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Abstract

This paper develops energy-preserving discontinuous Galerkin (DG) methods for the
Vlasov-Ampere (VA) system coupled with the Dougherty-Fokker-Planck (DFP) collision
operator. While the classical VA system has been extensively studied, the inclusion of the
collision operator introduces new challenges in conserving the total energy of the system.
To address this, we design two energy-conserving temporal discretization methods: a
second-order explicit scheme and a second-order implicit-explicit (IMEX) scheme. These
schemes are coupled with the DG method, specifically using the local DG (LDG) method
for the DFP part. We prove that the fully discrete schemes conserve the total particle
number and total energy of the VA-DFP system at the fully discrete level. We further
establish the L? stability of the fully discrete explicit scheme. Numerical experiments
are conducted to assess the accuracy, conservation property, and performance of the

proposed schemes.
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1 Introduction

The study of plasma, an ionized state of matter that plays a crucial role in various scientific
fields such as space physics and fusion energy, has always been a focal point in mathematical
modeling. In plasma physics, one of the fundamental mathematical representations is the
Vlasov-Ampere (VA) system, which describes the time evolution of the electron distribution
function, capturing the behavior of charged particles in a plasma. When coupled with the
Dougherty-Fokker-Planck (DFP) collision operator [23], the VA equation becomes an essential
model for studying plasma dynamics. In this paper, we present a novel approach for solving
the VA system with the DFP operator, the VA-DFP system, with energy-conserving numerical
schemes.

After non-dimensionalization, the VA-DFP system is given by
of +v-Vif +E-V.f =vQ(f), (x,v) € Q =0y xQy, (1.1a)
OE =-J=— JQ vfdv, (1.1b)
where f(t,x,v) is the probability density function of electrons at position x with velocity v at
time ¢, and the electric field E is driven by the current density J. The constant v represents

the collision frequency. The DFP collision operator, denoted by Q(f), models the effects of

Coulomb collisions on the particle distribution. It is given by

QUf) =V - (ITVyf +(v—u)f), (1.2)
with the density p, the average velocity u, and the temperature T defined as
1
pzf fdv, uzi, T=—1 |v—ulfdv, (1.3)
Qv P pd Ja,

where d represents the number of dimensions.®? The VA-DFP system is defined on the domain

Q = Oy x Q,, where Q denotes the physical domain and €, = R? represents the velocity
domain. The boundary conditions are assumed to be periodic in x for simplicity and f — 0
for |v| — co. It is worth mentioning that in practice, €2 is truncated to a finite region taken
large enough such that the solution f ~ 0 at d€),.

It can be verified that the DFP operator conserves the mass®? particle number®?, momen-

tum, and energy
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v
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The VA-DFP system (1.1) conserves the total particle number SQ f dxdv, and the total energy

1 1
TE — U Lvefdvax + -J B2 dx, (15)
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which consists of the kinetic energy and electric energy.

When the collision frequency v is zero, the VA-DFP system (1.1) simplifies to the classical
VA system, which is regarded as the zero-magnetic limit of the Vlasov-Maxwell (VM) system
and is also equivalent to the Vlasov-Poisson (VP) system under certain conditions. In the
context of Vlasov solvers, one approach is the popular particle-in-cell (PIC) methods [36, 6, 7],
which involve advancing macro-particles in a Lagrangian framework, while solving the field
equations using mesh-based methods. Another approach is the deterministic solvers, which
directly compute solutions under an Eulerian or semi-Lagrangian framework. These solvers
have gained attention for their ability to provide highly accurate results without introducing
statistical noise. Works in this approach include semi-Lagrangian methods [8, 50, 51, 49, 52,
46, 22, 47, 48, 5, 43], the weighted essentially non-oscillatory (WENO) method coupled with
Fourier collocation [63], finite volume methods [28, 29, 25, 15, 56, 55|, a spectral element
method [44], Fourier-Fourier spectral methods [39, 40], continuous finite element methods
[58, 59], and Runge-Kutta (RK) discontinuous Galerkin (DG) methods [3, 4, 13, 34, 33],
among others.

One of the main challenges for Vlasov solvers is the conservation of macroscopic quanti-
ties, such as the total particle number and total energy. While most Vlasov methods maintain
particle number conservation, energy conservation is often overlooked, resulting in unphysi-
cal outcomes such as plasma self-heating or cooling. Energy-conserving PIC methods were
proposed for the VA system in [7] and for the VM system in [45]. Energy-conserving finite
difference method was proposed for VP system in [29]. Energy-conserving semi-Lagrangian
methods was proposed for the VA system in [43]. Energy-conserving moment method was
proposed for the multi-dimensional VM system in [57]. Energy-conserving DG spectral ele-
ment method was proposed for the VP system in [44]. Energy-conserving DG scheme at the
semi-discrete level was proposed for the VP system in [3, 4] and for the VM system in [14].
Energy-conserving DG schemes at the fully discrete level were proposed for the VA system in
9], for the VM system in [10], and for the two-species VA system in [11, 12].

In this paper, we focus on the VA-DFP system, where the incorporation of the collision
term Q(f) introduces new challenges and complexities. Typically, Coulomb collisions in a
plasma are described by the Landau operator [41], which is an integro-differential operator.
The DFP operator [23], also known as the Lenard-Bernstain*? Lenard-Bernstein®? operator

[42], can be considered as a simplified Landau operator that conserves particle number, mo-

mentum, and energy, as well as decays entropy. It correctly models the behavior of most
particles in a thermal distribution, despite inaccuracies in the high-energy tail. A system

governed solely by the DFP operator, namely f; = Q(f), will eventually converge to a steady

state characterized by a Maxwellian function.®? This operator has been studied in numerical

methods including finite volume methods [53, 54], recovery DG methods [26, 32] and sta-



bilized RK methods [1]. For numerical methods of other Fokker-Planck-type operators, see
2, 27, 30, 60, 38] for an incomplete list.

The main objective of this paper is to develop energy-conserving DG methods for the VA-
DFP system (1.1) at the fully discrete level. Building upon the energy-conserving methods
proposed for the VA system in [9], we design two energy-conserving temporal discretization
methods with additional care taken for the DFP operator. The first method is a second-order
explicit scheme that balances the kinetic and electric energies. The second method is a second-
order implicit-explicit (IMEX) scheme that treats the Vlasov part explicitly and the DFP part
implicitly, allowing for a relaxation of the CFL restriction on the time step size and enhancing
computational efficiency. For the discretization in the phase space, we employ the DG methods
[17, 18, 19, 20], which are a class of finite element methods that employ discontinuous piecewise
polynomial spaces for both the numerical solution and test functions. In particular, for the
DFP part involving second-order derivatives, we employ the local DG (LDG) methods [21],
which rewrites the second-order equations as an equivalent first-order system and then applies
the DG method. The LDG method inherits many advantages of the DG methods including the
capability in h-p adaptivity, the ability to handle arbitrary triangulations, efficient parallel
implementation, and the ability of handling complicated boundary conditions and curved
interface. We prove that the two fully discrete schemes conserve the total particle number
and total energy of the VA-DFP system. Furthermore, we establish the L? stability of the
fully discrete explicit scheme. Numerical experiments are carried out to test the accuracy,
conservation properties, and performance of the proposed schemes. Compared to recovery
DG methods in®? [26, 32], the LDG method avoids the need for global recovery of derivatives.

Thus it is simpler to implement and exhibits better efficiency. Moreover, the LDG method
R2

offers theoretical stability and can be easily extended to high-dimensional cases.

The paper is organized as follows: In Section 2, we introduce two second-order time
discretizations that conserve the total particle number and total energy. In Section 3, we
discuss the fully discrete schemes by using the DG methods for discretizing phase space and
establish the conservation and stability analysis. In Section 4, several numerical examples are
presented to illustrate the accuracy and effectiveness of our energy-conserving schemes. We

conclude the paper with some remarks in Section 5.

2 Numerical methods: temporal discretizations

In this section, we investigate two energy-conserving temporal discretization methods for
the VA-DFP equation (1.1), while leaving the variables (x,v) continuous in the discussions.
Let At denote the time step size and (f™, E™) denote the solution at n-th time level. The



first scheme is a second-order explicit scheme designed as follows:

fn+1/2 _ fn
. VifP+E"- V,f" = "), 2.1
Rg Y VAl BV vQ(f) (2.1a)
E*tl —E" _ _Jn+1/2 Jn+1/2 _ f an+1/2 dv (2.1b)
At ) Qv Y
f’n+1 fn E" + En+1

+v- fon+1/2 + ( > . van+1/2 _ VQ(fn+1/2). (21C)

At 2

This scheme is constructed by carefully coupling the Vlasov and Ampere solvers to balance
the kinetic and electric energies. This scheme conserves the total particle number and total
energy, as stated in Theorems 2.1 and 2.2. However, as an explicit scheme, it suffers from the
CFL restriction, especially from the DFP term.

To relax the CFL restriction on the time step size and improve the efficiency, we modify
the first scheme by using a second-order IMEX method that treats the Vlasov part explicitly
and the DFP part implicitly:

fn+1/2 _ fn

. n n n _ n+1/2
Rp Y Vel B T QU (2.20)
| U O nt1/2 nt1/2 nt1/2
— ~J . J = JQV vf dv, (2.2b)
n+1 n E" + Ertl
f Lo - f Ly fon+1/2 I ( +2 ) _ van+1/2 — gQ(f") + g@(f"“). (2.2¢)

Although the nonlinear collision term appears fully implicitly in (2.2a) and (2.2¢), they can
be implemented efficiently as follows. Take Equation (2.2a) as an example. By applying the
operation SQ (1,v,]|v[?/2)T dv to both sides of the equation, together with the conservation

properties of the DFP operator in (1.4), we have

Un+1/2 . ) T

—+J (v -Vif"+E"-V,f"(1,v,|v|?/2)" dv =0, (2.3)
At/2 %

where U := (p, pu, 2p|ul? + p4T)". Clearly U"*Y/2 can be explicitly determined from (™, E"),

which consequently determines u"*/2 and 7"*'/2. Thus the implicit DFP operator Q(f"*'/?)

is linear in f"*1/2, and f"*'/? can be solved by an implicit linear solver. Equation (2.2c) can

be treated in a similar fashion.

In the following two theorems, we present the conservation properties of the above two
schemes. It follows from the properties of the DFP operator in (1.4) that the conservation
properties of both schemes are the same as Scheme-1 in [9] for the VA system without the
DFP operator. Therefore, the proof of the total energy conservation is similar to the proof of
[9, Theorem 3.1] and is omitted here. The proof of the total partial number conservation is

straightforward by the definition of the schemes and application of boundary conditions.
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Theorem 2.1 (Total particle number conservation). Both the explicit scheme (2.1) and

the IMEX scheme (2.2) conserve the total particle number of the system, i.e.,

Lx L v dx = L L Frdvdx. (2.4)

Theorem 2.2 (Total energy conservation). Both the explicit scheme (2.1) and the IMEX

scheme (2.2) conserve the total energy of the system, i.e.,

2 En+1 2 E» 2
f f ﬂf”rl dv dx +J | f J f"d dx +J [E”] dx.  (2.5)
Qx JQy 2 Qx Qx 2

Remark 2.1. In addition to the good conservation property, the IMEX scheme (2.2) is also

asymptotic-preserving (AP). Specifically, when the initial condition is at equilibrium, as the
collision frequency v — oo, this scheme will become a second-order explicit scheme applied
to the limiting fluid model (in this case, the Euler-Ampere system). Readers can refer to [37]
(scheme IMEX-II-GSA(2,3,2)) for more details.

3 Numerical methods: fully discrete methods

In this section, we formulate the fully discrete schemes by using the DG methods to
discretize the (x,v) variables, and discuss their conservation and stability properties. For
simplicity of discussion, we focus on the schemes in a 1D1V setting as an illustrative example

to show the main idea. The system (1.1) under 1D1V setting is given by

fo+ofe + Ef, = vQ(f), (3.1a)
B, =—J, (3.1b)

where Q(f) =T fow + (v —u) f), with T and u defined in (1.3) under 1D setting.

3.1 Fully discrete scheme with the DG method

In this section, we present the DG method coupling with the time integrators introduced
in Section 2 to formulate the fully discrete schemes.
We start by making a uniform partition of the domain €, consisting of cells of K;; =

[z 1 2] X v 1,00 for 1 < i < Ny and 1 < j < Ny, with the mesh size as Az =

11—

Tip1 =T 1 and Av = Vi1~ The uniform mesh is adopted to simplify the presentation,

i+3 i=3
and our results hold for general cartesian meshes. We further define [; = [x,_ 1, T4 1] and

Jj = [v; _1, U1 1]. The finite element approximation space is defined by

={¢:¢

Ky € PP(Ky), 1<i< N, 1<j<N,},



where P¥(K;;) denotes the set of polynomials of total degree up to k on cell K,;;. We also

introduce the following notations to simplify the presentation of the DG scheme
(fa g)Kij = J fg dx dva <f7 g>I¢ = J fg dxa <f7 g>Jj = J fg dv. (32)
Kij I; Jj

To define the DG method for the system containing second-order derivatives, we first

rewrite (3.1) as an equivalent first-order system

ft+vfx+Efv:I/(pv"i_((v_u)f)v)? (333>
p=Tf, (3.3b)
Et = —J, (33C)

by introducing the auxiliary variable p. With a slight abuse of notations, the DG scheme
with the explicit time integrator (2.1) for solving (3.3) is defined as follows: find the unique
functions f"*é, frLpn pita e VE such that fori=1,... N, j=1,...,N,,
PEo o) = wr 00, — (B (600)))
At/2 ’ ’ Kij ’ Kij

ij

+<v 1 1 D12 +%,v)> < of U7¢1( _1V )>

Jj 2 Jj

F (BT il +§)>h (B"J2, s (vt §)>h = vQy (1", 1), (3.4a)
En+1 — En 1 i 1
T = _Jn+§, with Jn+§ = f fn+§/U dU, (34b)

v

(Fatom), -~ (ren), =5 (@ s mre.)

At K Kij

+ (e 0) = (Rl ) 5 (0 BT e ),

1 ntl 1
_ 5 <(En —+ _E'TL-"-1>JCZ’;__2%7 ¢2([E, ’U;l >>[ = ]/Qij(pn+§7 ¢2)’ (34C)

i

D=

1
>>I - (Tlflucp’u>Kij7 [ = n,n + 57

l _ ¢l - . 7l +
(p 7%0)Kij - <T fx,j+%’g0(x’vj+l)>1i <T fx,j,%7§0(xavjf :
(3.4d)

M
D=

holds for all test functions ¢y, ¢o,4%% % € V¥, Here the operator Q;; is defined as

Qij(p: @) = = (P @), + (Pryiss 0@ 0)) = (Brygsdlav’ ) = (0= w)f, 0y,

i i

(e =0y oy, ) = (0 — 0k gl ) (3.5)

1
L; 2

t\.’)\»—A

where both u and T" are determined by applying the Gaussian quadrature rule to (1.3) with

f’s value obtained at the same time level as p. Specifically, denote {v;,}5_, as the Gaussian
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quadrature points in J; and {w,}5_; as the associated quadrature weights. Then u and 7' can

be computed by

N, k
ijvl ZZ:I wfvjzf(xa sz)

S S welvy, — u(x))?f (2, v5,)
Zj‘vzvl Z?:l (.Ugf(l’, Uje) ‘

u(m) = Zi\gl ZIZ=1 wgf(l’, sz)

(3.6)

;o Tx) =

~ ~

The functions f, 1 Juj +1 fej 1, Pyyit, and fx’j 11 are the so-called numerical fluxes,
which are defined at the cell interfaces. The fluxes are crucial for the accuracy, stability
and conservation properties of the methods. For the Vlasov part, the fluxes in (3.4a) can be
taken to be the central flux or upwind flux. It has been investigated in [9] for the VA system
that the central flux causes lack of numerical dissipation, and the numerical schemes produce
oscillations when filamentation occurs. Thus, the fluxes in (3.4a) are taken to be the upwind

flux, given by

fz lv:fv(mi 171))_ (37)
= ! f(az;:l,v)  if v <0,
: , fw,v;,,) L if (B), =0,
fz]-&-l = f(x7vj+1) = I —Il (3.8)
5 B} + .
f(:):,vﬁ%) ,if (B);, <0,
where Ell_ = ﬁ SIZ_ Edz, 2=, xt are the left and right limits of = at the cell interface in

the z-direction, and v~, v* are the bottom and top limits of v at the cell interface in the

v-direction. For the DFP part, the fluxes fm% and p, ;1 In (3.4d)and (3.5) are taken the

alternating fluxes
fx,jJr% = f(xaijr%) = f(]f,l};+%>, ﬁx,jJr% = ﬁ(xaijr%) = p(xerJ'r+ )7 (39)

and the flux j‘:w 11is taken as the upwind flux

~ 1 i1 f
ij+% = f(x7vj+%) = ° o (3.10)

with (u), = x; §; uda.
The fully discrete scheme with the IMEX scheme (2.2) can be formulated in a similar way.

3.2 Conservation properties

In this section, we prove the conservation properties of the proposed schemes. We first
show the following lemmas which play an important role in the proof of the total energy

conservation.



Lemma 3.1. The DG solution of the auxiliary variable p defined in (3.4d) satisfies

J f pdxdv =0, (3.11)
Q. Jo,

J f pvdxdvz—f f T fdxdo. (3.12)
Q. Jo, 0. Ja,

Proof. By taking ¢(x,v) = 1 and ¢(z,v) = v in (3.4d), we have

dex dv = f T(frjes = foyor)da, (3.13)

ijvdxdv —J T(fxﬁéijr —fxyjfévj 1 dx—fJdexdfu (3.14)

Then by summing up (3.13) and (3.14) over i, j, together with the boundary conditions, we
complete the proof. O

Lemma 3.2. For the fully discrete schemes with P* polynomials, the operator Q;; defined in
(3.5) satisfies the following properties

>19i5(p,1) =0, (3.15a)

1,5

> Qypv) =0, ifk=1, (3.15D)
2
>1Qi(p,vY) =0, ifk=2. (3.15¢)
2%

Proof. 1t follows from setting ¢(x,v) = 1 in (3.5) that

~ vy~ W) de (316)

41 _1 =
3 2 2

Qij(p, 1) = JI (ﬁx,jJrf pxjff ( )f

By summing up (3.16) over 4,7, and taking into account of the boundary conditions, we
complete the proof of (3.15a).

If k > 1, we take ¢(x,v) = v in (3.5). It is worth noting that ¢(x,v) = v € V¥ and is
continuous. This allows us to express (3.5) as

Q,i(p,v) = Jng+2 Vil = Dy i1 1dx—ffpdxdv—fjv—u fdzdv

(3.17)
+f (Uj+§ _u)fxﬁ”’ﬁ% ( )JF
I;

IO‘H



By summing over all-element5;"%, j%* and utilizing Lemma 3.1, we have

%;J Qlpe) = f N J v(v —u) fdrdo. (3.18)

Thus, with the definition of w in (1.3), the proof of (3.15b) is complete.
The proof of (3.15¢) follows a similar approach. Since v? € V¥ for k > 2 and is continuous,

we can take ¢ = v? in (3.5) to obtain
Qij(p,v*) = fpw] ;]2 — Py 1V 1dx—2fjpvdxdv—ZJf (v—wu)fdrdv
IZ 2 5] 2
K;j Kij (319)

2 r 2
i f Wisg = WfagayViog = Oy = Weygvjy do
I;

N:\»—t
l\:)

Then it follows from summing (3.19) over i,j, considering the boundary conditions, and
applying Lemma 3.1 that

i%;j Qij(p,v°) = —QJ w LU v(v—u)f —Tfdxdv, (3.20)

which, together with the definition of v and 7" in (1.3), completes the proof of (3.15¢). O

Theorem 3.1 (Total particle number conservation). The fully discrete scheme (3.4)

conserves the total particle number of the VA-DFP system, i.e.,

Lz L frldede = L L f"dz dv. (3.21)

This also holds for DG methods with the IMEX scheme (2.2) as time integrator.

Proof. The proof is straightforward by setting ¢ = 1 in (3.4c), summing over i, j, and applying

boundary conditions and Lemma 3.2. [

Theorem 3.2 (Total energy conservation). If k > 2, the fully discrete scheme (3.4) with

P* polynomial approximations conserves total energy, i.e.,

1 1
—J f S dado + —f (E")2d J J ff?drde + = J (E™?*dx.  (3.22)
2 Ja, Ja, 2 Ja,

This also holds for DG methods with the IMEX scheme (2.2) as time integrator.

Proof. By taking ¢ = v? in (3.4c), which belongs to the space V¥ for k > 2 and is continuous,

we have

fn+1 fn 02 o <(En+En+1)fn+% U) + <Uf"+% U2> _ <Uf”+% 1)2>
At K T Ky it /g, =30’ /g

wn+ L1 nt L
<(E”+E"+1)f ]+%,vj2+ >1 ——<(E"+E”“)fx;_2%,v? > = QT 0?).

l\DI»—t



Then by summing over all-element457%2 ¢, j%? and applying boundary conditions and Lemma

3.2, we obtain

f f dedvzf (E™ + E™*1) (vaf“%dv) dz,

which leads to

n+l _ fn),2 )
J f % dz dv = J (E" + E"HJ"" 2 du, (3.23)
On the other hand, it follows from (3.4b) that
En+1 — En
L (B 4 B da =~ L (™' + E™)J"" 2 da. (3.24)

The proof is complete by combining (3.23) and (3.24).
The proof for the fully discrete scheme with the IMEX scheme can be conducted in a

similar way. O

3.3 L? stability

In this section, we establish the L? stability for the fully discrete explicit scheme.

We introduce the bilinear operators H**(r, s)(v) and H"*(r,s)(x) defined as follows

H™(r,s) = Z <(r, se)p —r(xt  v)s(x ,,v) +r(zt , v)s(x’ 1,@)) : (3.25a)
- i t+3 i+5 =5 =3
H"(r,s) = Z ((r, SU>J]_ —r(z, U;i%)s(x,vj._+%) + r(x, Uﬁ%)s(:ﬁ, vjt%)> , (3.25b)
j
where 7,5 € VE. We use | - |2 denoted as the standard L? norm in © and define the jump

semi-norms as

[l (v) = \/Z(r(:p:;é,v) - r(x;%,v))Q, veVF (3.26a)

[ () = \/Z(r(m,v;%) —r(x, vjjr%))Q’ re V. (3.26b)

The following lemma shows the inverse property of the finite element space V5. More
details can be found in [16].

Lemma 3.3. For any function r € V¥, there exists a positive constant ¢; independent of Av
such that

B 1
AUW + \/AUZ (7"2(1:,11;%) + T2($,Uj+%)> <G B JQ r? dv. (3.27)
v J N

11




The following two lemmas present the properties of the operators H**(r, s) and H"*(r, s)
defined in (3.25). Lemma 3.4 states the skew-symmetric and semi-definite nature of these
operators, while Lemma 3.5 provides an estimate for them. The proofs of these properties are

straightforward, and are omitted here. For more detailed information, we refer to [61].

Lemma 3.4. For r, s € Vi, the following relations hold:

H*"(r,s) = —H" (s,71), H""(r,s) = —H" (s,7)
- 1 . 1
H (’I“, T) = 9 [[T]]?a:) ) H (ra T) = ) [[r]]?v) :

Lemma 3.5. For any r, s € V¥, there exist positive constants c,, ¢, independent of Az and

Awv such that
|H**(r, 5) \/J 72 dx\/J s? dz,
r? dv J 52 do.
Qy v

Based on Lemma 3.3 and Lemma 3.5, we derive the following two corollaries.

[H" (r,5)] < 5=

Corollary 3.1. For r € V¥ we have

[l ¢‘fﬂ®

Corollary 3.2. For any r,s € V¥ we have

C
. 1) do < S irlalshe

J (1, 5)] do < 4

x

2 8”2.

Theorem 3.3 (L? stability). Assume that there exist some positive constants M,, Mg, My,
such that

lu(z) — (u),| < M, Az, (3.28a)
|E(x) = (B), | < MpAx, (3.28b)
T(z) — (T),| < MrAxz, (3.28¢)

for x € I;. Assume that the temperature T' > Ty;, > 0, and v, u, E, and J are bounded. De-

note 7, = At/Ax?, 1, = At/Av?. If 1, < 2V621T — 41/0]\/[%4“3&, and 7, is bounded, then the fully

discrete explicit scheme (3.4) is L? stable for suitable small time step At, that is, there exists a

constant C depending on v, ¢y, ¢z, ¢yy My, Mg, My, [0 max; [V — Ulmas, [E|max; Tmins Tes To, Az/AvRE
such that

12 < €0 (3.29)

12



Proof. Let Lgn denote the spatial discretization operator for (3.4a) and L gn,gn+1 denote the

2
spatial discretization operator for (3.4c). The fully discrete scheme (3.4) can be rewritten as

1 At >
P = S L (), ST = AL g (F73), (3-30)

which, following the approach in [31], can be further rewritten as
1 1
2 2

where I denotes the identity operator. We establish the estimate of || f"*!|, in the following

three steps.

Step I: estimate of |(I + AtLg)(f™)|2 and H(I + AL gnygnr1 ) (f™)
2

2

We first establish the estimate for |1 + AtLgn(f™)[2. For simplicity in presentation, we will
omit the superscript n. We start by rewriting Lg(f) as Lg(f) = 21 + 22 + 23 + ¢, where

21, %2, 23, q € V¥ satisfy

+o0 0
Cooa= [ vt (Londos [ vE (g0 (3.:32)
0 —0
(22, P2)0 = 2 f EH"(f, ¢2) dx + Z J EH*(f, ¢2) du, (3.32Db)
i I; i Ii
@Iizo @1i<0
(237 ¢3)Q = _VZ ((U - u)fv (¢3)U)Kij + VZ <(Uj+% - U)fx,j-i-%? ¢3(ZL‘,U;+%)>[‘
_VZ<(UJ*% _u) ~w]§’¢3(xvv;ré)>]iﬂ (3'320>
(¢ p)o =—v . H" (p, ) dz, (3.32d)

for any test functions ¢, @2, ¢3, and ¢ € V¥. Then we have

|(I + AtLg)f;
=[f15 + 2A8(z1 + 22 + 23 + ¢, f)o + Atz + 22 + 23 + g3 (3.33)
<|fII5 + 24t (21 + 22 + 23 + q, o + 4AE (|13 + | 2205 + 23]3 + 4ll3)-

We estimate these terms one by one in the following. For the term (21, f)q, a simple use of

Lemma 3.4 leads to

+00 0
Grofa= [ oH (o [ or s do

0

-5 |l g [ elm (3:34)

N
o
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For the term (zy, f)q, similar estimates can be conducted to obtain

(20, f ZJEH”ffderZJEH”*ff

(E) (E)1~<
- 2 J, U e e ) | Uty 0
(E)IZ;O (E)I <0
1 — Y 2
-3 2| E-TU, -5 Y | BT
@;izo Z @220 Z
1 — 1 _
0y X [E- U ey Y [ @,
@;i<0 Z @;<0 l

<52 1E-TB, 1,

which, together with the assumption (3.28b) and Corollary 3.1, yields

Az C1 i EAx
o P =525 | (@ | f2dv> dr = N g1

For the term (z3, f)q, it follows from integration by parts that

(5. Da = v 2 (0= W f)ie, + v 2 (53 = gy S@07,))

I;

= 21713 + 52 | (gm0 )+ (g 0P )) de

+v) (<(vj+; —u)fo g1, (I7Uj+;)>li - <(“jf% —ufojop Sl >>zi>

Z'hj

SEUL R RV NONET T AT TR S ROWEOT

which follows the similar line as the estimate of (23, f)q, yielding

Gonla < S+ 53 | e

VClM Az

) dz < HfH% 1£15-

14

(3.35)

(3.36)



For the term |z[%, by taking ¢; = 21 in (3.32a) and Corollary 3.2, we have

+00 0
Cx
o = | oH Gomydv s [ o () o € G ol el
—» x

0

which yields

2
CJ?
118 < 5l 13 (357)

For the terms [2:]3 and |g||3, similar estimates can be conducted to obtain

Il < 55 (3.38)
vic?
lqll; < Ao (3.39)
For the term |z3], by taking ¢3 = 23 in (3.32c), we rewrite it as
23l = —v 2 (0 =) f. (o, + v 20y = 0oy 2al@ v, y)
i.j i.j
r +
_ z/le: <(v]7% —u) 2L 23(1',?}]_;)>Ii
= v Y (0= ()i, + v 2 (g =W ey 2(@],,))
i.j i.j ’
—Z/Z<(U]+1 u)fx,]+l7z3(l‘7v++%)>1v
irj i
= v ) (0= u)f o), + v 20y — gy (alaeg, ) =zl )
i.j i.j

which, together with the Cauchy-Schwarz inequality and Lemma 3.3, yields

231 < o]0 — ol £l (z8)oll2 + 10 — e f \/2 (Pl ) + g, ) [l d

Vv — ulmaxc1 (1 + ¢1)

R V2Aw

which further leads to

1f 2]l 23]2,

ol < ZEE A o - w1 (3.40

For the term (g, f)q, it follows from Lemma 3.4 that

Sa fic, = v |

i L

H™(p, f) dz — v JI H(f.p) do. (3.41)

15



On the other hand, it follows from (3.4d) and the definition in (3.25b) that

i L
Then, by rewriting (g, f)q based on (3.41) and (3.42) and applying the assumption (3.28¢c)

and Corollary 3.2, we have

(@, f)a =] <—V JI TH* (f,p)dz + (73 L(Uh —T)H" (f,p) dfv)

7 (T)IZ I;
v 1 — _
S—T (p, p)g—l—ymax_ T — (T),|H" (f,p)| dx
max (1), Jou (3.43)
v vMye,Ax
< - )
o+ T Ll
v vMre,Ax 5  VMpc,Ax
< | — ’
(-7 + e ) lR + S 1
which, together with (3.39), for 7, < 2z/c21Tmax — 40%‘T~AZ —, yields
1 Mrc,A Mrc,A
At(q, fla +2A%(q, q)q < VAL(— G YITGaT 2ucT,) + PN Rt i $||f|\2
Tmax 2TminAU 2,-Z—‘mmA (3 44)
< Aot |
R 27—1nnnA >

By substituting (3.34), (3.35), (3.36), (3.37), (3.38), (3.40), and (3.44) into (3.33), and

recovering the superscript n, we obtain
[(7+ AtLp ) (f")]3 < (1 + Cot) [ f]3, (3.45)

with

2 2 2 2 Az

Co = 4|2 e A B2 7o+ v +20°E (14¢1 )2 T |v—ul?  + (C1ME+VC1Mu+MTCvain)A_U'
The estimate of ||({ + AtL gnygn+1)(f™)|2 follows a similar approach as the estimate of

|(I + AtLgn)(f")|]2. The difference lies in the terms associated to z; defined in (3.32b), i.e

(22, f)o and |z|3. Tt can be verified that, with the assumption (3.28b) and F is bounded,

there hold

En Entl W , E" — (En), Ent+l _ (En+l _

‘ +2 = +2 . \‘ 2( ) | 05| < ppde, (3460
En 4 En+1 2 |En Z |En+1 r2nax
| < ' < 1B (3.461)
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which leads to the same estimates in (3.35) and (3.38) when changing E" to Z-+E"

5, and

further yields
(1 + AtLEn+En+1 (™) HQ (14 Cot) || £ (3.47)

Step II: estimate of H (L gnagntr — LEn)(fN)H .
2 2

As mentioned in Step I, the difference between the operators Lg» and L gn gn+1 — Lgn lies

2
in the terms associated to zo defined in (3.32b). To highlight this difference, we introduce a
modified notation for z,, denoting it as (z2)g. Then, we have

(LEn+2E*n+1 - LE") (fn) - (ZQ) En+2En+1 - (ZQ)EH

To simplify the presentation, we introduce the following two index sets. Denote [4 as
Iy = {z | (E”TE"H)I > 0}, Ip as Iy = {i | (E"), >0}, and their complement sets as I and
I%, respectively. It follows from (3.4b) that EnJ“TEnH =Er— 4t J+2 which yields

At7—3v = , En 4 Entl At7—%
Lol ={ |5 (), (E">Ii<0}={z|0<(T>, <V >}

i

E" 1 Bl At
—) >
I

At———17 —
IﬁlmBz{i\7(Jn+2)1i>(En)h>0}={i|0>( 5

i

Therefore, for any z € I;, i€ (I, n I3) U (I4 N Ip), we have

— |J [max Al
< T maxm

(E™);, + (B,
’(En>12 = 2 ?

| J | max At
<
2

2 Y

which, combining with the assumption (3.28b) and (3.46a), leads to

En 4 En+1

| J | max At
<
2

|E"| <

maxAt
% + MEAJJ

+ MEA.I, '

With these notations and relations, following (3.4b), the definition of 2z, in (3.32b) and

17



Lemma 3.5, for any function ¢ € V§, we have
((LEWM LEn> ( f”),qﬁ)ﬂ - (<z2)m§n+1 ~ () g, ¢>Q
En+En+1 . En+En+1 . .
—Zf (o dx+ZJ—H+(f 0) d

i€l a zEIC
_ Z J EMHY™ fn de‘ o Z J EnHv+(fn7¢) dx
i€l ZE(I}EB) I;
E™ - En+1 E™ + En+1
- X | () m o 3 (B ) o
€(lanIp) ie(I5nI1%)
E" En+l o — .
+ Z f( ”(f,¢>—EH+<f,¢>)dx
e(Ianiy)
En En+1 B
+ f (TH”U”,@ - EH <f",¢>) dz
ie(15n1p) " T
J maXAt JmaXAt
ze(IAmIB ze([c nI%)
J [max At
b (2t ar Aaz> J ool

e(la mIC u(I4nIp

A (|| max At + 2MpAx) J \/J (f™)? dv\/f )2 dv dz

CvaaXAt 2c, MgAzx "
<(“% A=) 17 el ol

By taking ¢ = (L gnimnr1 — Lgn)(f™), we obtain
2

|(Lengrn = Lon) ()] <

CU\J]maXAt 2c, MpAx "
1f™ lo-

N - (3.48)

Step III: final estimate of | f™*,.

By applying the triangle inequality to (3.31) and combining with the estimates in (3.45),
(3.47), and (3.48), we have

1 1
£, < H(I + AtL gnygn+1 potl YL+ AtLgn) f*|2 + §Hf”|\2 + iAtH(LEnJran — Lpa)f"|2
1 1 Cy JmaXAt 2c, Mg Ax .
< VI OB + AtLen) "l + 37 + 5t (7 2 157l

Av Av
Co  cMpAx  cy|J|max At N
(1 + ( 5 + Ao + N At )£
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By choosing small enough At such that At < Cvﬁ;w , we have
C coMpAzx
|7 < 5w £, (3.49)
We complete the proof by setting C' = % + % + 1. O

4 Numerical results

In this section, we present numerical examples to demonstrate the accuracy and perfor-

mance of the proposed schemes.

4.1 Accuracy tests

In this subsection, we use two examples to test the orders of accuracy of the proposed

schemes.

Example 4.1 (Relaxation to Maxwellian). In this example, we consider a simplified
example®? case®? only involving the DFP operator, given by

fi=Q(f) =Tfo + [(v—2)f]s, ve[-16.5,15.5], (4.1)

with the initial condition

£(0,0) = \/%7 (% exp (—@) + Sexp (—%)) , (4.2)

which is inspired by a mixture of two Gaussian distributions. Here the average velocity
u = —0.5, the thermal®? temperature 7' = 3.25, and the density p = 1. As the system evolves,
these three quantities do not change, and the system would eventually approach a steady state

described by the Maxwellian function:

F(oo,0) \/Q’ZTTexp (—(”2_—Tu>2) _ 61‘57r exp (—%) | (4.3)

We perform numerical simulations using the LDG method with the explicit time integrator

(2.1) up to tepg = 2. To match the accuracy of the temporal and spatial discretizations, we
adjust the time step At as At ~ (Av)% for P? polynomials and At ~ (Av)? for P? polynomials.
Table 4.1 lists the L' and L errors and orders between the numerical solution and the steady
state. It can be observed that for both polynomial spaces, the scheme can achieve optimal
(k + 1)-th order of accuracy.
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Table 4.1: L! £R2 and L® errors and orders for Example 4.1 using the explicit scheme (2.1).

P2

N, L'error Order L?error® Order®? L* error Order

30 1.23E-03 5.22F-04%2 7.04E-04

40 5.17E-04 3.02 2.24E-04%2 29582 341E-04 2.69
50 2.64E-04 3.01 1.15E-04%2 296R2 1.66E-04 3.23
75 T.77TE-05  3.02 3.45E-05R2  208R2  5927E-05 2.83
100 3.30E-05 2.98 1.46E-05%2 29982  9291E-05 3.03

p3

N, L'error Order L?error® Order® L* error Order

30  8.13E-05 3.59E-05%2 5.07E-05

40  2.53E-05  4.06 1.15E-05%2  3.96"%  1.75E-05 3.70
50 1.06E-05 3.89 4.75E-06%2 3.97%?  7.45E-06 3.82
75 2.08E-06 4.02 9.44E-07%*  3.98%* 1.57E-06 3.84
100 6.64E-07 3.96 3.00E-07%*  3.99R*  4.97E-07 4.02

Example 4.2 (Landau damping). In this example, we consider the VA-DFP equation (3.1)
with v = 0.01. The initial conditions is given by

fo(z,v) = fur(v)(1 + Acos(kz)), x€l0,L], vel[-V, V], (4.4)

with A =05,k =0.5,L =4m,V, =12, and fy = #eﬂﬂﬂ.

We simulate this example up to t.,q = 1 and compute the error between the numerical
solution with N, x N, cells and with (1.5N,) x (1.5N,) cells to test the order of accuracy.
The DG method adopt P? polynomials. The time step is again adjusted as At ~ (Av)% to
match the accuracy of the temporal and spatial discretizations. Specifically, we set At =
0.887622(Ax)? for the explicit scheme and At = 0.988524(Ax)? for the IMEX scheme. Table
4.2 lists the L' and L* errors and orders of accuracy for the explicit scheme and the IMEX
scheme. We observe that both schemes achieve optimal third-order accuracy for the L' and

L? errors™2.

4.2 Benchmark examples

In this section, we demonstrate the conservation properties and performance of the explicit
scheme (2.1) and the IMEX scheme (2.2) with P2 DG polynomial spaces on a 50 x 100 meshes.
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Table 4.2: L', L?%2 and L® errors and orders of accuracy for Example 4.2.

Explicit

N, x N, L'error Order L?error® Order® L* error Order

24 x 48  1.00E-00 1.93E-0172 1.51E-01

36 x 72 3.19E-01 2.82 6.03E-02%% 28682 4.95E-02 2.75
54 x 108 9.68E-02 2.94 1.83E-02R* 2.94R2  169E-02 2.65
81 x 162 3.06E-02 2.84 5.80E-03%? 28382 6.60E-03 2.33

IMEX

N, x N, L'"error Order L?error® Order® L% error Order

24 x 48  1.02E-00 1.99E-01172 1.55E-01

36 x 72 3.24E-01 2.84 6.22E-02R* 287"  515E-02 2.72
54 x 108 9.76E-02 2.96 1.87E-02%* 296%2  1.76E-02 2.65
81 x 162 3.00E-02 2.91 5.60E-03%2 29782 4.80E-03 3.21

We also investigate different settings of . For small v, the time step size for the explicit scheme
(2.1) and the IMEX scheme (2.2) are almost the same. However, for v = 1, the IMEX scheme
can utilize a time step of At = 2.03 x 1073, which is much larger than the time step size of
At = 2.62 x 107* for the explicit scheme. This results in considerable computational time

savings. We list an empirical time step comparison in Table 4.3:7?

Table 4.3: Time step comparison of the explicit scheme and the IMEX scheme for different

V.R2

v 0 0.1 0.5 1

Explicit 1.25E-03 7.86E-04 4.10E-04 2.57E-04
IMEX  2.03E-03 2.03E-03 2.03E-03 2.03E-03

We consider three benchmark examples of the VA-DFP system (3.1) with the following

initial conditions:

Example 4.3 (Landau damping). In this example, the-initial-eondition-is-given by
fo(z,v) = far(v)(1 + Acos(kx)), xe€l0,L], wvel[-V,V.]}? (4.5)

-0 = - —Wel*? wel? consider two additional® cases of
A: A =0.01 (weak Landauw damping) and A = 0.5 (strong Landauw damping). The governing

equation and other initial condition remain consistent with those delineated in Example 4.2.%2
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Example 4.4 (Two-stream instability). In this example, the initial condition is given by
fo(z,v) = frs(v)(1 + Acos(kx)), xe€l[0,L], vel[-V,V], (4.6)

with A = 0.05,k = 0.5, L = 47, V, = 16, frg = \/%—WU%_”Q/Q.

Example 4.5 (Bump-on-tail instability). In this example, the initial condition is given
by
fo(z,v) = fpr(v)(1 + Acos(kx)), z€[0,L], vel[-V.,V.], (4.7)

with A = 0.04,x = 0.3, L = 207/3, V. = 16, and

2

v—U
For(v) = mesp(—0?/2) + mexp(~ 1), (43)

t

whose parameters are
9 2

n,=—— Mnp=——, u=45 v, =05 4.9
P10V 1002 ! (4.9)

We first verify the conservation properties of the proposed schemes. Figures 4.1 and 4.2
plot the relative errors of the total particle number and total energy for the weak Landau
damping and strong Landau damping of Example 4.3 with different values of v. It can be
observed that the absolute values of all errors with both schemes stay small, below 107! for
the total particle number, 107! for the total energy of the weak Landau damping, and 1078
for the total energy of strong Landau damping. Figures 4.3 and 4.4 plot the relative errors
of the total particle number and total energy for two-stream instability of Example 4.4 and
bump-on-tail instability of Example 4.5 with different values of v. Again the absolute values
of the observed relative errors remain low, below 107! for the total particle numbers and
10=10R2 1079 for the total energy. For all four examples, the conservation with the explicit
scheme is slightly better than the IMEX scheme.

We further collect numerical data to benchmark our schemes. Both the fully explicit

scheme and the fully IMEX scheme obtain equally good results. Thus, we we only show the
results obtained with the explicit scheme to save space. Figure 4.5 plots the electric energy,
the enstrophy and the entropy, which are defined as

EQ
E’p — J 7d$, Es = J f2 dzx dU, S = —f flngde dU, (410)
x z Y @z Y

for both weak and strong Landau damping in Example 4.3 with various v values. It can be
observed that for weak Landau damping with v = 0, the electric field damps exponentially

over time as expected from linearized analysis. We also observe that the electric field fails to

damp after a long time, known as the recurrence phenomenon of numerical simulations. This
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Figure 4.1: Weak Landau damping (A = 0.01) in Example 4.3. Evolution of the relative error

in total particle number (top) and total energy (bottom) by the explicit scheme (left) and the

IMEX scheme (right). 50 x 100 mesh.
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Figure 4.2: Strong Landau damping (A = 0.5) in Example 4.3. Evolution of the relative error

in total particle number (top) and total energy (bottom) by the explicit scheme (left) and the
IMEX scheme (right). 50 x 100 mesh.
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Figure 4.3: Two stream instability in Example 4.4. Evolution of the relative error in total
particle number (top) and total energy (bottom) by the explicit scheme (left) and the IMEX
scheme (right). 50 x 100 mesh.
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Figure 4.4: Bump-on-tail instability in Example 4.5. Evolution of the relative error in total
particle number (top) and total energy (bottom) by the explicit scheme (left) and the IMEX
scheme (right). 50 x 100 mesh.
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phenomenon arises due to long time simulation of numerical methods. It was shown in [24]

that piece-wise constant approximations in velocity space lead to a recurrence phenomenon.

Such behavior was also seen in numerical simulations for weak Landau damping in®? [35, 63]

and for strong Landau damping in [62].%? For both weak and strong Landau damping, the

damping rate decreases as v > 0 increases. The enstrophy and the entropy with v > 0

stabilizes to a steady state faster than the case of v = 0. Figure 4.6 plots the electric energy

for two-stream instability and bump-on-tail instability. ®?

Figures 4.7 and 4.8 plot contours of f for two-stream instability with » = 1 and v = 0.001,
respectively. Figures 4.9 and 4.10 plot contours of f for bump-on-tail instability with v = 1
and v = 0.001. It can be observed that for large collision frequencies such as v = 1, the solution
rapidly reaches a steady state (equilibrium or Maxwellian distribution) in the velocity direction
regardless of the Vlasov component, while for small collision frequencies such as v = 0.001, the
behavior of the solution resembles the v = 0 scenario documented in [9]. However, as time goes
by, the solution eventually converges to a Maxwellian distribution. Overall, the introduction of
the DFP operator drives solutions towards a steady state, exhibiting a Maxwellian distribution

along the v-axis.

5 Conclusion

In this paper, we have developed energy-conserving numerical schemes for solving the VA
system coupled with the DFP collision operator. We have introduced two energy-conserving
temporal discretization methods, a second-order explicit scheme and a second-order IMEX
scheme, coupling with the DG methods for the phase space, to achieve the total particle num-
ber and total energy conservation at the fully discrete level. Additionally, we have proven
the L? stability of the fully discrete explicit scheme. Numerical experiments have been con-
ducted to demonstrate the performance of the®? the proposed schemes. Further research

includes exploring their extension to mere-complexplasma-models-and-specifie phenomenal?

high dimensional systems and designing numerical schemes that have the entropy decay

structure.®2,
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Figure 4.5: The electric energy (top), the enstrophy (middle), and the entropy (bottom) for
weak Landau damping (left) and strong Landau damping (right) of Example 4.3. Explicit

scheme. 50 x 100 mesh.
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Figure 4.6: The entropy for two stream instability of Example 4.4 (left) and bump-on-tail
instability (right) of Example 4.5. Explicit scheme. 50 x 100 mesh.??
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Figure 4.7: Phase space contour plots for two-stream instability in Example 4.4 at the indi-

cated time. Explicit scheme. v = 1. 50 x 100 mesh.
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Figure 4.8: Phase space contour plots for two-stream instability in Example (4.4) at the
indicated time. Explicit scheme. v = 0.001. 50 x 100 mesh.
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indicated time. Explicit scheme. v = 1. 50 x 100 mesh.
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Figure 4.10: Phase space contour plots for bump-on-tail instability in Example 4.5 at the
indicated time. Explicit scheme. v = 0.001. 50 x 100 mesh.
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