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ANALYSIS OF THE BOUNDARY CONDITIONS FOR THE

ULTRAWEAK-LOCAL DISCONTINUOUS GALERKIN METHOD

OF TIME-DEPENDENT LINEAR FOURTH-ORDER PROBLEMS

FENGYU FU, CHI-WANG SHU, QI TAO, AND BOYING WU

Abstract. In this paper, we study the ultraweak-local discontinuous Galerkin
(UWLDG) method for time-dependent linear fourth-order problems with four

types of boundary conditions. In one dimension and two dimensions, stability

and optimal error estimates of order k+1 are derived for the UWLDG scheme
with polynomials of degree at most k (k ≥ 1) for solving initial-boundary value

problems. The main difficulties are the design of suitable penalty terms at the

boundary for numerical fluxes and the construction of projections. More pre-
cisely, in two dimensions with the Dirichlet boundary condition, an elaborate

projection of the exact boundary condition is proposed as the boundary flux,

which, in combination with some proper penalty terms, leads to the stability
and optimal error estimates. For other three types of boundary conditions, op-

timal error estimates can also be proved for fluxes without any penalty terms
when special projections are designed to match different boundary conditions.

Numerical experiments are presented to confirm the sharpness of theoretical

results.

1. Introduction

In [29], Tao, Xu and Shu developed the ultraweak-local discontinuous Galerkin
(UWLDG) method for partial differential equations (PDEs) involving high order
spatial derivatives with periodic boundary conditions, in which stability and optimal
error estimates are shown. In this paper, we are interested in analyzing the UWLDG
method for initial-boundary value problems of the following time-dependent linear
fourth-order equation

ut + ∆2u = 0, (x, t) ∈ Ω× (0, T ], u(x, 0) = u0(x), x ∈ Ω,(1.1)

equipped with one of the four types of boundary conditions specified below.
(I) The Dirichlet boundary condition (Dirichlet B.C.)

u = fD,
∂u

∂ν
= fN , on ∂Ω;(1.2a)

(II) The generalized Dirichlet boundary condition (G-Dirichlet B.C.)

u = fD, ∆u = gD, on ∂Ω;(1.2b)
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(III) The Neumann boundary condition (Neumann B.C.)

∂u

∂ν
= fN ,

∂∆u

∂ν
= gN , on ∂Ω;(1.2c)

(IV) The mixed boundary condition (mixed B.C.)

(1.2d)

u = fD, ∆u = gD, on ΓD,

∂u

∂ν
= fN ,

∂∆u

∂ν
= gN , on ΓN ,

where Ω ⊂ Rd (d ≥ 1) is a bounded Cartesian domain with boundary ∂Ω, ν is
the unit outward normal direction to the boundary ∂Ω, ΓD and ΓN are the parts
of ∂Ω such that ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅. We assume u0(x), fD, gD, fN , gN
are sufficiently smooth functions that make the problem (1.1) have a unique exact
solution. The fourth-order boundary-value problems associated with (1.2a)–(1.2d)
appear in many physical and engineering fields, such as strain gradient elasticity,
deformation of beams modeling, plates deflection theory, phase separation in binary
mixtures and image processing; see e.g., [2, 4, 16]. In particular, the Neumann B.C.
(1.2c) is also called Cahn–Hilliard (C-H) type in the literature [3, 5], which is related
to the C–H model of the phase-separation phenomena.

As a class of nonconforming finite element methods, the discontinuous Galerkin
(DG) method was mainly designed for solving hyperbolic conservation laws; see,
e.g., [13, 26]. To solve equations containing high order derivatives including fourth-
order PDEs, different variants of DG methods are proposed. Let us first mention
some work for steady-state fourth-order boundary-value problems. As the pioneer-
ing work [1], Baker applied the DG method to the approximation of the bihar-
monic equation with homogeneous Dirichlet B.C.. Subsequently, other types of DG
methods are developed for fourth-order elliptic boundary-value problems, including
the popular C0 interior penalty DG (IPDG) method [3, 16], hp-version symmet-
ric, nonsymmetric and semi-symmetric IPDG methods [15, 18, 25, 27], mixed DG
(MDG) methods [19] and single face-hybridizable DG method [11], just to mention
a few. For time-dependent fourth-order problems, there are relatively fewer results
than that of the steady-state case, especially for non-homogeneous boundary-value
problems. For example, several DG methods have been proposed for C-H equations
[17, 23, 31]. An adaptive IPDG method was presented for a fully discrete approxi-
mation of the problem (1.1) with homogeneous Dirichlet B.C. [18]. In 2009, Dong
and Shu [14] applied the local discontinuous Galerkin (LDG) method to the equa-
tion (1.1) with periodic boundary conditions, and derived optimal error estimates
for Cartesian and triangular meshes. In [24, Example 3.3], a minimal-dissipation
LDG scheme with some suitable boundary penalty terms was numerically inves-
tigated for the one-dimensional version of (1.1) with the Dirichlet B.C., and the
optimal convergence rate was observed. In [21], an MDG scheme without interior
penalty terms was proposed for (1.1) with boundary conditions (1.2a)–(1.2c), in
which the stability was shown and analysis for the optimal error estimates was left
to future work.

The UWLDG method was proposed and investigated in [7, 22, 28, 29, 30], its
main feature is the combination of the advantages of LDG [12] and UWDG [8]
methodologies. Taking the time-dependent linear fourth-order equation as an ex-
ample, the UWLDG method rewrites the original equation into a second order
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system by introducing the auxiliary variable w = ∆u and then performs integra-
tion by parts twice to each second order equation. This method is beneficial for
solving higher order PDEs, since interior penalty terms are no long needed to ensure
stability and fewer auxiliary variables are introduced, resulting in a more compact
and efficient scheme.

To our best knowledge, existing theoretical results in the DG framework for
time-dependent fourth-order problems are mainly focused on periodic boundary
conditions, and discussions of general boundary conditions are very few. The main
technicality may lie in the suitable design of numerical boundary conditions. From
the perspective of theoretical analysis, the special choice of numerical initial con-
dition is subtle for many high order PDEs [20, 32]. Analogously, in this paper,
we find that, an appropriate choice of numerical boundary condition is also essen-
tial to ensure optimal error estimates for fourth-order PDEs with different types
of boundary conditions. From the perspective of numerical experiments, for initial
discretization, we know that a special choice of numerical initial condition is not
always necessary; see, e.g., [20, Example 5.2] and [32, Remark 2.2]. However, in
the numerical experiments of our current work, we would like to emphasize that
the numerical boundary condition should be chosen as the same as that in theoret-
ical analysis; otherwise, optimal order of accuracy cannot be observed. This may
indicate that the numerical boundary condition seems to be more sensitive than
the numerical initial condition, as far as the time-dependent linear fourth-order
problems are considered.

The purpose of this paper is to construct the UWLDG scheme with delicate
numerical boundary conditions and derive optimal error estimates for the equation
(1.1) with four types of non-homogeneous boundary conditions in one dimension
and two dimensions. Inspired by the minimal dissipation idea [6, 10], this work
is devoted to design a DG scheme with optimal convergence rates using as few
penalty terms as possible to treat different kinds of boundary conditions. The main
difficulties are two folds. The first one is the proper choice of numerical fluxes for
interior faces and the design of suitable penalty terms for boundary faces, especially
when the Dirichlet B.C. is concerned; for other three types of boundary conditions,
we present optimal convergent schemes without any penalty terms by carefully
choosing the alternative interior fluxes to match the boundary conditions. Another
difficulty is the construction and analysis of some elaborate projections, which help
us to eliminate as many projection error terms as possible. In particular, in two
dimensions, a superconvergent property of the projection in Lemmas 3.13–3.14 is
essential for deriving optimal error estimates, which is achieved by establishing the
almost polynomials preserving property of degree up to k+2 in Lemmas 3.11–3.12.

This paper is organized as follows. In Section 2, we present the UWLDG scheme
and show the stability as well as optimal error estimates for the one-dimensional
fourth-order problem (1.1) with four types of boundary conditions in (1.2a)–(1.2d).
In Section 3, we extend the results to the two-dimensional case, in which numerical
boundary conditions and projections are carefully investigated. In Section 4, we
provide numerical experiments to confirm the theoretical results. We end in Section
5 with some concluding remarks.

Throughout the paper, we use the standard notation for Sobolev spaces and
norms, i.e., Wm,p(D) for D ⊆ Ω equipped with the norm ‖ · ‖m,p,D; when p = 2,
set Wm,2(D) = Hm(D), ‖ · ‖m,2,D = ‖ · ‖m,D. For any partition Ωh of the domain
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Ω, the broken Sobolev space H` (Ωh) with ` being a positive integer is the space of
functions that are piecewise in H` Sobolev space , and the associated norms can
be piecewise defined. We denote ‖ · ‖`,2,Ωh

by ‖ · ‖` when there is no confusion. We
use ‖ · ‖D to denote the L2 norm in D, and we omit the index D if D = Ω or Ωh.

2. The UWLDG method for the 1D case

In this section, to clearly display the main idea of the numerical treatment of
various boundary conditions, we consider the following one-dimensional version of
time-dependent linear fourth-order equation (1.1) in the form:

(2.1) ut + uxxxx = 0, (x, t) ∈ Ω× (0, T ], u(x, 0) = u0(x),

with Ω = [a, b] and boundary conditions

(i) u(a, t) = f0(t), u(b, t) = g0(t), ux(a, t) = f1(t), ux(b, t) = g1(t),(2.2a)

(ii) u(a, t) = f0(t), u(b, t) = g0(t), uxx(a, t) = f2(t), uxx(b, t) = g2(t),(2.2b)

(iii) ux(a, t)= f1(t), ux(b, t)= g1(t), uxxx(a, t)= f3(t), uxxx(b, t)= g3(t),(2.2c)

(iv) u(b, t) = g0(t), ux(a, t)= f1(t), uxx(b, t) = g2(t), uxxx(a, t)= f3(t),(2.2d)

where u0(x), fi(t), gi(t), i = 0, 1, 2, 3 are sufficiently smooth functions.

2.1. The UWLDG scheme. As usual, we divide the computational domain Ω =
[a, b] into N cells

a = x 1
2
< x 3

2
< · · · < xN+ 1

2
= b,

and denote

Ij =
(
xj− 1

2
, xj+ 1

2

)
, hj = xj+ 1

2
− xj− 1

2
, Ωh = {Ij},

as the cells, cell lengths and the partition of Ω, respectively. We also define h =
maxjhj and assume the mesh is regular. We take the following piecewise polynomial
finite element space

Vh = {v : v|Ij ∈ Pk(Ij), j ∈ ZN}, ZN = {1, . . . , N},

where Pk(Ij) denotes the space of polynomials in Ij of degree at most k . We use
(vh)−

j+ 1
2

and (vh)+
j+ 1

2

to denote the value of vh at xj+ 1
2

from the left and right cells,

respectively. Furthermore, the jump of vh at xj+ 1
2

is defined as

[[vh ]]j+ 1
2

= (vh)+
j+ 1

2

− (vh)−
j+ 1

2

.

In order to construct the UWLDG scheme, we firstly introduce an auxiliary
variable w as the second order derivative of the exact solution u and rewrite the
equation (2.1) into a second order system

ut + wxx = 0,

w − uxx = 0.

Then, the UWLDG scheme is defined as follows: find uh, wh ∈ Vh, such that for
any p, q ∈ Vh and j ∈ ZN

((uh)t, p)j +(wh, pxx)j +ŵxp
−|j+ 1

2
−ŵxp+|j− 1

2
−ŵp−x |j+ 1

2
+ ŵp+

x |j− 1
2

=0,(2.3a)

(wh, q)j − (uh, qxx)j − ûxq−|j+ 1
2

+ ûxq
+|j− 1

2
+ ûq−x |j+ 1

2
− ûq+

x |j− 1
2

=0.(2.3b)
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Here, (u, v)j =

∫
Ij

uv dx, and û, ûx, ŵ, ŵx are numerical fluxes, which will be

specified later tailored to different type of boundary conditions.
To finish the construction of the UWLDG scheme, we now define the numerical

flux according to the prescribed boundary conditions in (2.2a)–(2.2d). At interior
points xj+ 1

2
, j = 1, . . . , N − 1, we choose

(2.4) (û, ûx, ŵ, ŵx)j+ 1
2

=
(
u+
h , (uh)−x , w

+
h , (wh)−x

)
j+ 1

2

,

for all four kinds of boundary conditions in (2.2a)–(2.2d); at boundary points x 1
2
,

xN+ 1
2
, we define:

Case (i) For the Dirichlet B.C. (2.2a),

(û, ûx, ŵ, ŵx) 1
2

=
(
f0(t), f1(t), w+

h , (wh)+
x −

k2

h3
[[uh ]]

)
1
2

,(2.5a)

(û, ûx, ŵ, ŵx)N+ 1
2

=
(
g0(t), g1(t), w−h +

k1

h
[[(uh)x ]] , (wh)−x

)
N+ 1

2

,(2.5b)

where k1, k2 are positive constants independent of h and the polynomial degree k.
Here and below, we set

(uh)−1
2

:= f0(t), (uh)+
N+ 1

2

:= g0(t),
(
(uh)x

)−
1
2

:= f1(t),
(
(uh)x

)+
N+ 1

2

:= g1(t),

to make the penalty terms well-defined.
Case (ii) For the G-Dirichlet B.C. (2.2b),

(û, ûx, ŵ, ŵx) 1
2

=
(
f0(t), (uh)+

x , f2(t), (wh)+
x

)
1
2

,(2.6a)

(û, ûx, ŵ, ŵx)N+ 1
2

=
(
g0(t), (uh)−x , g2(t), (wh)−x

)
N+ 1

2

.(2.6b)

Case (iii) For the Neumann B.C. (2.2c),

(û, ûx, ŵ, ŵx) 1
2

=
(
u+
h , f1(t), w+

h , f3(t)
)

1
2

,(2.7a)

(û, ûx, ŵ, ŵx)N+ 1
2

=
(
u−h , g1(t), w−h , g3(t)

)
N+ 1

2

.(2.7b)

Case (iv) For the mixed B.C. (2.2d),

(û, ûx, ŵ, ŵx) 1
2

=
(
u+
h , f1(t), w+

h , f3(t)
)

1
2

,(2.8a)

(û, ûx, ŵ, ŵx)N+ 1
2

=
(
g0(t), (uh)−x , g2(t), (wh)−x

)
N+ 1

2

.(2.8b)

Remark 2.1. It is worth pointing out that the choice of numerical flux is not unique
for each kind of boundary condition, and some other numerical fluxes would also
work as discussed below.

For the Dirichlet B.C. (2.2a), we can also choose the following three kinds of
numerical fluxes (with k1, k2 being positive constants):

• (û, ûx, ŵ, ŵx)j+ 1
2

=


(
f0(t), f1(t), w+

h + k1
h [[(uh)x ]] , (wh)+

x − k2
h3 [[uh ]]

)
1
2

, j=0,(
u+
h , (uh)+

x , w
−
h , (wh)−x

)
j+ 1

2

, j = 1, . . . , N − 1,(
g0(t), g1(t), w−h , (wh)−x

)
N+ 1

2

, j = N.

• (û, ûx, ŵ, ŵx )j+ 1
2

=


(
f0(t), f1(t), w+

h + k1
h [[(uh)x ]] , (wh)+

x

)
1
2

, j = 0,(
u−h , (uh)+

x , w
−
h , (wh)+

x

)
j+ 1

2

, j = 1, . . . , N − 1,(
g0(t), g1(t), w−h , (wh)−x − k2

h3 [[uh ]]
)
N+ 1

2

, j = N.
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• (û, ûx, ŵ, ŵx)j+ 1
2

=


(
f0(t), f1(t), w+

h , (wh)+
x

)
1
2

, j = 0,(
u−h , (uh)−x , w

+
h , (wh)+

x

)
j+ 1

2

, j = 1, . . . , N − 1,

( g0(t), g1(t), w−h + k1
h [[(uh)x ]] , (wh)−x − k2

h3 [[uh ]])N+1
2
, j=N.

For the G-Dirichlet B.C. (2.2b), the Neumann B.C. (2.2c) and the mixed B.C.
(2.2d), we can also choose the following numerical flux at interior points xj+ 1

2
,

j = 1, . . . , N − 1, coupled with the boundary fluxes (2.6)–(2.8), respectively.

(2.9) (û, ûx, ŵ, ŵx)j+ 1
2

=
(
u−h , (uh)+

x , w
−
h , (wh)+

x

)
j+ 1

2

, j = 1, . . . , N − 1.

Remark 2.2. In particular, if the equation (2.1) is equipped with the following type
of mixed B.C.

u(a, t) = f0(t), ux(b, t) = g1(t), uxx(a, t) = f2(t), uxxx(b, t) = g3(t),

we can take the numerical flux at interior points as (2.4) or (2.9), coupled with the
following boundary flux:

(û, ûx, ŵ, ŵx) 1
2

=
(
f0(t), (uh)+

x , f2(t), (wh)+
x

)
1
2

,

(û, ûx, ŵ, ŵx)N+ 1
2

=
(
u−h , g1(t), w−h , g3(t)

)
N+ 1

2

.

In the following analysis, without loss of generality, we mainly consider the in-
terior numerical flux (2.4) and the boundary fluxes (2.5)–(2.8) corresponding to
boundary conditions (2.2a)–(2.2d), respectively.

2.2. Stability analysis. In this subsection, we will show the stability property of
the scheme (2.3) with the interior numerical flux (2.4) and the boundary numerical
fluxes in (2.5)–(2.8).

Theorem 2.3. For the fourth-order problem (2.1) with the homogeneous boundary
conditions in (2.2a)–(2.2d), the solutions uh, wh to the semi-discrete UWLDG
scheme (2.3) with numerical fluxes (2.4) and (2.5)–(2.8) satisfy the following L2

stability

(2.11)
1

2

d

dt
‖uh(t)‖2 + ‖wh(t)‖2 ≤ 0.

Proof. We take the test function p = uh, q = wh in (2.3), then use integration by
parts and add the two equations together to obtain

((uh)t, uh)j + (wh, wh)j + L1
j (wh, uh)− L2

j (uh, wh) = 0, ∀j ∈ ZN ,(2.12)

where

L1
j (wh, uh) =w−h (uh)−x |j+ 1

2
− w+

h (uh)+
x |j− 1

2
+ ŵx u

−
h |j+ 1

2
− ŵx u+

h |j− 1
2

− ŵ (uh)−x |j+ 1
2

+ ŵ (uh)+
x |j− 1

2
,

L2
j (uh, wh) =u−h (wh)−x |j+ 1

2
− u+

h (wh)+
x |j− 1

2
+ ûx w

−
h |j+ 1

2
− ûx w+

h |j− 1
2

− û (wh)−x |j+ 1
2

+ û (wh)+
x |j− 1

2
.

Then, summing over j for (2.12), we get

(2.13)
1

2

d

dt
‖uh(t)‖2 + ‖wh(t)‖2 + L(uh, wh) = 0,
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where

L(uh, wh) =
N∑
j=1

(
L1
j (wh, uh)− L2

j (uh, wh)
)
.

To estimate L(uh, wh), we firstly substitute the interior numerical flux (2.4) into it
to obtain

(2.14) L(uh, wh) = A0 +A?,

where

A0 =w−h (uh)−x |N+ 1
2
− w+

h (uh)+
x | 12 − u

−
h (wh)−x |N+ 1

2
+ u+

h (wh)+
x | 12 ,(2.15a)

A? = ŵxu
−
h |N+ 1

2
− ŵxu+

h | 12 − ŵ(uh)−x |N+ 1
2

+ ŵ(uh)+
x | 12(2.15b)

− ûxw−h |N+ 1
2

+ ûxw
+
h | 12 + û(wh)−x |N+ 1

2
− û(wh)+

x | 12 .

We then insert each of the boundary flux (2.5)–(2.8) into the expression of A? in
(2.15b), and denote the corresponding result, respectively, as A(i),A(ii),A(iii),A(iv),
to get

A(i) =−A0 − f0 · (wh)+
x | 12 + g0 · (wh)−x |N+ 1

2
+ f1w

+
h | 12 − g1w

−
h |N+ 1

2

− k1

h
[[(uh)x]](uh)−x |N+ 1

2
+
k2

h3
[[uh]]u+

h | 12 ,

A(ii) =−A0 − f0 · (wh)+
x | 12 + g0 · (wh)−x |N+ 1

2
+ f2 · (uh)+

x | 12 − g2 · (uh)−x |N+ 1
2
,

A(iii) =−A0 + f1w
+
h | 12 − g1w

−
h |N+ 1

2
− f3u

+
h | 12 + g3u

−
h |N+ 1

2
,

A(iv) =−A0 − f0 · (wh)+
x | 12 + g1w

−
h |N+ 1

2
+ f2 · (uh)+

x | 12 + g3u
−
h |N+ 1

2
.

Clearly, when fi = 0, gi = 0, i = 0, 1, 2, 3, we have

[[uh ]] 1
2

= (uh)+
1
2

, [[(uh)x ]]N+ 1
2

= −
(
(uh)x

)−
N+ 1

2

,

and

(2.16)
A(i) = −A0 +

k1

h

((
(uh)x

)−
N+ 1

2

)2

+
k2

h3

(
(uh)+

1
2

)2

,

A(ii) = A(iii) = A(iv) = −A0.

Since k1, k2 are positive constants, we find, by (2.14), that

L(uh, wh) ≥ 0

holds for A? = A(i),A(ii),A(iii),A(iv), corresponding to all four kinds of boundary
conditions in (2.2a)–(2.2d). This, together with (2.13), implies the stability result
(2.11). �

2.3. Optimal error estimates. In this subsection, we present the optimal error
estimates of the UWLDG scheme. To do that, we introduce several projections
that are needed in the error analysis.
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2.3.1. Projections. Different projections are needed in dealing with different bound-
ary conditions with the goal of eliminating as many projection errors as possible.
Given u ∈ H2(Ωh), we define three kinds of one-dimensional projection onto Vh as
follows.
• PM : For k ≥ 1, j ∈ ZN , PM |Ij ∈ Pk(Ij), such that, for j = 1, . . . , N ,∫

Ij

(u− PMu)vh dx = 0, ∀vh ∈ Pk−2(Ij),(2.17a)

PMu
(
x+
j− 1

2

)
= u

(
xj− 1

2

)
,
(
PMu

)
x

(
x−
j+ 1

2

)
= ux

(
xj+ 1

2

)
.(2.17b)

• PD: For k ≥ 1, j ∈ ZN , PD|Ij ∈ Pk(Ij), such that, for j = 1, . . . , N − 1,∫
Ij

(u− PDu)vh dx = 0, ∀vh ∈ Pk−2(Ij),(2.18a)

PDu
(
x+
j− 1

2

)
= u

(
xj− 1

2

)
,
(
PDu

)
x

(
x−
j+ 1

2

)
= ux

(
xj+ 1

2

)
,(2.18b)

and for j = N , ∫
IN

(u− PDu)vh dx = 0, ∀vh ∈ Pk−2(IN ),(2.18c)

PDu
(
x+
N− 1

2

)
= u

(
xN− 1

2

)
, PDu

(
x−
N+ 1

2

)
= u

(
xN+ 1

2

)
.(2.18d)

• PN : For k ≥ 2, j ∈ ZN , PN |Ij ∈ Pk(Ij), such that, for j = 2, . . . , N ,∫
Ij

(u− PNu)vh dx = 0, ∀vh ∈ Pk−2(Ij),(2.19a)

PNu
(
x+
j− 1

2

)
= u

(
xj− 1

2

)
,
(
PNu

)
x

(
x−
j+ 1

2

)
= ux

(
xj+ 1

2

)
,(2.19b)

and for j = 1, ∫
I1

(u− PNu)vh dx = 0, ∀vh ∈ Pk−2(I1),(2.19c)

(PNu)x
(
x+

1
2

)
= ux

(
x 1

2

)
, (PNu)x

(
x−3

2

)
= ux

(
x 3

2

)
.(2.19d)

It is easy to verify that all these projections are well defined and have the fol-
lowing optimal approximation property; see [9, 29].

Lemma 2.4. Let π be any projection defined by (2.17)–(2.19), then for u ∈ Hk+1(Ωh),
there holds

(2.20) ‖u− πu‖+ hs‖u− πu‖s + h
1
2 ‖u− πu‖Γh

≤ Chk+1‖u‖k+1,

where ‖v‖Γh
=
(∑N

j=1

[
(v−
j+ 1

2

)2 + (v+
j− 1

2

)2
]) 1

2

, 1 ≤ s ≤ k is an integer and C is a

positive constant independent of h.

2.3.2. Main results. Without loss of generality, we firstly state the error estimate
result for the case of the Dirichlet B.C. (2.2a), and the results for other three
boundary conditions will be discussed in Remark 2.6 and Remark 2.7.

Theorem 2.5. Let u be the exact solution of the fourth-order equation (2.1) with
the boundary condition (2.2a), w = uxx; and assume u is smooth enough, e.g.,
‖u‖k+3, ‖ut‖k+1 are bounded uniformly for any time t. Let uh, wh be solutions of
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the UWLDG scheme (2.3) with numerical fluxes (2.4)–(2.5). Then, for k ≥ 1, we
have the following optimal error estimates:

(2.21) ‖u(t)− uh(t)‖+

∫ t

0

‖w(τ)− wh(τ)‖ dτ ≤ Chk+1,

where C is a function of t to the power at most 3
2 , which is independent of h, and

dependent on ‖u‖k+3, ‖ut‖k+1.

Proof. Let eu = u − uh, ew = w − wh. Since u and w also satisfy the UWLDG
scheme (2.3)–(2.5), we sum over j for the cell error equations to get(

(eu)t, p
)

Ωh
+B(ew, p) = 0,(2.22a)

(ew, q)Ωh
−B(eu, q) = 0,(2.22b)

where (·, ·)Ωh
denotes the summation of the L2 inner product in Ij ∈ Ωh, and B(·, ·)

is defined as follows: for v, z ∈ H2(Ωh)

B(v, z) =

N∑
j=1

(v, zxx)j +

N∑
j=1

(
v̂x z

−|j+ 1
2
− v̂x z+|j− 1

2
− v̂ z−x |j+ 1

2
+ v̂ z+

x |j− 1
2

)
,

and

(
êu, (̂eu)x, êw, (̂ew)x

)
j+ 1

2

=


(
0, 0, e+

w , (ew)+
x + k2

h3 [[uh]]
)

1
2

, j = 0,(
e+
u , (eu)−x , e

+
w , (ew)−x

)
j+ 1

2

, j = 1, . . . , N−1,(
0, 0, e−w − k1

h [[(uh)x]], (ew)−x
)
N+ 1

2

, j = N.

Notice that [[uh]] 1
2

= −(eu)+
1
2

and [[(uh)x]]N+ 1
2

= ((eu)x)−
N+ 1

2

, then

(̂ew)x
∣∣
1
2

=
(
(ew)x

)+
1
2

− k2

h3
(eu)+

1
2

, êw
∣∣
N+ 1

2

=
(
ew
)−
N+ 1

2

− k1

h

(
(eu)x

)−
N+ 1

2

.

Next, we denote

eu = (u− PMu)− (uh − PMu) := ηu − ξu,
ew = (w − PMw)− (wh − PMw) := ηw − ξw,

and let

(
η̂u, (̂ηu)x, η̂w, (̂ηw)x

)
j+ 1

2

=


(
0, 0, η+

w , (ηw)+
x − k2

h3 η
+
u

)
1
2

, j = 0,(
η+
u , (ηu)−x , η

+
w , (ηw)−x

)
j+ 1

2

, j = 1, . . . , N−1,(
0, 0, η−w − k1

h (ηu)−x , (ηw)−x
)
N+ 1

2

, j = N,

(
ξ̂u, (̂ξu)x, ξ̂w, (̂ξw)x

)
j+ 1

2

=


(
0, 0, ξ+

w , (ξw)+
x − k2

h3 ξ
+
u

)
1
2

, j = 0,(
ξ+
u , (ξu)−x , ξ

+
w , (ξw)−x

)
j+ 1

2

, j = 1, . . . , N−1,(
0, 0, ξ−w − k1

h (ξu)−x , (ξw)−x
)
N+ 1

2

, j = N.

Then, taking p = ξu, q = ξw and adding the two equations in (2.22), we get

LHS = RHS,

where

LHS =
(
(ξu)t, ξu

)
Ωh

+(ξw, ξw)Ωh
+B(ξw, ξu)−B(ξu, ξw),

RHS =
(
(ηu)t, ξu

)
Ωh

+(ηw, ξw)Ωh
+B(ηw, ξu)−B(ηu, ξw).
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Using integration by parts and a simple calculation, we can get

(2.23) LHS =
(
(ξu)t, ξu

)
Ωh

+(ξw, ξw)Ωh
+
k2

h3

(
(ξu)+

1
2

)2

+
k1

h

((
(ξu)x

)−
N+ 1

2

)2

.

Besides, the definition of the projection PM implies that

RHS=
(
(ηu)t, ξu

)
Ωh

+(ηw, ξw)Ωh
−
(
(ηw)x

)+
1
2

(ξu)+
1
2

− (ηw)−
N+ 1

2

(
(ξu)x

)−
N+ 1

2

.

(2.24)

Using Young’s inequality, we obtain

−
(
(ηw)x

)+
1
2

(ξu)+
1
2

≤ h3

2k2

((
(ηw)x

)+
1
2

)2

+
k2

2h3

(
(ξu)+

1
2

)2

,

−(ηw)−
N+ 1

2

(
(ξu)x

)−
N+ 1

2

≤ h

2k1

((
ηw
)−
N+ 1

2

)2

+
k1

2h

((
(ξu)x

)−
N+ 1

2

)2

.

(2.25)

Consequently, by the trace inequality and approximation property of the projection
PM in (2.20), we get∣∣ ((ηw)x)

+
1
2

∣∣ ≤ Chk− 1
2 ‖w‖k+1,

∣∣(ηw)−N+ 1
2

∣∣ ≤ Chk+ 1
2 ‖w‖k+1.(2.26)

Thus, it follows from Cauchy–Schwarz inequality and (2.23)–(2.26) that

1

2

d

dt
‖ξu(t)‖2 + ‖ξw(t)‖2 ≤ Chk+1‖ξu(t)‖+ Chk+1‖ξw(t)‖+ Ch2k+2.(2.27)

Next, we adopt the idea in the proof of [21, Theorem 2.2] and omit the details
to save space, and we arrive at

‖ξu(t)‖+

∫ t

0

‖ξw(τ)‖ dτ ≤ Chk+1,

where C is a function of t to the power at most 3
2 , which is dependent on ‖u‖k+3

and ‖ut‖k+1, but is independent of h. Then, by the triangle inequality we finally
get the error estimates result (2.21). �

Remark 2.6. For the fourth-order problem (2.1) with the G-Dirichlet B.C. (2.2b),
the UWLDG solutions of (2.3) with numerical fluxes (2.4) and (2.6) satisfy the
optimal error estimate result (2.21) for k ≥ 2, which can be proved by performing
the similar arguments as in the proof of Theorem 2.5 and using the projection PN .
For k = 1, we cannot prove the second order accuracy, indeed, only 3/2th order is
observed in the numerical experiment for both L2 error of u and w; see Table 4.2
and Table 4.3 in Section 4.

Remark 2.7. For the fourth-order problem (2.1) with the Neumann B.C. (2.2c) and
the mixed B.C. (2.2d), consider the UWLDG solutions of (2.3) with interior flux
(2.4) and the boundary fluxes (2.7)–(2.8), the optimal error estimates in (2.21) for
k ≥ 1 can also be proved by using the projections PD and PM , respectively.

3. The UWLDG method for the 2D case

In this section, we extend our methods to multi-dimensional case, and consid-
er the Cartesian domain only. Without loss of generality, consider the UWLDG
method for the two-dimensional time-dependent fourth-order problem (1.1) with
boundary conditions (1.2a)–(1.2d). Let Ω = [a1, b1]× [a2, b2] be a bounded rectan-
gular domain, and denote

ΓN = {(x, y) ∈ ∂Ω|x = a1 or y = a2}, ΓD = {(x, y) ∈ ∂Ω|x = b1 or y = b2}.
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We set νm, m = l, b, r, t, are the unit outward normal vectors of the left, bottom,
right and top boundary side of Ω respectively, i.e.,

νl = (−1, 0), νb = (0,−1), νr = (1, 0), νt = (0, 1).

3.1. The UWLDG scheme. Similar to the one-dimensional case, we rewrite (1.1)
into a second order system

ut + ∆w = 0,

w −∆u = 0.

To define the UWLDG method clearly, let us first introduce some notation.

3.1.1. Notation. As shown in Figure 3.1, let Ωh = {Kij = Ii×Jj , i = 1, . . . , Nx, j =
1, . . . , Ny} be a partition of Ω with the shape-regular rectangle element Kij . We
denote ΩIh and Ω0

h as the sets of all the interelements and the boundary elements,
respectively. We denote Eh as the set of all faces of the partition Ωh, and E I

h , E 0
h

as the sets of interior faces e (i.e., e is shared by two elements in Ωh) and boundary

faces e (i.e., e lies on ∂Ω), respectively. In particular, E 0,l
h , E 0,b

h , E 0,r
h and E 0,t

h

represent the sets of boundary faces e that lie on the left, bottom, right and top
side of the domain Ω, respectively.

Figure 3.1. The 2D mesh Ωh.

The boundary and the diameter of K are denoted as ∂K and hK , and set h =
maxK hK . The finite element space associated with the mesh Ωh is of the form

Wh =
{
v ∈ L2(Ω) : v|K ∈ Q

k(K), ∀K ∈ Ωh
}
,

where Qk(K) is the space of tensor product of polynomials of degree at most k in
each variable of x = (x, y) in K.

3.1.2. The UWLDG scheme. The UWLDG method is given as follows: to seek
uh, wh ∈Wh, such that(

(uh)t , p
)
K

+ (wh,∆p)K + 〈∇̂w · n, p〉∂K − 〈ŵ,∇p · n〉∂K = 0,(3.2a)

(wh, q)K − (uh,∆q)K − 〈∇̂u · n, q〉∂K + 〈û,∇q · n〉∂K = 0,(3.2b)
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holds for all p, q ∈Wh and K ∈ Ωh. Here n denotes the unit outward normal vector
to ∂K, and for any v, z ∈ H2(Ωh)

(v, z)K =

∫
K

v(x, y)z(x, y) dxdy, 〈v,∇z · n〉∂K =

∫
∂K

v(s)
(
∇z(s) · n

)
ds.

For the above boundary integral, if v or z is not single-valued on the element faces,
we take its value from interior of K and restrict it on ∂K.

To complete the definition of the UWLDG method, we need to define the nu-

merical fluxes û, ∇̂u, ŵ and ∇̂w. To do that, firstly, for a possibly discontinuous
function ω(x, y), we define ω± on the vertical and horizontal edge respectively as

ω±
i+ 1

2 ,y
= ω

(
x±
i+ 1

2

, y
)

= lim
ε→0±

ω
(
xi+ 1

2
+ ε, y

)
, i = 0, 1, . . . , Nx,

ω±
x,j+ 1

2

= ω
(
x, y±

j+ 1
2

)
= lim
ε→0±

ω
(
x, yj+ 1

2
+ ε
)
, j = 0, 1, . . . , Ny.

We denote(
∇ω
)±
i+ 1

2 ,y
=
(
(ωx)±

i+ 1
2 ,y
, (ωy)±

i+ 1
2 ,y

)T
,
(
∇ω
)±
x,j+ 1

2

=
(
(ωx)±

x,j+ 1
2

, (ωy)±
x,j+ 1

2

)T
,

and set the jump value as

[[ω]]i+ 1
2 ,y

= ω+
i+ 1

2 ,y
− ω−

i+ 1
2 ,y
, [[ω]]x,j+ 1

2
= ω+

x,j+ 1
2

− ω−
x,j+ 1

2

.

Then, the numerical fluxes are defined as follows. At interior faces e ∈ E I
h , we

always choose

(3.3) û
∣∣
e

= u+
h

∣∣
e
, ∇̂u

∣∣
e

= (∇uh)−
∣∣
e
, ŵ
∣∣
e

= w+
h

∣∣
e
, ∇̂w

∣∣
e

= (∇wh)
− ∣∣

e
.

For the numerical flux on the boundary face e ∈ E 0
h , we firstly consider the Dirichlet

B.C. (1.2a), since some penalty terms are involved.
Case (I) For the Dirichlet B.C. (1.2a), we define:
• the numerical flux û

∣∣
e

as

(3.4a) û
∣∣
e

= PM (fD)
∣∣
e
, ∀e ∈ E 0

h ;

• the numerical flux ∇̂u
∣∣
e

as

(3.4b) ∇̂u · νm
∣∣
e

= PM
(
fN
)∣∣
e
, ∀e ∈ E 0,m

h , m = l, b, r, t;

• the numerical flux ŵ
∣∣
e

as

(3.4c)

ŵ
∣∣
e

= w+
h

∣∣
e
, ∀e ∈ E 0,l

h ,E 0,b
h ,

ŵ
∣∣
e

= w−h
∣∣
e

+
k1

h
[[(uh)x ]]

∣∣
e
, ∀e ∈ E 0,r

h ,

ŵ
∣∣
e

= w−h
∣∣
e

+
k2

h
[[(uh)y ]]

∣∣
e
, ∀e ∈ E 0,t

h ;

• the numerical flux ∇̂w
∣∣
e

as

(3.4d)

∇̂w · νl
∣∣
e

= (∇wh)+ · νl
∣∣
e

+
k3

h3
[[uh ]]

∣∣
e
, ∀e ∈ E 0,l

h ,

∇̂w · νb
∣∣
e

= (∇wh)+ · νb
∣∣
e

+
k4

h3
[[uh ]]

∣∣
e
, ∀e ∈ E 0,b

h ,

∇̂w · νm
∣∣
e

= (∇wh)− · νm
∣∣
e
, ∀e ∈ E 0,m

h ,m = r, t;
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where k1, k2, k3, k4 are positive constants independent of h and the polynomial
degree k. To ensure the penalty terms in (3.4c) and (3.4d) are well-defined, we set

u−h
∣∣
e

:= PM (fD)|e, ∀e ∈ E 0,l
h , E 0,b

h ,(
(uh)x

)+∣∣
e

:= PM
(
fN
)
|e, ∀e ∈ E 0,r

h ,(
(uh)y

)+∣∣
e

:= PM
(
fN
)
|e, ∀e ∈ E 0,t

h .

The numerical fluxes for other three types of boundary conditions are given in
the following remark.

Remark 3.1. For boundary conditions (1.2b)–(1.2d), we can use the numerical flux
(3.3) for interior face e ∈ E I

h together with the following boundary flux for e ∈ E 0
h .

Case (II) For the G-Dirichlet B.C. (1.2b), we define:
(3.5)

û
∣∣
e

= PN (fD)
∣∣
e
, ŵ

∣∣
e

= PN (gD)
∣∣
e
, ∀e ∈ E 0

h ,

∇̂u· νm
∣∣
e
=(∇uh)+ · νm

∣∣
e
, ∇̂w · νm

∣∣
e
=(∇wh)+ · νm

∣∣
e
, ∀e ∈ E 0,m

h ,m = l, b,

∇̂u· νm
∣∣
e
=(∇uh)− · νm

∣∣
e
, ∇̂w · νm

∣∣
e
=(∇wh)− · νm

∣∣
e
, ∀e ∈ E 0,m

h ,m = r, t.

Case (III) For the Neumann B.C. (1.2c), we define:

(3.6)

û
∣∣
e

= u+
h

∣∣
e
, ŵ

∣∣
e

= w+
h

∣∣
e
, ∀e ∈ E 0,m

h ,m = l, b,

û
∣∣
e

= u−h
∣∣
e
, ŵ

∣∣
e

= w−h
∣∣
e
, ∀e ∈ E 0,m

h ,m = r, t,

∇̂u· νm
∣∣
e

= PD(fN )
∣∣
e
, ∇̂w · νm

∣∣
e

= PD(gN )
∣∣
e
, ∀e ∈ E 0,m

h ,m = l, b, r, t.

Case (IV) For the mixed B.C. (1.2d), we define: for e ∈ E 0,m
h , m = l, b,

(3.7a) û
∣∣
e
=u+

h

∣∣
e
, ∇̂u· νm

∣∣
e
=PM (fN )

∣∣
e
, ŵ
∣∣
e
=w+

h

∣∣
e
, ∇̂w · νm

∣∣
e
=PM (gN )

∣∣
e
,

and for e ∈ E 0,m
h , m = r, t,

(3.7b)
û
∣∣
e

= PM (fD)
∣∣
e
, ∇̂u · νm

∣∣
e

= (∇uh)− · νm
∣∣
e
,

ŵ
∣∣
e

= PM (gD)
∣∣
e
, ∇̂w · νm

∣∣
e

= (∇wh)− · νm
∣∣
e
.

In the following subsections, we will give stability analysis and error estimate
results of the above UWLDG schemes. Before that, for easy presentation, we
introduce several short notations. Firstly, for η ∈ H2(Ωh) and p ∈Wh, we define

BK(η, p) = (η,∆p)K + 〈∇̂η · n, p〉∂K − 〈η̂,∇p · n〉∂K , ∀ K ∈ Ωh.(3.8)

Then, for Kij ∈ ΩIh, we specifically have

BKij (η, p) =
8∑

m=0

T ijm (η, p), i=2, 3, . . . , Nx − 1, j=2, 3, . . . , Ny − 1,(3.9)

where

T ij0 (η, p) =

∫
Kij

η (pxx + pyy) dxdy,

(3.10)

T ij1 (η, p)=−
∫
Jj

η(x+
i+ 1

2

, y) px(x−
i+ 1

2

, y) dy, T ij2 (η, p)=

∫
Jj

η(x+
i− 1

2

, y) px(x+
i− 1

2

, y) dy,
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T ij3 (η, p)=−
∫
Ii

η(x, y+
j+ 1

2

) py(x, y−
j+ 1

2

) dx, T ij4 (η, p)=

∫
Ii

η(x, y+
j− 1

2

) py(x, y+
j− 1

2

) dx,

T ij5 (η, p)=

∫
Jj

ηx(x−
i+ 1

2

, y) p(x−
i+ 1

2

, y) dy, T ij6 (η, p)=−
∫
Jj

ηx(x−
i− 1

2

, y) p(x+
i− 1

2

, y) dy,

T ij7 (η, p)=

∫
Ii

ηy(x, y−
j+ 1

2

) p(x, y−
j+ 1

2

) dx, T ij8 (η, p)=−
∫
Ii

ηy(x, y−
j− 1

2

) p(x, y+
j− 1

2

) dx.

Next, for each K ∈ Ωh, p, q, ϕ ∈Wh, we introduce

H∂K(p, q) = 〈wh,∇uh · n〉∂K − 〈uh,∇wh · n〉∂K + 〈∇̂w · n, p〉∂K
− 〈ŵ,∇p · n〉∂K − 〈∇̂u · n, q〉∂K + 〈û,∇q · n〉∂K ,

(3.11)

and

S(ϕ) =

Ny∑
j=1

∫
Jj

k1

h

(
ϕx
(
x−
Nx+ 1

2

, y
))2

+
k3

h3

(
ϕ
(
x+

1
2

, y
))2

dy

+

Nx∑
i=1

∫
Ii

k2

h

(
ϕy
(
x, y−

Ny+ 1
2

))2

+
k4

h3

(
ϕ
(
x, y+

1
2

))2

dx.

(3.12)

3.2. Stability analysis. In this subsection, we show the L2-stability of the UWLDG
method (3.2) with the interior flux (3.3) and the boundary fluxes (3.4)–(3.7).

Lemma 3.2. If the boundary condition (1.2a) is homogeneous, i.e., fD = 0, fN =
0, on ∂Ω, then the numerical fluxes defined by (3.3) and (3.4) satisfy

(3.13)
∑
K∈Ωh

H∂K(uh, wh) = S(uh) ≥ 0,

where S(·) is defined by (3.12).

Proof. Firstly, we notice that

(3.14)
∑
K∈Ωh

H∂K(uh, wh) =
∑
K∈Ωh

( ∑
e∈E I

h

H∂K∩e(uh, wh) +
∑
e∈E 0

h

H∂K∩e(uh, wh)
)
.

For any e ∈ E I
h , we suppose e = ∂K1 ∩ ∂K2, by (3.3), it is easy to check that

H∂K1∩e(uh, wh) +H∂K2∩e(uh, wh) = 0,

hence,

(3.15)
∑
K∈Ωh

∑
e∈E I

h

H∂K∩e(uh, wh) = 0.

For e ∈ E 0
h , without loss of generality, we assume e ∈ E 0,b

h , i.e., e is the bottom
boundary face of some element Ki1, i ∈ {1, 2, . . . , Nx}. According to the definition
of the boundary flux (3.4), we have

û
∣∣
e
=PM

(
fD
)∣∣
e

= 0, ∇̂u · νb
∣∣
e
=PM

(
fN
)∣∣
e

= 0, ŵ
∣∣
e
=w+

h

∣∣
e
,

∇̂w · νb
∣∣
e
=(∇wh)+ · νb

∣∣
e
+
k4

h3

(
u+
h −PM (fD)

)∣∣∣
e
= (∇wh)+ · νb

∣∣
e
+
k4

h3
u+
h

∣∣
e
.

Therefore,

H∂Ki1∩e(uh, wh) = 〈w+
h ,∇u

+
h · νb〉e − 〈u

+
h ,∇w

+
h · νb〉e + 〈∇w+

h · νb, u
+
h 〉e
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− 〈w+
h ,∇u

+
h · νb〉e +

k4

h3
〈u+
h , u

+
h 〉e

=
k4

h3

∫
Ii

(
uh
(
x, y+

1
2

))2

dx.

Similarly, we can derive that, for i = 1, . . . , Nx, j = 1, . . . , Ny,

H∂KiNy∩e(uh, wh)=
k2

h

∫
Ii

(
(uh)y

(
x, y−

Ny+ 1
2

))2

dx, e ∈ E 0,t
h ,

H∂K1j∩e(uh, wh) =
k3

h3

∫
Jj

(
uh
(
x+

1
2

, y
))2

dy, e ∈ E 0,l
h ,

H∂KNxj∩e(uh, wh)=
k1

h

∫
Jj

(
(uh)x

(
x−
Nx+ 1

2

, y
))2

dy, e ∈ E 0,r
h .

Therefore, summing over K ∈ Ωh and e ∈ E 0
h , we obtain∑

K∈Ωh

∑
e∈E 0

h

H∂K∩e(uh, wh)= S(uh).
(3.16)

Since the penalty parameters ki > 0, i = 1, 2, 3, 4, then (3.13) follows by (3.14),
(3.15) and (3.16). �

Similar to Lemma 3.2, we have the following lemma for other three types of
boundary conditions.

Lemma 3.3. If the boundary conditions (1.2b)–(1.2d) are homogeneous, then the
numerical fluxes defined by (3.3) and (3.5)–(3.7) satisfy∑

K∈Ωh

H∂K(uh, wh) = 0.

Theorem 3.4. For the two-dimensional fourth-order equation (1.1) with the ho-
mogeneous boundary conditions in (1.2a)–(1.2d), the UWLDG solutions uh, wh of
the scheme (3.2) with the interior flux (3.3) and the corresponding boundary fluxes
(3.4)–(3.7) satisfy

1

2

d

dt
‖uh(t)‖2 + ‖wh(t)‖2 ≤ 0.(3.17)

Proof. Take (p, q) = (uh, wh) and add the two equations in (3.2), then use integra-
tion by parts, we obtain

((uh)t, uh)K + (wh, wh)K +H∂K (uh, wh) = 0, ∀K ∈ Ωh,

where H∂K(·, ·) is defined by (3.11). We sum over all the elements K in Ωh to get

1

2

d

dt
‖uh(t)‖2 + ‖wh(t)‖2 +

∑
K∈Ωh

H∂K(uh, wh) = 0.

By Lemmas 3.2-3.3, we immediately arrive at the L2-stability result (3.17). �
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3.3. Optimal error estimates. In this subsection, we mainly consider optimal
error estimates of the UWLDG scheme (3.2) with numerical fluxes (3.3)–(3.4) for
solving the two-dimensional problem (1.1) with the Dirichlet B.C. (1.2a), since it is
more involved. To this end, let us firstly introduce the semi-norm on the boundary:
for ∀v ∈ H`(Ωh), ` ≥ 2,

‖v‖∂K :=

(∫
Jj

[
(v−
i+ 1

2 ,y
)2 + (v+

i− 1
2 ,y

)2
]
dy +

∫
Ii

[
(v−
x,j+ 1

2

)2 + (v+
x,j− 1

2

)2
]
dx

) 1
2

.

Then, we denote ‖∇v‖∂K =
(
‖vx‖2∂K + ‖vy‖2∂K

) 1
2 , and for any subset K̃ ⊆ Ωh,

‖v‖∂K̃=
( ∑
K∈K̃

‖v‖2∂K
) 1

2

, ‖∇v‖∂K̃=
( ∑
K∈K̃

‖∇v‖2∂K
) 1

2

, ‖v‖`,K̃=
( ∑
K∈K̃

‖v‖2`,K
) 1

2

.

The following trace and inverse inequalities [14] are useful in our analysis.

Lemma 3.5. For any v ∈ H1(K), there exists a positive constant C, such that

‖v‖2∂K ≤ C‖v‖K‖v‖1,K ,

where C is independent of the mesh size h.

Lemma 3.6. For any q ∈ Qk(K), there exist a positive constants C, such that

‖q‖∂K ≤ Ch
− 1

2

K ‖q‖K , ‖∇q‖K ≤ Ch−1
K ‖q‖K ,

where ‖∇q‖K =
( ∫

K
∇q · ∇q dx

) 1
2 , C is independent of the mesh size h.

3.3.1. Projection and its properties. For two-dimensional Cartesian meshes, the
projection can be constructed as the tensor product of one-dimensional projections.
We define Π : H2(Ωh)→Wh as

Πu := PMx
⊗ PMy

u ,(3.18)

where PM is the one-dimensional projection given by (2.17a)–(2.17b), and the sub-
scripts x and y indicate that the projection PM is applied with respect to the corre-
sponding variable. Specifically, for all Kij = Ii × Jj = (xi− 1

2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
)

and ∀vh ∈ Qk−2(Kij), Πu satisfies the following identities∫
Kij

Πu(x, y)vh(x, y)dxdy =

∫
Kij

u(x, y)vh(x, y)dxdy,(3.19a) ∫
Ii

Πu
(
x, y+

j− 1
2

)
vh
(
x, y+

j− 1
2

)
dx =

∫
Ii

u
(
x, yj− 1

2

)
vh
(
x, y+

j− 1
2

)
dx,(3.19b) ∫

Jj

Πu
(
x+
i− 1

2

, y
)
vh
(
x+
i− 1

2

, y
)
dy =

∫
Jj

u
(
xi− 1

2
, y
)
vh
(
x+
i− 1

2

, y
)
dy,(3.19c) ∫

Ii

(
Πu
)
y

(
x, y−

j+ 1
2

)
vh
(
x, y−

j+ 1
2

)
dx =

∫
Ii

uy
(
x, yj+ 1

2

)
vh
(
x, y−

j+ 1
2

)
dx,(3.19d) ∫

Jj

(
Πu
)
x

(
x−
i+ 1

2

, y
)
vh
(
x−
i+ 1

2

, y
)
dy =

∫
Jj

ux
(
xi+ 1

2
, y
)
vh
(
x−
i+ 1

2

, y
)
dy,(3.19e)

Πu
(
x+
i− 1

2

, y+
j− 1

2

)
= u

(
xi− 1

2
, yj− 1

2

)
,(3.19f) (

Πu
)
x

(
x−
i+ 1

2

, y+
j− 1

2

)
= ux

(
xi+ 1

2
, yj− 1

2

)
,(3.19g)
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Πu
)
y

(
x+
i− 1

2

, y−
j+ 1

2

)
= uy

(
xi− 1

2
, yj+ 1

2

)
,(3.19h) (

Πu
)
xy

(
x−
i+ 1

2

, y−
j+ 1

2

)
= uxy

(
xi+ 1

2
, yj+ 1

2

)
.(3.19i)

Clearly, the following relationship between Π and PM holds:

Proposition 3.7. For ∀Kij ∈ Ωh, on the boundary ∂Kij, we have

Πu(x+
i− 1

2

, y) = PMy

(
u(xi− 1

2
, y)
)
, (Πu)x(x−

i+ 1
2

, y) = PMy

(
ux(xi+ 1

2
, y)
)
, y ∈ Jj ;

Πu(x, y+
j− 1

2

) = PMx

(
u(x, yj− 1

2
)
)
, (Πu)y(x, y−

j+ 1
2

) = PMx

(
uy(x, yj+ 1

2
)
)
, x ∈ Ii.

Using a similar argument as that in [29, Lemma 6.1], it is easy to check the
existence and uniqueness of the projection Π, and we also have the following ap-
proximation property.

Lemma 3.8. Assume u ∈ Hs(Ωh), s ≥ 2, then there exists a unique Πu ∈ Wh

satisfying (3.19). Moreover, there holds

‖u−Πu‖K + h` ‖u−Πu‖`,K + h
1
2 ‖u−Πu‖∂K ≤ Ch

min{k+1, s}‖u‖s,K ,

where 1 ≤ ` ≤ min{k + 1, s} is an integer and C is a constant independent of h.

3.3.2. Main results. We are now ready to state the error estimate result of the
UWLDG scheme solving (1.1) with the Dirichlet B.C. (1.2a).

Theorem 3.9. Let u be the exact solution of the fourth order equation (1.1) with
the Dirichlet B.C. (1.2a), w = ∆u; and assume u is smooth enough, e.g., ‖u‖k+5,
‖ut‖k+1 are bounded uniformly for any time t. Let uh, wh be solutions of the
UWLDG scheme (3.2) with numerical fluxes (3.3)–(3.4). For k ≥ 1, we have

‖u(t)− uh(t)‖+

∫ t

0

‖w(τ)− wh(τ)‖ dτ ≤ Chk+1,(3.20)

where C is a function of t to the power at most 3
2 , which is independent of h, and

dependent on ‖u‖k+5, ‖ut‖k+1.

The proof of Theorem 3.9 is divided into the following five steps:
Step 1. The error equation. As usual, we denote

eu = u− uh, ew = w − wh.
Since the exact solution u and w satisfy the following weak formulation:

(ut, p)K + (w,∆p)K + 〈∇w · n, p〉∂K − 〈w,∇p · n〉∂K = 0,

(w, q)K − (u,∆q)K − 〈∇u · n, q〉∂K + 〈u,∇q · n〉∂K = 0,

then we can get the cell error equation as(
(eu)t, p

)
K

+ (ew,∆p)K + 〈∇̂ew · n, p〉∂K − 〈êw,∇p · n〉∂K = 0,(3.21a)

(ew, q)K − (eu,∆q)K − 〈∇̂eu · n, q〉∂K + 〈êu,∇q · n〉∂K = 0,(3.21b)

where

êu = u− û, ∇̂eu · n = (∇u− ∇̂u) · n,

êw = w − ŵ, ∇̂ew · n = (∇w − ∇̂w) · n.
Step 2. The error decomposition. Denote eu = ηu − ξu, ew = ηw − ξw with

ηu = u−Πu, ξu = uh −Πu, ηw = w −Πw, ξw = wh −Πw.
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• At the interior face e ∈ E I
h , we naturally have

(3.22)
η̂u
∣∣
e

= η+
u

∣∣
e
, ξ̂u

∣∣
e

= ξ+
u

∣∣
e
, ∇̂ηu

∣∣
e

= (∇ηu)−
∣∣
e
, ∇̂ξu

∣∣
e

= (∇ξu)−
∣∣
e
,

η̂w
∣∣
e

= η+
w

∣∣
e
, ξ̂w

∣∣
e

= ξ+
w

∣∣
e
, ∇̂ηw

∣∣
e
= (∇ηw)−

∣∣
e
, ∇̂ξw

∣∣
e
=(∇ξw)−

∣∣
e
.

• At the boundary face e ∈ E 0
h , we specially let

η̂u
∣∣
e

:= êu
∣∣
e
, ξ̂u

∣∣
e

:= 0, ∀e ∈ E 0
h ,(3.23a)

∇̂ηu · νm
∣∣
e
:=∇̂eu · νm

∣∣
e
, ∇̂ξu · νm

∣∣
e
:= 0, ∀e ∈ E 0,m

h ,m = l, b, r, t,(3.23b)

(3.23c)

η̂w
∣∣
e

:= η+
w

∣∣
e
, ξ̂w

∣∣
e

:= ξ+
w

∣∣
e
, ∀e ∈ E 0,l

h ,E 0,b
h ,

η̂w
∣∣
e

:=η−w
∣∣
e
, ξ̂w

∣∣
e

:= ξ−w
∣∣
e
+
k1

h
[[(uh)x ]]

∣∣
e
, ∀e ∈ E 0,r

h ,

η̂w
∣∣
e

:=η−w
∣∣
e
, ξ̂w

∣∣
e

:= ξ−w
∣∣
e
+
k2

h
[[(uh)y ]]

∣∣
e
, ∀e ∈ E 0,t

h ,

(3.23d)

∇̂ηw · νl
∣∣
e

:=(∇ηw)+ · νl
∣∣
e
, ∇̂ξw · νl

∣∣
e

:=(∇ξw)+ · νl
∣∣
e
+
k3

h3
[[uh ]]

∣∣
e
, ∀e ∈ E 0,l

h ,

∇̂ηw · νb
∣∣
e

:=(∇ηw)+ · νb
∣∣
e
, ∇̂ξw · νb

∣∣
e

:= (∇ξw)+ · νb
∣∣
e
+
k4

h3
[[uh ]]

∣∣
e
, ∀e ∈ E 0,b

h ,

∇̂ηw · νm
∣∣
e
:= (∇ηw)− · νm

∣∣
e
, ∇̂ξw · νm

∣∣
e
:= (∇ξw)− · νm

∣∣
e
, ∀e ∈ E 0,m

h ,m = r, t.

Based on the above decomposition, for all K ∈ Ωh, we have

êu
∣∣
∂K

= η̂u
∣∣
∂K
− ξ̂u

∣∣
∂K
, ∇̂eu · n

∣∣
∂K

= ∇̂ηu · n
∣∣
∂K
− ∇̂ξu · n

∣∣
∂K
,

êw
∣∣
∂K

= η̂w
∣∣
∂K
− ξ̂w

∣∣
∂K
, ∇̂ew · n

∣∣
∂K

= ∇̂ηw · n
∣∣
∂K
− ∇̂ξw · n

∣∣
∂K
.

Hence, we can decompose the cell error equation (3.21) into the following form(
(ξu)t, p

)
K

+BK (ξw, p) =
(
(ηu)t, p

)
K

+BK (ηw, p) ,

(ξw, q)K −BK (ξu, q) = (ηw, q)K −BK (ηu, q) ,
(3.24)

where BK(·, ·) is defined by (3.8). Now, we take p = ξu, q = ξw and add the two
equations in (3.24), after summing over K, we obtain,(

(ξu)t, ξu
)

Ωh
+ (ξw, ξw)Ωh

+ Λ1 =
(
(ηu)t, ξu

)
Ωh

+ (ηw, ξw)Ωh
+ Λ2,(3.25)

where

Λ1 =
∑
K∈Ωh

(
BK(ξw, ξu)−BK(ξu, ξw)

)
, Λ2 =

∑
K∈Ωh

(
BK(ηw, ξu)−BK(ηu, ξw)

)
.

Step 3. The estimate of Λ1. The estimate of Λ1 is given in the following lemma.

Lemma 3.10. Λ1 = S(ξu), where S(·) is defined by (3.12).

Proof. Firstly, for ∀K ∈ Ωh, using integration by parts, we obtain

Λ1 =
∑
K∈Ωh

(
BK(ξw, ξu)−BK(ξu, ξw)

)
=
∑
K∈Ωh

H̃∂K(ξu, ξw),

where

H̃∂K(ξu, ξw) = 〈ξw,∇ξu · n〉∂K − 〈ξu,∇ξw · n〉∂K + 〈∇̂ξw · n, ξu〉∂K
− 〈ξ̂w,∇ξu · n〉∂K − 〈∇̂ξu · n, ξw〉∂K + 〈ξ̂u,∇ξw · n〉∂K .

(3.26)
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In addition, the property of projection Π in Proposition 3.7 implies that

PMy

(
u|e
)

= (Πu)+|e, e ∈ E 0,l
h , PMy

(ux|e) =
(
(Πu)x

)−|e, e ∈ E 0,r
h ,

PMx

(
u|e) = (Πu)+|e, e ∈ E 0,b

h , PMx(uy|e) =
(
(Πu)y

)−|e, e ∈ E 0,t
h ,

which allows us to rewrite those terms with penalty in (3.23c)–(3.23d) as

ξ̂w
∣∣
e

= ξ−w
∣∣
e
− k1

h

(
(ξu)x

)−∣∣
e
, e ∈ E 0,r

h ,

ξ̂w
∣∣
e

= ξ−w
∣∣
e
− k2

h

(
(ξu)y

)−∣∣
e
, e ∈ E 0,t

h ,

∇̂ξw · νl
∣∣
e

=
(
∇ξw

)+ · νl∣∣e +
k3

h3
ξ+
u

∣∣
e
, e ∈ E 0,l

h ,

∇̂ξw · νb
∣∣
e

=
(
∇ξw

)+ · νb∣∣e +
k4

h3
ξ+
u

∣∣
e
, e ∈ E 0,b

h .

Next, using a similar argument as that in the proof of (3.13), we can obtain∑
K∈Ωh

H̃∂K(ξu, ξw) = S(ξu).

This completes the proof of this lemma. �

Step 4. The estimate of Λ2. The following polynomials preserving properties
of degree up to k+ 2 is crucial for the estimates of Λ2, we list them in the following
Lemmas 3.11–3.12.

Lemma 3.11. If w ∈ Pk+2 (k ≥ 1), p ∈Wh, we have

(3.27a) BK (ηw, p) = 0, ∀K ∈ ΩIh,

∑
K∈Ω0

h

BK(ηw, p)=−
Nx∑
i=1

∫
Ii

(
ηw
(
x, y−

Ny+ 1
2

)
py
(
x, y−

Ny+ 1
2

)
+(ηw)y

(
x, y+

1
2

)
p
(
x, y+

1
2

))
dx

−
Ny∑
j=1

∫
Jj

(
ηw
(
x−
Nx+ 1

2

, y
)
px
(
x−
Nx+ 1

2

, y
)
+(ηw)x

(
x+

1
2

, y
)
p
(
x+

1
2

, y
))
dy.

(3.27b)

Proof. The proof of this lemma is provided in Appendix A.1. �

Lemma 3.12. If u ∈ Pk+2 (k ≥ 1), q ∈Wh, we have

BK (ηu, q) = 0, ∀K ∈ Ωh.(3.28)

Proof. The proof of this lemma is provided in Appendix A.2. �

By Lemmas 3.11–3.12, we can obtain a superconvergent property of BK (ηw, p)
and BK (ηu, q) and show it in Lemmas 3.13 and 3.14, respectively.

Lemma 3.13. For p ∈Wh and k ≥ 1, we have∑
K∈Ωh

|BK(ηw, p)| ≤ Chk+1‖w‖k+3‖p‖+ Ch2k+2‖w‖2k+1 +
1

2
S(p),(3.29)

where C is a constant independent of the mesh size h.

Proof. The proof of this lemma is provided in Appendix A.3. �
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Lemma 3.14. For q ∈Wh and k ≥ 1, we have∑
K∈Ωh

|BK(ηu, q)| ≤ Chk+1‖u‖k+5‖q‖,(3.30)

where C is a constant independent of the mesh size h.

Proof. The proof of this lemma is provided in Appendix A.4. �

Lemma 3.15. For Λ2, we have

|Λ2| ≤ Chk+1‖ξu‖+ Chk+1‖ξw‖+ Ch2k+2 +
1

2
S(ξu),(3.31)

where C depends on ‖u‖k+5, but is independent of the mesh size h.

Proof. Taking p = ξu, q = ξw in Lemma 3.13 and Lemma 3.14, respectively, we can
immediately get (3.31). �

Step 5. The proof of Theorem 3.9.

Proof. Recalling the error equation (3.25), and using the Cauchy–Schwarz inequal-
ity and approximation property of the projection Π in Lemma 3.8, we arrive at

1

2

d

dt
‖ξu(t)‖2 + ‖ξw(t)‖2 + Λ1 ≤ Chk+1 ‖ξu(t)‖+ Chk+1 ‖ξw(t)‖+ |Λ2|.

By Lemma 3.10 and Lemma 3.15, we immediately obtain

1

2

d

dt
‖ξu(t)‖2 + ‖ξw(t)‖2 ≤ Chk+1 ‖ξu(t)‖+ Chk+1 ‖ξw(t)‖+ Ch2k+2.

Then, using the same technique as that in the proof of Theorem 2.5 for the one-
dimensional case, we get

‖ξu(t)‖+

∫ t

0

‖ξw(τ)‖ dτ ≤ Chk+1,

and hence

‖eu(t)‖+

∫ t

0

‖ew(τ)‖ dτ ≤ Chk+1,

where C is a function of t of power at most 3
2 , which depends on ‖u‖k+5, ‖ut‖k+1,

but is independent of h. �

Remark 3.16. For the fourth-order problem (1.1) with the G-Dirichlet B.C. (1.2b),
for k ≥ 2, we can derive the optimal error estimate (3.20) for the UWLDG scheme
(3.2) with numerical fluxes (3.3) and (3.5) by using the projection PNx

⊗ PNy
.

Remark 3.17. For the fourth-order problem (1.1) with the Neumann B.C. (1.2c)
and the mixed B.C. (1.2d), when the UWLDG scheme (3.2) with numerical fluxes
(3.3), (3.6) and (3.7) are considered, the optimal error estimates in (3.20) for k ≥ 1
can also be derived by using the projection PDx ⊗PDy and PMx ⊗PMy , respectively.
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4. Numerical examples

In this section, to confirm the theoretical convergence results of the UWLDG
method, we present several numerical examples for one- and two-dimensional time-
dependent linear fourth-order initial-boundary value problems. Noting that the
theoretical results mainly concentrate on the h-version convergence and smooth
solutions in this work, we numerically test the p-version case and the problem with
singularities in an L-shape domain. In all experiments, we use the four-stage singly
diagonally implicit Runge–Kutta method with third order of accuracy (SDIRK3)
for time discretization with final time T = 1.

Example 4.1. Consider the one-dimensional linear fourth order problem

ut + uxxxx = 0, u(x, 0) = sin(x), (x, t) ∈ [0, 2π]× (0, T ],

with boundary conditions as in (2.2a)–(2.2d) such that the exact solution is

u(x, t) = e−tsin(x).

For the Dirichlet B.C. (2.2a), our computation is based on the flux (2.4)–(2.5).
Table 4.1 lists the L2 errors and orders for eu, ew using numerical fluxes with and
without penalties for Pk polynomials (1 ≤ k ≤ 3). It is observed that, for the
case with penalty terms (the penalty parameters k1 = k2 = 1), the errors achieve
optimal (k + 1)th order accuracy for both ‖eu‖ and ‖ew‖, which is consistent with
Theorem 2.5. For the case without penalties (k1 = k2 = 0), loss of order for ‖eu‖
is observed, especially for k = 2, order lost up to one and a half, which indicates
that the penalty terms are necessary for both theoretical analysis and numerical
implementation.

Table 4.1. L2 errors ‖eu‖, ‖ew‖ and orders for Example 4.1 with
the Dirichlet B.C. with and without penalties using Pk polynomials
on a uniform mesh of N cells.

N
with penalty without penalty

‖eu‖ order ‖ew‖ order ‖eu‖ order ‖ew‖ order

P1

10 5.67E-02 – 4.37E-02 – 9.22E-02 – 4.95E-02 –
20 1.35E-02 1.87 1.14E-02 1.93 2.99E-02 1.62 1.19E-02 2.05
40 3.93E-03 1.97 2.85E-03 2.00 9.87E-03 1.60 2.89E-03 2.04
80 9.87E-04 1.99 7.14E-04 2.00 3.35E-03 1.55 7.16E-04 2.01
160 2.47E-04 1.99 1.78E-04 2.00 1.15E-03 1.53 1.78E-04 2.00
320 6.18E-05 1.99 4.46E-05 2.00 4.05E-04 1.51 4.46E-05 2.00

P2

10 8.54E-04 – 8.05E-04 – 4.34E-02 – 1.62E-03 –
20 9.73E-05 3.13 9.92E-05 3.02 1.59E-02 1.44 1.66E-04 3.28
40 1.23E-05 2.98 1.23E-05 3.00 5.68E-03 1.48 1.71E-05 3.27
80 1.53E-06 2.99 1.53E-06 3.00 2.01E-03 1.49 1.89E-06 3.20
160 1.92E-07 3.00 1.92E-07 3.00 7.12E-04 1.49 2.13E-07 3.12
320 2.40E-08 3.00 2.40E-08 3.00 2.51E-04 1.49 2.53E-08 3.07

P3

10 2.25E-05 – 2.19E-05 – 9.86E-04 – 2.31E-05 –
20 1.37E-06 4.03 1.37E-06 3.99 8.85E-05 3.47 1.38E-06 4.06
40 8.59E-08 3.99 8.59E-08 3.99 7.85E-06 3.49 8.60E-08 4.01
80 5.37E-09 3.99 5.37E-09 3.99 6.94E-07 3.49 5.37E-09 4.00
160 3.35E-10 3.99 3.35E-10 3.99 6.14E-08 3.49 3.35E-10 4.00
320 2.09E-11 3.99 2.09E-11 3.99 5.42E-09 3.49 2.09E-11 4.00

For the G-Dirichlet, Neumann and mixed boundary conditions in (2.2b)–(2.2d),
our computation is based on the flux choice (2.4) and (2.6)–(2.8). The errors ‖eu‖,
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‖ew‖ and numerical orders are shown in Tables 4.2 and 4.3 respectively, which
display the expected optimal (k + 1)th convergence rates except for the case of
the G-Dirichlet B.C. with P1 polynomials. This agrees with our theoretical results
discussed in Remarks 2.6 and 2.7.

Table 4.2. L2 errors ‖eu‖ and orders for Example 4.1 with the
G-Dirichlet, Neumann and mixed boundary conditions using Pk
polynomials on a uniform mesh of N cells.

N
G-Dirichlet B.C. Neumann B.C. mixed B.C.
‖eu‖ order ‖eu‖ order ‖eu‖ order

P1

10 9.94E-02 – 3.41E-02 – 5.10E-02 –
20 2.89E-02 1.77 9.21E-03 1.88 1.34E-02 1.92
40 9.05E-03 1.67 2.35E-03 1.96 3.40E-03 1.98
80 2.98E-03 1.59 5.92E-04 1.99 8.53E-04 1.99
160 1.01E-03 1.55 1.48E-04 1.99 2.13E-04 1.99
320 3.53E-04 1.52 3.70E-05 1.99 5.33E-05 1.99

P2

10 1.08E-03 – 7.45E-04 – 8.06E-04 –
20 1.19E-04 3.18 9.52E-05 2.96 9.91E-05 3.02
40 1.36E-05 3.12 1.20E-05 2.97 1.23E-05 3.00
80 1.62E-06 3.07 1.52E-06 2.98 1.53E-06 3.00
160 1.97E-07 3.03 1.91E-07 2.99 1.92E-07 3.00
320 2.43E-08 3.02 2.39E-08 2.99 2.40E-08 3.00

P3

10 2.22E-05 – 2.18E-05 – 2.19E-05 –
20 1.37E-06 4.01 1.37E-06 3.99 1.37E-06 3.99
40 8.59E-08 4.00 8.59E-08 3.99 8.59E-08 3.99
80 5.37E-09 4.00 5.37E-09 3.99 5.37E-09 3.99
160 3.35E-10 3.99 3.35E-10 3.99 3.35E-10 3.99
320 2.09E-11 3.99 2.09E-11 3.99 2.09E-11 3.99

Although a theoretical analysis of the convergence concerning polynomial degree
k is not provided, we numerically tested p-version of our scheme for Example 4.1
with four types of boundary conditions. We take the grid number N = 20 and
calculate the L2 error of eu, ew for Pk (k = 1, . . . , 8) polynomials. The relationship
between the logarithmic scale of the error ‖eu‖, ‖ew‖ and the polynomial degrees
is shown in Figures 4.1–4.2, from which we can clearly see that the errors decay
exponentially with respect to k.

Example 4.2. Consider the following two-dimensional fourth-order problem

ut + ∆2u = 0, u(x, y, 0) = sin(x+ y), (x, y) ∈ [0, 2π]× [0, 2π], t ∈ (0, T ],

equipped with boundary conditions (1.2a)–(1.2d) such that the exact solution is

u(x, y, t) = e−4t sin(x+ y).

We compute this example using the interior numerical flux (3.3) and boundary
fluxes (3.4)–(3.7) for corresponding boundary conditions.

In Table 4.4, we list the computation results for the Dirichlet B.C. (1.2a). We
observe that the UWLDG scheme with penalty terms gives the optimal (k + 1)th
order of the accuracy, which is consistent with Theorem 3.9. Here, the penalty
parameters are chosen as ki = 1, i = 1, 2, 3, 4. Moreover, if we remove the penalty
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Table 4.3. L2 errors ‖ew‖ and orders for Example 4.1 with the
G-Dirichlet, Neumann and mixed boundary conditions using Pk
polynomials on a uniform mesh of N cells.

N
G-Dirichlet B.C. Neumann B.C. mixed B.C.
‖ew‖ order ‖ew‖ order ‖ew‖ order

P1

10 6.15E-02 – 3.08E-02 – 3.75E-02 –
20 1.65E-02 1.89 8.39E-03 1.87 9.65E-03 1.95
40 5.17E-03 1.67 2.14E-03 1.97 2.40E-03 2.00
80 1.72E-03 1.58 5.38E-04 1.99 6.01E-04 2.00
160 5.89E-04 1.54 1.34E-04 1.99 1.50E-04 2.00
320 2.05E-04 1.52 3.36E-05 1.99 3.75E-05 2.00

P2

10 1.04E-03 – 7.43E-04 – 7.93E-04 –
20 1.18E-04 3.14 9.51E-05 2.96 9.86E-05 3.00
40 1.36E-05 3.11 1.20E-05 2.97 1.23E-05 3.00
80 1.62E-06 3.06 1.52E-06 2.98 1.53E-06 3.00
160 1.97E-07 3.03 1.91E-07 2.99 1.92E-07 3.00
320 2.43E-08 3.02 2.39E-08 2.99 2.40E-08 3.00

P3

10 2.22E-05 – 2.18E-05 – 2.19E-05 –
20 1.37E-06 4.01 1.37E-06 3.99 1.37E-06 3.99
40 8.59E-08 4.00 8.59E-08 3.99 8.59E-08 3.99
80 5.37E-09 4.00 5.37E-09 3.99 5.37E-09 3.99
160 3.35E-10 3.99 3.35E-10 3.99 3.35E-10 3.99
320 2.09E-11 3.99 2.09E-11 3.99 2.09E-11 3.99

Figure 4.1. The error of ‖eu‖ in logarithmic scale with respect to
polynomial degree k for different boundary conditions.

terms in the scheme, it is observed that at least one and a half order is lost for both
‖eu‖ and ‖ew‖.

In Tables 4.5 and 4.6, we show the approximation results of ‖eu‖ and ‖ew‖ for
other three kinds of boundary conditions. We can observe the expected optimal
convergence rates for the Neumann B.C. and mixed B.C. when k = 1, 2 and for
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Figure 4.2. The error of ‖ew‖ in logarithmic scale with respect to
polynomial degree k for different boundary conditions.

Table 4.4. L2 errors ‖eu‖, ‖ew‖ and orders for Example 4.2 with
the Dirichlet B.C., with and without penalties using Qk polyno-
mials on a uniform mesh of N ×N cells.

N ×N with penalty without penalty
‖eu‖ order ‖ew‖ order ‖eu‖ order ‖ew‖ order

Q1

10× 10 9.39E-03 – 1.69E-02 – 5.50E-02 – 3.00E-02 –
20× 20 3.03E-03 1.62 5.52E-03 1.61 5.81E-02 -0.07 5.03E-02 -0.74
40× 40 8.06E-04 1.91 1.46E-03 1.92 6.05E-02 -0.05 4.39E-02 0.19
60× 60 3.56E-04 2.01 6.46E-04 2.01 5.73E-02 0.13 3.59E-02 0.49
80× 80 1.98E-04 2.03 3.60E-04 2.03 5.38E-02 0.22 3.00E-02 0.61

Q2

10× 10 9.14E-05 – 1.75E-04 – 2.96E-02 – 9.28E-03 –
20× 20 7.60E-06 3.58 1.63E-05 3.42 1.13E-02 1.39 2.16E-03 2.10
40× 40 8.93E-07 3.08 1.83E-06 3.15 4.18E-03 1.43 6.21E-04 1.79
60× 60 2.61E-07 3.02 5.32E-07 3.05 2.32E-03 1.45 3.01E-04 1.78
80× 80 1.10E-07 3.01 2.22E-07 3.03 1.52E-03 1.46 1.82E-04 1.74

the G-Dirichlet B.C. when k = 2, which confirm our theoretical results discussed
in Remarks 3.16 and 3.17.

It is worth pointing out that, the results listed in Tables 4.5 and 4.6 for the
G-Dirichlet B.C. with Q1 polynomials are obtained by using the exact boundary
conditions to define the boundary numerical flux û and ŵ, i.e., û|e = fD|e, ŵ|e =
gD|e, since the projection PN does not exist when k = 1 and thus we cannot
construct the numerical flux as (3.5). However, we can clearly see that about one
and a half order is lost for both ‖eu‖ and ‖ew‖.

To further illustrate the special choice of the numerical boundary conditions is
necessary in our implementation, here we show a “negative” example with “wrong”
numerical fluxes on the boundary. We test again the Example 4.2 for four types
of boundary conditions by choosing the standard L2 projection of exact boundary
conditions to replace the projection PM , PN , and PD in the boundary fluxes (3.4)–
(3.7). The approximation results are shown in Tables 4.7 and 4.8, from which we
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can observe the loss of order, even to the extent of negative order, when the meshes
are refined, especially for the case of the G-Dirichlet B.C. and the mixed B.C.

Table 4.5. L2 errors ‖eu‖ and orders for Example 4.2 with the
G-Dirichlet, Neumann and mixed boundary conditions using Qk
polynomials on a uniform mesh of N ×N cells.

N ×N G-Dirichlet B.C. Neumann B.C. mixed B.C.
‖eu‖ order ‖eu‖ order ‖eu‖ order

Q1

10× 10 9.18E-02 – 3.23E-02 – 2.57E-02 –
20× 20 7.27E-02 0.33 9.90E-03 1.70 8.18E-03 1.65
40× 40 5.42E-02 0.42 2.62E-03 1.91 2.18E-03 1.90
60× 60 4.50E-02 0.45 1.18E-03 1.96 9.88E-04 1.95
80× 80 3.38E-02 0.50 6.68E-04 1.98 5.61E-04 1.96

Q2

10× 10 1.08E-04 – 1.11E-04 – 1.17E-04 –
20× 20 9.36E-06 3.52 9.29E-06 3.58 9.40E-06 3.64
40× 40 9.81E-07 3.25 9.52E-07 3.28 9.58E-07 3.29
60× 60 2.77E-07 3.11 2.69E-07 3.11 2.70E-07 3.11
80× 80 1.14E-07 3.07 1.11E-07 3.05 1.12E-07 3.05

Table 4.6. L2 errors ‖ew‖ and orders for Example 4.2 with the
G-Dirichlet, Neumann and mixed boundary conditions using Qk
polynomials on a uniform mesh of N ×N cells.

N ×N G-Dirichlet B.C. Neumann B.C. mixed B.C.
‖ew‖ order ‖ew‖ order ‖ew‖ order

Q1

10× 10 7.48E-02 – 4.27E-02 – 3.12E-02 –
20× 20 6.95E-02 0.11 1.25E-02 1.76 9.74E-03 1.68
40× 40 5.16E-02 0.42 3.29E-03 1.93 2.57E-03 1.92
60× 60 4.25E-02 0.48 1.47E-03 1.97 1.15E-03 1.97
80× 80 3.69E-02 0.49 8.33E-04 1.98 6.52E-04 1.98

Q2

10× 10 1.73E-04 – 1.64E-04 – 1.61E-04 –
20× 20 1.70E-05 3.34 1.58E-05 3.37 1.58E-06 3.35
40× 40 1.90E-06 3.15 1.80E-06 3.13 1.81E-07 3.12
60× 60 5.47E-07 3.07 5.25E-07 3.04 5.27E-07 3.04
80× 80 2.27E-07 3.04 2.20E-07 3.02 2.21E-07 3.02

Example 4.3. To illustrate the capacity of the UWLDG method for problems
with singularities, consider the following two-dimensional fourth-order problem in
an L-shape domain Ω = [0, 2π]2\{(π, π]2},
(4.1a) ut + ∆2u = 0, (x, y) ∈ Ω, t ∈ (0, T ],

with an initial condition

(4.1b) u(x, y, 0) = sin(x+ y),

and the homogeneous Dirichlet B.C.

u = 0,
∂u

∂ν
= 0, on ∂Ω.(4.1c)
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Table 4.7. L2 errors ‖eu‖ and orders for Example 4.2 with four
types of boundary conditions using Qk polynomials on a uniform
mesh of N × N cells. Take the L2 projection of exact boundary
condition as boundary flux.

N ×N Dirichlet B.C. G-Dirichlet B.C. Neumann B.C. mixed B.C.
‖eu‖ order ‖eu‖ order ‖eu‖ order ‖eu‖r order

Q1

10× 10 1.00E-03 – 6.86E-02 – 4.20E-02 – 4.33E-02 –
20× 20 3.09E-03 1.69 6.79E-02 0.01 1.31E-02 1.67 1.22E-02 1.82
40× 40 8.21E-04 1.91 5.33E-02 0.35 3.51E-03 1.90 3.13E-03 1.96
60× 60 3.63E-04 2.01 4.47E-02 0.43 1.58E-03 1.96 1.41E-03 1.96
80× 80 2.02E-04 2.03 3.87E-02 0.49 8.97E-04 1.97 8.10E-04 1.93

Q2

10× 10 9.43E-05 – 2.81E-04 – 1.62E-04 – 1.10E-03 –
20× 20 8.02E-06 3.55 1.11E-05 4.65 1.18E-05 3.76 1.69E-04 2.69
40× 40 9.20E-07 3.12 1.04E-05 0.09 1.05E-06 3.48 1.72E-06 6.61
60× 60 2.77E-07 2.95 8.20E-07 6.26 2.90E-07 3.19 4.38E-07 3.38
80× 80 1.17E-07 2.99 7.91E-06 -7.87 1.43E-07 2.45 5.13E-07 -0.55

Table 4.8. L2 errors ‖ew‖ and orders for Example 4.2 with four
types of boundary conditions using Qk polynomials on a uniform
mesh of N × N cells. Take the L2 projection of exact boundary
condition as boundary flux.

N ×N Dirichlet B.C. G-Dirichlet B.C. Neumann B.C. mixed B.C.
‖ew‖ order ‖ew‖ order ‖ew‖ order ‖ew‖ order

Q1

10× 10 1.85E-02 – 5.99E-02 – 5.60E-02 – 4.54E-02 –
20× 20 5.66E-03 1.71 6.49E-02 -0.11 1.65E-02 1.76 1.32E-03 1.78
40× 40 1.49E-03 1.92 5.07E-02 0.35 4.33E-03 1.93 3.43E-03 1.94
60× 60 7.07E-04 1.83 4.21E-02 0.45 1.94E-03 1.97 1.54E-03 1.97
80× 80 3.73E-04 2.22 3.67E-02 0.47 1.10E-03 1.98 8.97E-04 1.88

Q2

10× 10 2.12E-04 – 2.51E-04 – 2.13E-04 – 3.90E-04 –
20× 20 3.97E-05 2.41 1.92E-05 3.70 1.81E-05 3.55 1.21E-04 1.68
40× 40 1.52E-05 1.38 2.04E-05 -0.08 1.88E-06 3.26 4.54E-06 4.74
60× 60 3.55E-06 3.59 1.36E-06 6.67 5.39E-07 3.03 8.57E-07 4.11
80× 80 2.94E-06 0.65 6.78E-06 -5.58 2.28E-07 2.99 1.01E-06 -0.58

Since we do not know the explicit exact solutions to this problem, we adopt the
a posterior errors ‖uh − uh

2
‖ as the numerical errors to compute the convergence

rate. We first use the uniform tensor product meshes Ωh with nodes (xi, yj), where
{xi}2Ni=0, {yj}2Nj=0 such that xi = π

N i, yj = π
N j for i, j = 0, 1, . . . , 2N . The results

are listed in Table 4.9, from which we can see that the UWLDG scheme is stable
but the optimal convergence rate cannot be observed due to the corner singularity.

To recover the loss of accuracy, we consider a special tensor product mesh in the
way that the initial mesh in x and y direction are given as a geometric proportional
mesh approaching to the corner, and then refine the mesh by dividing each cell into
two equal-sized subcells. To be more specific, taking the x direction as an example,
the i-th cell length, denoted by hxi , is defined as

hx1 = hx2N0
=
π(1− σ)

1− σN0
,

hxi = hx2N0+1−i = σhxi−1, i = 2, . . . , N0,
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where 2N0 denotes the total number of cells in x direction, and σ < 1 is the common
ratio. Then {xi}2N0

i=0 is determined by xi = xi−1 + hxi with x0 = 0, and the tensor
product initial mesh in the L-shape domain is obtained by taking yi = xi, as shown
in Figure 4.3(a) with σ = 0.4, N0 = 4, and the corresponding refined mesh is shown
in Figure 4.3(b).

(a) The initial mesh for N0 = 4. (b) The refined mesh for N = 8.

Figure 4.3. The initial mesh for N0 = 4 with σ = 0.4 and the
refined mesh for N = 8.

We use Q1 and Q2 polynomials to test the numerical solution on the refined
mesh with σ = 0.6 and σ = 0.4, respectively. L2 errors and orders of ‖uh − uh

2
‖

are also given in Table 4.9. We can see that, both for Q1 and Q2 polynomials, the
order of accuracy is improved to about k+ 1, and a smaller amplitude of the errors
is observed when compared with uniform meshes.

Table 4.9. L2 errors ‖uh − uh
2
‖ and orders for the singular

problem (4.1a)–(4.1c) in an L-shape domain with a uniform and
refined mesh.

N
uniform mesh refined mesh
‖uh − uh

2
‖ order ‖uh − uh

2
‖ order

Q1

4 2.81E-01 – 1.30E-01 –
8 1.65E-02 – 1.28E-01 –
16 1.22E-03 3.75 7.21E-03 4.15
32 3.86E-04 1.66 2.89E-04 4.63
64 2.00E-04 0.95 5.14E-05 2.49

Q2

4 3.03E-02 – 3.42E-02 –
8 1.10E-03 – 3.34E-02 –
16 3.90E-04 1.49 3.26E-04 7.06
32 1.67E-04 1.22 3.78E-05 3.10
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5. Concluding remarks

In this paper, we analyze the UWLDG method solving time-dependent linear
fourth-order equations with four types of boundary conditions. By designing elab-
orate numerical fluxes together with some penalty terms and constructing suitable
projections, stability and optimal error estimates are derived, which are valid for
one- and two-dimensional problems. Numerical experiments are presented to il-
lustrate the sharpness of theoretical results. The treatment of various boundary
conditions of this work would be helpful for solving other practical engineering
problems involving complex boundary conditions. Inspired by [7], extension of this
work to simplicial meshes and other high order equations constitutes our future
work.

Appendix A. Proof of a few technical lemmas

A.1. The proof of Lemma 3.11.

Proof. • The proof for (3.27a) : K ∈ ΩI
h.

By (3.9), we have the following specific expression of BK(ηw, p)

BK(ηw, p) =

8∑
m=0

T ijm (ηw, p), K = Kij ∈ ΩIh,(A.1)

where T ijm (ηw, p) are defined by (3.10). Since Π is a polynomial preserving operator
up to k, then (3.27a) holds for each w ∈ Qk(K). Thus, we only need to consider
the cases

(A.2) w(x, y) = xk+2, yk+2, xk+1y, yk+1x, xk+1, yk+1.

For w(x, y) = xk+2, since it only depends on x, we have Πw = PMx
(xk+2). Clearly,

(ηw)y = 0. Then, by the definition of PM , we have

T ijm (ηw, p) = 0, m = 1, 2, 5, 6, 7, 8,

∫
Kij

(w −Πw) pxxdxdy = 0.

In addition, we use integration by parts to find that∫
Kij

(w −Πw) pyydxdy =− T ij3 (ηw, p)− T ij4 (ηw, p).

A substitution of above results into (A.1) leads to

BK (ηw, p) = 0, if w(x, y) = xk+2.

For w(x, y) = yxk+1, we have Πw = yPMx(xk+1), hence

T ijm (ηw, p) = 0, m = 1, 2, 5, 6,

∫
Kij

(w −Πw) pxxdxdy = 0.

Besides, we use integration by parts twice to find that∫
Kij

(w −Πw) pyydxdy =− T ij3 (ηw, p)− T ij4 (ηw, p)− T ij7 (ηw, p)− T ij8 (ηw, p).

Substituting above results into (A.1), we get

BK (ηw, p) = 0, if w(x, y) = yxk+1.

For w(x, y) = yk+2, yk+1x, xk+1 and yk+1, the proofs are analogous, and thus
omitted. This finishes the proof of (3.27a).
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• The proof for (3.27b) : K ∈ Ω0
h.

We take K = K11 as an example. By (3.23c)–(3.23d), we have

(A.3) BK11(ηw, p)=
5∑

m=0

T 11
m (ηw, p) +

(
T̃ 11

6 + T 11
7 + T̃ 11

8

)
(ηw, p),

where T 11
m (ηw, p), m = 0, 1, 2, 3, 4, 5, 7 are determined by (3.10) for i, j = 1, and

T̃ 11
6 (ηw, p)=−

∫
J1

(ηw)x
(
x+

1
2

, y
)
p
(
x+

1
2

, y
)
dy, T̃ 11

8 (ηw, p)=−
∫
I1

(ηw)y
(
x, y+

1
2

)
p
(
x, y+

1
2

)
dx.

We still only need to consider the cases in (A.2). First, for w(x, y) = xk+2, we have
Πw = PMx

(xk+2), (ηw)y = 0. Therefore,

T 11
m (ηw, p) = 0, m = 1, 2, 5, 7, T̃ 11

8 (ηw, p) = 0,

∫
K11

(w −Πw) pxxdxdy = 0.

We use integration by parts to find that∫
K11

(w −Πw)pyy dxdy = −T 11
3 (ηw, p)− T 11

4 (ηw, p).

Substitute above results into (A.3) to get

BK11
(ηw, p) = T̃ 11

6 (ηw, p), if w(x, y) = xk+2.

Next, we consider w(x, y) = xyk+1. Clearly, Πw = xPMy (yk+1). By the definition
of PM , we immediately have

T 11
m (ηw, p) = 0, m = 3, 4, 7,

∫
K11

(w −Πw)pyy dxdy = 0.

Furthermore, using integration by parts twice, we arrive at∫
K11

(w −Πw)pxx dxdy = −
(
T 11

1 + T 11
2 + T 11

5 + T̃ 11
6

)
(ηw, p).

A substitution of above results into (A.3) gives us

(A.4) BK11
(ηw, p) = T̃ 11

8 (ηw, p), if w(x, y) = xyk+1.

Similarly, it is easy to check that

BK11(ηw, p) = T̃ 11
6 (ηw, p), if w(x, y) = xk+1, yxk+1,

BK11
(ηw, p) = T̃ 11

8 (ηw, p), if w(x, y) = yk+1, yk+2.

Finally, we conclude that for all w ∈ Pk+2, there are at most two nonzero terms

T̃ 11
6 (ηw, p) and T̃ 11

8 (ηw, p) in BK11
(ηw, p), i.e.,

BK11
(ηw, p) = −

∫
J1

(ηw)x
(
x+

1
2

, y
)
p
(
x+

1
2

, y
)
dy −

∫
I1

(ηw)y
(
x, y+

1
2

)
p
(
x, y+

1
2

)
dx.

For other boundary elements, we can use a similar analysis as above for the case of
K11. Therefore, to derive (3.27b), we need only to sum over the results derived by
all K in Ω0

h, and this completes the proof of (3.27b). �
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A.2. The proof of Lemma 3.12.

Proof. • K ∈ ΩI
h.

For interelements K ∈ ΩIh, using the same analysis as that in the proof of (3.27a),
we can easily obtain

BK (ηu, q) = 0, ∀u ∈ Pk+2, K ∈ ΩIh.

• K ∈ Ω0
h.

For the boundary elements K ∈ Ω0
h, without loss of generality, consider K = K11

as an example. By (3.23a) and (3.23b), we get

BK11
(ηu, q) = (T 11

0 + T 11
1 + T 11

3 + T 11
5 + T 11

7 )(ηu, q) +
4∑

m=1

S11
m (u, q),(A.5)

where T 11
m (ηu, q), m = 0, 1, 3, 5, 7 are determined by (3.10) for i, j = 1, and

S11
1 (u, q) = −

∫
I1

(
uy
(
x, y 1

2

)
− PMx

(
uy(x, y 1

2
)
))
q(x, y+

1
2

) dx,

S11
2 (u, q) =

∫
I1

(
u
(
x, y 1

2

)
− PMx

(
u(x, y 1

2
)
))
qy
(
x, y+

1
2

)
dx,

S11
3 (u, q) = −

∫
J1

(
ux
(
x 1

2
, y
)
− PMy

(
ux(x 1

2
, y)
))
q
(
x+

1
2

, y
)
dy,

S11
4 (u, q) =

∫
J1

(
u
(
x 1

2
, y
)
− PMy

(
u(x 1

2
, y)
))
qx
(
x+

1
2

, y
)
dy.

We still only need to check the cases in (A.2), since PM and Π are all polynomial
preserving operators up to k.

For u(x, y) = xk+2, we have Πu = PMx(xk+2), then uy = (Πu)y = 0. Hence,
combining with the properties of the PM , we have

T 11
1 (ηu, q) = T 11

5 (ηu, q) = T 11
7 (ηu, q) = S11

1 (u, q) = 0,

∫
K11

(u−Πu) qxxdxdy = 0.

Furthermore, using integration by parts, we can find that,∫
K11

(u−Πu) qyydxdy = −T 11
3 (ηu, q)− S11

2 (u, q).

In addition, since PM is polynomial preserving for k ≥ 1, then

S11
3 (u, q) = −

∫
J1

(
(k + 2)

(
x 1

2

)k+1 − PMy

(
(k + 2)

(
x 1

2

)k+1))
q
(
x+

1
2

, y
)
dy = 0,

S11
4 (u, q) =

∫
J1

((
x 1

2

)k+2 − PMy

(
(x 1

2
)k+2

))
qx
(
x+

1
2

, y
)
dy = 0.

Collecting above results into (A.5), we obtain

BK11
(ηu, q) = 0, if u = xk+2.

For u(x, y) = yxk+1, Πu = yPMx
(xk+1). Then

T 11
1 (ηu, q) = 0, T 11

5 (ηu, q) = 0,

∫
K11

(u−Πu) qxxdxdy = 0.
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Again, the fact PM is polynomial preserving for k ≥ 1 leads to

S11
3 (u, q)=−

∫
J1

(
(k + 1)

(
x 1

2

)k
y−PMy

(
(k + 1)

(
x 1

2

)k
y
))
q
(
x+

1
2

, y
)
dy=0,

S11
4 (u, q) =

∫
J1

((
x 1

2

)k+1
y − PMy

(
(x 1

2
)k+1y

))
qx
(
x+

1
2

, y
)
dy = 0.

Using integration by parts twice, we can find that∫
K11

(u−Πu) qyydxdy = −T 11
3 (ηu, q)−T 11

7 (ηu, q)−S11
1 (u, q)−S11

2 (u, q).

Substituting above results into (A.5), we arrive at

BK11(ηu, q) = 0, if u(x, y) = yxk+1.

For other cases u(x, y) = yk+2, xyk+1, xk+1, yk+1, the proofs are analogous. There-
fore, we have BK11

(ηu, q) = 0, ∀u ∈ Pk+2. Analysis for other boundary elements
Kij can be performed similarly. This completes the proof of (3.28). �

A.3. The proof of Lemma 3.13.

Proof. • K ∈ ΩI
h.

Since k ≥ 1, by the Cauchy–Schwarz inequality, the approximation property
of the projection Π, trace and inverse inequalities, we can establish the following
rough estimate: for any v ∈ H2(Ωh) and K ∈ ΩIh,∣∣BK(ηv, p)

∣∣ ≤ ‖ηv‖K‖∆p‖K + C‖ηv‖∂K̃‖∇p‖∂K + C‖∇ηv‖∂K̃‖p‖∂K
≤ Ch2‖v‖2,Kh−2‖p‖K+Ch

3
2 ‖v‖2,K̃h

− 3
2 ‖p‖K+Ch

1
2 ‖v‖2,K̃h

− 1
2 ‖p‖K

≤ C‖v‖2,K̃‖p‖K ,(A.6)

where K̃ = {Ki+1,j , Ki−1,j , Kij , Ki,j−1, Ki,j+1}. Let χ be any polynomial of
degree at most k + 2, by (3.27a) in Lemma 3.11, we have

BK(ηχ, p) = 0, ∀p ∈Wh.

Then, by the linearity of operator BK(·, p) and the estimate (A.6), we get

BK(ηw, p) = BK(ηw, p)−BK(ηχ, p) = BK(ηw−χ, p) ≤ C‖w − χ‖2,K̃‖p‖K .

Consequently, for all K ∈ ΩIh∣∣BK(ηw, p)
∣∣ ≤ C inf

χ∈Pk+2
‖w − χ‖2,K̃‖p‖K ≤ Ch

k+1‖w‖k+3,K̃‖p‖K ,(A.7)

which produces

(A.8)
∑
K∈ΩI

h

|BK(ηw, p)| ≤ Chk+1‖w‖k+3‖p‖.

• K ∈ Ω0
h.

We take the elementK = K11 as an example. Recalling (A.3), we split BK11
(ηw, p)

into two parts

BK11(ηw, p) = AK11(ηw, p) + ÃK11(ηw, p),

where

AK11(ηw, p) =
5∑

m=0

T 11
m (ηw, p) + T 11

7 (ηw, p), ÃK11(ηw, p) = T̃ 11
6 (ηw, p) + T̃ 11

8 (ηw, p).
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Notice that we have checked that AK11
(ηχ, p) = 0 holds for any χ ∈ Pk+2(K11) in

the proof of (3.27b), then AK11(ηw, p) can be estimated by using the same skill as
that for interelements in (A.7). It reads,

(A.9) |AK11
(ηw, p)| ≤ Chk+1‖w‖

k+3,K̃11
‖p‖K11

,

where K̃11 = {K21, K11, K12}. By Young’s inequality, we have

|ÃK11
(ηw, p)| ≤

h3

2k3

∫
J1

|(ηw)x
(
x+

1
2

, y
)
|2dy +

k3

2h3

∫
J1

|p
(
x+

1
2

, y
)
|2dy

+
h3

2k4

∫
I1

|(ηw)y
(
x, y+

1
2

)
|2dx+

k4

2h3

∫
I1

|p
(
x, y+

1
2

)
|2dx.

Furthermore, using the trace inequality and the approximation properties of Π, we
obtain ∫

J1

|(ηw)x
(
x+

1
2

, y
)
|2dy≤‖(ηw)x‖2∂K11

≤Ch2k−1‖w‖2k+1,K11
,∫

I1

|(ηw)y(x, y+
1
2

)|2dx ≤‖(ηw)y‖2∂K11
≤Ch2k−1‖w‖2k+1,K11

.

Therefore, we arrive at the estimate of ÃK11(ηw, p) as

|ÃK11
(ηw, p)|≤Ch2k+2‖w‖2k+1,K11

+
k3

2h3

∫
J1

|p(x+
1
2

, y)|2dy+
k4

2h3

∫
I1

|p(x, y+
1
2

)|2dx.

Combining the above estimate with (A.9), we get

|BK11
(ηw, p)| ≤ Chk+1‖w‖

k+3,K̃11
‖p‖K11

+ Ch2k+2‖w‖2k+1,K11

+
k3

2h3

∫
J1

|p(x+
1
2

, y)|2dy +
k4

2h3

∫
I1

|p(x, y+
1
2

)|2dx.
(A.10)

For the cases of other boundary elements, similar estimates as (A.10) can also be
derived. Summing over all elements in Ω0

h, we deduce that∑
K∈Ω0

h

|BK(ηw, p)| ≤ Chk+1
∑
K∈Ω0

h

‖w‖k+3,K̃‖p‖K+Ch2k+2
∑
K∈Ω0

h

‖w‖2k+1,K+
1

2
S(p),

≤ Chk+1‖w‖k+3‖p‖+ Ch2k+2‖w‖2k+1 +
1

2
S(p),(A.11)

where K̃ ⊆ Ωh denotes the union of K and all of its neighbor elements in Ωh. The
expected estimate (3.29) follows by combining (A.8) and (A.11). �

A.4. The proof of Lemma 3.14.

Proof. • K ∈ ΩI
h.

By Lemma 3.12, we know

BK (ηχ, q) = 0, ∀χ ∈ Pk+2(K), q ∈Wh.

And we also have the rough estimate as in (A.6), it reads

|BK(ηv, q)| ≤ C‖v‖2,K̃‖q‖K , ∀v ∈ H2(Ωh), K ∈ Ωh, q ∈Wh.

Hence, using the same argument as that in the proof of (A.7), we arrive at

|BK(ηu, q)| ≤ Chk+1‖u‖k+3,K̃‖q‖K , ∀K ∈ ΩIh.(A.12)
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• K ∈ Ω0
h.

We still take K11 as an example and recall the expression of BK11(ηu, q) in (A.5),

BK11

(
ηu, q

)
= (T 11

0 + T 11
1 + T 11

3 + T 11
5 + T 11

7 )(ηu, q) +
4∑

m=1

S11
m (u, q).

Similar to the proof of (A.6), it is easy to get∣∣(T 11
0 + T 11

1 + T 11
3 + T 11

5 + T 11
7 )(ηu, q)

∣∣ ≤ C‖u‖
2,K̃11

‖q‖K11
.

In addition, by the Cauchy-Schwarz inequality, approximation property of the one-
dimensional projection PM , trace and inverse inequalities, we obtain∣∣S11

1 (u, q) + S11
3 (u, q)

∣∣ ≤ ‖uy(·, y 1
2
)− PMx

(
uy(·, y 1

2
)
)
‖I1‖q(·, y+

1
2

)‖I1
+ ‖ux(x 1

2
, ·)− PMy

(
ux(x 1

2
, ·)
)
‖J1‖q(x+

1
2

, ·)‖J1
≤ Ch2

(
‖uy(·, y 1

2
)‖2,I1 + ‖ux(x 1

2
, ·)‖2,J1

)
‖q‖∂K11

≤ Ch 3
2 ‖u‖4,K11

‖q‖K11
,

and∣∣S11
2 (u, q) + S11

4 (u, q)
∣∣ ≤ ‖ηu(·, y+

1
2

)‖I1‖qy(·, y+
1
2

)‖I1 + ‖ηu(x+
1
2

, ·)‖J1‖qx(x+
1
2

, ·)‖J1
≤ ‖ηu‖∂K11 ·

(
‖qy‖∂K11 + ‖qx‖∂K11

)
≤ C‖u‖2,K11

‖q‖K11
.

Thus, we arrive at the rough estimate for BK11

(
ηu, q

)
as

|BK11

(
ηu, q

)
| ≤ C‖u‖

4,K̃11
‖q‖K11 .

From Lemma 3.12, we also know

BK11 (ηχ, q) = 0, ∀χ ∈ Pk+2(K11), q ∈Wh,

then using a similar argument as that in the proof of (A.7) again, we can obtain

|BK11

(
ηu, q

)
| ≤ Chk+1‖u‖

k+5,K̃11
‖q‖K11 .

Analogously, we can check that, for any other boundary elements Kij ∈ Ω0
h, the

above estimate holds, i.e.,

(A.13) |BKij

(
ηu, q

)
| ≤ Chk+1‖u‖

k+5,K̃ij
‖q‖Kij

, ∀Kij ∈ Ω0
h,

where K̃ij ⊆ Ωh denotes the union of Kij and all of its neighbor elements in Ωh.
Therefore, the estimate (3.30) follows by combining (A.12)–(A.13) and summing
over all K ∈ Ωh. �
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