [28, 29, 25, 15, 56, 55], a spectral element

method [44], Fourier-Fourier spectral methods [39, 40], continuous finite element methods

[58, 59], and Runge–Kutta (RK) discontinuous Galerkin (DG) methods [3, 4, 13, 34, 33],

among others.

One of the main challenges for Vlasov solvers is the conservation of macroscopic quanti-

ties, such as the total particle number and total energy. While most Vlasov methods maintain

particle number conservation, energy conservation is often overlooked, resulting in unphysi-

cal outcomes such as plasma self-heating or cooling. Energy-conserving PIC methods were

proposed for the VA system in [7] and for the VM system in [45]. Energy-conserving finite

difference method was proposed for VP system in [29]. Energy-conserving semi-Lagrangian

methods was proposed for the VA system in [43]. Energy-conserving moment method was

proposed for the multi-dimensional VM system in [57]. Energy-conserving DG spectral ele-

ment method was proposed for the VP system in [44]. Energy-conserving DG scheme at the

semi-discrete level was proposed for the VP system in [3, 4] and for the VM system in [14].

Energy-conserving DG schemes at the fully discrete level were proposed for the VA system in

[9], for the VM system in [10], and for the two-species VA system in [11, 12].

In this paper, we focus on the VA-DFP system, where the incorporation of the collision

term Qpfq introduces new challenges and complexities. Typically, Coulomb collisions in a

plasma are described by the Landau operator [41], which is an integro-differential operator.

The DFP operator [23], also known as the Lenard-BernstainR2 Lenard-BernsteinR2 operator

[42], can be considered as a simplified Landau operator that conserves particle number, mo-

mentum, and energy, as well as decays entropy. It correctly models the behavior of most

particles in a thermal distribution, despite inaccuracies in the high-energy tail. A system

governed solely by the DFP operator, namely ft “ Qpfq, will eventually converge to a steady

state characterized by a Maxwellian function.R2 This operator has been studied in numerical

methods including finite volume methods [53, 54], recovery DG methods [26, 32] and sta-
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bilized RK methods [1]. For numerical methods of other Fokker-Planck-type operators, see

[2, 27, 30, 60, 38] for an incomplete list.

The main objective of this paper is to develop energy-conserving DG methods for the VA-

DFP system (1.1) at the fully discrete level. Building upon the energy-conserving methods

proposed for the VA system in [9], we design two energy-conserving temporal discretization

methods with additional care taken for the DFP operator. The first method is a second-order

explicit scheme that balances the kinetic and electric energies. The second method is a second-

order implicit-explicit (IMEX) scheme that treats the Vlasov part explicitly and the DFP part

implicitly, allowing for a relaxation of the CFL restriction on the time step size and enhancing

computational efficiency. For the discretization in the phase space, we employ the DG methods

[17, 18, 19, 20], which are a class of finite element methods that employ discontinuous piecewise

polynomial spaces for both the numerical solution and test functions. In particular, for the

DFP part involving second-order derivatives, we employ the local DG (LDG) methods [21],

which rewrites the second-order equations as an equivalent first-order system and then applies

the DG method. The LDG method inherits many advantages of the DG methods including the

capability in h-p adaptivity, the ability to handle arbitrary triangulations, efficient parallel

implementation, and the ability of handling complicated boundary conditions and curved

interface. We prove that the two fully discrete schemes conserve the total particle number

and total energy of the VA-DFP system. Furthermore, we establish the L2 stability of the

fully discrete explicit scheme. Numerical experiments are carried out to test the accuracy,

conservation properties, and performance of the proposed schemes. Compared to recovery

DG methods inR2 [26, 32], the LDG method avoids the need for global recovery of derivatives.

Thus it is simpler to implement and exhibits better efficiency. Moreover, the LDG method

offers theoretical stability and can be easily extended to high-dimensional cases.R2

The paper is organized as follows: In Section 2, we introduce two second-order time

discretizations that conserve the total particle number and total energy. In Section 3, we

discuss the fully discrete schemes by using the DG methods for discretizing phase space and

establish the conservation and stability analysis. In Section 4, several numerical examples are

presented to illustrate the accuracy and effectiveness of our energy-conserving schemes. We

conclude the paper with some remarks in Section 5.

2 Numerical methods: temporal discretizations

In this section, we investigate two energy-conserving temporal discretization methods for

the VA-DFP equation (1.1), while leaving the variables px,vq continuous in the discussions.

Let ∆t denote the time step size and pfn,Enq denote the solution at n-th time level. The
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first scheme is a second-order explicit scheme designed as follows:

fn`1{2 ´ fn

∆t{2
` v ¨∇xf

n
` En

¨∇vf
n
“ νQpfnq, (2.1a)

En`1 ´ En

∆t
“ ´Jn`1{2, Jn`1{2

“

ż

Ωv

vfn`1{2 dv, (2.1b)

fn`1 ´ fn

∆t
` v ¨∇xf

n`1{2
`

ˆ

En ` En`1

2

˙

¨∇vf
n`1{2

“ νQpfn`1{2
q. (2.1c)

This scheme is constructed by carefully coupling the Vlasov and Ampère solvers to balance

the kinetic and electric energies. This scheme conserves the total particle number and total

energy, as stated in Theorems 2.1 and 2.2. However, as an explicit scheme, it suffers from the

CFL restriction, especially from the DFP term.

To relax the CFL restriction on the time step size and improve the efficiency, we modify

the first scheme by using a second-order IMEX method that treats the Vlasov part explicitly

and the DFP part implicitly:

fn`1{2 ´ fn

∆t{2
` v ¨∇xf

n
` En

¨∇vf
n
“ νQpfn`1{2

q, (2.2a)

En`1 ´ En

∆t
“ ´Jn`1{2, Jn`1{2

“

ż

Ωv

vfn`1{2 dv, (2.2b)

fn`1 ´ fn

∆t
` v ¨∇xf

n`1{2
`

ˆ

En ` En`1

2

˙

¨∇vf
n`1{2

“
ν

2
Qpfnq `

ν

2
Qpfn`1

q. (2.2c)

Although the nonlinear collision term appears fully implicitly in (2.2a) and (2.2c), they can

be implemented efficiently as follows. Take Equation (2.2a) as an example. By applying the

operation
ş

Ωv
¨p1,v, |v|2{2qT dv to both sides of the equation, together with the conservation

properties of the DFP operator in (1.4), we have

Un`1{2 ´Un

∆t{2
`

ż

Ωv

pv ¨∇xf
n
` En

¨∇vf
n
qp1,v, |v|2{2qT dv “ 0, (2.3)

where U :“ pρ, ρu, 1
2
ρ|u|2`ρd

2
T qT . Clearly Un`1{2 can be explicitly determined from pfn,Enq,

which consequently determines un`1{2 and T n`1{2. Thus the implicit DFP operator Qpfn`1{2q

is linear in fn`1{2, and fn`1{2 can be solved by an implicit linear solver. Equation (2.2c) can

be treated in a similar fashion.

In the following two theorems, we present the conservation properties of the above two

schemes. It follows from the properties of the DFP operator in (1.4) that the conservation

properties of both schemes are the same as Scheme-1 in [9] for the VA system without the

DFP operator. Therefore, the proof of the total energy conservation is similar to the proof of

[9, Theorem 3.1] and is omitted here. The proof of the total partial number conservation is

straightforward by the definition of the schemes and application of boundary conditions.
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Theorem 2.1 (Total particle number conservation). Both the explicit scheme (2.1) and

the IMEX scheme (2.2) conserve the total particle number of the system, i.e.,

ż

Ωx

ż

Ωv

fn`1 dv dx “

ż

Ωx

ż

Ωv

fn dv dx. (2.4)

Theorem 2.2 (Total energy conservation). Both the explicit scheme (2.1) and the IMEX

scheme (2.2) conserve the total energy of the system, i.e.,

ż

Ωx

ż

Ωv

|v|2

2
fn`1 dv dx`

ż

Ωx

|En`1|2

2
dx “

ż

Ωx

ż

Ωv

|v|2

2
fn dv dx`

ż

Ωx

|En|2

2
dx. (2.5)

Remark 2.1. In addition to the good conservation property, the IMEX scheme (2.2) is also

asymptotic-preserving (AP). Specifically, when the initial condition is at equilibrium, as the

collision frequency ν Ñ 8, this scheme will become a second-order explicit scheme applied

to the limiting fluid model (in this case, the Euler-Ampère system). Readers can refer to [37]

(scheme IMEX-II-GSA(2,3,2)) for more details.

3 Numerical methods: fully discrete methods

In this section, we formulate the fully discrete schemes by using the DG methods to

discretize the px,vq variables, and discuss their conservation and stability properties. For

simplicity of discussion, we focus on the schemes in a 1D1V setting as an illustrative example

to show the main idea. The system (1.1) under 1D1V setting is given by

ft ` vfx ` Efv “ νQpfq, (3.1a)

Et “ ´J, (3.1b)

where Qpfq “ Tfvv ` ppv ´ uqfqv with T and u defined in (1.3) under 1D setting.

3.1 Fully discrete scheme with the DG method

In this section, we present the DG method coupling with the time integrators introduced

in Section 2 to formulate the fully discrete schemes.

We start by making a uniform partition of the domain Ω, consisting of cells of Kij “

rxi´ 1
2
, xi` 1

2
s ˆ rvj´ 1

2
, vj` 1

2
s for 1 ď i ď Nx and 1 ď j ď Nv, with the mesh size as ∆x “

xi` 1
2
´xi´ 1

2
and ∆v “ vj` 1

2
´vj´ 1

2
. The uniform mesh is adopted to simplify the presentation,

and our results hold for general cartesian meshes. We further define Ii “ rxi´ 1
2
, xi` 1

2
s and

Jj “ rvj´ 1
2
, vj` 1

2
s. The finite element approximation space is defined by

Vk
h :“ tζ : ζ|Kij

P P k
pKijq, 1 ď i ď Nx, 1 ď j ď Nvu,
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where P kpKijq denotes the set of polynomials of total degree up to k on cell Kij. We also

introduce the following notations to simplify the presentation of the DG scheme

pf, gqKij
“

ż

Kij

fg dx dv, xf, gyIi “

ż

Ii

fg dx, xf, gyJj “

ż

Jj

fg dv. (3.2)

To define the DG method for the system containing second-order derivatives, we first

rewrite (3.1) as an equivalent first-order system

ft ` vfx ` Efv “ ν ppv ` ppv ´ uqfqvq , (3.3a)

p “ Tfv, (3.3b)

Et “ ´J, (3.3c)

by introducing the auxiliary variable p. With a slight abuse of notations, the DG scheme

with the explicit time integrator (2.1) for solving (3.3) is defined as follows: find the unique

functions fn`
1
2 , fn`1, pn, pn`

1
2 P Vk

h such that for i “ 1, . . . , Nx, j “ 1, . . . , Nv,
˜

fn`
1
2 ´ fn

∆t{2
, φ1

¸

Kij

´ pvfn, pφ1qxqKij
´ pEnfn, pφ1qvqKij

`

〈
vf̌n

i` 1
2
,v
, φ1px

´

i` 1
2

, vq
〉
Jj
´

〈
vf̌n

i´ 1
2
,v
, φ1px

`

i´ 1
2

, vq
〉
Jj

`

〈
Enf̌n

x,j` 1
2
, φ1px, v

´

j` 1
2

q

〉
Ii
´

〈
Enf̌n

x,j´ 1
2
, φ1px, v

`

j´ 1
2

q

〉
Ii
“ νQijpp

n, φ1q, (3.4a)

En`1 ´ En

∆t
“ ´Jn`

1
2 , with Jn`

1
2 “

ż

Ωv

fn`
1
2v dv, (3.4b)

ˆ

fn`1 ´ fn

∆t
, φ2

˙

Kij

´

´

vfn`
1
2 , pφ2qx

¯

Kij

´
1

2

´

pEn
` En`1

qfn`
1
2 , pφ2qv

¯

Kij

`

〈
vf̌

n` 1
2

i` 1
2
,v
, φ2px

´

i` 1
2

, vq
〉
Jj
´

〈
vf̌

n` 1
2

i´ 1
2
,v
, φ2px

`

i´ 1
2

, vq
〉
Jj
`

1

2

〈
pEn

` En`1
qf̌

n` 1
2

x,j` 1
2

, φ2px, v
´

j` 1
2

q

〉
Ii

´
1

2

〈
pEn

` En`1
qf̌

n` 1
2

x,j´ 1
2

, φ2px, v
`

j´ 1
2

q

〉
Ii
“ νQijpp

n` 1
2 , φ2q, (3.4c)

ppl, ϕqKij
“

〈
T lf̂ l

x,j` 1
2
, ϕpx, v´

j` 1
2

q

〉
Ii
´

〈
T lf̂ l

x,j´ 1
2
, ϕpx, v`

j´ 1
2

q

〉
Ii
´ pT lf l, ϕvqKij

, l “ n, n`
1

2
,

(3.4d)

holds for all test functions φ1, φ2,ψR2 ϕR2 P Vk
h. Here the operator Qij is defined as

Qijpp, φq “ ´ pp, φvqKij
`

〈
p̂x,j` 1

2
, φpx, v´

j` 1
2

q

〉
Ii
´

〈
p̂x,j´ 1

2
, φpx, v`

j´ 1
2

q

〉
Ii
´ ppv ´ uqf, φvqKij

`

〈
pvj` 1

2
´ uqf̃x,j` 1

2
, φpx, v´

j` 1
2

q

〉
Ii
´

〈
pvj´ 1

2
´ uqf̃x,j´ 1

2
, φpx, v`

j´ 1
2

q

〉
Ii
, (3.5)

where both u and T are determined by applying the Gaussian quadrature rule to (1.3) with

f ’s value obtained at the same time level as p. Specifically, denote tvj`u
k
`“1 as the Gaussian
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quadrature points in Jj and tw`u
k
`“1 as the associated quadrature weights. Then u and T can

be computed by

upxq “

řNv

j“1

řk
`“1 ω`vj`fpx, vj`q

řNv

j“1

řk
`“1 ω`fpx, vj`q

, T pxq “

řNv

j“1

řk
`“1 ω`pvj` ´ upxqq

2fpx, vj`q
řNv

j“1

řk
`“1 ω`fpx, vj`q

. (3.6)

The functions f̌i` 1
2
,v, f̌x,j` 1

2
, f̂x,j` 1

2
, p̂x,j` 1

2
, and f̃x,j` 1

2
are the so-called numerical fluxes,

which are defined at the cell interfaces. The fluxes are crucial for the accuracy, stability

and conservation properties of the methods. For the Vlasov part, the fluxes in (3.4a) can be

taken to be the central flux or upwind flux. It has been investigated in [9] for the VA system

that the central flux causes lack of numerical dissipation, and the numerical schemes produce

oscillations when filamentation occurs. Thus, the fluxes in (3.4a) are taken to be the upwind

flux, given by

f̌i` 1
2
,v “ f̌pxi` 1

2
, vq “

$

&

%

fpx´
i` 1

2

, vq , if v ě 0,

fpx`
i` 1

2

, vq , if v ă 0,
(3.7)

f̌x,j` 1
2
“ f̌px, vj` 1

2
q “

$

&

%

fpx, v´
j` 1

2

q , if pEqIi ě 0,

fpx, v`
j` 1

2

q , if pEqIi ă 0,
(3.8)

where pEqIi “
1

∆x

ş

Ii
E dx, x´, x` are the left and right limits of x at the cell interface in

the x-direction, and v´, v` are the bottom and top limits of v at the cell interface in the

v-direction. For the DFP part, the fluxes f̂x,j` 1
2

and p̂x,j` 1
2

in (3.4d)and (3.5) are taken the

alternating fluxes

f̂x,j` 1
2
“ f̂px, vj` 1

2
q “ fpx, v´

j` 1
2

q, p̂x,j` 1
2
“ p̂px, vj` 1

2
q “ ppx, v`

j` 1
2

q, (3.9)

and the flux f̃x,j` 1
2

is taken as the upwind flux

f̃x,j` 1
2
“ f̃px, vj` 1

2
q “

$

&

%

fpx, v´
j` 1

2

q , if vj` 1
2
ď puqIi ,

fpx, v`
j` 1

2

q , if vj` 1
2
ą puqIi ,

(3.10)

with puqIi “
1

∆x

ş

Ii
u dx.

The fully discrete scheme with the IMEX scheme (2.2) can be formulated in a similar way.

3.2 Conservation properties

In this section, we prove the conservation properties of the proposed schemes. We first

show the following lemmas which play an important role in the proof of the total energy

conservation.
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Lemma 3.1. The DG solution of the auxiliary variable p defined in (3.4d) satisfies

ż

Ωx

ż

Ωv

p dx dv “ 0, (3.11)

ż

Ωx

ż

Ωv

pv dx dv “ ´

ż

Ωx

ż

Ωv

Tf dx dv. (3.12)

Proof. By taking ϕpx, vq “ 1 and ϕpx, vq “ v in (3.4d), we have

ĳ

Kij

p dx dv “

ż

Ii

T pf̂x,j` 1
2
´ f̂x,j´ 1

2
q dx, (3.13)

ĳ

Kij

pv dx dv “

ż

Ii

T pf̂x,j` 1
2
vj` 1

2
´ f̂x,j´ 1

2
vj´ 1

2
q dx´

ĳ

Kij

Tf dx dv. (3.14)

Then by summing up (3.13) and (3.14) over i, j, together with the boundary conditions, we

complete the proof.

Lemma 3.2. For the fully discrete schemes with P k polynomials, the operator Qij defined in

(3.5) satisfies the following properties

ÿ

i,j

Qijpp, 1q “ 0, (3.15a)

ÿ

i,j

Qijpp, vq “ 0, if k ě 1, (3.15b)

ÿ

i,j

Qijpp, v
2
q “ 0, if k ě 2. (3.15c)

Proof. It follows from setting φpx, vq “ 1 in (3.5) that

Qijpp, 1q “

ż

Ii

´

p̂x,j` 1
2
´ p̂x,j´ 1

2
` pvj` 1

2
´ uqf̃x,j` 1

2
´ pvj´ 1

2
´ uqf̃x,j´ 1

2

¯

dx. (3.16)

By summing up (3.16) over i, j, and taking into account of the boundary conditions, we

complete the proof of (3.15a).

If k ě 1, we take φpx, vq “ v in (3.5). It is worth noting that φpx, vq “ v P Vk
h and is

continuous. This allows us to express (3.5) as

Qijpp, vq “

ż

Ii

p̂x,j` 1
2
vj` 1

2
´ p̂x,j´ 1

2
vj´ 1

2
dx´

ĳ

Kij

p dx dv ´

ĳ

Kij

pv ´ uqf dx dv

`

ż

Ii

pvj` 1
2
´ uqf̃x,j` 1

2
vj` 1

2
´ pvj´ 1

2
´ uqf̃x,j´ 1

2
vj´ 1

2
dx.

(3.17)
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By summing over all element Kij
R2i, jR2 and utilizing Lemma 3.1, we have

ÿ

i,R2j

Qijpp, vq “ ´

ż

Ωx

ż

Ωv

pv ´ uqf dx dv. (3.18)

Thus, with the definition of u in (1.3), the proof of (3.15b) is complete.

The proof of (3.15c) follows a similar approach. Since v2 P Vk
h for k ě 2 and is continuous,

we can take φ “ v2 in (3.5) to obtain

Qijpp, v
2
q “

ż

Ii

p̂x,j` 1
2
v2
j` 1

2
´ p̂x,j´ 1

2
v2
j´ 1

2
dx´ 2

ĳ

Kij

pv dx dv ´ 2

ĳ

Kij

vpv ´ uqf dx dv

`

ż

Ii

pvj` 1
2
´ uqf̃x,j` 1

2
v2
j` 1

2
´ pvj´ 1

2
´ uqf̃x,j´ 1

2
v2
j´ 1

2
dx.

(3.19)

Then it follows from summing (3.19) over i, j, considering the boundary conditions, and

applying Lemma 3.1 that

ÿ

i,R2j

Qijpp, v
2
q “ ´2

ż

Ωx

ż

Ωv

vpv ´ uqf ´ Tf dx dv, (3.20)

which, together with the definition of u and T in (1.3), completes the proof of (3.15c).

Theorem 3.1 (Total particle number conservation). The fully discrete scheme (3.4)

conserves the total particle number of the VA-DFP system, i.e.,
ż

Ωx

ż

Ωv

fn`1 dx dv “

ż

Ωx

ż

Ωv

fn dx dv. (3.21)

This also holds for DG methods with the IMEX scheme (2.2) as time integrator.

Proof. The proof is straightforward by setting φ “ 1 in (3.4c), summing over i, j, and applying

boundary conditions and Lemma 3.2.

Theorem 3.2 (Total energy conservation). If k ě 2, the fully discrete scheme (3.4) with

P k polynomial approximations conserves total energy, i.e.,

1

2

ż

Ωx

ż

Ωv

fn`1v2 dx dv `
1

2

ż

Ωx

pEn`1
q
2 dx “

1

2

ż

Ωx

ż

Ωv

fnv2 dx dv `
1

2

ż

Ωx

pEn
q
2 dx. (3.22)

This also holds for DG methods with the IMEX scheme (2.2) as time integrator.

Proof. By taking φ2 “ v2 in (3.4c), which belongs to the space Vk
h for k ě 2 and is continuous,

we have
ˆ

fn`1 ´ fn

∆t
, v2

˙

Kij

´

´

pEn
` En`1

qfn`
1
2 , v

¯

Kij

`

〈
vf̌

n` 1
2

i` 1
2
,v
, v2

〉
Jj
´

〈
vf̌

n` 1
2

i´ 1
2
,v
, v2

〉
Jj

`
1

2

〈
pEn

` En`1
qf̌

n` 1
2

x,j` 1
2

, v2
j` 1

2

〉
Ii
´

1

2

〈
pEn

` En`1
qf̌

n` 1
2

x,j´ 1
2

, v2
j´ 1

2

〉
Ii
“ νQijpp

n` 1
2 , v2

q.

10



Then by summing over all element Kij
R2 i, jR2 and applying boundary conditions and Lemma

3.2, we obtain
ż

Ωx

ż

Ωv

pfn`1 ´ fnqv2

∆t
dx dv “

ż

Ωx

pEn
` En`1

q

ˆ
ż

Ωv

vfn`
1
2 dv

˙

dx,

which leads to
ż

Ωx

ż

Ωv

pfn`1 ´ fnqv2

∆t
dx dv “

ż

Ωx

pEn
` En`1

qJn`
1
2 dx, (3.23)

On the other hand, it follows from (3.4b) that

ż

Ωx

pEn`1
` En

q
En`1 ´ En

∆t
dx “ ´

ż

Ωx

pEn`1
` En

qJn`
1
2 dx. (3.24)

The proof is complete by combining (3.23) and (3.24).

The proof for the fully discrete scheme with the IMEX scheme can be conducted in a

similar way.

3.3 L2 stability

In this section, we establish the L2 stability for the fully discrete explicit scheme.

We introduce the bilinear operators Hx˘pr, sqpvq and Hv˘pr, sqpxq defined as follows

Hx˘
pr, sq “

ÿ

i

´

〈r, sx〉Ii ´ rpx
˘

i` 1
2

, vqspx´
i` 1

2

, vq ` rpx˘
i´ 1

2

, vqspx`
i´ 1

2

, vq
¯

, (3.25a)

Hv˘
pr, sq “

ÿ

j

´

〈r, sv〉Jj ´ rpx, v
˘

j` 1
2

qspx, v´
j` 1

2

q ` rpx, v˘
j´ 1

2

qspx, v`
j´ 1

2

q

¯

, (3.25b)

where r, s P Vk
h. We use } ¨ }2 denoted as the standard L2 norm in Ω and define the jump

semi-norms as

rrrss
pxq pvq “

c

ÿ

i

prpx`
i` 1

2

, vq ´ rpx´
i` 1

2

, vqq2, v P Vk
h, (3.26a)

rrrss
pvq pxq “

d

ÿ

j

prpx, v`
j` 1

2

q ´ rpx, v´
j` 1

2

qq2, x P Vk
h. (3.26b)

The following lemma shows the inverse property of the finite element space Vk
h. More

details can be found in [16].

Lemma 3.3. For any function r P Vk
h, there exists a positive constant c1 independent of ∆v

such that

∆v

d

ż

Ωv

r2
v dv `

d

∆v
ÿ

j

´

r2px, v`
j´ 1

2

q ` r2px, v´
j` 1

2

q

¯

ď c1

d

1

2

ż

Ωv

r2 dv. (3.27)
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The following two lemmas present the properties of the operators Hx˘pr, sq and Hv˘pr, sq

defined in (3.25). Lemma 3.4 states the skew-symmetric and semi-definite nature of these

operators, while Lemma 3.5 provides an estimate for them. The proofs of these properties are

straightforward, and are omitted here. For more detailed information, we refer to [61].

Lemma 3.4. For r, s P Vk
h, the following relations hold:

Hx`
pr, sq “ ´Hx,´

ps, rq, Hv`
pr, sq “ ´Hv,´

ps, rq

Hx´
pr, rq “ ´

1

2
rrrss2

pxq , Hv´
pr, rq “ ´

1

2
rrrss2

pvq .

Lemma 3.5. For any r, s P Vk
h, there exist positive constants cx, cv independent of ∆x and

∆v such that

|Hx˘
pr, sq| ď

cx
∆x

d

ż

Ωx

r2 dx

d

ż

Ωx

s2 dx,

|Hv˘
pr, sq| ď

cv
∆v

d

ż

Ωv

r2 dv

d

ż

Ωv

s2 dv.

Based on Lemma 3.3 and Lemma 3.5, we derive the following two corollaries.

Corollary 3.1. For r P Vk
h, we have

rrrss
pvq ď

c1
?

∆v

d

ż

Ωv

r2 dv.

Corollary 3.2. For any r, s P Vk
h, we have

ż

Ωv

|Hx˘
pr, sq| dv ď

cx
∆x
}r}2}s}2,

ż

Ωx

|Hv˘
pr, sq| dx ď

cv
∆v
}r}2}s}2.

Theorem 3.3 (L2 stability). Assume that there exist some positive constants Mu,ME,MT ,

such that

|upxq ´ puqIi | ďMu∆x, (3.28a)

|Epxq ´ pEqIi | ďME∆x, (3.28b)

|T pxq ´ pT qIi | ďMT∆x, (3.28c)

for x P Ii. Assume that the temperature T ą Tmin ą 0, and v, u, E, and J are bounded. De-

note τx “ ∆t{∆x2, τv “ ∆t{∆v2. If τv ď
1

2νc2vTmax
´

MT ∆x
4νcvTmin∆v

, and τx is bounded, then the fully

discrete explicit scheme (3.4) is L2 stable for suitable small time step ∆t, that is, there exists a

constant C depending on ν, c1, cx, cv,Mu,ME,MT , |v|max, |v ´ u|max, |E|max, Tmin, τx, τv,∆x{∆v
R1,

such that

}fn}2 ď eCt}f 0
}2. (3.29)
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Proof. Let LEn denote the spatial discretization operator for (3.4a) and LEn`En`1

2

denote the

spatial discretization operator for (3.4c). The fully discrete scheme (3.4) can be rewritten as

fn`
1
2 “ fn `

∆t

2
LEnpfnq, fn`1

“ fn `∆tLEn`En`1

2

pfn`
1
2 q, (3.30)

which, following the approach in [31], can be further rewritten as

fn`1
“

1

2

`

I `∆tLEn`En`1

2

˘

pI `∆tLEnqpfnq `
1

2

`

I `∆tpLEn`En`1

2

´ LEnq
˘

pfnq, (3.31)

where I denotes the identity operator. We establish the estimate of }fn`1}2 in the following

three steps.

Step I: estimate of }pI `∆tLEnqpfnq}2 and
›

›

›
pI `∆tLEn`En`1

2

qpfnq
›

›

›

2
.

We first establish the estimate for }I `∆tLEnpfnq}2. For simplicity in presentation, we will

omit the superscript n. We start by rewriting LEpfq as LEpfq “ z1 ` z2 ` z3 ` q, where

z1, z2, z3, q P Vk
h satisfy

pz1, φ1qΩ “

ż `8

0

vHx´
pf, φ1q dv `

ż 0

´8

vHx`
pf, φ1q dv, (3.32a)

pz2, φ2qΩ “
ÿ

i
pEqIi

ě0

ż

Ii

EHv´
pf, φ2q dx`

ÿ

i
pEqIi

ă0

ż

Ii

EHv`
pf, φ2q dx, (3.32b)

pz3, φ3qΩ “ ´ν
ÿ

i,j

ppv ´ uqf, pφ3qvqKij
` ν

ÿ

i,j

〈
pvj` 1

2
´ uqf̃x,j` 1

2
, φ3px, v

´

j` 1
2

q

〉
Ii

´ ν
ÿ

i,j

〈
pvj´ 1

2
´ uqf̃x,j´ 1

2
, φ3px, v

`

j´ 1
2

q

〉
Ii
, (3.32c)

pq, ϕqΩ “ ´ν

ż

Ωx

Hv`
pp, ϕq dx, (3.32d)

for any test functions φ1, φ2, φ3, and ϕ P Vk
h. Then we have

}pI `∆tLEqf}
2
2

“}f}22 ` 2∆tpz1 ` z2 ` z3 ` q, fqΩ `∆t2}z1 ` z2 ` z3 ` q}
2
2

ď}f}22 ` 2∆tpz1 ` z2 ` z3 ` q, fqΩ ` 4∆t2p}z1}
2
2 ` }z2}

2
2 ` }z3}

2
2 ` }q}

2
2q.

(3.33)

We estimate these terms one by one in the following. For the term pz1, fqΩ, a simple use of

Lemma 3.4 leads to

pz1, fqΩ “

ż `8

0

vHx´
pf, fq dv `

ż 0

´8

vHx`
pf, fq dv

“ ´
1

2

ż `8

0

v rrf ss2
pxq dv `

1

2

ż 0

´8

v rrf ss2
pxq dv

ď 0.

(3.34)
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For the term pz2, fqΩ, similar estimates can be conducted to obtain

pz2, fqΩ “
ÿ

i
pEqIi

ě0

ż

Ii

EHv´
pf, fq dx`

ÿ

i
pEqIi

ă0

ż

Ii

EHv`
pf, fq dx

“ ´
1

2

ÿ

i
pEqIi

ě0

ż

Ii

E rrf ss2
pvq dx`

1

2

ÿ

i
pEqIi

ă0

ż

Ii

E rrf ss2
pvq dx

“ ´
1

2

ÿ

i
pEqIi

ě0

ż

Ii

pE ´ pEqIiq rrf ss
2
pvq dx´

1

2

ÿ

i
pEqIi

ě0

ż

Ii

pEqIi rrf ss
2
pvq dx

`
1

2

ÿ

i
pEqIi

ă0

ż

Ii

pE ´ pEqIiq rrf ss
2
pvq dx`

1

2

ÿ

i
pEqIi

ă0

ż

Ii

pEqIi rrf ss
2
pvq dx

ď ´
1

2

ÿ

i
pEqIi

ě0

ż

Ii

pE ´ pEqIiq rrf ss
2
pvq dx`

1

2

ÿ

i
pEqIi

ă0

ż

Ii

pE ´ pEqIiq rrf ss
2
pvq dx

ď
1

2

ÿ

i

ż

Ii

ˇ

ˇE ´ pEqIi
ˇ

ˇ rrf ss2
pvq dx,

which, together with the assumption (3.28b) and Corollary 3.1, yields

pz2, fqΩ ď
ME∆x

2

ÿ

i

ż

Ii

˜

c1
?

∆v

d

ż

Ωv

f 2 dv

¸2

dx “
c2

1ME∆x

2∆v
}f}22. (3.35)

For the term pz3, fqΩ, it follows from integration by parts that

pz3, fqΩ “ ´ν
ÿ

i,j

ppv ´ uqf, fvqKij
` ν

ÿ

i,j

〈
pvj` 1

2
´ uqf̃x,j` 1

2
, fpx, v´

j` 1
2

q

〉
Ii

´ ν
ÿ

i,j

〈
pvj´ 1

2
´ uqf̃x,j´ 1

2
, fpx, v`

j´ 1
2

q

〉
Ii

“
ν

2
}f}22 `

ν

2

ÿ

i,j

ż

Ii

´

´pvj` 1
2
´ uqf 2

px, v´
j` 1

2

q ` pvj´ 1
2
´ uqf 2

px, v`
j´ 1

2

q

¯

dx

` ν
ÿ

i,j

ˆ〈
pvj` 1

2
´ uqf̃x,j` 1

2
, fpx, v´

j` 1
2

q

〉
Ii
´

〈
pvj´ 1

2
´ uqf̃x,j´ 1

2
, fpx, v`

j´ 1
2

q

〉
Ii

˙

“
ν

2
}f}22 `

ν

2

ÿ

i
v
j` 1

2
ďpuqIi

ż

Ii

pvj` 1
2
´ uq rrf ss2

pvq dx´
ν

2

ÿ

i
v
j` 1

2
ąpuqIi

ż

Ii

pvj` 1
2
´ uq rrf ss2

pvq dx,

which follows the similar line as the estimate of pz2, fqΩ, yielding

pz3, fqΩ ď
ν

2
}f}22 `

ν

2

ÿ

i

ż

Ii

|u´ puqIi | rrf ss
2
pvq dx ď

ν

2
}f}22 `

νc2
1Mu∆x

2∆v
}f}22. (3.36)
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For the term }z1}
2
2, by taking φ1 “ z1 in (3.32a) and Corollary 3.2, we have

}z1}
2
2 “

ż `8

0

vHx´
pf, z1q dv `

ż 0

´8

vHx`
pf, z1q dv ď

cx
∆x
|v|max}f}2}z1}2,

which yields

}z1}
2
2 ď

c2
x

∆x2
|v|2max}f}

2
2. (3.37)

For the terms }z2}
2
2 and }q}22, similar estimates can be conducted to obtain

}z2}
2
2 ď

c2
v

∆v2
|E|2max}f}

2
2, (3.38)

}q}22 ď
ν2c2

v

∆v2
}p}22. (3.39)

For the term }z3}, by taking φ3 “ z3 in (3.32c), we rewrite it as

}z3}
2
2 “ ´ν

ÿ

i,j

ppv ´ uqf, pz3qvqKij
` ν

ÿ

i,j

〈
pvj` 1

2
´ uqf̃x,j` 1

2
, z3px, v

´

j` 1
2

q

〉
Ii

´ ν
ÿ

i,j

〈
pvj´ 1

2
´ uqf̃x,j´ 1

2
, z3px, v

`

j´ 1
2

q

〉
Ii

“ ´ν
ÿ

i,j

ppv ´ uqf, pz3qvqKij
` ν

ÿ

i,j

〈
pvj` 1

2
´ uqf̃x,j` 1

2
, z3px, v

´

j` 1
2

q

〉
Ii

´ ν
ÿ

i,j

〈
pvj` 1

2
´ uqf̃x,j` 1

2
, z3px, v

`

j` 1
2

q

〉
Ii

“ ´ν
ÿ

i,j

ppv ´ uqf, pz3qvqKij
` ν

ÿ

i,j

〈
pvj` 1

2
´ uqf̃x,j` 1

2
, pz3px, v

´

j` 1
2

q ´ z3px, v
`

j` 1
2

qq

〉
Ii
,

which, together with the Cauchy-Schwarz inequality and Lemma 3.3, yields

}z3}
2
2 ď ν|v ´ u|max}f}2}pz3qv}2 ` ν|v ´ u|max

ż

Ωx

d

ÿ

j

pf 2px, v`
j` 1

2

q ` f 2px, v´
j` 1

2

qq rrz3sspvq dx

ď
ν|v ´ u|maxc1p1` c1q

?
2∆v

}f}2}z3}2,

which further leads to

}z3}
2
2 ď

ν2c2
1p1` c1q

2

2p∆vq2
|v ´ u|2max}f}

2
2. (3.40)

For the term pq, fqΩ, it follows from Lemma 3.4 that

ÿ

j

pq, fqKij
“ ´ν

ż

Ii

Hv`
pp, fq dx “ ν

ż

Ii

Hv´
pf, pq dx. (3.41)
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On the other hand, it follows from (3.4d) and the definition in (3.25b) that

ÿ

j

pp, pqKij
“ ´

ż

Ii

THv´
pf, pq dx. (3.42)

Then, by rewriting pq, fqΩ based on (3.41) and (3.42) and applying the assumption (3.28c)

and Corollary 3.2, we have

pq, fqΩ “
ÿ

i

˜

ν

pT qIi

ż

Ii

THv´
pf, pq dx`

ν

pT qIi

ż

Ii

ppT qIi ´ T qH
v´
pf, pq dx

¸

ď ´
ν

Tmax

pp, pqΩ ` ν max
i

1

pT qIi

ż

Ωx

|T ´ pT qi||H
v´
pf, pq| dx

ď ´
ν

Tmax

pp, pqΩ `
νMT cv∆x

Tmin∆v
}f}2}p}2

ď

ˆ

´
ν

Tmax

`
νMT cv∆x

2Tmin∆v

˙

}p}22 `
νMT cv∆x

2Tmin∆v
}f}22,

(3.43)

which, together with (3.39), for τv ď
1

2νc2vTmax
´

MT ∆x
4cvTmin∆v

, yields

∆tpq, fqΩ ` 2∆2
pq, qqΩ ď ν∆tp´

1

Tmax

`
νMT cv∆x

2Tmin∆v
` 2νc2

vτvq `∆t
νMT cv∆x

2Tmin∆v
}f}22

ď ∆t
νMT cv∆x

2Tmin∆v
}f}22.

(3.44)

By substituting (3.34), (3.35), (3.36), (3.37), (3.38), (3.40), and (3.44) into (3.33), and

recovering the superscript n, we obtain

}pI `∆tLEnqpfnq}22 ď p1` C0∆tq }fn}22, (3.45)

with

C0 “ 4c2
x|v|

2
maxτx`4c2

v|E|
2
maxτv`ν`2ν2c2

1p1`c1q
2τv|v´u|

2
max`pc

2
1ME`νc

2
1Mu`MT cvTminq

∆x

∆v
.

The estimate of }pI ` ∆tLEn`En`1

2

qpfnq}2 follows a similar approach as the estimate of

}pI `∆tLEnqpfnq}2. The difference lies in the terms associated to z2 defined in (3.32b), i.e.,

pz2, fqΩ and }z2}
2
2. It can be verified that, with the assumption (3.28b) and E is bounded,

there hold

ˇ

ˇ

ˇ

ˇ

En ` En`1

2
´
pEn ` En`1qIi

2

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

En ´ pEnqIi

2

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

En`1 ´ pEn`1qIi

2

ˇ

ˇ

ˇ

ˇ

ďME∆x, (3.46a)

ˇ

ˇ

ˇ

ˇ

En ` En`1

2

ˇ

ˇ

ˇ

ˇ

2

max

ď
|En|2max ` |E

n`1|2max

2
ď |E|2max, (3.46b)
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which leads to the same estimates in (3.35) and (3.38) when changing En to En`En`1

2
, and

further yields
›

›pI `∆tLEn`En`1

2

qpfnq
›

›

2

2
ď p1` C0∆tq }fn}22. (3.47)

Step II: estimate of
›

›

›

`

LEn`En`1

2

´ LEn

˘

pfnq
›

›

›

2
.

As mentioned in Step I, the difference between the operators LEn and LEn`En`1

2

´ LEn lies

in the terms associated to z2 defined in (3.32b). To highlight this difference, we introduce a

modified notation for z2, denoting it as pz2qE. Then, we have

´

LEn`En`1

2

´ LEn

¯

pfnq “ pz2qEn`En`1

2

´ pz2qEn .

To simplify the presentation, we introduce the following two index sets. Denote IA as

IA “
!

i |
`

En`En`1

2

˘

Ii
ě 0

)

, IB as IB “ ti | pEnqIi ě 0u, and their complement sets as IAA and

IAB, respectively. It follows from (3.4b) that En`En`1

2
“ En ´ ∆t

2
Jn`

1
2 , which yields

IA X I
A
B “

"

i |
∆t

2

`

Jn`
1
2

˘

Ii
ď pEnqIi ă 0

*

“

#

i | 0 ď
´En ` En`1

2

¯

Ii
ă ´

∆t

2

`

Jn`
1
2

˘

Ii

+

,

IAA XB “

"

i |
∆t

2
pJn`

1
2 qIi ą pE

nqIi ě 0

*

“

#

i | 0 ą
´En ` En`1

2

¯

Ii
ě ´

∆t

2

`

Jn`
1
2

˘

Ii

+

.

Therefore, for any x P Ii, i P pIA X I
A
Bq Y pI

A
A X IBq, we have

|pEnqIi | ď
|J |max∆t

2
,

ˇ

ˇ

ˇ

ˇ

ˇ

pEnqIi ` pE
n`1qIi

2

ˇ

ˇ

ˇ

ˇ

ˇ

ď
|J |max∆t

2
,

which, combining with the assumption (3.28b) and (3.46a), leads to

|En
| ď

|J |max∆t

2
`ME∆x,

ˇ

ˇ

ˇ

ˇ

En ` En`1

2

ˇ

ˇ

ˇ

ˇ

ď
|J |max∆t

2
`ME∆x.

With these notations and relations, following (3.4b), the definition of z2 in (3.32b) and
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Lemma 3.5, for any function φ P Vk
h, we have

´´

LEn`En`1

2

´ LEn

¯

pfnq, φ
¯

Ω
“

´

pz2qEn`En`1

2

´ pz2qEn , φ
¯

Ω

“
ÿ

iPIA

ż

Ii

En ` En`1

2
Hv´

pfn, φq dx`
ÿ

iPIAA

ż

Ii

En ` En`1

2
Hv`

pfn, φq dx

´
ÿ

iPIB

ż

Ii

EnHv´
pfn, φq dx´

ÿ

iPpIABq

ż

Ii

EnHv`
pfn, φq dx

“
ÿ

iPpIAXIBq

ż

Ii

ˆ

En ` En`1

2
´ En

˙

Hv´
pfn, φq dx`

ÿ

iPpIAAXI
A
Bq

ˆ

En ` En`1

2
´ En

˙

Hv`
pfn, φq dx

`
ÿ

iPpIAXI
A
Bq

ż

Ii

ˆ

En ` En`1

2
Hv´

pfn, φq ´ EnHv`
pfn, φq

˙

dx

`
ÿ

iPpIAAXIBq

ż

Ii

ˆ

En ` En`1

2
Hv`

pfn, φq ´ EnHv´
pfn, φq

˙

dx

ď
|J |max∆t

2

ÿ

iPpIAXIBq

ż

Ii

|Hv´
pfn, φq| dx`

|J |max∆t

2

ÿ

iPpIAAXI
A
Bq

ż

Ii

|Hv`
pfn, φq| dx

`

ˆ

|J |max∆t

2
`ME∆x

˙

ÿ

iPpIAXI
A
BqYpI

A
AXIBq

ż

Ii

|Hv´
pfn, φq| ` |Hv`

pfn, φq| dx

ď
cv
∆v
p|J |max∆t` 2ME∆xq

ż

Ωx

d

ż

Ωv

pfnq2 dv

d

ż

Ωv

pφq2 dv dx

ď

ˆ

cv|J |max∆t

∆v
`

2cvME∆x

∆v

˙

}fn}2}φ}2,

By taking φ “
`

LEn`En`1

2

´ LEn

˘

pfnq, we obtain

›

›

›

`

LEn`En`1

2

´ LEn

˘

pfnq
›

›

›

2
ď

ˆ

cv|J |max∆t

∆v
`

2cvME∆x

∆v

˙

}fn}2. (3.48)

Step III: final estimate of }fn`1}2.

By applying the triangle inequality to (3.31) and combining with the estimates in (3.45),

(3.47), and (3.48), we have

}fn`1
}2 ď

1

2
}pI `∆tLEn`En`1

2

qpI `∆tLEnqfn}2 `
1

2
}fn}2 `

1

2
∆t}pLEn`En`1

2

´ LEnqfn}2

ď
1

2

a

1` C0∆t}pI `∆tLEnqfn}2 `
1

2
}fn}2 `

1

2
∆t

ˆ

cv|J |max∆t

∆v
`

2cvME∆x

∆v

˙

}fn}2

ď

ˆ

1`

ˆ

C0

2
`
cvME∆x

∆v
`
cv|J |max∆t

2∆v

˙

∆t

˙

}fn}2.
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By choosing small enough ∆t such that ∆t ď 2∆v
cv |J |max

, we have

}fn}2 ď ep
C0
2
`

cvME∆x

∆v
`1qt
}f 0
}2. (3.49)

We complete the proof by setting C “ C0

2
`

cvME∆x
∆v

` 1.

4 Numerical results

In this section, we present numerical examples to demonstrate the accuracy and perfor-

mance of the proposed schemes.

4.1 Accuracy tests

In this subsection, we use two examples to test the orders of accuracy of the proposed

schemes.

Example 4.1 (Relaxation to Maxwellian). In this example, we consider a simplified

exampleR2 caseR2 only involving the DFP operator, given by

ft “ Qpfq “ Tfvv ` rpv ´ uqf sv, v P r´16.5, 15.5s, (4.1)

with the initial condition

fp0, vq “
1
?

2π

ˆ

1

2
exp

ˆ

´
pv ´ 1q2

2

˙

`
1

2
exp

ˆ

´
pv ` 2q2

2

˙˙

, (4.2)

which is inspired by a mixture of two Gaussian distributions. Here the average velocity

u “ ´0.5, the thermalR2 temperature T “ 3.25, and the density ρ “ 1. As the system evolves,

these three quantities do not change, and the system would eventually approach a steady state

described by the Maxwellian function:

fp8, vq “
ρ

?
2πT

exp

ˆ

´
pv ´ uq2

2T

˙

“
1

?
6.5π

exp

ˆ

´
pv ` 0.5q2

6.5

˙

. (4.3)

We perform numerical simulations using the LDG method with the explicit time integrator

(2.1) up to tend “ 2. To match the accuracy of the temporal and spatial discretizations, we

adjust the time step ∆t as ∆t „ p∆vq
3
2 for P 2 polynomials and ∆t „ p∆vq2 for P 3 polynomials.

Table 4.1 lists the L1 and L8 errors and orders between the numerical solution and the steady

state. It can be observed that for both polynomial spaces, the scheme can achieve optimal

pk ` 1q-th order of accuracy.
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Table 4.1: L1, L2R2 and L8 errors and orders for Example 4.1 using the explicit scheme (2.1).

P 2

Nv L1 error Order L2 errorR2 OrderR2 L8 error Order

30 1.23E-03 5.22E-04R2 7.04E-04

40 5.17E-04 3.02 2.24E-04R2 2.95R2 3.41E-04 2.69

50 2.64E-04 3.01 1.15E-04R2 2.96R2 1.66E-04 3.23

75 7.77E-05 3.02 3.45E-05R2 2.98R2 5.27E-05 2.83

100 3.30E-05 2.98 1.46E-05R2 2.99R2 2.21E-05 3.03

P 3

Nv L1 error Order L2 errorR2 OrderR2 L8 error Order

30 8.13E-05 3.59E-05R2 5.07E-05

40 2.53E-05 4.06 1.15E-05R2 3.96R2 1.75E-05 3.70

50 1.06E-05 3.89 4.75E-06R2 3.97R2 7.45E-06 3.82

75 2.08E-06 4.02 9.44E-07R2 3.98R2 1.57E-06 3.84

100 6.64E-07 3.96 3.00E-07R2 3.99R2 4.97E-07 4.02

Example 4.2 (Landau damping). In this example, we consider the VA-DFP equation (3.1)

with ν “ 0.01. The initial conditions is given by

f0px, vq “ fMpvqp1` A cospκxqq, x P r0, Ls, v P r´Vc, Vcs, (4.4)

with A “ 0.5, κ “ 0.5, L “ 4π, Vc “ 12, and fM “ 1?
2π
e´v

2{2.

We simulate this example up to tend “ 1 and compute the error between the numerical

solution with Nx ˆ Nv cells and with p1.5Nxq ˆ p1.5Nvq cells to test the order of accuracy.

The DG method adopt P 2 polynomials. The time step is again adjusted as ∆t „ p∆vq
3
2 to

match the accuracy of the temporal and spatial discretizations. Specifically, we set ∆t “

0.887622p∆xq3 for the explicit scheme and ∆t “ 0.988524p∆xq3 for the IMEX scheme. Table

4.2 lists the L1 and L8 errors and orders of accuracy for the explicit scheme and the IMEX

scheme. We observe that both schemes achieve optimal third-order accuracy for the L1 and

L2 errorsR2.

4.2 Benchmark examples

In this section, we demonstrate the conservation properties and performance of the explicit

scheme (2.1) and the IMEX scheme (2.2) with P 2 DG polynomial spaces on a 50ˆ100 meshes.
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Table 4.2: L1, L2R2 and L8 errors and orders of accuracy for Example 4.2.

Explicit

Nx ˆNv L1 error Order L2 errorR2 OrderR2 L8 error Order

24ˆ 48 1.00E-00 1.93E-01R2 1.51E-01

36ˆ 72 3.19E-01 2.82 6.03E-02R2 2.86R2 4.95E-02 2.75

54ˆ 108 9.68E-02 2.94 1.83E-02R2 2.94R2 1.69E-02 2.65

81ˆ 162 3.06E-02 2.84 5.80E-03R2 2.83R2 6.60E-03 2.33

IMEX

Nx ˆNv L1 error Order L2 errorR2 OrderR2 L8 error Order

24ˆ 48 1.02E-00 1.99E-01R2 1.55E-01

36ˆ 72 3.24E-01 2.84 6.22E-02R2 2.87R2 5.15E-02 2.72

54ˆ 108 9.76E-02 2.96 1.87E-02R2 2.96R2 1.76E-02 2.65

81ˆ 162 3.00E-02 2.91 5.60E-03R2 2.97R2 4.80E-03 3.21

We also investigate different settings of ν. For small ν, the time step size for the explicit scheme

(2.1) and the IMEX scheme (2.2) are almost the same. However, for ν “ 1, the IMEX scheme

can utilize a time step of ∆t “ 2.03 ˆ 10´3, which is much larger than the time step size of

∆t “ 2.62 ˆ 10´4 for the explicit scheme. This results in considerable computational time

savings. We list an empirical time step comparison in Table 4.3:R2

Table 4.3: Time step comparison of the explicit scheme and the IMEX scheme for different

ν.R2

ν 0 0.1 0.5 1

Explicit 1.25E-03 7.86E-04 4.10E-04 2.57E-04

IMEX 2.03E-03 2.03E-03 2.03E-03 2.03E-03

We consider three benchmark examples of the VA-DFP system (3.1) with the following

initial conditions:

Example 4.3 (Landau damping). In this example, the initial condition is given byR2

f0px, vq “ fMpvqp1` A cospκxqq, x P r0, Ls, v P r´Vc, Vcs,
R2 (4.5)

with κ “ 0.5, L “ 4π, Vc “ 12, fM “ 1?
2π
e´v

2{2. WeR2 weR2 consider two additionalR2 cases of

A: A “ 0.01 (weak Landau damping) and A “ 0.5 (strong Landau damping). The governing

equation and other initial condition remain consistent with those delineated in Example 4.2.R2
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Example 4.4 (Two-stream instability). In this example, the initial condition is given by

f0px, vq “ fTSpvqp1` A cospκxqq, x P r0, Ls, v P r´Vc, Vcs, (4.6)

with A “ 0.05, κ “ 0.5, L “ 4π, Vc “ 16, fTS “
1?
2π
v2e´v

2{2.

Example 4.5 (Bump-on-tail instability). In this example, the initial condition is given

by

f0px, vq “ fBT pvqp1` A cospκxqq, x P r0, Ls, v P r´Vc, Vcs, (4.7)

with A “ 0.04, κ “ 0.3, L “ 20π{3, Vc “ 16, and

fBT pvq “ npexpp´v2
{2q ` nbexpp´

|v ´ u|2

2v2
t

q, (4.8)

whose parameters are

np “
9

10
?

2π
, nb “

2

10
?

2π
, u “ 4.5, vt “ 0.5. (4.9)

We first verify the conservation properties of the proposed schemes. Figures 4.1 and 4.2

plot the relative errors of the total particle number and total energy for the weak Landau

damping and strong Landau damping of Example 4.3 with different values of ν. It can be

observed that the absolute values of all errors with both schemes stay small, below 10´11 for

the total particle number, 10´11 for the total energy of the weak Landau damping, and 10´8

for the total energy of strong Landau damping. Figures 4.3 and 4.4 plot the relative errors

of the total particle number and total energy for two-stream instability of Example 4.4 and

bump-on-tail instability of Example 4.5 with different values of ν. Again the absolute values

of the observed relative errors remain low, below 10´11 for the total particle numbers and

10´10R2 10´9 for the total energy. For all four examples, the conservation with the explicit

scheme is slightly better than the IMEX scheme.

We further collect numerical data to benchmark our schemes. Both the fully explicit

scheme and the fully IMEX scheme obtain equally good results. Thus, we we only show the

results obtained with the explicit scheme to save space. Figure 4.5 plots the electric energy,

the enstrophy and the entropy, which are defined as

Ep “

ż

Ωx

E2

2
dx, Es “

ż

Ωx

ż

Ωv

f 2 dx dv, S “ ´

ż

Ωx

ż

Ωv

f log f dx dv, (4.10)

for both weak and strong Landau damping in Example 4.3 with various ν values. It can be

observed that for weak Landau damping with ν “ 0, the electric field damps exponentially

over time as expected from linearized analysis. We also observe that the electric field fails to

damp after a long time, known as the recurrence phenomenon of numerical simulations. This
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(a) Total particle number. Explicit. (b) Total particle number. IMEX.

(c) Total energy. Explicit. (d) Total energy. IMEX.

Figure 4.1: Weak Landau damping (A “ 0.01) in Example 4.3. Evolution of the relative error

in total particle number (top) and total energy (bottom) by the explicit scheme (left) and the

IMEX scheme (right). 50 ˆ 100 mesh.
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(a) Total particle number. Explicit. (b) Total particle number. IMEX.

(c) Total energy. Explicit. (d) Total energy. IMEX.

Figure 4.2: Strong Landau damping (A “ 0.5) in Example 4.3. Evolution of the relative error

in total particle number (top) and total energy (bottom) by the explicit scheme (left) and the

IMEX scheme (right). 50 ˆ 100 mesh.
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(a) Total particle number. Explicit. (b) Total particle number. IMEX.

(c) Total energy. Explicit. (d) Total energy. IMEX.

Figure 4.3: Two stream instability in Example 4.4. Evolution of the relative error in total

particle number (top) and total energy (bottom) by the explicit scheme (left) and the IMEX

scheme (right). 50ˆ 100 mesh.
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(a) Total particle number. Explicit. (b) Total particle number. IMEX.

(c) Total energy. Explicit. (d) Total energy. IMEX.

Figure 4.4: Bump-on-tail instability in Example 4.5. Evolution of the relative error in total

particle number (top) and total energy (bottom) by the explicit scheme (left) and the IMEX

scheme (right). 50ˆ 100 mesh.

26



phenomenon arises due to long time simulation of numerical methods. It was shown in [24]

that piece-wise constant approximations in velocity space lead to a recurrence phenomenon.

Such behavior was also seen in numerical simulations for weak Landau damping inR2 [35, 63]

and for strong Landau damping in [62].R2 For both weak and strong Landau damping, the

damping rate decreases as ν ą 0 increases. The enstrophy and the entropy with ν ą 0

stabilizes to a steady state faster than the case of ν “ 0. Figure 4.6 plots the electric energy

for two-stream instability and bump-on-tail instability. R2

Figures 4.7 and 4.8 plot contours of f for two-stream instability with ν “ 1 and ν “ 0.001,

respectively. Figures 4.9 and 4.10 plot contours of f for bump-on-tail instability with ν “ 1

and ν “ 0.001. It can be observed that for large collision frequencies such as ν “ 1, the solution

rapidly reaches a steady state (equilibrium or Maxwellian distribution) in the velocity direction

regardless of the Vlasov component, while for small collision frequencies such as ν “ 0.001, the

behavior of the solution resembles the ν “ 0 scenario documented in [9]. However, as time goes

by, the solution eventually converges to a Maxwellian distribution. Overall, the introduction of

the DFP operator drives solutions towards a steady state, exhibiting a Maxwellian distribution

along the v-axis.

5 Conclusion

In this paper, we have developed energy-conserving numerical schemes for solving the VA

system coupled with the DFP collision operator. We have introduced two energy-conserving

temporal discretization methods, a second-order explicit scheme and a second-order IMEX

scheme, coupling with the DG methods for the phase space, to achieve the total particle num-

ber and total energy conservation at the fully discrete level. Additionally, we have proven

the L2 stability of the fully discrete explicit scheme. Numerical experiments have been con-

ducted to demonstrate the performance of theR2 the proposed schemes. Further research

includes exploring their extension to more complex plasma models and specific phenomenaR2

high dimensional systems and designing numerical schemes that have the entropy decay

structure.R2.
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(a) Weak Landau damping. Electric en-

ergy.

(b) Strong Landau damping. Electric en-

ergy.

(c) Weak Landau damping. Enstrophy. (d) Strong Landau damping. Enstrophy.

(e) Weak Landau damping. Entropy. (f) Strong Landau damping. Entropy.

Figure 4.5: The electric energy (top), the enstrophy (middle), and the entropy (bottom) for

weak Landau damping (left) and strong Landau damping (right) of Example 4.3. Explicit

scheme. 50ˆ 100 mesh.
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(a) Two stream instability. Entropy. (b) Bump-on-tail instability. Entropy.

Figure 4.6: The entropy for two stream instability of Example 4.4 (left) and bump-on-tail

instability (right) of Example 4.5. Explicit scheme. 50ˆ 100 mesh.R2

(a) t=0. (b) t=1.

(c) t=2. (d) t=5.

Figure 4.7: Phase space contour plots for two-stream instability in Example 4.4 at the indi-

cated time. Explicit scheme. ν “ 1. 50ˆ 100 mesh.
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(a) t=10. (b) t=15.

(c) t=20. (d) t=40.

(e) t=80. (f) t=100.

Figure 4.8: Phase space contour plots for two-stream instability in Example (4.4) at the

indicated time. Explicit scheme. ν “ 0.001. 50ˆ 100 mesh.
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(a) t=0. (b) t=1.

(c) t=2. (d) t=5.

Figure 4.9: Phase space contour plots for bump-on-tail instability in Example 4.5 at the

indicated time. Explicit scheme. ν “ 1. 50ˆ 100 mesh.
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(a) t=15. (b) t=20.

(c) t=30. (d) t=50.

(e) t=60. (f) t=100.

Figure 4.10: Phase space contour plots for bump-on-tail instability in Example 4.5 at the

indicated time. Explicit scheme. ν “ 0.001. 50ˆ 100 mesh.
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