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ANALYSIS OF THE BOUNDARY CONDITIONS FOR THE
ULTRAWEAK-LOCAL DISCONTINUOUS GALERKIN METHOD
OF TIME-DEPENDENT LINEAR FOURTH-ORDER PROBLEMS

FENGYU FU, CHI-WANG SHU, QI TAO, AND BOYING WU

ABSTRACT. In this paper, we study the ultraweak-local discontinuous Galerkin
(UWLDG) method for time-dependent linear fourth-order problems with four
types of boundary conditions. In one dimension and two dimensions, stability
and optimal error estimates of order k+ 1 are derived for the UWLDG scheme
with polynomials of degree at most k (k > 1) for solving initial-boundary value
problems. The main difficulties are the design of suitable penalty terms at the
boundary for numerical fluxes and the construction of projections. More pre-
cisely, in two dimensions with the Dirichlet boundary condition, an elaborate
projection of the exact boundary condition is proposed as the boundary flux,
which, in combination with some proper penalty terms, leads to the stability
and optimal error estimates. For other three types of boundary conditions, op-
timal error estimates can also be proved for fluxes without any penalty terms
when special projections are designed to match different boundary conditions.
Numerical experiments are presented to confirm the sharpness of theoretical
results.

1. INTRODUCTION

In [29], Tao, Xu and Shu developed the ultraweak-local discontinuous Galerkin
(UWLDG) method for partial differential equations (PDEs) involving high order
spatial derivatives with periodic boundary conditions, in which stability and optimal
error estimates are shown. In this paper, we are interested in analyzing the UWLDG
method for initial-boundary value problems of the following time-dependent linear
fourth-order equation

(1.1) ug + A%u =0, (x,t)€Qx(0,T], wu(zx,0)=uo(x), x€c,

equipped with one of the four types of boundary conditions specified below.
(I) The Dirichlet boundary condition (Dirichlet B.C.)

ou

(1.2a) u= [p, e fn, on 0%
v
(IT) The generalized Dirichlet boundary condition (G-Dirichlet B.C.)
(1.2b) u= fp, Au=gp, on 09
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(III) The Neumann boundary condition (Neumann B.C.)

ou 0Au
(1.2¢) e INs oy _In, on 29%

(IV) The mixed boundary condition (mixed B.C.)

U :fD7 Au:gDv on FD7
(1.2d) ou , 0Au

- = fn, —— =gn, only,

ov ov

where Q C R? (d > 1) is a bounded Cartesian domain with boundary 99, v is
the unit outward normal direction to the boundary 0f), I'p and I'y are the parts
of 99 such that Tp UTy = 99, I'p N Ty = 0. We assume ug(x), fp, 9o, fv, 9v
are sufficiently smooth functions that make the problem (1.1) have a unique exact
solution. The fourth-order boundary-value problems associated with (1.2a)—(1.2d)
appear in many physical and engineering fields, such as strain gradient elasticity,
deformation of beams modeling, plates deflection theory, phase separation in binary
mixtures and image processing; see e.g., [2, 4, 16]. In particular, the Neumann B.C.
(1.2¢) is also called Cahn-Hilliard (C-H) type in the literature [3, 5], which is related
to the C—H model of the phase-separation phenomena.

As a class of nonconforming finite element methods, the discontinuous Galerkin
(DG) method was mainly designed for solving hyperbolic conservation laws; see,
e.g., [13, 26]. To solve equations containing high order derivatives including fourth-
order PDEs, different variants of DG methods are proposed. Let us first mention
some work for steady-state fourth-order boundary-value problems. As the pioneer-
ing work [1], Baker applied the DG method to the approximation of the bihar-
monic equation with homogeneous Dirichlet B.C.. Subsequently, other types of DG
methods are developed for fourth-order elliptic boundary-value problems, including
the popular C° interior penalty DG (IPDG) method [3, 16], hp-version symmet-
ric, nonsymmetric and semi-symmetric IPDG methods [15, 18, 25, 27], mixed DG
(MDG) methods [19] and single face-hybridizable DG method [11], just to mention
a few. For time-dependent fourth-order problems, there are relatively fewer results
than that of the steady-state case, especially for non-homogeneous boundary-value
problems. For example, several DG methods have been proposed for C-H equations
[17, 23, 31]. An adaptive IPDG method was presented for a fully discrete approxi-
mation of the problem (1.1) with homogeneous Dirichlet B.C. [18]. In 2009, Dong
and Shu [14] applied the local discontinuous Galerkin (LDG) method to the equa-
tion (1.1) with periodic boundary conditions, and derived optimal error estimates
for Cartesian and triangular meshes. In [24, Example 3.3], a minimal-dissipation
LDG scheme with some suitable boundary penalty terms was numerically inves-
tigated for the one-dimensional version of (1.1) with the Dirichlet B.C., and the
optimal convergence rate was observed. In [21], an MDG scheme without interior
penalty terms was proposed for (1.1) with boundary conditions (1.2a)—(1.2¢), in
which the stability was shown and analysis for the optimal error estimates was left
to future work.

The UWLDG method was proposed and investigated in [7, 22, 28, 29, 30], its
main feature is the combination of the advantages of LDG [12] and UWDG [§]
methodologies. Taking the time-dependent linear fourth-order equation as an ex-
ample, the UWLDG method rewrites the original equation into a second order
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system by introducing the auxiliary variable w = Aw and then performs integra-
tion by parts twice to each second order equation. This method is beneficial for
solving higher order PDEs, since interior penalty terms are no long needed to ensure
stability and fewer auxiliary variables are introduced, resulting in a more compact
and efficient scheme.

To our best knowledge, existing theoretical results in the DG framework for
time-dependent fourth-order problems are mainly focused on periodic boundary
conditions, and discussions of general boundary conditions are very few. The main
technicality may lie in the suitable design of numerical boundary conditions. From
the perspective of theoretical analysis, the special choice of numerical initial con-
dition is subtle for many high order PDEs [20, 32]. Analogously, in this paper,
we find that, an appropriate choice of numerical boundary condition is also essen-
tial to ensure optimal error estimates for fourth-order PDEs with different types
of boundary conditions. From the perspective of numerical experiments, for initial
discretization, we know that a special choice of numerical initial condition is not
always necessary; see, e.g., [20, Example 5.2] and [32, Remark 2.2]. However, in
the numerical experiments of our current work, we would like to emphasize that
the numerical boundary condition should be chosen as the same as that in theoret-
ical analysis; otherwise, optimal order of accuracy cannot be observed. This may
indicate that the numerical boundary condition seems to be more sensitive than
the numerical initial condition, as far as the time-dependent linear fourth-order
problems are considered.

The purpose of this paper is to construct the UWLDG scheme with delicate
numerical boundary conditions and derive optimal error estimates for the equation
(1.1) with four types of non-homogeneous boundary conditions in one dimension
and two dimensions. Inspired by the minimal dissipation idea [6, 10], this work
is devoted to design a DG scheme with optimal convergence rates using as few
penalty terms as possible to treat different kinds of boundary conditions. The main
difficulties are two folds. The first one is the proper choice of numerical fluxes for
interior faces and the design of suitable penalty terms for boundary faces, especially
when the Dirichlet B.C. is concerned; for other three types of boundary conditions,
we present optimal convergent schemes without any penalty terms by carefully
choosing the alternative interior fluxes to match the boundary conditions. Another
difficulty is the construction and analysis of some elaborate projections, which help
us to eliminate as many projection error terms as possible. In particular, in two
dimensions, a superconvergent property of the projection in Lemmas 3.13-3.14 is
essential for deriving optimal error estimates, which is achieved by establishing the
almost polynomials preserving property of degree up to k42 in Lemmas 3.11-3.12.

This paper is organized as follows. In Section 2, we present the UWLDG scheme
and show the stability as well as optimal error estimates for the one-dimensional
fourth-order problem (1.1) with four types of boundary conditions in (1.2a)—(1.2d).
In Section 3, we extend the results to the two-dimensional case, in which numerical
boundary conditions and projections are carefully investigated. In Section 4, we
provide numerical experiments to confirm the theoretical results. We end in Section
5 with some concluding remarks.

Throughout the paper, we use the standard notation for Sobolev spaces and
norms, i.e., W™P(D) for D C § equipped with the norm || - ||, p; When p = 2,
set W™2(D) = H™(D), || - |lm.2.p = || - |lm,p- For any partition Q, of the domain
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€, the broken Sobolev space H* (€;,) with £ being a positive integer is the space of
functions that are piecewise in H* Sobolev space , and the associated norms can
be piecewise defined. We denote || - ||¢,2,0, by || - ||¢ when there is no confusion. We
use || - [|p to denote the L? norm in D, and we omit the index D if D = Q or §,.

2. THE UWLDG METHOD FOR THE 1D CASE

In this section, to clearly display the main idea of the numerical treatment of
various boundary conditions, we consider the following one-dimensional version of
time-dependent linear fourth-order equation (1.1) in the form:

(2.1) Ut + Uggze =0, (2,t) € A% (0,T], wu(z,0)=mwup(x),
with Q = [a, b] and boundary conditions

(2.2a) (i) u(a,t) = fo(t), u(b,t) = go(t), us(a,t) = fi(t), us(b,t) = gi(t),

(2.2b) (i) u(a,t) = fo(t), u(b,t) = go(t), uzz(a,t) = fa(t), uzz(b,t) = g2(t),
(2.2¢) (ili) uz(a,t)= fi(t), us(b,t)= g1(t), Usza(a,t)= f3(1), Uzaa(bit)= gs(t),
(2.2d) (iv) u(b,t) = go(t), uz(a,t)= fi(t), Uz (bt) = g2(t), Usaa(a,t)= f3(t),

Uy
where wug(x), fi(t),9:(t), i =0,1,2,3 are sufficiently smooth functions.

2.1. The UWLDG scheme. As usual, we divide the computational domain ) =
[a,b] into N cells

a:x%<x%<-~-<xN+%:b,

and denote
Ij:(l'j,%, CUJ-JF%), hj:l'j+%—xj7%, Qh:{.[j},

as the cells, cell lengths and the partition of €2, respectively. We also define h =
max;h; and assume the mesh is regular. We take the following piecewise polynomial
finite element space

Vi ={v:vl, € P*(I)), j€ Zn}, Zn={1,...,N},

where P¥(I;) denotes the space of polynomials in I; of degree at most k . We use
(vn) i+ and (vh) 1 to denote the value of vy at x;, 1 from the left and right cells,

respectwely Furthermore the jump of vy at z; 41 is defined as

[[Uh]]j-f-% = (Uh);-:l (v h)j+1

In order to construct the UWLDG scheme, we firstly introduce an auxiliary
variable w as the second order derivative of the exact solution w and rewrite the
equation (2.1) into a second order system

ut+wm=0,
W — Ugy = 0.

Then, the UWLDG scheme is defined as follows: find up,w, € V4, such that for
any p,q € V), and j € Zn

(23&) ((uh)tvp)j +(wh7pxm) +wmp |J+1 _wmp |j wp:r |j+1 + wpa: |]7— :Ov
(2.3b)  (wn,q); = (un, Qua)j — Ueq™ |j15 + Uaq |j—% + g, [543 — gy |j7% =0.
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Here, (u,v); = / wv dz, and U, U,, W, W, are numerical fluxes, which will be
I
specified later tailored to different type of boundary conditions.
To finish the construction of the UWLDG scheme, we now define the numerical
flux according to the prescribed boundary conditions in (2.2a)—(2.2d). At interior
points TiiL, j=1,...,N — 1, we choose

(24) (ﬂ, ﬂ;a @7 U/};)j—o—% = (u:a (uh);a w}—l_v (wh);)j_;'_%v

for all four kinds of boundary conditions in (2.2a)-(2.2d); at boundary points x 1,
TyiL, we define:
Case (i) For the Dirichlet B.C. (2.2a),

= (folt), (o), wi, (wn)f = 12 Tua)

(25b) (a’ @’ @’ U/}?D)N—i-% = (go(t)7 gl(t)7 w; + ]%1 [[(uh)I]] ’ (wh)I_)NJr%’

where kq, ko are positive constants independent of A and the polynomial degree k.
Here and below, we set

(Uh); = fo(t), (U}L)EJF% = go(t), ((uh)x); = f1(1), ((uh)w);+% =g1(t),

to make the penalty terms well-defined.
Case (ii) For the G-Dirichlet B.C. (2.2b),

(25a) (@, @, @)y

(2.6a) (@, Uy, @, W2y = (fo®), (un)i, fo(t), (wn)7),

(2.6b) (@ U, @, W) vy = (90(8), (un)y 92(), (Wn)z) s
Case (iii) For the Neumann B.C. (2.2¢),

@) (@ @)y = (. A, el f0),

(2.7b) (@, T, @, Wr) iy = (5 91.(8); wys 93(1)) 1 -
Case (iv) For the mixed B.C. (2.2d),

(2.82) (@, g, @, @)y = (uy, fult), wys fo(t) s

(2.8b) (i, T 8, )0y = (90(8). ()7 9a(0). (wn)7) s -

Remark 2.1. Tt is worth pointing out that the choice of numerical flux is not unique
for each kind of boundary condition, and some other numerical fluxes would also
work as discussed below.

For the Dirichlet B.C. (2.2a), we can also choose the following three kinds of
numerical fluxes (with ki, ko being positive constants):

(So(®)s fr(®), wif + 5 [(un)a], (wn)f — 3 [un])
u;7 (uh)jﬂ w}:7 (wh)r)j_i_%a Jj= 17~~'7N*17

gO(t)a gl(t)a w}:7 (wh)x_>N+%7 .7 =N.

1y j:O7
2
o~ o~

.(a7 /l/l,;7 w, /LUI)]JF%:
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(f()(t), fl(t)7 w}Jlrv (wh)j:_)%v Jj=0,
.(ﬂ, ’l/j,;, ’l/l}\, @)]Jr%: (u;, (Uh);, w,‘l‘, (wh);r)jJr%’ j: 1,...,N7 1,

(90(t), g1(8), wy, + 5 [(un)al (wn)y = 3% Tun Dy, G=N.

For the G-Dirichlet B.C. (2.2b), the Neumann B.C. (2.2¢) and the mixed B.C.

(2.2d), we can also choose the following numerical flux at interior points 1
j=1,...,N —1, coupled with the boundary fluxes (2.6)—(2.8), respectively.

(29) (ﬂ, @7 I/U\, ’U/};)j+% = (’U,}:7 (’U,h);_, U);, (wh);*')]+%7 j: 1,...,N— 1.

Remark 2.2. In particular, if the equation (2.1) is equipped with the following type
of mixed B.C.

u(a’t) = .fO(t)’ ’U,x(b, t) = gl(t)v uww(a7t) = fQ(t)7 ulwl(b’ t) = 93(t)7

we can take the numerical flux at interior points as (2.4) or (2.9), coupled with the
following boundary flux:

(a7 @7 11)\7 @) %a

= (uy,, 91(t), wy, g3(t))N+%'

1
2

= (fo(t), (wn)f, fa(t), (wn)F)

(a7 u/\w7 ’&)\7 w.’L‘)NJ,—

1
2

In the following analysis, without loss of generality, we mainly consider the in-
terior numerical flux (2.4) and the boundary fluxes (2.5)—(2.8) corresponding to
boundary conditions (2.2a)—(2.2d), respectively.

2.2. Stability analysis. In this subsection, we will show the stability property of
the scheme (2.3) with the interior numerical flux (2.4) and the boundary numerical
fluxes in (2.5)—(2.8).

Theorem 2.3. For the fourth-order problem (2.1) with the homogeneous boundary
conditions in (2.2a)—(2.2d), the solutions up, wy to the semi-discrete UWLDG
scheme (2.3) with numerical fluzes (2.4) and (2.5)—(2.8) satisfy the following L?
stability

1d
2dt
Proof. We take the test function p = up, ¢ = wy, in (2.3), then use integration by
parts and add the two equations together to obtain

(2.12) ((un)e, un)j + (wp,wy); + L}(wh,uh) — L?(uh,wh) =0, Vj € Zy,

(2.11) lun ()11 + l[wn ®)]* < 0.

where

L}(wh’uh) =wy, (un)y i1 — w:(“h)jbfé + Wy uy, 41 — @“mg‘—%

- @(“h);‘j+% + {U\(uh);_|j7%7
L (up, wp) = uy, (wi)7 41 — wif (wn) 7|

j—t T Us Wy [j g — Uz Wy |51

- ﬂ(wh);\j+% + a<wh):‘j7%~
Then, summing over j for (2.12), we get
1d

(2.13) 5%Huh(t)n? + [Jwn ()]|? + L(up, wp) =0,
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where
N

L(up,wp) = Z (L; (wn, up) — L?(Uhawh))~
j=1

To estimate L(up,wp,), we firstly substitute the interior numerical flux (2.4) into it
to obtain

(2.14) L(up, wp) = Ao + A,

where

(2.15a) Ao =wy, (un)z Ingz —wi (un)F 1y =y (wa)g vy + i (wn)7 ]y
(2.15b) Ay =Wauy, vy — Wauyy |3 — D(un)g vy + @(un); |y

— Ugwy, | ygy + Upwy [y +U(wn)7 vy — lwn) ]y

We then insert each of the boundary flux (2.5)—(2.8) into the expression of A, in
(2.15b), and denote the corresponding result, respectively, as Ay, Ay, Aii) Agiv)»
to get

Agy == Ao — fo (wn)F |y + 90 (wn)7 [nry + frwy |y — 1wy, [y

kl _ kg
o (OB [y ] O e

Agiy == Ao — fo (wn)f |3 + 90 (wn)z [ngs + 2 (un)fly — g2 (un)zIng s
Agiiy = — Ao + flw}-H% - glwﬁ|N+§ - fSUm% + 93U;|N+%a
Ay == Ao = fo - (wn)3 13 + g1wy vz + for (un)y |y + gsuy [ngs

Clearly, when f; =0, ¢; =0,i=0,1,2,3, we have

and
o A A (n) e ()
Ay = Aginy = Aiv) = —Ao.
Since ki, ko are positive constants, we find, by (2.14), that
L(up,wp) >0
holds for A, = Ay, Aqi), Agii)> A(iv), corresponding to all four kinds of boundary

conditions in (2.2a)—(2.2d). This, together with (2.13), implies the stability result
(2.11). O

2.3. Optimal error estimates. In this subsection, we present the optimal error
estimates of the UWLDG scheme. To do that, we introduce several projections
that are needed in the error analysis.
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2.3.1. Projections. Different projections are needed in dealing with different bound-
ary conditions with the goal of eliminating as many projection errors as possible.
Given u € H?(Qy), we define three kinds of one-dimensional projection onto V;, as
follows.

e Pyt For k> 1, j € Zn, Pylr, € P¥(I;), such that, for j =1,..., N,

(2.17a) / (u — Payru)vy dz =0, Yoy, € PF72(1;),
I
(2.17b) PMU(I;;%) = u(xj_%), (PMu)w(xj._+%) = Uy (zj+%).
e Pp: For k> 1, j € Zn, Ppl;; € P*(I;), such that, for j =1,...,N — 1,
(2.18a) / (u — Ppu)vy, dz =0, Vv, € P*2(I,),
I;
(2.18b) PDu(a:;;%) = u(xj_%), (PDu)gE(xj_Jr%) = Uy (xj+%),
and for j = N,
(2.18c¢) / (u — Ppu)vp dz =0, Yo, € PF2(Iy),
In
(2.18d) PDu(x;_%) = u(xN_%), PDu(x&+%) = u(xN+%).

e Py: For k > 2, j € Zy, Py|1, € P*(I;), such that, for j =2,..., N,

(2.19a) / (u — Pyu)opdz =0, Yo, € PP2(I;),
I;
(2.19b) PNu(ac;'_%) = u(xj_%), (PNu)I(x;_%) = U, (xj+%),
and for j =1,
(2.19¢) / (u — Pyu)vp dz =0, Yo, € PP2(L),
Iy
(2.19d) (Pyvu)y (x;{) = Uy (x%), (PNu)z(xg) = Uy (x%)

It is easy to verify that all these projections are well defined and have the fol-
lowing optimal approximation property; see [9, 29].

Lemma 2.4. Let T be any projection defined by (2.17)~(2.19), then foru € H*1(Qy,),
there holds

(2.20) l = wull + 2w = wulls + b2 u = wulln, < CR* ullgs,

1
where ||[v|p, = (E;VZI [(U],_+%)2 + (vj_ )2}) *, 1< s <k is an integer and C is a

positive constant independent of h.

Nl=

2.3.2. Main results. Without loss of generality, we firstly state the error estimate
result for the case of the Dirichlet B.C. (2.2a), and the results for other three
boundary conditions will be discussed in Remark 2.6 and Remark 2.7.

Theorem 2.5. Let u be the exact solution of the fourth-order equation (2.1) with
the boundary condition (2.2a), w = ug.; and assume u is smooth enough, e.g.,
lullks, [[uellyq are bounded uniformly for any time t. Let up,wy be solutions of
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the UWLDG scheme (2.3) with numerical fluzes (2.4)—(2.5). Then, for k > 1, we
have the following optimal error estimates:

(2.21) ut) — un(t ||+/ w(r) — wn (7| dr < CHE+L,

where C is a function of t to the power at most 3 5, which is independent of h, and
dependent on ||u||g+3, ||wellr+1-

Proof. Let e, = u — up, €, = w — wy. Since v and w also satisfy the UWLDG
scheme (2.3)—(2.5), we sum over j for the cell error equations to get

(2'223) ((eu)tap)ﬂh + B(ewap) =0,
(2.22b) (ew,q)q, — Blew,q) =0,

where (-, )q, denotes the summation of the L? inner product in I; € 9y, and B(, )
is defined as follows: for v,z € H?(Q,)

N N
B(v,2) = > (0, z0)i + D (%27 |y = 2y = 025 |y + 921504 ),

j=1 j=1
and
(0,0, e, ( ) +—§[[Uh]]) , =0,

+ (e )+1, j=1,...,N—1,

w)e
(0,0, €, - ﬁ( Wl (ew)s)yyss d =N

ey = (u— Pyu) — (up — Pasu) := 0y — &u,
ew = (W — Pyw) — (wp, — Pyw) := ny — Ew,
and let
(0, 0, by ()i = 73708 ) 1 »
(nAm ()es T @)j+l = ¢ (mh )z mils (7)1
’ (Oa 0, Ny — %(nu);’ (Nw)
(
(

0,0, &5, (§w)f = 33€0) 5, 7 =0,

G (G €6 (G)z)jyy d= 1 N1
(0,0, & = (€7 (€w)7) yyy» G =N.
Then, taking p = &,, ¢ = &, and adding the two equations in (2.22), we get
LHS = RHS,

2

where
LHS = ((§u)t: €u) g, +(&ws €w)ey + B(€w: §u) = B(8us Su),
RHS = ((nu)tvfu)Q}L+(77w7fw)Slh,+B(77w,£u)*B(77u,fw)~
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Using integration by parts and a simple calculation, we can get

k 2k - 2
(2:23)  LHS = ()0 €u)g, +Eus&ula, + 13 (€07) + T ((€)e)xys) -
Besides, the definition of the projection Py; implies that
(2.24)
RHS = ((nu)tﬂ £u>Qh +(77w7 é-w)ﬂh - ((nw)m)g(gu)g - (nw);\r_i_% ((gu):r);_i_%

Using Young’s inequality, we obtain

()} 6] < a (()]) 4 2 (€1)’

) (€0 wis = g ((0)nss) + 50 ((€)nis)

Consequently, by the trace inequality and approximation property of the projection
Par in (2.20), we get

(2.26) [ (o)} | < CH " Hllwllipr () yyy | < OBFFE ol

Thus, it follows from Cauchy—Schwarz inequality and (2.23)—(2.26) that

(2.25)

d
(2.27) %%Hfu(th + 6 @I* < ChMeu(®)]l + CRMFlgw (8) ]| + CRZH2,

Next, we adopt the idea in the proof of [21, Theorem 2.2] and omit the details
to save space, and we arrive at

t
lEa(t)] + / €0 ()| dr < CHF,

where C' is a function of ¢ to the power at most 2, which is dependent on [|ul|43
and ||u¢|[x41, but is independent of h. Then, by the triangle inequality we finally

get the error estimates result (2.21). (]

Remark 2.6. For the fourth-order problem (2.1) with the G-Dirichlet B.C. (2.2b),
the UWLDG solutions of (2.3) with numerical fluxes (2.4) and (2.6) satisfy the
optimal error estimate result (2.21) for k£ > 2, which can be proved by performing
the similar arguments as in the proof of Theorem 2.5 and using the projection Py.
For k = 1, we cannot prove the second order accuracy, indeed, only 3/2th order is
observed in the numerical experiment for both L2 error of w and w; see Table 4.2
and Table 4.3 in Section 4.

Remark 2.7. For the fourth-order problem (2.1) with the Neumann B.C. (2.2¢) and
the mixed B.C. (2.2d), consider the UWLDG solutions of (2.3) with interior flux
(2.4) and the boundary fluxes (2.7)—(2.8), the optimal error estimates in (2.21) for
k > 1 can also be proved by using the projections Pp and Py, respectively.

3. THE UWLDG METHOD FOR THE 2D CASE

In this section, we extend our methods to multi-dimensional case, and consid-
er the Cartesian domain only. Without loss of generality, consider the UWLDG
method for the two-dimensional time-dependent fourth-order problem (1.1) with
boundary conditions (1.2a)—(1.2d). Let Q = [a1, b1] X [a2, b2] be a bounded rectan-
gular domain, and denote

Iy ={(z,y) €0Q|z =ay or y =as}, TIp={(z,y) €00z =by or y =by}.
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We set v,,,, m = 1,b,r,t, are the unit outward normal vectors of the left, bottom,
right and top boundary side of {2 respectively, i.e.,

v;=(-1,0), v, = (0,-1), v, = (1,0), vy = (0,1).

3.1. The UWLDG scheme. Similar to the one-dimensional case, we rewrite (1.1)
into a second order system

up + Aw = 0,
w— Au = 0.
To define the UWLDG method clearly, let us first introduce some notation.

3.1.1. Notation. Asshown inFigure3.1,let Q) = {K;; = I;xJ;,i=1,...,N,, j =
1,..., Ny} be a partition of  with the shape-regular rectangle element K,;. We
denote Qﬁ and Q% as the sets of all the interelements and the boundary elements,
respectively. We denote &, as the set of all faces of the partition 2, and &, &9
as the sets of interior faces e (i.e., e is shared by two elements in §2) and boundary
faces e (i.e., e lies on 99), respectively. In particular, é‘}?’l, é‘}?"b, é‘}?"r and éf’t
represent the sets of boundary faces e that lie on the left, bottom, right and top
side of the domain €, respectively.

vy
&0t
((11752) T h (blebZ)
Kneny
0,1 > vV
&, K, - r
vV, €1 é‘;z,
K1
| (b1, a2)
(a1,a2) é‘)’?"b ¢ 1, 42
vy

F1GURE 3.1. The 2D mesh 2.

The boundary and the diameter of K are denoted as K and hg, and set h =
maxg hx. The finite element space associated with the mesh €2, is of the form

Wy, = {veL*Q): v|, € Q¥(K), VK € Q4 },

where QF(K) is the space of tensor product of polynomials of degree at most k in
each variable of ¢ = (x,y) in K.

3.1.2. The UWLDG scheme. The UWLDG method is given as follows: to seek
up, wp € Wp, such that

(3.2a) ((un), +p) o + (Wi, Ap) e + (Vw -1, p)ox — (@, Vp-n)ax =0,
(3.2b) (Wns @) ¢ — (uns AQ) ¢ — (V- 1,q)ax + (@, Vg - n)ox = 0,
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holds for all p,q € W}, and K € €);,. Here n denotes the unit outward normal vector
to 0K, and for any v,z € H?(Qy)

(v,2)k = /Kv(%y)z(x,y) dxdy, (v,Vz-n)px = /OK v(s)(Vz(s) - n) ds.

For the above boundary integral, if v or z is not single-valued on the element faces,
we take its value from interior of K and restrict it on 0K.

To complete the definition of the UWLDG method, we need to define the nu-
merical fluxes u, Vu, w and Vw. To do that, firstly, for a possibly discontinuous
function w(z,y), we define w* on the vertical and horizontal edge respectively as

— o E — _
wH_%,y = w(xﬂ_%,y) = 51_l>%1iw<xi+% + €, y), i=0,1,..., N,
+ _ +
W irl = cu(a:,yj+
We denote
(Vo) = (wa)E s W), ) (V)T = (W)t s ()T )]
itgy -\ i gy YV irgy) 0 Tty N wgty’ SV ajtg) 0

and set the jump value as

1) zslir(r)liw(x, yj+%+5), j=0,1,...,N,.

2

+ - +
w]; = w; — w; Wyt =w! . 1 —w .
[ ]]H%xy i+3.y it3.,y’ [ H"L’J*% z,j+3 J+s

Then, the numerical fluxes are defined as follows. At interior faces e € &/, we
always choose

(3.3) al =ut|,, Vu’ (Vup)~

LBl = wit| L Vul, = (V)|
For the numerical flux on the boundary face e € &2, we firstly consider the Dirichlet
B.C. (1.2a), since some penalty terms are involved.

Case (I) For the Dirichlet B.C. (1.2a), we define:

e the numerical flux ﬂ}e as
(3.4a) al, =Py (fp)

e the numerical flux Vu|e as

o Vee é”hO;

(3.4b) Vu vi|, = Pu(fy)],, VYee & ™ m=10brt

e the numerical flux @ | as

@l, = wyi |, Ve € 0, &00,

ok .
(3.4c) @, = wy |, + 5 (el |, Vee &),

. _ k

@|, =wy |, + 7 w1, Vee &

e the numerical flux Vw‘e as

— ks
Vw.yl|e:(th)+~ul| h3 Uh]]‘ Ve€£,3’l,
— ky
(3.4d) Vw vy, = (Vun)* v, + 75 [unl Ve e &7,
V- ym’ (Vwp)™ vy, o Ve € é"}?’m,m =, t
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where k1, ko, ks, ks are positive constants independent of h and the polynomial
degree k. To ensure the penalty terms in (3.4c) and (3.4d) are well-defined, we set

uy |, = Par(fo)le, Vee &M, &,
((Uh)m)+|€ =Py (fn)le, Ve e EYT
((Uh)y)Jr’e = Par(f) e, Ve € &7

The numerical fluxes for other three types of boundary conditions are given in
the following remark.

Remark 3.1. For boundary conditions (1.2b)—(1.2d), we can use the numerical flux
(3.3) for interior face e € &/ together with the following boundary flux for e € &°.
Case (II) For the G-Dirichlet B.C. (1.2b), we define:

(3.5)
al, =Pn(/o)l,, @], =Pnlon)|, Veedl,
Vu- Vin|, = (V)" v, V- V|, =(Vwp) T v, Ve € & m=1,b,
V- Vm|e:(Vuh)*- ym}e, Yuw- ym|e:(vwh)*. ,,m|e’ Ve € @@}?,m,m —t

Case (III) For the Neumann B.C. (1.2c), we define:
| = o V€& m=1b,

:’LL;|€7 {D|e:w;|e’ veeg}?,m’m:frata

~

u
(3.6) i,
%'Vm|e:PD(fN)|ev %'VWLL:PD(QN)LE? Veeg}?mvm:laby’rat'

1ﬁ|e :w}f

Case (IV) For the mixed B.C. (1.2d), we define: for e € g}?’m, m=1,0b,

(3.7a) a|e:uh » ﬂ.ym‘e:PM(fN) o @|e:w;{ , ﬂ)-l/m{GZPM(gN) &
and for e € &)™, m = 7,1,
(3.7) il =Pulfoll, - Foval, = (V)™ vl

B, =Pulop)],, V- vl = (V)™ v

In the following subsections, we will give stability analysis and error estimate
results of the above UWLDG schemes. Before that, for easy presentation, we
introduce several short notations. Firstly, for n € H?(,) and p € W), we define

Then, for K;; € Qf, we specifically have

8

(39)  Bk,(np)=>_ Ta(np), i=23,...,Ny—1, j=2,3,...,N, -1,
m=0

where

(3.10)

Ty (n,p) / (Paw + Pyy) dady,

T (n,p) = / Ty pa(T 1 y) dy, Tgij(n,p)=/n(wj_;,y)pw(wj_yy)d%
JJ 2 2
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Téj(mp)Z‘/,n(x,yf+%)py(x7yf+%) dz, Tf(”’p):/,n(m’ v i@y ) do

Tsij(mp)=/m(ﬂs;%,y)p(af;%,y) dy, Téj(n,p)=—/ m(x;%,y)p(x;tévy)dy,
J; J

73

T;j(mp)z/ﬂy(l“,yj_+é)p(ac7yj_+%)dx, Tsij(n,p):_/lny(x’y'_—%)p(x’y{r )de-

i i

Next, for each K € Qy, p,q, ¢ € W}, we introduce

1) How (p,q) = (wh, Vg, - 1) g — (un, Vg - 1) g + (Vo -1, p)ox
— (@, Vp-n)or — (Vu-n,¢)ox + (4, Vg -n)ox,

and

S =3 [ T (ealan,iyn) + 53 (o) do
(3.12) g=1m

+ i/f %2 (‘Py(x’yz:rﬁ%)f"‘ % <<P(l‘,y;)>2 dz.

3.2. Stability analysis. In this subsection, we show the L?-stability of the UWLDG
method (3.2) with the interior flux (3.3) and the boundary fluxes (3.4)—(3.7).

Lemma 3.2. If the boundary condition (1.2a) is homogeneous, i.e., fp =0, [y =
0, on 09, then the numerical fluzes defined by (3.3) and (3.4) satisfy

(3.13) > Hok(un, wp) = S(up) >0,
KeQy,

where S(-) is defined by (3.12).
Proof. Firstly, we notice that

(3.14) > Hog(un,wp) = > ( > Hokne(un,wn) + > HaKme(uh,wh)>-

KeQy KeQy, 865}{ eEgﬁ
For any e € &, we suppose e = 0K N 0K, by (3.3), it is easy to check that
Hoxe,me(un, wn) + Haryne (un, wr) = 0,

hence,

(3.15) Z Z Ha;me(uh,wh) =0.

KeQn ees]!

For e € &, without loss of generality, we assume e € é"}? ’b, i.e., e is the bottom
boundary face of some element K1, 4 € {1,2,..., N, }. According to the definition
of the boundary flux (3.4), we have

al,=Pu(fp)], =0, Vu-wy| =Pu(fn)|, =0, @

— k k
Vuw- Vb|e:(vwh)+' Vb|e+h%<uz_PM(fD)) L: (Vap)*- Vb|e+ h%uﬁe-

Therefore,

Hog, ne(up,wp) = (w,f, Vu; “Vp)e — (uz, Vw,ir “Up)e + <Vw; . Vb,ume
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kg
it v St ),

:% /1 (uh(:n,y;r))2 dz.

Similarly, we can derive that, fori=1,... ,N;, j=1,..., N,
ko _ 2 0,t
HaKiNyne(u}“wh):F . ((uh)y(‘r’yNy_;_l)> dl‘, ec éah )
ks 4 2 0,0
H@Kljﬁe(uh7 wh) - ﬁ uh(xévy) dyv ec éah )
Jj

k 2 .
HaKijme(umwh):ﬁ/J ((Uh)m(l“&ﬁ%,y)) dy, ec &)

Therefore, summing over K € Qj and e € &, we obtain

(316) Z Z HaKﬁE(uh7wh): S(uh)

KeQp ec&?

Since the penalty parameters k; > 0,4 = 1,2,3,4, then (3.13) follows by (3.14),
(3.15) and (3.16). O

Similar to Lemma 3.2, we have the following lemma for other three types of
boundary conditions.

Lemma 3.3. If the boundary conditions (1.2b)—(1.2d) are homogeneous, then the
numerical fluzes defined by (3.3) and (3.5)—(3.7) satisfy

Z H@K(Uhvwh) =0.
KeQy,

Theorem 3.4. For the two-dimensional fourth-order equation (1.1) with the ho-
mogeneous boundary conditions in (1.2a)—(1.2d), the UWLDG solutions up,wy, of
the scheme (3.2) with the interior flux (3.3) and the corresponding boundary fluzes
(3.4)—(3.7) satisfy

1d

(3.17) 5%Huh(t)\\? + lwn (®))? < 0.

Proof. Take (p,q) = (up,wp) and add the two equations in (3.2), then use integra-
tion by parts, we obtain

((un)e, un) ¢ + (W, wp) g + Hor (un,wy) =0, VK € Qp,

where Hyk (-, -) is defined by (3.11). We sum over all the elements K in € to get

1d
5 g7 eI + lwn I + D Hoc(un, wn) = 0.
KeQy,

By Lemmas 3.2-3.3, we immediately arrive at the L2-stability result (3.17). ([
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3.3. Optimal error estimates. In this subsection, we mainly consider optimal
error estimates of the UWLDG scheme (3.2) with numerical fluxes (3.3)—(3.4) for
solving the two-dimensional problem (1.1) with the Dirichlet B.C. (1.2a), since it is
more involved. To this end, let us firstly introduce the semi-norm on the boundary:
for Vv € H (), £ > 2,

lvllox := (/J [(v;r%7y)2 + (v, y)Q]dy + /1 [(U;H%)? + (v;j_ )2]dx> .

1
. 2 2
J
1 ~
Then, we denote ||Vollax = (||va|?x + lvyll3x) 2, and for any subset K C Qy,
5 \Z
)

The following trace and inverse inequalities [14] are useful in our analysis.

1

lloz=( 32 Nol3x) . 190loz=( 32 1¥2l3xc) " llell, z=( 3 Il

KeK KeK KeK

Lemma 3.5. For any v € H'(K), there exists a positive constant C, such that

lolZx < Cllvlixlvllg

where C' is independent of the mesh size h.

Lemma 3.6. For any q € Q(K), there exist a positive constants C, such that

1 —
lallox < Chy?llalle,  Vallx < Chillallx

where |Vq|lx = (fK Vq-Vq dw)%, C is independent of the mesh size h.

3.3.1. Projection and its properties. For two-dimensional Cartesian meshes, the
projection can be constructed as the tensor product of one-dimensional projections.
We define 11 : H?(Q,) — W), as

(318) Iy := P]\/[m X PMyu,

where Py is the one-dimensional projection given by (2.17a)—-(2.17b), and the sub-
scripts « and y indicate that the projection Py, is applied with respect to the corre-
sponding variable. Specifically, for all K;; =I; x J; = (:UF%?;vH%) X (yjfé,y]qr%)
and Vv, € QF2(K;), ITu satisfies the following identities

u(w, y)on(z,y)drdy,

(3.19a) /K Mu(x, y)vp(x, y)dedy =

ij

(3.19b) / Hu(:v,y;r_%)vh (m,y‘;r_%)dx =

! u(x,yjfé)vh(x,y;r_%)dx,

(3.19¢) / Hu(x;i%,y)vh (xit%,y)d (xifé,y)vh (xit%,y)dy,

y(:c,yjjr%)vh(x,y;r%)da: =

Jj
u)
(3.19¢) / (Hu)m(:z:;%,y)vh (z;%,y)d

<
Il
I

(3.19d) / (1

~
<

5 Y= ; UT(Iz-‘,-%vy)Uh(z +17y)dy7
(3.19f) Hu(a:j_%,y;'_%) = u(mi_%,yj_%),
(3.19g) (Hu)m(x; %,y;r_%) :um(‘rz«k%?yjf%)u
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(3.19h) (Hu)y(x;%,yjl%) = uy(a:i_%,yﬁ%),
(3.19i) (Hu)zy(x;_%,y;_%) = umy(xi+%,yj+%).
Clearly, the following relationship between II and P; holds:
Proposition 3.7. For VK;; € Q, on the boundary 0K;;, we have
Mu(a} ,,y) = Par, (ule; 3.9), (Mu)a(ey,,.y) = Par, (ua(z;,.9). y € Jji

-2

Hu(z,y "

i=3

Using a similar argument as that in [29, Lemma 6.1], it is easy to check the
existence and uniqueness of the projection II, and we also have the following ap-
proximation property.

Lemma 3.8. Assume u € H*(Qy), s > 2, then there exists a unique Hu € Wy
satisfying (3.19). Moreover, there holds

lu — ul| e + h* [lu — Tull, g + h? lu—Tullyy < CR™ LSy g,
where 1 < ¢ < min{k + 1, s} is an integer and C is a constant independent of h.

3.3.2. Main results. We are now ready to state the error estimate result of the
UWLDG scheme solving (1.1) with the Dirichlet B.C. (1.2a).

Theorem 3.9. Let u be the exact solution of the fourth order equation (1.1) with
the Dirichlet B.C. (1.2a), w = Au; and assume u is smooth enough, e.g., ||u|k+s,

lutl|k+1 are bounded uniformly for any time t. Let up, wy be solutions of the
UWLDG scheme (3.2) with numerical fluzes (3.3)~(3.4). For k > 1, we have

(3.20) Ju(t) - un(t)] + / leo(r) — wi(7)]| dr < CRFH,

3

5, which is independent of h, and

where C' is a function of t to the power at most
dependent on ||ullk+5, ||ue|g+1-

The proof of Theorem 3.9 is divided into the following five steps:
Step 1. The error equation. As usual, we denote

€y =U—Up, €y =W — W
Since the exact solution u and w satisfy the following weak formulation:
(ue, p) i + (w, Ap) ¢ + (Vw - n,p)ox — (w, Vp-n)ox =0,
(w,q) ¢ — (U, Aq) g — (Vu-n,q)ox + (u, Vg -n)sr =0,

then we can get the cell error equation as

(321a) ((ew)e. D) ¢ + (Cws AD) g + (Vew 1, p)ox — (€w, VP m)ox =0,
(3.21b) (ew: g — (€ AQ) g — (Veu - 1, q)ox + (6, Vg - 1)ox =0,
where

éy=u—1, Ve, -n=(Vu—Vu)- n,

ew=w—10, Vep -n=(Vw—Vuw) n.
Step 2. The error decomposition. Denote e, = 1, — &y, ey = M — & With

Ny =u—Hu, & =up —u, 1y =w— 1w, & =w, — w.



18 FENGYU FU, CHI-WANG SHU, QI TAO, AND BOYING WU

e At the interior face e € &, we naturally have

/Z:;f;/;:jyﬂ:vui’ﬁ :Vui,
(3.22) Tl =m0 | €l =& Vi, = (Vn) [, Va], = (V&)

77;’6:7];: e’ Ew‘e vnw’e:(vnw)_ eaV§w|e:(V§w)_|e'
e At the boundary face e € &, we specially let
(3.23a) Tal, = €ul,, &, =0, Veed&?,

(3.23b) % ym|e:=€e\u~ @ . I/m‘elz 0, Vee éa,?’m,m =1,b,7,t,

Mol =mbl,, &l =8, vee&) &t
_ _ - _ k .
(3.23¢) Tol, =0l &l = éw\;rgl [(un)e] |, Vee&,
_ _ - _ k
nw|e =N e’ €w|e = gw ‘e+ﬁ2 [[(Uh)y]] e’ Ve € éai?t’
(3.23d)
Vi i, = (Vi)™ Véw v, = (VEu) v, + S unl|,, vee &),

Vi vy, == (Vi) Véw v, = (Ve T 1y, + S unl|,, Yee &,

V/"’;u- Vm’eZ: (V?’]w)_ Vfw I/m| Vfw) ml g Ve € éa}?,mﬂn —rt.

Based on the above decompoatlon, for all K € Qy, we have

Culore = Miloie = ulor: Vew mye = Vnu mly = Ve, |,
Culor = Molyi = Ewlos Vew nly = Vi |y = VE, nf,,.
Hence, we can decompose the cell error equation (3.21) into the following form
((¢w)e:p) ¢ + Br (€wsp) = ()1, P) ;o + Bi (1w, p) »
(€w: O g — Br (§us @) = (M O g — Br (7w, 9)
where Bg/(-,-) is defined by (3.8). Now, we take p = &,, ¢ = &, and add the two

equations in (3.24), after summing over K, we obtain,

(325) ((€u>t7€u)ﬂh + (fwvgw)gh + A1 = ((nu)tagu)ﬂh + (nwvgw)gh + A27

where

M= Y (Biel6uw &) = Br6ua))s 2= Y (Brnu&) = B &o)).

KeQy, KeQy

(3.24)

Step 3. The estimate of A;. The estimate of A; is given in the following lemma.
Lemma 3.10. Ay = S(&,), where S(-) is defined by (3.12).

Proof. Firstly, for VK € Qy,, using integration by parts, we obtain
Al = Z (BK(guu fu) - BK(fu; fw)) = Z ﬁaK(ﬁu,&u),
KeQy KeQy

where

Hog (€ &) = (€ VEu 1) e — (€0, Vw0 ppc + (VEw -1, €)ook

(3.26) - - ~
- <€w7 vEu . n>8K - <V£u : n7§w>8K + <€U7 Vfw : n>8K-
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In addition, the property of projection II in Proposition 3.7 implies that
Pas (ule) = () *le, e € B0 P, gle) = (Tu)) |, e € 607,
Par, (ule) = )T, e € 8, P, (uyle) = ((Tu)y) e, e € &7,

which allows us to rewrite those terms with penalty in (3.23¢)—(3.23d) as

— k. _ .
bul, =&, =5 (€)a) |, e €&,
— k _
fw’e = £;|e - f((fu)y) |e’ e e g}?vt7
T k
Ve v, = (V§UJ)+ v, + hi?))gﬂev ce &

—— + k4 b
Véw v|, = (V&) 1| + ﬁ;ﬂe, ec &P
Next, using a similar argument as that in the proof of (3.13), we can obtain

> Hox (6w 6w) = S(&u)-

KeQy,
This completes the proof of this lemma. O
Step 4. The estimate of As. The following polynomials preserving properties

of degree up to k+ 2 is crucial for the estimates of Ao, we list them in the following
Lemmas 3.11-3.12.

Lemma 3.11. Ifw € P**2 (k > 1), p € W}, we have

(3.27a) Bk (nw,p) =0, VK € Qj,
(3.27h)
N
ZBK(UWP):_ Z/] (nw(f,y;,ﬁ%)py(x,y&y+%)+(nw)y(x,y;)p(f,yg))dw
Keqy i=1""

Ny
—Z/] (nw(:cjvﬁ%,y)pw(xj‘vm+%7y)+(nw)x(x;y)p(x;y))dy-
=17

Proof. The proof of this lemma is provided in Appendix A.1. O
Lemma 3.12. Ifu € P2 (k> 1), ¢ € Wy, we have
(3.28) Bg (Mu,q) =0, VK € Q.
Proof. The proof of this lemma is provided in Appendix A.2. O

By Lemmas 3.11-3.12, we can obtain a superconvergent property of Bx (1w, D)
and By (4, q) and show it in Lemmas 3.13 and 3.14, respectively.

Lemma 3.13. Forp € Wy, and k > 1, we have

1
(3:29) > IBx(nuw,p)| < CH*w|leps|pl + CP* 2 |lwlfyy + 55(),
KeQy,

where C' is a constant independent of the mesh size h.

Proof. The proof of this lemma is provided in Appendix A.3. (]
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Lemma 3.14. For g € W), and k > 1, we have

(3.30) Y 1Br(u, @)l < CH*Hlullieslall,
KeQy

where C' is a constant independent of the mesh size h.

Proof. The proof of this lemma is provided in Appendix A.4. O
Lemma 3.15. For Ay, we have

1
(3:31) [A2] < CRMTHGu ]l + CRE 6w | + CR2F2 + S (6w),

where C depends on ||ul|x+s5, but is independent of the mesh size h.

Proof. Taking p = ¢&,, ¢ = &, in Lemma 3.13 and Lemma 3.14, respectively, we can
immediately get (3.31). O

Step 5. The proof of Theorem 3.9.

Proof. Recalling the error equation (3.25), and using the Cauchy—Schwarz inequal-
ity and approximation property of the projection I in Lemma 3.8, we arrive at

1d
5 g 16O + 16 @I + Ar < CR g0l + CRE i ()] + [Aal.
By Lemma 3.10 and Lemma 3.15, we immediately obtain
1d
% €I + 16w @)I* < CRMF[Eu(®)]] + CRET € ()] + CRHF2.

Then, using the same technique as that in the proof of Theorem 2.5 for the one-
dimensional case, we get

t
lEu ()] + / 6w ()| dr < CHFH,

and hence

t
[[ew ()]l +/ llew(T)|| dr < ChFF1,
0

where C'is a function of ¢ of power at most 3, which depends on [[ul|x+s, [l 1
but is independent of h. (I

Remark 3.16. For the fourth-order problem (1.1) with the G-Dirichlet B.C. (1.2b),
for k > 2, we can derive the optimal error estimate (3.20) for the UWLDG scheme
(3.2) with numerical fluxes (3.3) and (3.5) by using the projection Py, ® Py, .

Remark 3.17. For the fourth-order problem (1.1) with the Neumann B.C. (1.2¢)
and the mixed B.C. (1.2d), when the UWLDG scheme (3.2) with numerical fluxes
(3.3), (3.6) and (3.7) are considered, the optimal error estimates in (3.20) for k > 1
can also be derived by using the projection Pp, ® Pp, and Py, ® Py, , respectively.
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4. NUMERICAL EXAMPLES

In this section, to confirm the theoretical convergence results of the UWLDG
method, we present several numerical examples for one- and two-dimensional time-
dependent linear fourth-order initial-boundary value problems. Noting that the
theoretical results mainly concentrate on the h-version convergence and smooth
solutions in this work, we numerically test the p-version case and the problem with
singularities in an L-shape domain. In all experiments, we use the four-stage singly
diagonally implicit Runge-Kutta method with third order of accuracy (SDIRK3)
for time discretization with final time T' = 1.

Example 4.1. Consider the one-dimensional linear fourth order problem
Ut + Ugzar = 0, u(z,0) =sin(z), (z,t) €[0,2x] x (0,7,
with boundary conditions as in (2.2a)—(2.2d) such that the exact solution is
u(z,t) = e 'sin(z).

For the Dirichlet B.C. (2.2a), our computation is based on the flux (2.4)—(2.5).
Table 4.1 lists the L? errors and orders for e,, e,, using numerical fluxes with and
without penalties for P* polynomials (1 < k < 3). It is observed that, for the
case with penalty terms (the penalty parameters k; = ko = 1), the errors achieve
optimal (k + 1)th order accuracy for both ||e,|| and ||e,]|, which is consistent with
Theorem 2.5. For the case without penalties (k1 = ko = 0), loss of order for ||e,||
is observed, especially for k = 2, order lost up to one and a half, which indicates
that the penalty terms are necessary for both theoretical analysis and numerical
implementation.

TABLE 4.1. L2 errors ||e, ||, ||ew]|| and orders for Example 4.1 with
the Dirichlet B.C. with and without penalties using P* polynomials
on a uniform mesh of NV cells.

N with penalty without penalty
llew]l order ey  order eyl order ey order
10 5.67E-02 4.37E-02 9.22E-02 4.95E-02

20 1.35E-02 1.87 1.14E-02 193 299E-02 1.62 1.19E-02 2.05
40 3.93E-03 197 2.85E-03 200 9.87E-03 1.60 2.89E-03 2.04

1
P 80 9.87E-04 1.99 7.14E-04 2.00 3.35E-03 1.55 7.16E-04 2.01
160 2.47E-04 1.99 1.78E-04 2.00 1.15E-03 1.53 1.78E-04 2.00
320 6.18E-05 1.99 4.46E-05 2.00 4.05E-04 1.51 4.46E-05 2.00
10 8.54E-04 - 8.05E-04 - 4.34E-02 - 1.62E-03 -
20 9.73E-05 3.13 9.92E-05 3.02 1.59E-02 1.44 1.66E-04 3.28
P2 40  1.23E-05 298 1.23E-05 3.00 5.68E-03 1.48 1.71E-05 3.27
80 1.53E-06 2.99 1.53E-06 3.00 2.01E-03 1.49 1.89E-06 3.20
160 1.92E-07 3.00 1.92E-07 3.00 7.12E-04 1.49 213E-07 3.12
320 2.40E-08 3.00 240E-08 3.00 2.51E-04 1.49 2.53E-08 3.07
10 2.25E-05 - 2.19E-05 - 9.86E-04 - 2.31E-05 -
20 1.37E-06 4.03 1.37E-06 3.99 8.85E-05 3.47 1.38E-06 4.06
3 40 8.59E-08 3.99 8.59E-08 3.99 T7.85E-06 3.49 8.60E-08 4.01

80 5.37E-09 3.99 5.37E-09 3.99 6.94E-07 3.49 5.37E-09 4.00
160 3.35E-10 3.99 3.35E-10 3.99 6.14E-08 3.49 3.35E-10 4.00
320 2.09E-11 3.99 2.09E-11 3.99 5.42E-09 3.49 2.09E-11 4.00

For the G-Dirichlet, Neumann and mixed boundary conditions in (2.2b)—(2.2d),
our computation is based on the flux choice (2.4) and (2.6)—(2.8). The errors |le,|l,
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|lew|| and numerical orders are shown in Tables 4.2 and 4.3 respectively, which
display the expected optimal (k + 1)th convergence rates except for the case of
the G-Dirichlet B.C. with P! polynomials. This agrees with our theoretical results
discussed in Remarks 2.6 and 2.7.

TABLE 4.2. L? errors ||e,|| and orders for Example 4.1 with the
G-Dirichlet, Neumann and mixed boundary conditions using P*
polynomials on a uniform mesh of IV cells.

G-Dirichlet B.C. Neumann B.C. mixed B.C.
N
[lew]] order [lew]] order [lew]] order
10 9.94E-02 - 3.41E-02 - 5.10E-02 -

20 2.89E-02 1.77 9.21E-03 1.88 1.34E-02 1.92
40 9.05E-03 1.67 2.35E-03 1.96 3.40E-03 1.98
80 2.98E-03 1.59 5.92E-04 1.99 8.53E-04 1.99
160 1.01E-03 1.55 1.48E-04 1.99 2.13E-04 1.99
320 3.53E-04 1.52 3.70E-05 1.99 5.33E-05 1.99
10 1.08E-03 - 7.45E-04 - 8.06E-04 -

20 1.19E-04 3.18 9.52E-05 2.96 9.91E-05 3.02
40 1.36E-05 3.12 1.20E-05 2.97 1.23E-05 3.00
80 1.62E-06  3.07 1.52E-06 2.98 1.53E-06 3.00
160 1.97E-07 3.03 1.91E-07 2.99 1.92E-07  3.00
320 2.43E-08  3.02 2.39E-08  2.99 2.40E-08 3.00
10 2.22E-05 - 2.18E-05 - 2.19E-05 -

20 1.37E-06 4.01 1.37E-06 3.99 1.37E-06  3.99
40 8.59E-08  4.00 8.59E-08  3.99 8.59E-08 3.99
80 5.37TE-09  4.00 5.37E-09  3.99 5.37E-09  3.99
160 3.35E-10  3.99 3.35E-10  3.99 3.35E-10  3.99
320 2.09E-11  3.99 2.09E-11  3.99 2.09E-11  3.99

7)1

732

fPS

Although a theoretical analysis of the convergence concerning polynomial degree
k is not provided, we numerically tested p-version of our scheme for Example 4.1
with four types of boundary conditions. We take the grid number N = 20 and
calculate the L? error of e,, e,, for P* (k=1,...,8) polynomials. The relationship
between the logarithmic scale of the error |le,||, |lew]|| and the polynomial degrees
is shown in Figures 4.1-4.2, from which we can clearly see that the errors decay
exponentially with respect to k.

Example 4.2. Consider the following two-dimensional fourth-order problem
ug + A% =0, u(z,y,0) =sin(z +v), (z,9) € [0,27] x [0,2x],t € (0,7],
equipped with boundary conditions (1.2a)—(1.2d) such that the exact solution is
u(z,y,t) = e Fsin(z + y).

We compute this example using the interior numerical flux (3.3) and boundary
fluxes (3.4)—(3.7) for corresponding boundary conditions.

In Table 4.4, we list the computation results for the Dirichlet B.C. (1.2a). We
observe that the UWLDG scheme with penalty terms gives the optimal (k 4+ 1)th
order of the accuracy, which is consistent with Theorem 3.9. Here, the penalty
parameters are chosen as k; = 1, i = 1,2,3,4. Moreover, if we remove the penalty
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TABLE 4.3. L? errors |le,]|| and orders for Example 4.1 with the
G-Dirichlet, Neumann and mixed boundary conditions using P*
polynomials on a uniform mesh of NV cells.

G-Dirichlet B.C. Neumann B.C. mixed B.C.
N
lew] order llew|] order lew] order
10 6.15E-02 - 3.08E-02 - 3.75E-02 -

20 1.65E-02 1.89 8.39E-03 1.87 9.65E-03 1.95
40 5.17E-03  1.67 2.14E-03 1.97 2.40E-03 2.00
80 1.72E-03  1.58 5.38E-04 1.99 6.01E-04 2.00
160 5.89E-04 1.54 1.34E-04 1.99 1.50E-04 2.00
320 2.05E-04 1.52 3.36E-05 1.99 3.75E-05  2.00
10 1.04E-03 - 7.43E-04 - 7.93E-04 -

20 1.18E-04 3.14 9.51E-05 2.96 9.86E-05 3.00
40 1.36E-05 3.11 1.20E-05 2.97 1.23E-05 3.00
80 1.62E-06  3.06 1.52E-06 2.98 1.53E-06 3.00
160 1.97E-07  3.03 1.91E-07 2.99 1.92E-07  3.00
320 2.43E-08  3.02 2.39E-08  2.99 2.40E-08 3.00
10 2.22E-05 - 2.18E-05 - 2.19E-05 -

20 1.37E-06 4.01 1.37E-06 3.99 1.37E-06  3.99
40 8.59E-08  4.00 8.59E-08  3.99 8.59E-08 3.99
80 5.37E-09  4.00 5.37E-09  3.99 5.37E-09  3.99
160 3.35E-10  3.99 3.35E-10  3.99 3.35E-10  3.99
320 2.09E-11  3.99 2.09E-11  3.99 2.09E-11  3.99

732
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L, error of e, (Dirichlet B.C.) L, error of e, (G-Dirichlet B.C.)

Lo error

L, error
5550000000000000

2 3 4 5 6 7 8 2 3 4 5 6 7 8
k k

L, error of e, (mixed B.C.) L, error of e, (Neumann B.C.)

L, error
35552953955205a2

Lo error
333333332533353

N
®
N
o
e
~
®
N
®
N
e
e
~
®

FIGURE 4.1. The error of ||e,| in logarithmic scale with respect to
polynomial degree k for different boundary conditions.

terms in the scheme, it is observed that at least one and a half order is lost for both
llew]| and [y |-

In Tables 4.5 and 4.6, we show the approximation results of |le, | and |e,| for
other three kinds of boundary conditions. We can observe the expected optimal
convergence rates for the Neumann B.C. and mixed B.C. when k£ = 1,2 and for



24 FENGYU FU, CHI-WANG SHU, QI TAO, AND BOYING WU

L, error of e, (Dirichlet B.C.) L, error of e,, (G-Dirichlet B.C.)
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FIGURE 4.2. The error of |ley]| in logarithmic scale with respect to
polynomial degree k for different boundary conditions.

TABLE 4.4. L? errors ||e,]|, ||ew|| and orders for Example 4.2 with
the Dirichlet B.C., with and without penalties using QF polyno-
mials on a uniform mesh of N x N cells.

N x N with penalty without penalty
[lewll order lew|] order  |[ley]| order |leq]| order
10 x 10  9.39E-03 - 1.69E-02 - 5.50E-02 - 3.00E-02 —

20 x 20 3.03E-03 1.62 5.52E-03 1.61 5.81E-02 -0.07 5.03E-02 -0.74
Q! 40x40 8.06E-04 1.91 1.46E-03 1.92 6.05E-02 -0.05 4.39E-02 0.19
60 x 60 3.56E-04 2.01 6.46E-04 2.01 5.73E-02 0.13 3.59E-02 0.49
80 x 80 1.98E-04 2.03 3.60E-04 2.03 5.38E-02 0.22 3.00E-02 0.61
10 x 10 9.14E-05 - 1.75E-04 - 2.96E-02 - 9.28E-03 -
20 x 20 7.60E-06 3.58 1.63E-05 3.42 1.13E-02 139 2.16E-03 2.10
Q% 40 x40 893E-07 3.08 1.83E-06 3.15 4.18E-03 143 6.21E-04 1.79
60 x 60 2.61E-07 3.02 5.32E-07 3.05 2.32E-03 145 3.01E-04 1.78
80 x 80 1.10E-07 3.01 2.22E-07 3.03 1.52E-03 1.46 1.82E-04 1.74

the G-Dirichlet B.C. when k£ = 2, which confirm our theoretical results discussed
in Remarks 3.16 and 3.17.

It is worth pointing out that, the results listed in Tables 4.5 and 4.6 for the
G-Dirichlet B.C. with Q' polynomials are obtained by using the exact boundary
conditions to define the boundary numerical flux @ and @, i.e., Ule = fple, W]e =
gple, since the projection Py does not exist when & = 1 and thus we cannot
construct the numerical flux as (3.5). However, we can clearly see that about one
and a half order is lost for both ||e,| and ||ey]|-

To further illustrate the special choice of the numerical boundary conditions is
necessary in our implementation, here we show a “negative” example with “wrong”
numerical fluxes on the boundary. We test again the Example 4.2 for four types
of boundary conditions by choosing the standard L? projection of exact boundary
conditions to replace the projection Pys, Py, and Pp in the boundary fluxes (3.4)
(3.7). The approximation results are shown in Tables 4.7 and 4.8, from which we
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can observe the loss of order, even to the extent of negative order, when the meshes
are refined, especially for the case of the G-Dirichlet B.C. and the mixed B.C.

TABLE 4.5. L? errors ||e,|| and orders for Example 4.2 with the
G-Dirichlet, Neumann and mixed boundary conditions using Q¥
polynomials on a uniform mesh of N x N cells.

G-Dirichlet B.C. Neumann B.C. mixed B.C.
[lew]] order llewl order lew]] order
10 x 10 9.18E-02 - 3.23E-02 - 2.57E-02 -
20 x 20 7.27E-02  0.33 9.90E-03 1.70 8.18E-03 1.65
Q! 40 x 40 5.42E-02 0.42 2.62E-03 1.91 2.18E-03 1.90
60 x 60 4.50E-02 0.45 1.18E-03 1.96 9.88E-04 1.95
80 x 80 3.38E-02 0.50 6.68E-04 1.98 5.61E-04 1.96
10 x 10 1.08E-04 - 1.11E-04 - 1.17E-04 -
20 x 20 9.36E-06  3.52 9.29E-06 3.58 9.40E-06 3.64
Q% 40 x 40 9.81E-07 3.25 9.52E-07 3.28 9.58E-07 3.29
60 x 60 2.77E-07  3.11 2.69E-07 3.11 2.70E-07 3.11
80 x 80 1.14E-07  3.07 1.11E-07 3.05 1.12E-07 3.05

N x N

TABLE 4.6. L? errors |le,|| and orders for Example 4.2 with the
G-Dirichlet, Neumann and mixed boundary conditions using Q¥
polynomials on a uniform mesh of N x N cells.

G-Dirichlet B.C. Neumann B.C. mixed B.C.
N x N
llewll order llew||  order llewll order
10 x 10 7.48E-02 - 4.27E-02 - 3.12E-02 -

20 x 20 6.95E-02  0.11 1.25E-02 1.76 9.74E-03  1.68
Q! 40 x 40 5.16E-02  0.42 3.29E-03 1.93 2.57E-03  1.92
60 x 60 4.25E-02  0.48 1.47E-03 197 1.15E-03 1.97
80 x 80 3.69E-02 0.49 8.33E-04 1.98 6.52E-04 1.98
10 x 10 1.73E-04 - 1.64E-04 - 1.61E-04 -
20 x 20 1.70E-05 3.34 1.58E-05 3.37 1.58E-06 3.35
Q% 40 x 40 1.90E-06 3.15 1.80E-06 3.13 1.81E-07 3.12
60 x 60 5.47E-07  3.07 5.25E-07 3.04 5.27E-07  3.04
80 x 80 2.27TE-07 3.04 2.20E-07 3.02 2.21E-07 3.02

Example 4.3. To illustrate the capacity of the UWLDG method for problems
with singularities, consider the following two-dimensional fourth-order problem in
an L-shape domain Q = [0, 27]?\{(7, 7]?},
(4.1a) ug + A*u =0, (z,y) € Q, t € (0,7],
with an initial condition
(4.1b) u(z,y,0) = sin(z + y),
and the homogeneous Dirichlet B.C.
ou

(4.1¢c) u=0, = 0, on 09Q.
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TABLE 4.7. L? errors ||e,|| and orders for Example 4.2 with four
types of boundary conditions using Q* polynomials on a uniform
mesh of N x N cells. Take the L? projection of exact boundary
condition as boundary flux.

Dirichlet B.C.  G-Dirichlet B.C. Neumann B.C. mixed B.C.
[leawll order llew]l order [lew] order |[ley||r order

10 x 10 1.00E-03 - 6.86E-02 - 4.20E-02 - 4.33E-02 -
20 x 20 3.09E-03 1.69 6.79E-02 0.01 1.31E-02 1.67 1.22E-02 1.82
Q' 40x40 821E-04 191 5.33E-02 0.35 3.51E-03 190 3.13E-03 1.96
60 x 60 3.63E-04 2.01 4.47E-02 043 1.58E-03 1.96 1.41E-03 1.96
80 x 80 2.02E-04 2.03 3.87E-02 0.49 8.97E-04 197 8.10E-04 1.93

10 x 10 9.43E-05 2.81E-04 1.62E-04 1.10E-03

20 x 20 8.02E-06 3.55 1.11E-05 4.65 1.18E-05 3.76 1.69E-04 2.69
Q? 40 x40 9.20E-07 3.12 1.04E-05 0.09 1.05E-06 3.48 1.72E-06 6.61
60 x 60 2.77E-07 2.95 8.20E-07 6.26 2.90E-07 3.19 4.38E-07 3.38
80 x 80 1.17E-07 299 7.91E-06 -7.87 1.43E-07 245 5.13E-07 -0.55

N x N

TABLE 4.8. L? errors |le,|| and orders for Example 4.2 with four
types of boundary conditions using Q* polynomials on a uniform
mesh of N x N cells. Take the L? projection of exact boundary
condition as boundary flux.

Dirichlet B.C.  G-Dirichlet B.C. Neumann B.C. mixed B.C.
N x N

lew|  order eyl order lew|  order eyl order
10 x 10 1.85E-02 - 5.99E-02 5.60E-02 - 4.54E-02 -

20 x 20 5.66E-03 1.71 6.49E-02 -0.11 1.65E-02 1.76 1.32E-03 1.78
Q' 40x40 1.49E-03 1.92 5.07E-02 0.35 4.33E-03 1.93 3.43E-03 1.94
60 x60 7.07E-04 1.83 4.21E-02 045 1.94E-03 197 1.54E-03 1.97
80 x 80 3.73E-04 2.22 3.67E-02 0.47 1.10E-03 198 8.97E-04 1.88
10 x 10 2.12E-04 - 2.51E-04 - 2.13E-04 - 3.90E-04 -
20 x20 3.97E-056 241 1.92E-05 3.70 1.81E-05 3.55 1.21E-04 1.68
Q% 40x40 1.52E-05 1.38 2.04E-05 -0.08 1.88E-06 3.26 4.54E-06 4.74
60 x 60 3.55E-06 3.59 1.36E-06 6.67 5.39E-07 3.03 8.57E-07 4.11
80 x 80 2.94E-06 0.65 6.78E-06 -5.58 2.28E-07 2.99 1.01E-06 -0.58

Since we do not know the explicit exact solutions to this problem, we adopt the
a posterior errors |up — u B | as the numerical errors to compute the convergence
rate. We first use the uniform tensor product meshes €, with nodes (z;, y;), where
{32, {y; ?50 such that z; = %i,y; = §Jj for 4,5 = 0,1,...,2N. The results
are listed in Table 4.9, from which we can see that the UWLDG scheme is stable
but the optimal convergence rate cannot be observed due to the corner singularity.

To recover the loss of accuracy, we consider a special tensor product mesh in the
way that the initial mesh in # and y direction are given as a geometric proportional
mesh approaching to the corner, and then refine the mesh by dividing each cell into
two equal-sized subcells. To be more specific, taking the x direction as an example,
the i-th cell length, denoted by hY, is defined as

m(l — o)

1— oo’

xr __ xT — T 7 —
hi =h3n, 114 =0hi 1, i=2,..., No,

N N o
hi =hsn, =
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where 2Ny denotes the total number of cells in z direction, and ¢ < 1 is the common
ratio. Then {xl}fi\%’ is determined by x; = x;—1 + h] with ¢ = 0, and the tensor
product initial mesh in the L-shape domain is obtained by taking y; = x;, as shown
in Figure 4.3(a) with o = 0.4, Ny = 4, and the corresponding refined mesh is shown
in Figure 4.3(b).

w2

n
X

(a) The initial mesh for Ny = 4. (b) The refined mesh for N = 8.

FIGURE 4.3. The initial mesh for Ny = 4 with ¢ = 0.4 and the
refined mesh for N = 8.

We use Q' and Q? polynomials to test the numerical solution on the refined
mesh with ¢ = 0.6 and o = 0.4, respectively. L? errors and orders of |jup, — u L I
are also given in Table 4.9. We can see that, both for @' and Q2 polynomials, the
order of accuracy is improved to about k + 1, and a smaller amplitude of the errors
is observed when compared with uniform meshes.

TABLE 4.9. L? errors |ju, — u%” and orders for the singular

problem (4.1a)—(4.1c) in an L-shape domain with a uniform and
refined mesh.

N uniform mesh refined mesh
lun —un| order lun —un| order

4  281E-01 - 1.30E-01 -

8 1.65E-02 - 1.28E-01 -

Q' 16 1.22E-03 3.75 7.21E-03  4.15
32 3.86E-04 1.66 2.89E-04  4.63
64 2.00E-04 0.95 5.14E-05  2.49
4 3.03E-02 - 3.42E-02 -

8  1.10E-03 - 3.34E-02 -

16 3.90E-04 1.49 3.26E-04  7.06
32 1.67E-04 1.22 3.78E-05  3.10

Q2
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5. CONCLUDING REMARKS

In this paper, we analyze the UWLDG method solving time-dependent linear
fourth-order equations with four types of boundary conditions. By designing elab-
orate numerical fluxes together with some penalty terms and constructing suitable
projections, stability and optimal error estimates are derived, which are valid for
one- and two-dimensional problems. Numerical experiments are presented to il-
lustrate the sharpness of theoretical results. The treatment of various boundary
conditions of this work would be helpful for solving other practical engineering
problems involving complex boundary conditions. Inspired by [7], extension of this
work to simplicial meshes and other high order equations constitutes our future
work.

APPENDIX A. PROOF OF A FEW TECHNICAL LEMMAS
A.1. The proof of Lemma 3.11.

Proof. e The proof for (3.27a) : K € QF .
By (3.9), we have the following specific expression of By (1w, D)

8
(A1) Br(nw,p) = Y Tl (nw,p), K = Kij € Qf,
m=0

where T4 (n,,, p) are defined by (3.10). Since II is a polynomial preserving operator
up to k, then (3.27a) holds for each w € Q*(K). Thus, we only need to consider
the cases

(A2) w(z,y) = a2yt gyt

For w(x,y) = 2¥%2, since it only depends on z, we have [lw = Py, (2%2). Clearly,

(Mw)y = 0. Then, by the definition of Py;, we have

T (Nw,p) =0, m=1,2,5,6,7,8, /K (w — w) pypdady = 0.
In addition, we use integration by parts to find tﬁat
/K__ (w —Tw) pyydady = — T3 (11, p) = Ty (M, )
A substitution of a;)ove results into (A.1) leads to

BK (77’wap) = 07 if W(Sﬂ,y) = zk+2'

For w(z,y) = yz**1, we have Ilw = yPy, (z**1), hence
T (Nw,p) =0, m = 1,2,5,6, /K (w — w) pypdrdy = 0.
Besides, we use integration by parts twice to ﬁ;ad that
/K__ (w —Iw) pyydady = = T3 (1w, p) = T4 (1, p) = T7’ (- 0) — T (10, p)-
Substituting above results into (A.1), we get
B (nw,p) =0, if w(z,y) = yz" .

For w(z,y) = y*+2, y**tlz, 2¥*! and y**+1, the proofs are analogous, and thus
omitted. This finishes the proof of (3.27a).
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e The proof for (3.27b) : K € Q.
We take K = K3; as an example. By (3.23¢)—(3.23d), we have

5
(A.3) Bicy,, s 2) = T (s p) + (Tg" + TH + T3") (s, p),
m=0
where T2 (1, p), m =0,1,2,3,4,5,7 are determined by (3.10) for 4,5 = 1, and

Tél(nu;,p)=—/7(nw)x(x§,y)p(:c‘;y)dy, fs”(nw,p)=—/l(nw)y(z,y§)p(x,y‘g)dx

We still only need to consider the cases in (A.2). First, for w(z,y) = 252, we have
Mw = Py, (2572), (1w)y = 0. Therefore,

T (w,p) =0, m = 1,2,5,7,  Tg" (1w, p) =0, / (w — Tw) pypdady = 0.
Ki
We use integration by parts to find that

/K (w — Tw)pyy dedy = —T3" (Nw, p) — T4 (N, p)-

Substitute above results into (A.3) to get

Bry, My ) = Ta* (s p), i w(z,y) = 2F+2,

Next, we consider w(z,y) = zy* . Clearly, Iw = 2Py, (y*1). By the definition
of Py, we immediately have

TTlrLl(T]UHp) = 07 m = 3a4a 77 / (w - Hw)pyy dxdy = O
Ki1
Furthermore, using integration by parts twice, we arrive at
/ (w = Tw)py dedy = = (T + T3 + T3 + Tg") (1w, ).
Ky

A substitution of above results into (A.3) gives us

(A4) Biy, (s p) = T  (uy p),  if w(a, y) = 2y

Similarly, it is easy to check that

BKll(nw’p) :Tﬁll(nva)a lf w(xay) :zk+1a yxk+1a
By, (s p) = T3 (s, p),  if w(z,y) = ™+, g+,

Finally, we conclude that for all w € PF+2 there are at most two nonzero terms
Tﬁll(nwap) and Tsll(nva) in BKll(ﬁw,p), Le.,

By, (1o, p) = —/J (o) (1, y)p (21, y) dy — /I (m)y (@, 47 )p (2, 97 ) da.
1 1

For other boundary elements, we can use a similar analysis as above for the case of

K11. Therefore, to derive (3.27b), we need only to sum over the results derived by

all K in 9, and this completes the proof of (3.27b). O
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A.2. The proof of Lemma 3.12.

Proof. ¢« K € Q,IL
For interelements K € 2, using the same analysis as that in the proof of (3.27a),
we can easily obtain

Bk (nu,q) =0, VuePF? Keq.

e K €Q.
For the boundary elements K € Q?L, without loss of generality, consider K = K713
as an example. By (3.23a) and (3.23b), we get

4
(A5)  Br,(nuq) = (To" + TV + T3+ T3 + T ) (@) + D, S (s 9),

m=1
where T} (1,4, q), m = 0,1,3,5,7 are determined by (3.10) for 4, j = 1, and
St ) == [ (o) = P (o)) ate ] o
1
Sl (u,q) = /I (u(z,y%) — P, (u(x,y%))) qy(a:,yg) dz,
1
S%l(u’q) = —/J (ux(xl,y) — PM uch arl,y )q zl,y dy,
1

Sil(u,Q)=/J <U(x%,y)—PMy( a:uy)) g= (77, y) dy.

We still only need to check the cases in (A.2), since Py and II are all polynomial
preserving operators up to k.

For u(z,y) = z**2, we have llu = Py, (z%2), then u, = (Ilu), = 0. Hence,
combining with the properties of the Py;, we have

T (s @) = T3 (0 @) = T7 ' (0 @) = S7' (u,9) = 0, / (u — Tu) gupdzdy = 0.
Ky
Furthermore, using integration by parts, we can find that,
/K (u — ) qyydady = —T5" (10, q) — 83" (u, q).
11

In addition, since Py, is polynomial preserving for k£ > 1, then

S3l(u,q) = —/J ((k—i— 2)(x%)k+1 — P, ((k: + 2)(m%)k+1)) q(x;y) dy =0,

Si'(u,q) = /J ((w )"~ Py, ((w%)k”)) ¢z (27 y) dy = 0.

Collecting above results into (A.5), we obtain

Nl

BKu(Uqu) =0, ifu:xk+2,

For u(z,y) = yz*+1, llu = yPyy, (z¥+1). Then

11
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Again, the fact Py is polynomial preserving for k£ > 1 leads to

S%l(u,q):—/] ((k+1)(x%)ky_PMy((k+1)(x%)’“y)) q(x;y) dy=0,

Sil(an) = /J ((x%)kJrly _ PMy ((x%)kJrly)) qz(x;y) dy = 0.

Using integration by parts twice, we can find that
/ (u —TTu) qyydxdy = —T5" (1, ¢) = T3 (> @) = S1* (u, 4) =53 (u, q).
Kll

Substituting above results into (A.5), we arrive at

BK11(77u7Q) =0, if u(x’y) _ ym’““,

For other cases u(z,y) = y*+2, zy*T1 2*+1 y* 1 the proofs are analogous. There-
fore, we have By, (1.,q) = 0, Yu € P¥*2. Analysis for other boundary elements
K;; can be performed similarly. This completes the proof of (3.28). (]

A.3. The proof of Lemma 3.13.

Proof. ¢ K € Q,Il

Since k£ > 1, by the Cauchy—-Schwarz inequality, the approximation property
of the projection II, trace and inverse inequalities, we can establish the following
rough estimate: for any v € H?(2),) and K € Q1|

| Bxc (o, 0)| < Imoll x| APl + Clinulloz | VPllox + ClVaullgz Ipllox
— 3 _3 1 _1
< Ch?|[vll2,kh™2|lpll e +Ch2 olly zh~ 2 Ipll+Ch |lvlly zh ™% [Ipl x
(A.6) < Clolly, zllpll

where IA(: = {Ki+17j7 Ki—l,ja Kija Ki,j—l; Ki,j+1}~ Let X be any polynomial of

degree at most k + 2, by (3.27a) in Lemma 3.11, we have
Bk (ny,p) =0, Vp € Wy,
Then, by the linearity of operator Bg (-, p) and the estimate (A.6), we get
Bg (N, p) = Bk (nw, p) — Bk (0. p) = Bk (Nw—x.p) < Cllw — x|, zllpl x-
Consequently, for all K € Q{l

; k+1
(A7) | Bx (11w, p)| < C b v =Xl zlplle < CR ol s el
which produces
(A.8) > 1Br(nw,p)| < CH lwlgsp]-

KeQ

e K.
We take the element K = K71 as an example. Recalling (A.3), we split Bx, (1w, p)
into two parts
BK11 (Uw,p) = AKu (nva) + AKu (le,p%

where
5

Ay, uwsp) = Y Tr 0wy ) + T3 (s 1)s Ak (10,9) = T3 (00, P) + T (1 ).

m=0
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Notice that we have checked that Ag,, (1, p) = 0 holds for any x € P**2(Kj;) in
the proof of (3.27b), then Ag,, (nw,p) can be estimated by using the same skill as
that for interelements in (A.7). It reads,

(AQ) |AK11 (ﬂw,P)| < Cthrl”wHkJrg’f{; ”p”Kua
where ],(Tl = {K21, K11, Ki2}. By Young’s inequality, we have
3 ks
|AK11(77w7p)| = 2k5 |(nw)r(wi_ay)|2d + Th?’ |p(x'g,y)|2dy

ky
/ |(Nw)y x y1)| der + —= o |p(m)y%‘)|2dl‘.

Furthermore, using the trace inequality and the approx1mat10n properties of II, we
obtain

[ 1000 ) Py <), <O ol
J1

; |(w)y (2, y 1) P de <[yl s, <Pl iy,
1

Therefore, we arrive at the estimate of Ag,, (nu,p) as

|AK11(77wﬂp)|§0h2k+2||w||%+1,1(11 2h3/ |p £C17y ‘ dy+2h3/ |p z y ‘ dz.

Combining the above estimate with (A.9), we get

By, (1w, p)| < 0hk+1llw\\k+3 ;?;IIPHKH + Ch2k+2||wlli+1 K

For the cases of other boundary elements7 similar estimates as (A.10) can also be
derived. Summing over all elements in 9, we deduce that

1
> Bl o) < CHM Y flwlly s lpllc+CR 20 Y 0 f[wllf i +5S (@),
KeQ) KeQ) KeQf

(A.10)

1
(A11) < Ch*H|wllrallpll + Ch2 2 wl[f 4 + 55(),
where K C Qp, denotes the union of K and all of its neighbor elements in €2;,. The
expected estimate (3.29) follows by combining (A.8) and (A.11). O
A.4. The proof of Lemma 3.14.

Proof. ¢ K € Q{L
By Lemma 3.12, we know

Bk (ny,q) =0, Vx € P*T2(K), ¢ € W,
And we also have the rough estimate as in (A.6), it reads
1B (o @)l < Cllvlly gllallx, Yo € H*(Qn), K €D, g € Wh.
Hence, using the same argument as that in the proof of (A.7), we arrive at

(A.12) |Br (1, ) < CR* HJull, 5 7llallx, VK € Q5.
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e« K €Q.
We still take K7, as an example and recall the expression of B, (1, ¢) in (A.5),
4
Bry, (nu,q) = (T + T + T3 + T+ T3 ) (s ) + Y Si (u,q).
m=1

Similar to the proof of (A.6), it is easy to get
(T3 + T + T3+ T3+ T (1, @)| < Cllully e llall 5, -

In addition, by the Cauchy-Schwarz inequality, approximation property of the one-
dimensional projection Py, trace and inverse inequalities, we obtain

|51 (u, ) + 857 (u, @) | < lluy (- y1) = Par, (uy (5 y2)) | a5 y7)
+ ez, ) = Pag, (ua(@y, ) L lla(a sl
< OR? (Jluy (- y )z + llus(@y, 2. ) lallox,

3
< Ch> HUH‘LKM Hq”Klla

yi HII
3

and
55" (u, q) + S5 (u, @) | < [,y g)llhll%( 7y§)||11 + [I7a( g )IIJllqu(xu-)llJl

X
< ||77u||6K11 . (”qy”aKll + HqiEHBKM)

Thus, we arrive at the rough estimate for Bg,, (nu, q) as

|BK11 (nlm Q) ‘ < CH””&R’I HqHKu'
From Lemma 3.12, we also know
BK11 (77X7Q) = 07 \V/X € Pk+2(K11)a qc Wh7
then using a similar argument as that in the proof of (A.7) again, we can obtain

|BK11 (nan)| < Chk+1||u||k+57f(\1/l HqHKu'

Analogously, we can check that, for any other boundary elements K;; € QY the
above estimate holds, i.e.,

(A.13) |Be,, (1ar )| < O ll, 5 7 VK € Q.

ij?

where IA(:] C Qy, denotes the union of K;; and all of its neighbor elements in £2j,.
Therefore, the estimate (3.30) follows by combining (A.12)-(A.13) and summing
over all K € Q. ([l
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