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Abstract

In this paper, we construct a class of second-order cell-centered Lagrangian discontinuous

Galerkin (DG) schemes for the two-dimensional compressible Euler equations on quadrilateral

meshes. This Lagrangian DG scheme is based on the physical coordinates rather than the

fixed reference coordinates, hence it does not require studying the evolution of the Jacobian

matrix for the flow mapping between the different coordinates. The conserved variables are

solved directly, and the scheme can preserve the conservation property for mass, momentum

and total energy. The strong stability preserving (SSP) Runge-Kutta (RK) method is used

for the time discretization. Furthermore, there are two main contributions. Firstly, differently

from the previous work, we design a new Lagrangian DG scheme which is truly second-order

accurate for all the variables such as density, momentum, total energy, pressure and velocity,

while the similar DG schemes in the literature may lose second-order accuracy for certain

variables, as shown in numerical experiments. Secondly, as an extension and application, we

develop a particular Lagrangian DG scheme in the cylindrical geometry, which is designed

to be able to preserve one-dimensional spherical symmetry for all the linear polynomials

in two-dimensional cylindrical coordinates when computed on an equal-angle-zoned initial

grid. The distinguished feature is that it can maintain both the spherical symmetry and

conservation properties, which is very important for many applications such as implosion

problems. A series of numerical experiments in the two-dimensional Cartesian and cylindrical

coordinates are given to demonstrate the good performance of the Lagrangian DG schemes in

terms of accuracy, symmetry and non-oscillation.
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1 Introduction

In many fields involving multi-material fluid flows such as astrophysics, inertial confinement fusion (ICF) and

computational fluid dynamics (CFD), numerical simulations aim to track fluid motion as closely as possible,

including locating and tracking material interfaces sharply, and achieving high resolution of the wave structure.

For this reason, the Lagrangian method is regarded as the first choice. The Lagrangian method is based on the

grid moving with local fluid velocity, where there is no mass exchange across the moving cell edges. Compared

with the Eulerian method based on the fixed grid, the Lagrangian method has the significant advantage in

capturing material interfaces and contact discontinuities automatically and sharply. Moreover, the Lagrangian

method should be particularly careful to ensure that the cell mass is not changed during the movement of the

grid, especially for high-dimensional applications.

In the past decades, there has been a lot of work devoted to developing the Lagrangian methods. Some

work is based on the staggered-grid discretization, where velocity (momentum) is stored at the vertices, while

density and internal energy are within the cells, such as [1, 5–7, 27, 37]. The artificial viscosity term is often

needed to stablize the scheme. The other work is built on the cell-centered discretization [8, 9, 20, 33, 35, 36],

where all the variables are defined at the cell centers, and evolved on the same control volume. Unlike the

staggered schemes, the cell-centered schemes usually do not require additional artificial viscosity, as standard

high resolution non-oscillatory techniques are directly applicable. Also, they are easier to achieve high-order

accuracy, preserve the conservation property, and design the remapping algorithms when necessary.

As another aspect of the Lagrangian simulation, it is critical but challenging to preserve the spherical

symmetry property of a scheme in two-dimensional cylindrical coordinates, when the original physical problems

have this symmetry. In fact, in many applications such as the implosion problems, there are many three-

dimensional cylindrical symmetric models such as sphere-shape capsules and cylinder-shape hohlraum. In order

to reduce the computational cost, the Lagrangian methods in two-dimensional cylindrical coordinates are used

to simulate these models. Thus, the preservation of physical symmetry needs to be considered in numerical

simulations. If the spherical symmetry of a scheme is lost, a small spherical symmetry deviation caused by

numerical errors may be amplified by physical or numerical instabilities which may produce unpredicted large

errors.

The spherical symmetry-preserving property of the Lagrangian schemes in two-dimensional cylindrical co-

ordinates has been widely studied. In the earlier years, there were the area-weighted schemes [2, 6, 34, 43]

discretized on the planar area, and the true volume schemes [3] discretized on the genuine control volume.

Unfortunately, these spherical symmetry-preserving Lagrangian schemes may not satisfy the conservation of

momentum and total energy, and are only first-order accurate. In [10, 11, 13], the above difficulties have been

resolved in a finite volume framework. It is worth mentioning that Cheng and Shu in [13] pioneeringly proposed

a second-order cell-centered Lagrangian finite volume scheme based on the true control volume discretizations

in two-dimensional cylindrical coordinates. By compatible discretizations of the source term in the momen-

tum equation and maintaining the symmetry of the reconstructed polynomials in the local coordinates, the

second-order scheme is designed to preserve one-dimensional spherical symmetry in two-dimensional cylindrical

geometry using an equal-angel-zoned initial grid without losing the conservation of mass, momentum and total

energy. Later, in [26], Ling et al. further extended this idea and developed a cell-centered Lagrangian scheme

which can achieve positivity-preserving and symmetry-preserving properties simultaneously.
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Note that most of the methods mentioned above are based on the finite volume framework. Thus, an

important aspect worth exploring is the application of discontinuous Galerkin (DG) method in the Lagrangian

simulations. The DG method was first introduced to solve the linear steady-state neutron transport equation

in [39]. Later, it was developed into Runge-Kutta DG (RKDG) methods by Cockburn et al. in [14–18], in which

the authors established a framework to easily solve nonlinear time-dependent problems such as the Burgers

equation, Euler equations, and shallow water equations, etc. Compared with the finite volume methods, the

DG methods have distinguished advantages in smaller stencil, easiness to be parallelized, flexibility on complex

geometry and on h-p adaptation.

In the past years, there has been some research on the Lagrangian DG methods. In [22, 32, 44, 45], the

total Lagrangian DG schemes have been extensively discussed. The total Lagrangian schemes refer to the

discretization on a fixed reference configuration, which is usually the initial one. The physical variables in

different configurations are related by the deformation gradient tensor, i.e., the Jacobian matrix associated

to the flow mapping. To ensure the consistency between the reference and the physical configurations, the

deformation gradient tensor has to satisfy a constraint condition, namely the Piola compatibility condition [45].

In the total Lagrangian formulation, the variables solved directly are mostly the primitive variables, i.e., the

specific volume, velocity, and specific total energy. Similar research can be found in [28–31]. Recently, in [46,47],

the authors developed a cell-centered updated Lagrangian DG scheme, where the updated Lagrangian scheme

refers to the discretization on the moving physical configuration of the flow. The variables solved directly are the

conservative ones, i.e., the density, momentum and total energy. The basis functions are defined on the time-

dependent moving mesh, rather than on a fixed frame. The second-order accuracy of pressure or internal energy

for two-dimensional numerical examples is shown in these papers. However, we observe that the second-order

accuracy for the conserved variables may be lost for this kind of schemes, see the numerical results in Section

5. Moreover, in [29], Liu et al. presented two different Lagrangian DG schemes in the cylindrical coordinates:

the first one is the true volume DG scheme and the second one is the area-weighted DG scheme, in which the

physical evolution equations for the specific volume, velocity and specific total energy are discretized in these two

schemes. Unfortunately, these two schemes cannot maintain the conservation and spherical symmetry properties

simultaneously. To the best knowledge of the authors, no previous work has focused on the Lagrangian DG

scheme that preserves both the spherical symmetry and conservation properties in the cylindrical coordinates.

In this paper, we will construct a new second-order cell-centered Lagrangian discontinuous Galerkin scheme

for the two-dimensional compressible Euler equations on quadrilateral meshes. Here we only consider the pure

Lagrangian scheme without involving the rezoning and remapping phases. This Lagrangian DG scheme belongs

to the updated Lagrangian formulation, and the DG space is defined in the physical coordinates rather than

in the fixed reference coordinates, hence there is no need to study the evolution of the Jacobian matrix for

the flow mapping between the different coordinates. To be more specific, we solve the conserved variables such

as density, momentum and total energy directly, so the scheme can keep the conservation property naturally.

The Harten-Lax-van Leer Contact (HLLC) numerical flux is used, and it has a particularly simple form in the

Lagrangian description [12]. To suppress spurious oscillations, we use the multi-resolution weighted essentially

non-oscillatory (WENO) limiters [48]. The time discretization is based on the second-order strong stability

preserving (SSP) Runge-Kutta (RK) method [41]. As an extension and application, we develop the above

framework in the two-dimensional cylindrical geometry, and design a spherical symmetry-preserving conservative

Lagrangian DG scheme. Furthermore, there are two main contributions.
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(1) Differently from the previous work, the Lagrangian DG scheme in this paper is second-order accurate for

all the variables such as density, momentum, total energy, pressure and velocity, while the existing updated

DG schemes may lose second-order accuracy for certain variables. In fact, according to the framework

proposed by Cockburn et al. in [14–18], the DG scheme is constructed as (2.6) without any adjustments,

which can achieve arbitrarily high order accuracy. In the Lagrangian simulation, the grid moves with the

fluid velocity, so the u− ug flux term in (2.6) is thrown away simply in the previous literature, where u is

the fluid velocity and ug is the grid velocity. This treatment leads to some flaws in accuracy, and we have

seen that the second-order accuracy for certain variables may be lost in numerical experiments in Section 5.

The simplest way to deal with this flaw is to recover the u−ug flux term, but it will lead to mass exchange

between neighboring cells, which is not allowed in the pure Lagrangian method. To balance the above two

issues, we add this u− ug flux term only to equations where the test functions are not equal to 1, i.e., we

assume that the u − ug flux term is equal to 0 only in the equations of cell averages. In this way, we will

obtain a truly second-order Lagrangian DG scheme without mass exchange between neighboring cells. See

Section 5 for the accuracy tests.

(2) Based on the above framework, we further design a second-order Lagrangian DG scheme solving the com-

pressible Euler equations in two-dimensional cylindrical coordinates. This DG scheme is designed to preserve

one-dimensional spherical symmetry when computed on an equal-angle-zoned initial grid without losing the

conservation of mass, momentum and total energy. In fact, it is very difficult to construct a high-order DG

scheme that preserves both the spherical symmetry and conservation. Not only the vertex velocity but also

all the variables that occur in the DG scheme should be calculated symmetrically. Unlike the finite volume

scheme, we want to ensure the the symmetry property of linear polynomials for all the conserved variables,

rather than just the symmetry of the cell averages. Specifically, this DG scheme is constructed in three

steps. Firstly, we use a true volume scheme to calculate the cell averages of the conserved variables, which

guarantees the conservation property. And then we use an area-weighted scheme to calculate the slopes of

the polynomials, which is easier to preserve the symmetry property. Finally, the mass matrix and source

terms appearing in these schemes must be treated carefully to ensure the symmetry of all the numerical

solution polynomials without losing the original second-order accuracy. Moreover, we point out that the

WENO limiter is accomplished in the cell’s local ξ-η coordinates as shown in Fig. 3.1, which does not affect

the spherical symmetry-preserving property of the scheme, as explained in [13].

Several two-dimensional numerical examples in the Cartesian and cylindrical coordinates are given to demon-

strate the good performance of the Lagrangian DG schemes in terms of accuracy, symmetry and non-oscillation.

The rest of this paper is organized as follows. In Section 2, we describe all the details of the second-

order conservative Lagrangian DG scheme for the compressible Euler equations in two-dimensional Cartesian

coordinates. In Section 3, we design a second-order Lagrangian DG scheme which preserves both the spherical

symmetry and conservation properties in two-dimensional cylindrical coordinates. In Section 4, we prove the

symmetry-preserving property of the scheme proposed in Section 3. The two-dimensional numerical experiments

are given in Section 5. We will end in Section 6 with concluding remarks.
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2 Second-order conservative Lagrangian discontinuous Galerkin scheme
for the Euler equations in the Cartesian coordinates

2.1 The compressible Euler equations in two-dimensional Cartesian coordinates

The Euler equations for unsteady compressible flow in two-dimensional Cartesian coordinates can be expressed

as
∂U

∂t
+∇ · F(U) = 0, (x, y) ∈ Ω(t), t ≥ 0, (2.1)

where U is the vector of the conserved variables, F is the flux vector and Ω(t) is the moving control volume.

Here U and F are given by

U =

 ρ
ρu
E

 , F(U) =

 ρu
ρuuT + pI
(E + p)u

 , (2.2)

where ρ is density, u = (u, v)T is velocity, M = ρu is momentum, E is total energy, p is pressure and I is the

2× 2 identity matrix. The set of equations is completed by adding an equation of state (EOS) with the general

form p = p(ρ, e), where e = E
ρ − 1

2 |u|
2 is the specific internal energy. Especially, if we consider the perfect gas,

then the equation of state is given as

p = (γ − 1)ρe = (γ − 1)(E − 1

2
ρ|u|2), (2.3)

where γ is the specific gas constant.

In this paper, we focus on the Lagrangian framework, where the control volume moves with the fluid velocity.

Therefore, the kinematic equation can be expressed as

dx

dt
= u, x(0) = x0, (2.4)

where x = (x, y)T , and x0 represents the coordinates at t = 0.

2.2 The second-order conservative Lagrangian DG scheme

In this subsection, we will construct a second-order conservative cell-centered Lagrangian DG scheme, where

we solve the conserved variables such as density, momentum and total energy directly. Before we do that,

we first introduce the notations used throughout the paper. We discretize the two-dimensional moving spatial

domain Ω(t) into M × N cells. Iij(t) is a cell with the general quadrilateral shape constructed by the four

vertices {(xi− 1
2 ,j−

1
2
, yi− 1

2 ,j−
1
2
), (xi+ 1

2 ,j−
1
2
, yi+ 1

2 ,j−
1
2
), (xi+ 1

2 ,j+
1
2
, yi+ 1

2 ,j+
1
2
), (xi− 1

2 ,j+
1
2
, yi− 1

2 ,j+
1
2
)}. The edges

of the cell Iij is denoted as ∂Iij . In the Cartesian coordinates, we use rectangular cells at the initial time unless

otherwise stated. The finite element space is defined as

V k
h (t) = {φ(x, y, t) ∈ L2(Ω(t)) : φ(x, y, t)|Iij(t) ∈ P k(Iij(t)), 1 ≤ i ≤ M, 1 ≤ j ≤ N}, (2.5)

where P k(Iij(t)) denotes the set of polynomials of degree up to k defined in the cell Iij , and the polynomial

φ ∈ V k
h (t) is time-space dependent. According to [8, 9], in multi-dimensions, the pure Lagrangian scheme on

linear grid can achieve at most second order accuracy, so we set k = 1 in this paper.

By using the Reynold’s transport theorem and divergence theorem, we can get the semi-discrete Lagrangian

DG scheme for solving (2.1): find U ∈ Vk
h(t) such that for all the test functions φ(x, y, t) ∈ V k

h (t) and all
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1 ≤ i ≤ M, 1 ≤ j ≤ N , we have

d

dt

∫∫
Iij(t)

(Uφ(x, y, t)) dxdy =

∫∫
Iij(t)

(
U

(
u · ∇φ+

∂φ

∂t

))
dxdy −

∫
∂Iij(t)

(
Û(û · n− ug

n)φ
)
ds

+

∫∫
Iij(t)

(G · ∇φ) dxdy −
∫
∂Iij(t)

(
Ĝ · nφ

)
ds

(2.6)

where G(U) = (0, pI, pu)T , ug
n = ug · n, ug is the grid velocity, and n = (nx, ny)

T denotes the unit outward

normal to ∂Iij . Ĝ·n = (0, p̂n, p̂u·n)T , Û = (ρ̂, ρ̂u, Ê)T and û·n are the numerical fluxes, which will be described

in detail later. We notice that there is the flux term
∫
∂Iij(t)

(
Û(û · n− ug

n)φ
)
ds in the above scheme. In the

Lagrangian framework, there should be no mass exchange between neighboring cells. Therefore, we consider

that the flux term
∫
∂Iij(t)

(
Û(û · n− ug

n)φ
)
ds is only computed in the equations where the test functions are

not equal to 1, i.e., if φ = 1, we assume that
∫
∂Iij(t)

(
Û(û · n− ug

n)
)
ds = 0. By doing so, the local conservation

of the cell mass is valid, and the DG scheme is limited to second-order accuracy. As we know, we cannot get

higher than second order accuracy with the pure Lagrangian scheme on the straight-line grid anyway [8, 9].

Moreover, it should be noted that we cannot simply throw away the flux term
∫
∂Iij(t)

(
Û(û · n− ug

n)φ
)
ds.

Although it has been done in some references, this treatment may result in a loss of second-order accuracy. We

have tested the accuracy of the scheme with/without
∫
∂Iij(t)

(
Û(û · n− ug

n)φ
)
ds in the numerical experiments.

The results show that the accuracy is second-order for all the variables such as density, momentum, total energy,

pressure and velocity by using the scheme (2.6) with the flux term
∫
∂Iij(t)

(
Û(û · n− ug

n)φ
)
ds (φ ̸= 1). At

the same time, we observe that the scheme without the term
∫
∂Iij(t)

(
Û(û · n− ug

n)φ
)
ds may lose second-

order accuracy of the conserved variables, see Tables 5.3 and 5.5. Therefore, we can conclude that this term∫
∂Iij(t)

(
Û(û · n− ug

n)φ
)
ds (φ ̸= 1) is necessary for keeping the second-order accuracy of the DG scheme (2.6).

See Section 5 for more details.

Next, we explain other details in the design of the DG scheme, including numerical fluxes, grid velocity,

time derivatives of basis functions and numerical quadrature. For the numerical fluxes, we use the approximate

Riemann solvers, which have smaller computational cost compared to the exact Riemann solvers. To be more

specific, we choose the HLLC Riemann solver [12] in the Lagrangian description for the numerical flux Ĝ · n =

(0, p̂n, p̂u · n)T . The HLLC numerical flux has a particularly simple form in the Lagrangian framework. Since

its viscosity vanishes at the Lagrangian contact, it can resolve the contact discontinuities sharply. Also, it is

easier to prove positivity-preserving when necessary [12]. We first define σ∗ and p∗ as follows:

σ∗ =
ρoutuout

n (σ+ − uout
n )− ρintuint

n (σ− − uint
n ) + pint − pout

ρout(σ+ − uout
n )− ρint(σ− − uint

n )
,

p∗ = ρint(uint
n σ−)(u

int
n − σ∗) + pint,

(2.7)

where (ρint,uint, pint)T and (ρout,uout, pout)T are the variables inside and outside the cell Iij (inside the neigh-

boring cell) along the cell edges ∂Iij , respectively. u
int/out
n = uint/out · n, c =

√
γp
ρ is the sound speed, and

ũn and c̃ are the Roe averages of un and c respectively. The acoustic wavespeeds σ− and σ+ can be taken as

follows,

σ− = min{uint
n − cint, ũn − c̃}, σ+ = max{uout

n + cout, ũn + c̃}.

Thus we have

p̂ = p∗, û · n = σ∗, p̂u · n = p∗σ∗. (2.8)
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For the other fluxes Û = (ρ̂, ρ̂u, Ê)T , we choose the upwind form, which has the following expression

(ρ̂, ρ̂u, Ê) =

(ρint, ρintuint, Eint), if σ∗ − ug
n ≥ 0,

(ρout, ρoutuout, Eout), if σ∗ − ug
n < 0.

(2.9)

For the grid velocity ug = (ug, vg)
T , we need to derive an expression on the cell edges. In this paper, we

only consider the straight-edge grid, so the grid moves with the fluid velocity defined at the vertex. We assume

that (u1, v1) and (u2, v2) are the two vertex velocities of the cell edge m, which are defined in detail in the next

subsection. In order to ensure that the grids have straight line edges during the movement, we can obtain the

following expression of the grid velocity on the edge m,

ug = u1
x− x2

x1 − x2
+ u2

x− x1

x2 − x1
, vg = v1

y − y2
y1 − y2

+ v2
y − y1
y2 − y1

, (2.10)

where the point (x, y) is located on the cell edge m from (x1, y1) to (x2, y2).

For ∂φ
∂t in the scheme (2.6), we obtain it by using the Reynold’s transport theorem. We set φ = ϕij

q (q =

1, 2, 3) in scheme (2.6), where ϕij
1 , ϕ

ij
2 , ϕ

ij
3 are three basis functions of the V 1

h (t) DG space in the cell Iij . For

simplicity, we choose ϕij
1 = 1 and the other two basis functions are orthogonal to 1, which have the following

expressions,

ϕij
1 (x, y, t) = 1, ϕij

2 (x, y, t) = x− xij
c (t), ϕ

ij
3 (x, y, t) = y − yijc (t), (x, y) ∈ Iij , (2.11)

where xij
c (t) =

1
Sij(t)

∫∫
Iij(t)

xdxdy, yijc (t) = 1
Sij(t)

∫∫
Iij(t)

ydxdy, and Sij represents the area of the cell Iij(t).

Using the Reynold’s transport theorem, we can get

∂ϕ1

∂t
= 0,

∂ϕ2

∂t
= − 1

S(t)

∫
∂I(t)

(x− xc)u
n
gds,

∂ϕ3

∂t
= − 1

S(t)

∫
∂I(t)

(y − yc)u
n
gds,

(2.12)

where we omit the superscript ‘ij’.

In addition, the Gauss-Lobatto quadrature rule is used in this paper. We first define coordinate transfor-

mation that converts the quadrilateral cell Iij in the x-y coordinates to the square [−1/2, 1/2]× [−1/2, 1/2] in

the x̃-ỹ coordinates. The mapping relationship is as follows.(
x
y

)
=

(
a1x̃ỹ + a2x̃+ a3ỹ + a4
b1x̃ỹ + b2x̃+ b3ỹ + b4

)
, (2.13)

where
(a1, b1) = xi− 1

2 ,j−
1
2
− xi+ 1

2 ,j−
1
2
+ xi+ 1

2 ,j+
1
2
− xi− 1

2 ,j+
1
2
,

(a2, b2) =
1

2
(−xi− 1

2 ,j−
1
2
+ xi+ 1

2 ,j−
1
2
+ xi+ 1

2 ,j+
1
2
− xi− 1

2 ,j+
1
2
),

(a3, b3) =
1

2
(−xi− 1

2 ,j−
1
2
− xi+ 1

2 ,j−
1
2
+ xi+ 1

2 ,j+
1
2
+ xi− 1

2 ,j+
1
2
),

(a4, b4) =
1

4
(xi− 1

2 ,j−
1
2
+ xi+ 1

2 ,j−
1
2
+ xi+ 1

2 ,j+
1
2
+ xi− 1

2 ,j+
1
2
).

And the determinant of Jacobian matrix is

|J(x̃, ỹ)| = (a2b1 − a1b2)x̃+ (a1b3 − a3b1)ỹ + a2b3 − a3b2. (2.14)

We point out that the mapping (2.13) is only used to compute the integrals in the DG scheme (2.6) and is

not used as a reference configuration of the flow. From the mapping relationship (2.13), we can find that the
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a× a-point Gauss-Lobatto quadrature rule is exact for the integral of polynomials of degree (a− 2) in the x-y

coordinates. This is because a polynomial of degree (a−2) in the x-y coordinates becomes a polynomial of degree

(2a − 4) in the x̃-ỹ coordinates, the Jacobian |J(x̃, ỹ)| is a linear function, and the a × a-point Gauss-Lobatto

quadrature rule is exact for the integral of polynomials of degree up to (2a− 3) in the x̃-ỹ coordinates. We take

a = 4 for the second order scheme. Define the set of quadrature points for the square [−1/2, 1/2]× [−1/2, 1/2]

to be {(x̃α, ỹβ), α, β = 1, 2, 3, 4}, and its weights are ωα or ωβ . Using (2.13), we can get the quadrature points

{(xα,β , yα,β), α, β = 1, 2, 3, 4} for the cell Iij . With the above definition, we can compute all the integrals in

the scheme (2.6) numerically. For example, the integral for the mass matrix A is discretized by the following

formula,

Apq =

∫∫
Iij

ϕp(x, y, t)ϕq(x, y, t)dxdy =
4∑

α=1

4∑
β=1

[ωαωβϕp(xα,β , yα,β , t)ϕq(xα,β , yα,β , t)|J(x̃α, ỹβ)|] ,

where p, q = 1, 2, 3. The line integral for the numerical fluxes is calculated by∫
∂Iij

(
Ŵ · nϕ(x, y, t)

)
ds =

4∑
m=1

4∑
α=1

[
ωα

(
Ŵ(Uint

m,α,U
out
m,α) · nm

ijϕ(xα, yα, t)
)
∆lmij

]
,

where Ŵ · n = Ĝ · n + Û(û · n − ug
n), Uint

m,α and Uout
m,α are the vectors of the conserved variables inside and

outside the cell Iij at the quadrature point (xα, yα) along the the m-th edge, nm
ij is the unit outward normal to

the m-th edge, and ∆lmij is the length of the m-th edge. Note that there are two main reasons why we use the

Gauss-Lobatto quadrature rule instead of the Gaussian quadrature rule. The first reason is that it is easier to

implement the positivity-preserving technique when necessary, which can be seen in [12]. The second reason is

to avoid the double calculation of the normal part of the vertex velocity, which has been calculated in numerical

quadrature of the fluxes.

2.3 The determination of the vertex velocity

Now we introduce how to determine the vertex velocity, which is used in the formula (2.10) and the movement

of the grid. In fact, the determination of the vertex velocity is similar to that in [8]. Briefly, we consider a

vertex (xi− 1
2
, yj− 1

2
) shared by four edges which are given a serial number m = 1, 2, 3, 4. The tangential velocity

at the vertex (xi− 1
2
, yj− 1

2
) along each edge m is defined as the average of that on both sides, i.e.,

um
t =

1

2
(um−

t + um+
t ), m = 1, 2, 3, 4,

where um±
t = um± ·tm, um± is the left/right value of velocity at this vertex along the edge m, and tm = (tmx , tmy )

is the unit tangential of the edge m. For the normal velocity, we set um
n = û ·nm = σ∗, where nm = (nm

x , nm
y ) is

the unit normal of the edge m. And then we convert um
t and um

n into the x-y velocity components, which have

the following form,

um
x =

um
n tmy − um

t nm
y

nm
x tmy − nm

y tmx
, um

y =
−um

n tmx + um
t nm

x

nm
x tmy − nm

y tmx
, m = 1, 2, 3, 4.

Finally, we can get the vertex velocity as follows,

ui− 1
2 ,j−

1
2
=

1

4

4∑
m=1

um
x , vi− 1

2 ,j−
1
2
=

1

4

4∑
m=1

um
y . (2.15)

2.4 Time discretization

In this paper, we use the second-order SSP-RK time discretization [41]. In the Lagrangian simulation, the

vertex velocity, the grid point position and the polynomials of the conserved variables need to be updated at
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each RK stage, that is, the SSP-RK method is applied to the time marching for the semi-discrete scheme (2.6)

and the grid point update formulation (2.4). Specifically, the second-order SSP-RK method has the following

form.

Stage 1:
x
(1)

i− 1
2 ,j−

1
2

= xn
i− 1

2 ,j−
1
2
+∆tnun

i− 1
2 ,j−

1
2
,

A(1)U(1)
c = AnUn

c +∆tnL(Un);
(2.16)

Stage 2:

xn+1
i− 1

2 ,j−
1
2

=
1

2
xn
i− 1

2 ,j−
1
2
+

1

2
x
(1)

i− 1
2 ,j−

1
2

+
1

2
∆tnu

(1)

i− 1
2 ,j−

1
2

,

An+1Un+1
c =

1

2
AnUn

c +
1

2
A(1)U(1)

c +
1

2
∆tnL(U(1)),

(2.17)

where L is the numerical spatial operator at the right hand of the scheme (2.6), A is the mass matrix, Uc

represents the coefficients of the polynomials for any conserved variables on the cell Iij . Here the variables with

the superscripts n and n+1 represent the values of the corresponding variables at the n-th and (n+1)-th time

steps, respectively. And we omit the subscript ‘ij’ in A and Uc. The time step ∆tn is calculated as follows,

∆tn = λmin
i,j

(
∆lij/

(
cnij + |u|nij

))
, (2.18)

where ∆lij is the shortest edge length of the cell Iij(tn) and λ is the Courant number.

Up to now, we have a fully discrete Lagrangian scheme with second-order accuracy in both space and time.

3 Second-order Lagrangian DG scheme for the Euler equations in the
cylindrical coordinates

We have introduced the full algorithm of the Lagrangian DG scheme in Section 2. In this section, we develop

the above algorithm to the two-dimensional cylindrical coordinates. We first construct two Lagrangian DG

schemes for the axisymmetric compressible Euler equations: a true volume DG scheme and an area-weighted

DG scheme. The aim is to design a Lagrangian DG scheme that preserves both the spherical symmetry and

conservation properties by combining these two schemes.

3.1 The compressible Euler equations in two-dimensional cylindrical coordinates

The compressible Euler equations in two-dimensional cylindrical coordinates can be described as follows

∂

∂t


ρ

ρuz

ρur

E

+
∂

∂z


ρuz

ρuzuz + p
ρuruz

(E + p)uz

+
1

r

∂

∂r


ρurr

ρuzurr
(ρurur + p)r
(E + p)urr

 =


0
0
p/r
0

 , (z, r) ∈ Ω(t), (3.1)

where z and r are the axial and radial directions respectively. We use the same notations as in the Cartesian

coordinates. u = (uz, ur)
T , M = ρu = (Mz,Mr)

T , where Mz,Mr, uz, ur are the momentum and velocity

components in the z and r directions respectively. ρ is density, E is total energy, and p is pressure given by

the equation of state, such as the equation (2.3). Similarly, denote the vector of the conserved variables U and

pressure flux function G as

U =

 ρ
M
E

 , G(U) =

 0
pI
pu

 .
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3.2 Basic notations

We introduce the notations used in the cylindrical coordinates. Similar to the notations in the Cartesian coordi-

nates, the two-dimensional domain Ω(t) is discretized into Q×L computational cells. Iql is a quadrilateral cell

with the four vertices {(zq− 1
2 ,l−

1
2
, rq− 1

2 ,l−
1
2
), (zq+ 1

2 ,l−
1
2
, rq+ 1

2 ,l−
1
2
), (zq+ 1

2 ,l+
1
2
, rq+ 1

2 ,l+
1
2
), (zq− 1

2 ,l+
1
2
, rq− 1

2 ,l+
1
2
)},

q = 1, · · · , Q, l = 1. · · · , L. Sql denotes the area of the cell Iql, and Vql denotes the volume of the cell obtained

by rotating this cell around the z-axis, which can be formulated as Vql =
∫∫

Iql
rdrdz (without the 2π factor).

If we simulate a spherical symmetric problem, we hope to preserve the spherical symmetry property of the

numerical solutions. Thus, we use the equal-angle-zoned grid at the initial time, see Fig. 3.1. (ξ, η) is the cell’s

local polar coordinates used for the analysis of the symmetry-preserving property in the next section, where ξ

is the radial direction through the cell center and the origin, η is the angular direction which is orthogonal to ξ

counterclockwise. Besides, we define ∆θ as the angle between any two neighboring l lines which is a constant

for the equal-angle-zoned grid. Since the equal-angle-zoned cell is an equal-sided trapezoid (or isosceles triangle

connecting the origin), the angles between ξ and the two equal sides of the cell are ∆θ
2 .

r

z

q­3/2

q­1/2

q+1/2

l­1/2

l+1/2

l+3/2

1

2

3

4

Figure 3.1: Equal-angle-zoned polar grid in the cylindrical geometry.

3.3 The true volume DG scheme

In this subsection, we design a Lagrangian DG scheme based on the true volume discretization in the cylindrical

coordinates. It preserves the conservation of mass, momentum and total energy. Similar to the scheme (2.6),

we can get the semi-discrete true volume Lagrangian DG scheme for solving (3.1): find U ∈ Vk
h(t) such that

for all the test functions φ(z, r, t) ∈ V k
h (t) and all 1 ≤ q ≤ Q, 1 ≤ l ≤ L, we have

d

dt

∫∫
Iql(t)

(Uφ(z, r, t)r) dzdr =

∫∫
Iql(t)

(
U

(
u · ∇φ+

∂φ

∂t

)
r

)
dzdr −

∫
∂Iql(t)

(
Û(û · n− ug

n)φr
)
ds

+

∫∫
Iql(t)

(G · ∇φr) dzdr −
∫
∂Iql(t)

(
Ĝ · nφr

)
ds+

∫∫
Iql(t)


0
0
p
0

φdzdr,

(3.2)

where n = (nz, nr)
T denotes the unit outward normal to ∂Iql in the z-r coordinates, Û is the vector of the

numerical fluxes for the conserved variables U, Ĝ · n is the vector of the numerical fluxes for pressure and
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velocity functions G, ug
n = ug · n and ug = (uz

g, u
r
g)

T is the grid velocity. There is the ‘r’ factor in the integrals

of the above scheme, because 2π
∫∫

Ω
rdzdr =

∫∫∫
W dxdydz for the axisymmetric problems, where W is the

three-dimensional domain obtained by rotating the two-dimensional area Ω about the z axis. This means

that the scheme is constructed on the genuine three-dimensional control volume. Moreover, the source term∫∫
Iql(t)

pφdzdr exists in the formula of the momentum in the r direction, which differs from that in the Cartesian

coordinates.

The treatment of the flux term
∫
∂Iql(t)

(
Û(û · n− ug

n)φr
)
ds is similar to that in the subsection 2.2. We

only compute the flux term
∫
∂Iql(t)

(
Û(û · n− ug

n)φr
)
ds in the equations using the second and third basis

functions (the basis functions orthogonal to 1), i.e., if φ = 1, we assume that
∫
∂Iql(t)

(
Û(û · n− ug

n)r
)
ds = 0.

This treatment ensures that there is no mass exchange passing through the moving cell edges in (3.2), which is

crucial for pure Lagrangian methods.

We use the same method as in the Cartesian coordinates to compute the vertex velocity, the numerical fluxes,

and the time derivatives of basis functions. We also use the Gauss-Lobatto quadrature rule. Time discretization

is chosen as the second-order SSP-RK method, see the subsection 2.4 for more details.

3.4 The area-weighted DG scheme

In the numerical simulation of the spherical symmetry problems in two-dimensional cylindrical coordinates,

there is another Lagrangian scheme called the area-weighted scheme. In this subsection, we will construct an

area-weighted DG scheme. We first rewrite the divergence term of the Euler system (3.1) in the following form

∂Huz

∂z
+

1

r

∂Hurr

∂r
=

∂Huz

∂z
+

∂Hur

∂r
+Hur

r
, (3.3)

where H represents any physical variables such as H = ρ, M, E or p. Using the equality (3.3), we can rewrite

the Euler system (3.1) as follows

∂

∂t


ρ

ρuz

ρur

E

+
∂

∂z


ρuz

ρuzuz + p
ρuruz

(E + p)uz

+
∂

∂r


ρur

ρuzur

ρurur + p
(E + p)ur

+
ur

r


ρ

ρuz

ρur

E + p

 = 0, (z, r) ∈ Ω(t). (3.4)

The semi-discrete area-weighted Lagrangian DG scheme for the system (3.4) is to find U ∈ Vk
h(t) such that for

all the test functions φ(z, r, t) ∈ V k
h (t) and all 1 ≤ q ≤ Q, 1 ≤ l ≤ L,

d

dt

∫∫
Iql(t)

(Uφ(z, r, t)) dzdr =

∫∫
Iql(t)

(
U

(
u · ∇φ+

∂φ

∂t

))
dzdr −

∫
∂Iql(t)

(
Û(û · n− ug

n)φ
)
ds

+

∫∫
Iql(t)

(G · ∇φ) dzdr −
∫
∂Iql(t)

(
Ĝ · nφ

)
ds−

∫∫
Iql(t)


ρ
Mz

Mr

E + p

 ur

r
φdzdr,

(3.5)

where the symbols n, Û, Ĝ · n, û · n and ug
n are similar to those in the scheme (3.2). The vertex velocity,

the numerical fluxes, the term
∫
∂Iql(t)

(
Û(û · n− ug

n)φ
)
ds and the time derivatives of the basis functions are

calculated in a similar way to the scheme (2.6). We will not repeat these details.

The true volume DG scheme (3.2) and the area-weighted DG scheme (3.5) are cell-centered Lagrangian

schemes, where density, momentum and total energy are solved directly. Furthermore, the two schemes have

their own features. On the one hand, the true volume DG scheme is based on true control volume discretization

and preserves the conservation of mass, momentum and total energy, while the area-weighted DG scheme is
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based on planar area discretization and is not conserved. On the other hand, the area-weighted DG scheme is

easier to preserve one-dimensional spherical symmetry than the true volume DG scheme in the two dimensional

cylindrical geometry, where we only need to carefully discretize the source terms in the scheme (3.5).

Next, we hope to combine the advantages of the above two schemes to construct a Lagrangian DG scheme

that preserves both spherical symmetry and conservation properties, and maintains second-order accuracy.

3.5 The symmetry-preserving and conservative Lagrangian DG scheme

In the following, we will design a symmetry-preserving and conservative Lagrangian DG scheme in two-

dimensional cylindrical coordinates. In fact, it is very difficult to design an area-weighted DG scheme or a

true volume DG scheme that maintains both the symmetry and conservation properties. Here our basic idea is

to calculate the cell averages using the true volume scheme (3.2), calculate the slopes of the numerical solution

polynomials using the area-weighted scheme (3.5), and deal with the mass matrix and source terms carefully.

The details are as follows.

Find U = (ρ,Mz,Mr, E)T ∈ V1
h to satisfy the following semi-discrete scheme,

d

dt

∫∫
Iql(t)

Urdzdr = −
∫
∂Iql(t)

(
Ĝ · nr

)
ds+

∫∫
Iql(t)


0
0
pa
0

 dzdr, (3.6)

d

dt

∫∫
Iql(t)

(Uϕi) dzdr =

∫∫
Iql(t)

(
U

(
u · ∇ϕi +

∂ϕi

∂t

))
dzdr −

∫
∂Iql(t)

(
Û(û · n− ug

n)ϕi

)
ds

+

∫∫
Iql(t)

(G · ∇ϕi) dzdr −
∫
∂Iql(t)

(
Ĝ · nϕi

)
ds−

∫∫
Iql(t)


ρ
Mz

Mr

E + p

 ua
r

ra
ϕidzdr, i = 2, 3,

(3.7)

where ϕ2 and ϕ3 are the two basis functions orthogonal to ϕ1 = 1 in the DG space V 1
h , which have multiple

expressions, such as
ϕ1 = 1, ϕ2(z, r, t) = z − zqlc (t), ϕ3(z, t, t) = r − rqlc (t),

zqlc =

∫∫
Iql

zdzdr

Sql
, rqlc =

∫∫
Iql

rdzdr

Sql
.

(3.8)

Note that (3.6) is from the true volume scheme, which is based on the genuine control volume discretization in

a conservation form, hence it preserves naturally the conservation of mass, momentum and total energy, and

(3.7) is from the area-weighted scheme. Thus, the details of the calculation in the scheme (3.6)-(3.7) are similar

to the previous two schemes. And the time marching of this semi-discrete DG scheme is implemented by the

second-order SSP-RK method.

In order to keep spherical symmetry, the mass matrix and source terms are determined as follows.

1. In (3.6), we set
∫∫

Iql
Urdzdr ≈ rqlc

∫∫
Iql

Udzdr, i.e., for the mass matrix, we have

∫∫
Iql

 ϕ2
1r ϕ1ϕ2r ϕ1ϕ3r

ϕ1ϕ2 ϕ2
2 ϕ2ϕ3

ϕ1ϕ3 ϕ2ϕ3 ϕ2
3

 dzdr ≈
∫∫

Iql

ϕ2
1r

ql
c ϕ1ϕ2r

ql
c ϕ1ϕ3r

ql
c

ϕ1ϕ2 ϕ2
2 ϕ2ϕ3

ϕ1ϕ3 ϕ2ϕ3 ϕ2
3

 dzdr. (3.9)

Since the basis functions ϕ2, ϕ3 are orthogonal to ϕ1 = 1, we can get
∫∫

Iql
ϕ1ϕidzdr = 0 (i = 2, 3), which

means that the mass matrix is a symmetric matrix.
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2. In (3.6), we set
∫∫

Iql
pdzdr ≈ paSql, where pa is calculated as follows,

pa =

∑
α(p̂

α
1ωαµ

α
1 + p̂α3ωαµ

α
3 )∑

α(ωαµα
1 + ωαµα

3 )
, (3.10)

where p̂α1 and p̂α3 are pressure numerical fluxes at the α-th quadrature points (zα1 , r
α
1 ) and (zα3 , r

α
3 ) on

the first and third edges of the cell Iql shown in Fig. 3.1, respectively. ωα is the quadrature weight.

µα
m =

√
(zαm)2 + (rαm)2 represents the length of the line between the origin and the α-th quadrature point

(zαm, rαm) on the m-th edge of the cell Iql.

3. In (3.7), we set
∫∫

Iql
Ũur

r ϕidzdr ≈ ua
r

ra

∫∫
Iql

Ũϕidzdr, where Ũ = (ρ,M, E + p)T and

ua
r

ra
=

ur(z
ql
c , rqlc )

rqlc
. (3.11)

The above three approximations do not affect conservation and second-order accuracy. In fact, for the first

approximation, we can prove that when r ̸= 0,
∫∫

Iql
Urdzdr∫∫

Iql
rdzdr

=

∫∫
Iql

Udzdr∫∫
Iql

dzdr
+O(h2), where h is the cell size. The

discretization for the source term of pressure is similar to that in [13]. And we refer to [29] for the discretization of

the term
∫∫

Ũur

r ϕidzdr. Numerical experiments demonstrate the good performance of our designed Lagrangian

DG scheme (3.6)-(3.7), such as symmetry, conservation and second-order accuracy. In the next section, we will

give a theorem to show that this scheme can keep the spherical symmetry property on an equal-angle-zoned

initial grid.

4 Analysis of the spherical symmetry property

4.1 Spherical symmetry condition in the cylindrical coordinates

In this subsection, we declare the definition of one-dimensional spherical symmetry in two-dimensional cylindrical

coordinates for the linear polynomials of the numerical solutions such as density, momentum and total energy.

We use Uex = (ρex,Mex, Eex)T and U = (ρ,M, E)T to represent exact and numerical solutions, respectively.

Define (µ, θ) as the local polar coordinates, where µ is the radial direction through any point (z, r) and the

origin, and θ is the angle between the µ direction and the z axis. Thus we have

z = µ cos θ, r = µ sin θ. (4.1)

Here the definition of (µ, θ) is different from that of (ξ, η) shown in Fig. 3.1, and we have the following

transformation relationship

z = ξ cos θqlc − η sin θqlc , r = ξ sin θqlc + η cos θqlc , (4.2)

and

ξ = µ cos(θ − θqlc ), η = µ sin(θ − θqlc ), (4.3)

where θqlc is the angle between the local ξ direction and z axis. The exact solutions Uex are called spherically

symmetric if they satisfy
ρex(µ, θ1, t) = ρex(µ, θ2, t),

Mex
µ (µ, θ1, t) = Mex

µ (µ, θ2, t),

Mex
θ (µ, θ, t) = 0,

Eex(µ, θ1, t) = Eex(µ, θ2, t),

(4.4)
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where (µ, θ1) and (µ, θ2) are any two points in the µ-θ coordinates which have the same radial radius, Mex
µ =

Mex
z cos θ + Mex

r sin θ is the momentum component in the µ direction, Mex
θ = −Mex

z sin θ + Mex
r cos θ is the

momentum component in the direction orthogonal to µ. If the conditions (4.4) are satisfied at the initial time,

we can show that the conditions (4.4) are still valid at any time when there is no asymmetric external action,

which can be obtained by analyzing the Euler equations (3.1). We note that the symmetry conditions (4.4) for

the exact solutions hold point by point, which implies derivative information, i.e.,

∂

∂µ


ρex

Mex
µ

Mex
θ

Eex


(µ,θ1)

=
∂

∂µ


ρex

Mex
µ

0
Eex


(µ,θ2)

,
∂

∂θ


ρex

Mex
µ

Mex
θ

Eex

 = 0. (4.5)

Next, we state the spherical symmetry conditions for the linear polynomials of the numerical solutions, which

are based on the cell’s local ξ-η coordinates. For the sake of discussion, we choose the basis functions as

ϕ1 = 1, ϕ2(ξ, η, t) = ξ − ξqlc (t), ϕ3(ξ, η, t) = η − ηqlc (t), (4.6)

where ξqlc =

∫∫
Iql

ξdzdr

Sql
and ηqlc =

∫∫
Iql

ηdzdr

Sql
, so

∫∫
I
ϕ1ϕ2dzdr =

∫∫
I
ϕ1ϕ3dzdr = 0. In the equal-angle-zoned

grid, ξqlc and Sql are independent of the index l and ηqlc = 0. Thus, we take ξqlc = ξqc , Sql = Sq and ηqlc = ηqc = 0.

With the above notations, we can represent the numerical solutions in the cell Iql as follows,
ρql

Mql
ξ

Mql
η

Eql

 (ξ, η) =


ρql1
Mql

ξ,1

Mql
η,1

Eql
1

+


ρql2
Mql

ξ,2

Mql
η,2

Eql
2

ϕ2(ξ, η) +


ρql3
Mql

ξ,3

Mql
η,3

Eql
3

ϕ3(ξ, η), (4.7)

where Mql
ξ and Mql

η are momentum components in the ξ and η directions that satisfy Mql
ξ = Mql

z cos θqlc +

Mql
r sin θqlc and Mql

η = −Mql
z sin θqlc + Mql

r cos θqlc , Uql
j (j = 1, 2, 3) are the coefficients of the corresponding

polynomials. Here for simplicity and without any confusion, we omit the time variable t. To analyze the

symmetry-preserving conditions, we need to re-decompose momentum into the µ-θ coordinates, that is

Mql
µ (ξ, η) = Mql

ξ cos(θ − θqlc ) +Mql
η sin(θ − θqlc ),

Mql
θ (ξ, η) = −Mql

ξ sin(θ − θqlc ) +Mql
η cos(θ − θqlc ).

(4.8)

It should be noted that we cannot use a formula to describe the spherical symmetry of the numerical solutions

point by point, because the numerical solutions are linear polynomials. Therefore, we only consider the cell

center (ξqlc , ηqlc ), and then we apply the conditions (4.4) and (4.5) to the numerical solutions (ρql, M ql
µ , M ql

θ , Eql)

at the cell center. We can get the following definition.

Definition 4.1 The numerical solutions defined in the formula (4.7) are called the one-dimensional spherically

symmetric if they satisfy the following conditions,
ρql1
Mql

ξ,1

Mql
η,1

Eql
1

 =


ρql

′

1

Mql′

ξ,1

0

Eql′

1

 ,


ρql2
Mql

ξ,2

Mql
η,2

Eql
2

 =


ρql

′

2

Mql′

ξ,2

0

Eql′

2

 ,


ρql3
Mql

ξ,3

Mql
η,3

Eql
3

 =


0
0

Mql′

η,3

0

 , (4.9)

where 1 ≤ q ≤ Q and 1 ≤ l, l′ ≤ L.

4.2 Proof of the spherical symmetry-preserving property

Next, we will prove our scheme (3.6)-(3.7) can preserve the spherical symmetry property if an equal-angle-zoned

grid is used at the initial time. Notice that symmetry preservation for the Lagrangian solution includes two

parts: the evolution of the conserved variables and the grid. The theorem is as follows.
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Theorem 4.1 The scheme (3.6)-(3.7) on an equal-angle-zoned initial grid can preserve the one-dimensional

spherical symmetry property. That is, if the initial solution has one-dimensional spherical symmetry, the nu-

merical solution will keep this symmetry during the time evolution.

Proof Since the SSP-RK method [41] is a convex combination of the Euler forward time discretization, we

only need to prove the scheme (3.6)-(3.7) with Euler forward time stepping is symmetry-preserving. Without

loss of the generality, we assume that the solutions of the scheme (3.6) -(3.7) have spherical symmetry property

and the grid is a polar grid with equal angles at the n-th time step, and then we only need to prove that the

numerical solution preserves the spherical symmetry and the grid is equal-angle-zoned at the (n + 1)-th time

step. For the convenience of notation, we omit the superscript ’n’ of the variables at the n-th time step. The

proof is divided into two parts.

1. The proof of symmetry preservation for the grid at the (n+ 1)-th step.

We consider a vertex (zq− 1
2 ,l−

1
2
, rq− 1

2 ,l−
1
2
) shared by four edges ‘L’, ‘R’, ‘B’, ‘T ’, which connects four cells

Iq−1,l−1, Iq−1,l, Iq,l−1 and Iq,l. We define this vertex’s local polar coordinates (ξ̃, η̃) , where ξ̃ is the radial

direction through the vertex (zq− 1
2 ,l−

1
2
, rq− 1

2 ,l−
1
2
) and the origin, and η̃ is orthogonal to ξ̃ counterclockwise, see

Fig. 4.1. Since the grid and the numerical solutions are symmetrical at the n-th step, we have

r

z

q­3/2

q­1/2

q+1/2

l­1/2

l+1/2

l+3/2

L

R

B

T

Figure 4.1: The local ξ̃-η̃ coordinates at the vertex (zq− 1
2 ,l−

1
2
, rq− 1

2 ,l−
1
2
).


ρκ,l−1

Mκ,l−1
ξ

Mκ,l−1
η

Eκ,l−1

 (zq− 1
2 ,l−

1
2
, rq− 1

2 ,l−
1
2
) =


ρκ,l

Mκ,l
ξ

−Mκ,l
η

Eκ,l

 (zq− 1
2 ,l−

1
2
, rq− 1

2 ,l−
1
2
) ≡


ρκ

Mκ
ξ

Mκ
η

Eκ

 , κ = q − 1, q,

where we omit the superscript ’l − 1’ and ’l’ for the variables which are independent of the l index, Mκ,l−1
ξ

and Mκ,l−1
η are the momentum components in the Iκ,l−1 cell’s local ξ-η coordinates, see Fig. 4.1. Here the

numerical solutions represent the values of the corresponding variables at this vertex (zq− 1
2 ,l−

1
2
, rq− 1

2 ,l−
1
2
). We
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set the direction of each edge to be the increasing direction of the index q or l, and we get

ρL− = ρL+ = ρB− = ρT− = ρq−1, ρR− = ρR+ = ρB+ = ρT+ = ρq,

EL− = EL+ = EB− = ET− = Eq−1, ER− = ER+ = EB+ = ET+ = Eq,

ML+

ξ̃
= ML−

ξ̃
= MT−

ξ̃
= MB−

ξ̃
= cos(∆θ/2)Mq−1

ξ + sin(∆θ/2)Mq−1
η ,

ML+
η̃ = MT−

η̃ = −ML−
η̃ = −MB−

η̃ = sin(∆θ/2)Mq−1
ξ − cos(∆θ/2)Mq−1

η ,

MR+

ξ̃
= MR−

ξ̃
= MT+

ξ̃
= MB+

ξ̃
= cos(∆θ/2)Mq

ξ + sin(∆θ/2)Mq
η ,

MR+
η̃ = MT+

η̃ = −MR−
η̃ = −MB+

η̃ = sin(∆θ/2)Mq
ξ − cos(∆θ/2)Mq

η ,

(4.10)

where UL+ and UL− are the values of the corresponding variables at the vertex (zq− 1
2 ,l−

1
2
, rq− 1

2 ,l−
1
2
) along the

two sides of the edge ‘L’, Mξ̃ and Mη̃ are the momentum components in this vertex’s local ξ̃-η̃ coordinates. The

unit normal and tangential vectors of the four edges in the local ξ̃-η̃ coordinates are represented as follows,

nL = nR = (0, 1), tL = tR = (1, 0),

nB =

(
cos

∆θ

2
,− sin

∆θ

2

)
, tB =

(
sin

∆θ

2
, cos

∆θ

2

)
,

nT =

(
cos

∆θ

2
, sin

∆θ

2

)
, tT =

(
− sin

∆θ

2
, cos

∆θ

2

)
.

Let ML±
n = ML± · nL, ML±

t = ML± · tL represent the normal and tangential momenta at the two sides of the

edge ‘L’, respectively. MB±
n , MB±

t , MT±
n , MT±

t , MR±
n and MR±

t are defined in the same way. Through the

above relationship, we obtain
ML+

n = −ML−
n , ML+

t = ML−
t ,

MR+
n = −MR−

n , MR+
t = MR−

t ,

MB−
n = MT−

n , MB−
t = −MT−

t ,

MB+
n = MT+

n , MB+
t = −MT−

t .

(4.11)

Using (4.10) and (4.11), we have

uL
n = 0, uR

n = 0, uB
n = uT

n , (4.12)

where um
n is the normal velocity calculated by the HLLC approximate Riemann solver at this vertex along the

edge ‘m’, m = L,R,B, T . The tangential velocities at each edge are as follows,

uL
t =

1

2
(ML−

t /ρL− +ML+
t /ρL+),

uR
t =

1

2
(MR−

t /ρR− +MR+
t /ρR+),

uB
t =

1

2
(MB−

t /ρB− +MB+
t /ρB+),

uT
t =

1

2
(MT−

t /ρT− +MT+
t /ρT+) = −uB

t .

(4.13)

Here um
n and um

t (m = L,R,B, T ) are independent of the l index because all the variables in (4.10) and (4.11)

are independent of the l index. And then we convert um
n and um

t into the ξ̃-η̃ components, that is

(uL
ξ̃
, uL

η̃ ) = (uL
t , 0), (uR

ξ̃
, uR

η̃ ) = (uR
t , 0),

(uB
ξ̃
, uB

η̃ ) =
(
cos(∆θ/2)uB

n + sin(∆θ/2)uB
t , − sin(∆θ/2)uB

n + cos(∆θ/2)uB
t

)
,

(uT
ξ̃
, uT

η̃ ) =
(
cos(∆θ/2)uT

n − sin(∆θ/2)uT
t , sin(∆θ/2)uT

n + cos(∆θ/2)uT
t

)
.

Therefore, we can get the the following vertex velocity,

(uξ̃)q− 1
2 ,l−

1
2
=

1

4
(uL

ξ̃
+ uR

ξ̃
+ uB

ξ̃
+ uT

ξ̃
) =

1

4

(
uL
t + uR

t + 2 cos(∆θ/2)uB
n + 2 sin(∆θ/2)uB

t

)
,

(uη̃)q− 1
2 ,l−

1
2
=

1

4
(uL

η̃ + uR
η̃ + uB

η̃ + uT
η̃ ) = 0.

(4.14)
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Since (uη̃)q− 1
2 ,l−

1
2
= 0 and (uξ̃)q− 1

2 ,l−
1
2

depends only on the q index, we can conclude that the vertex velocity

is symmetric. Thus we have finished the proof of the symmetry for the grid at the (n+ 1)-th step.

2. The proof of symmetry preservation for the conserved variables at the (n+ 1)-th step.

In order to save space, we only give the proof of symmetry preservation for the momentum. The symmetry

proof for density and total energy is similar. We consider the cell Iql with four edges m = 1, 2, 3, 4. We use the

4 × 4-point Gauss-Lobatto quadrature rule. Since the proof is based on the Iql cell’s local ξ-η coordinates, we

rewrite the momentum schemes in (3.6)-(3.7) as follows,

d

dt

∫∫
Iql(t)

(
Mξ

Mη

)
rdzdr = −

∫
∂Iql(t)

p̂

(
nξ

nη

)
rds+ paSql

(
sin θqlc
cos θqlc

)
, (4.15)

d

dt

∫∫
Iql(t)

(
Mξ

Mη

)
ϕidzdr =

∫∫
Iql(t)

(
Mξ

Mη

)(
u ·

(
∂ϕi

∂ξ
∂ϕi

∂η

)
+

∂ϕi

∂t

)
dzdr −

∫
∂Iql(t)

(
M̂ξ

M̂η

)
(û · n− ug

n)ϕids

+

∫∫
Iql(t)

p

(
∂ϕi

∂ξ
∂ϕi

∂η

)
dzdr −

∫
∂Iql(t)

p̂

(
nξ

nη

)
ϕids−

∫∫
Iql(t)

(
Mξ

Mη

)
ϕidzdr

ua
r

ra
, i = 2, 3,

(4.16)

where (nξ, nη)
T denotes the unit outward normal to ∂Iql in the ξ-η coordinates, u = (uξ, uη)

T , and ϕi is chosen

as that in (4.6). Next, we first analyze the symmetry of the cell averages in (4.15), and then prove the symmetry

of the slopes of the momentum polynomials in (4.16).

(1) The proof of symmetry preservation for the cell averages in (4.15).

Let (zαm, rαm) and (ξαm, ηαm) (m = 1, · · · , 4, α = 1, · · · , 4) be the α-th Gauss-Lobatto quadrature point on the

m-th edge of the Iql cell in the z-r and the local ξ-η coordinates, respectively, see Fig. 4.2. µα
m =

√
(zαm)2 + (rαm)2

r

z

q­3/2

q­1/2

q+1/2

l­1/2

l+1/2

l+3/2

1

23

4

1
2

3
4

1
2

3
4

1
2

3
4

1
2

3
4

Figure 4.2: The Gauss-Lobatto quadrature points on the four edges of the Iql cell.

represents radial length of the corresponding quadrature point. The length of each cell edge is defined as

∆lm, m = 1, · · · , 4. The radial length at the middle point of each edge is denoted as µm
e , m = 1, · · · , 4. Since

the grid is symmetrical, ∆lm and µm
e are independent of the l index. Thus we denote them as

µ1
e = µ3

e ≡ µq, µ
2
e ≡ µq+ 1

2
, µ4

e ≡ µq− 1
2
,

∆l1 = ∆l3 ≡ ∆lq, ∆l2 ≡ ∆lq+ 1
2
, ∆l4 ≡ ∆lq− 1

2
.

The unit tangential vector tm = (tmξ , tmη ) and unit outward normal vector nm = (nm
ξ , nm

η ) of the m-th edge in
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the local ξ-η coordinates are represented as follows,

n1 =

(
− sin

∆θ

2
,− cos

∆θ

2

)
, t1 =

(
cos

∆θ

2
,− sin

∆θ

2

)
,

n3 =

(
− sin

∆θ

2
, cos

∆θ

2

)
, t3 =

(
cos

∆θ

2
, sin

∆θ

2

)
,

n2 = (1, 0), t2 = (0, 1), n4 = (−1, 0) , t4 = (0, 1).

We define (ρα,intm , (Mn)
α,int
m , (Mt)

α,int
m , Eα,int

m ) and (ρα,outm , (Mn)
α,out
m , (Mt)

α,out
m , Eα,out

m ) to represent the vari-

ables inside and outside the cell at the α-th quadrature point on the m-th edge, where Mn and Mt are the

normal and tangential momenta, respectively. According to the definition of one-dimensional spherical symme-

try, we have
(Ut)

α,int
1 = (Ut)

α,out
1 = (Ut)

α,int
3 = (Ut)

α,out
3 , α = 1, · · · , 4,

(Mn)
α,int
1 = −(Mn)

α,out
1 = (Mn)

α,int
3 = −(Mn)

α,out
3 , α = 1, · · · , 4,

(Un)
1,ν
δ = (Un)

2,ν
δ = (Un)

3,ν
δ = (Un)

4,ν
δ , δ = 2, 4, ν = ’int’ or ’out’,

(Mt)
1,ν
δ = −(Mt)

4,ν
δ , (Mt)

2,ν
δ = −(Mt)

3,ν
δ , δ = 2, 4, ν = ’int’ or ’out’,

where Ut = (ρ,Mt, E), Un = (ρ,Mn, E). By the above relationship, we get

p̂α1 = p̂α3 , p̂12 = p̂42, p̂22 = p̂32, p̂14 = p̂44, p̂24 = p̂34, α = 1, · · · , 4, (4.17)

where p̂αm is the numerical flux of pressure computed by (2.7) at the α-th quadrature point on the m-th edge,

which is independent of the l index. Moreover, using the symmetry property of grid at the (n+ 1)-th step, the

area and volume of the cell Iql at the (n+ 1)-th step can be denoted as follows

Sn+1
ql = Sn+1

q = µn+1
q ∆ln+1

q sin(∆θ), V n+1
ql =

2

3
sin(θqlc ) tan(∆θ/2)

(
(µn+1

q+ 1
2

)3 − (µn+1
q− 1

2

)3
)
. (4.18)

Thus, the full discretization of the scheme (4.15) is as follows,(
(M

ql

ξ )
n+1

(M
ql

η )
n+1

)
=

(
M

ql

ξ

M
ql

η

)
Vql

V n+1
ql

+
∆tn

V n+1
ql

(
−
∑4

m=1

∑4
α=1(ωαp̂

α
mrαmnm

ξ ∆lm) + pa sin(θ
ql
c )Sq

−
∑4

m=1

∑4
α=1(ωαp̂

α
mrαmnm

η ∆lm) + pa cos(θ
ql
c )Sq

)
, (4.19)

where the Euler forward time discretization is considered, m represents the cell edge, α represents the quadrature

point, and ωα is the quadrature weight. M
ql

ξ and M
ql

η are the cell averages of Mξ and Mη, respectively, which

are also the first coefficients of the corresponding polynomials in (4.7). Using (4.17), (3.10), µα
1 = µα

3 and

rα1 = µα
1 sin

(
θqlc − ∆θ

2

)
, rα3 = µα

3 sin

(
θqlc +

∆θ

2

)
,

r12 + r42 = r22 + r32 = 2µq+ 1
2
sin(θqlc ), r14 + r44 = r24 + r34 = 2µq− 1

2
sin(θqlc ),

we have

4∑
m=1

4∑
α=1

(ωαp̂
α
mrαmnm

ξ ∆lm)

=− sin(∆θ/2)∆lq

4∑
α=1

(p̂α1 (r
α
1 + rα3 )ωα) + ∆lq+ 1

2

(
p̂12ω1(r

1
2 + r42) + p̂22ω2(r

2
2 + r32)

)
−∆lq− 1

2

(
p̂14ω1(r

1
4 + r44) + p̂24ω2(r

2
4 + r34)

)
=

[
−∆lq sin(∆θ)

4∑
α=1

(p̂α1µ
α
1ωα) + 2∆lq+ 1

2
µq+ 1

2
(p̂12ω1 + p̂22ω2)− 2∆lq− 1

2
µq− 1

2
(p̂14ω1 + p̂24ω2)

]
sin(θqlc ),

(4.20)
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and

−
4∑

m=1

4∑
α=1

(ωαp̂
α
mrαmnm

η ∆lm) + pa cos θ
ql
c Sq

=− cos(∆θ/2)∆lq

4∑
α=1

(p̂α1 (r
α
3 − rα1 )ωα) +

∑
α(p̂

α
1ωαµ

α
1 + p̂α3ωαµ

α
3 )∑

α(ωαµα
1 + ωαµα

3 )
cos(θqlc )µq∆lq sin(∆θ)

=− sin(∆θ) cos(θqlc )∆lq

4∑
α=1

(p̂α1µ
α
1ωα) +

4∑
α=1

(p̂α1ωαµ
α
1 ) cos(θ

ql
c )∆lq sin(∆θ)

=0.

(4.21)

By (4.18), (4.20) and (3.10), we know that 1
V n+1
ql

(
−
∑4

m=1

∑4
α=1(ωαp̂

α
mrαmnm

ξ ∆lm) + pa sin(θ
ql
c )Sq

)
is indepen-

dent of the l index, so we simplify it to

1

V n+1
ql

(
−

4∑
m=1

4∑
α=1

(ωαp̂
α
mrαmnm

ξ ∆lm) + pa sin(θ
ql
c )Sq

)
≡ RHS

q

ξ. (4.22)

According to Definition 4.1, we get M
ql

ξ = M
q

ξ, M
ql

η = 0. Substituting (4.18), (4.21) and (4.22) into (4.19), we

obtain (
(M

ql

ξ )
n+1

(M
ql

η )
n+1

)
=

(
M

q

ξ

0

) µ3
q+ 1

2

− µ3
q− 1

2(
µn+1
q+ 1

2

)3
−
(
µn+1
q− 1

2

)3 +∆tn
(

RHS
q

ξ

0

)
. (4.23)

By now, we can conclude that the cell averages of momentum at the (n+1)-th step are symmetric, i.e., (M
ql

ξ )
n+1

is independent of the l index and (M
ql

η )
n+1 = 0.

(2) The proof of symmetry preservation for the scheme (4.16).

We first analyze the momentum component Mql
η . Define the mass matrix of the scheme (4.16) as follows,

Mql(t) =

∫∫
Iql(t)

(
(ξ − ξqc )

2 (ξ − ξqc )(η − ηqc )
(ξ − ξqc )(η − ηqc ) (η − ηqc )

2

)
dzdr =

(
Mql

11(t) 0

0 Mql
22(t)

)
,

where Mql
11 and Mql

22 are independent of the l index. So we denote Mql as

Mql(t) ≡ Mq(t) ≡
(
Mq

11(t) 0
0 Mq

22(t)

)
.

The fully discrete scheme of Mql
η in (4.16) is as follows,(

(Mql
η,2)

n+1

(Mql
η,3)

n+1

)
= ((Mq)n+1)−1Mq

(
Mql

η,2

Mql
η,3

)
+ ((Mq)n+1)−1∆tn

(
bqlη,2
bqlη,3

)
, (4.24)

where Mql
η,2 and Mql

η,3 are the last two coefficients of the Mql
η polynomial in (4.7). According to Definition 4.1,

we get Mql
η,2 = 0, M ql

η,3 = Mq
η,3. Here bqlη,2 and bqlη,3 are the right hand terms of Mη in (4.16), which are defined

in detail as follows,

bqlη,2 =

∫∫
Iql

Mηuξdzdr −
dξqc
dt

∫∫
Iql

Mηdzdr −
∫
∂Iql

M̂η(û · n− ug
n)(ξ − ξqc )ds

−
∫
∂Iql

p̂nη(ξ − ξqc )ds−
ua
r

ra

∫∫
Iql

Mη(ξ − ξqc )dzdr,

bqlη,3 =

∫∫
Iql

Mηuηdzdr −
∫
∂Iql

M̂η(û · n− ug
n)(η − ηqc )ds

+

∫∫
Iql

pdzdr −
∫
∂Iql

p̂nη(η − ηqc )ds−
ua
r

ra

∫∫
Iql

Mη(η − ηqc )dzdr.

(4.25)

Next, we analyze each term in (4.25). Let Hα,β , (α, β = 1, · · · , 4) be the value of variable H at the (α, β)

Gauss-Lobatto quadrature point in the Iql cell, see Fig. 4.3. Since the grid and the numerical solution are
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Figure 4.3: The Gauss-Lobatto quadrature points in the cell Iql.

symmetrical at the n-th step, we have

Fα,β = Fα′,β , G1,β = −G4,β , G2,β = −G3,β , α, α
′, β = 1, · · · , 4, (4.26)

where F = ρ,E,Mξ, uξ, p, ξ, J and G = Mη, uη, η. Here J is Jacobian of coordinate transformation defined in

(2.14). Since the cell is an equal-sided trapezoid, we have Jα,β = Jα′,β . And these variables are independent of

the l index. By the above relationship, we get∫∫
Iql

FGdzdr =

4∑
α,β=1

(ωα,βFα,βGα,βJα,β) = 0,

∫∫
Iql

FFdzdr =

4∑
α,β=1

(
ωα,βF2

α,βJα,β
)

∫∫
Iql

GGdzdr =
4∑

α,β=1

(
ωα,βG2

α,βJα,β
)
= 2

4∑
β=1

(
ω1,βG2

1,βJ1,β + ω2,βG2
2,βJ2,β

)
.

Specifically, we have ∫∫
Iql

Mηuξdzdr = 0,

∫∫
Iql

Mηdzdr = 0,

∫∫
Iql

Mη(ξ − ξqc )dzdr = 0. (4.27)

∫∫
Iql

Mηuηdzdr,
∫∫

Iql
pdzdr and

∫∫
Iql

Mη(η − ηqc )dzdr are independent of the l index. Using (3.11), we obtain

ua
r

ra
=

uql
ξ sin(θqlc )

ξqlc sin(θqlc )
=

uq
ξ

ξqc
. (4.28)

Thus, ua
r/ra depends only on the q index. For the normal grid velocity ug

n, by formulas (4.14) and (2.10), we

have

ug
n|1,3 = 0, ug

n|2 = Cq+ 1
2 , ug

n|4 = Cq− 1
2 ,

where ug
n|m represents the normal component of the grid velocity on the m-th edge of the cell, Cq+ 1

2 and Cq− 1
2

are two constants that depend only on the q index. Moreover, similar to the analysis of (4.12) and (4.17), it is

easy to obtain

(û · n)α1 = (û · n)α3 = 0, (û · n)1δ = (û · n)4δ , (û · n)2δ = (û · n)3δ , α = 1, · · · , 4, δ = 2, 4,

(M̂η)
1
δ = −(M̂η)

4
δ , (M̂η)

2
δ = −(M̂η)

3
δ , δ = 2, 4,
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where Ûα
m is the corresponding numerical flux at the α-th quadrature point on the m-th edge of the cell Iql.

Thus, the integrals along the cell edges are expressed as follows,∫
∂Iql

M̂η(û · n− ug
n)(ξ − ξqc )ds

=∆lq+ 1
2
(µq+ 1

2
− ξqc )

[
ω1

(
(M̂η)

1
2 + (M̂η)

4
2

) (
(û · n)12 − ug

n|2
)
+ ω2

(
(M̂η)

2
2 + (M̂η)

3
2

) (
(û · n)22 − ug

n|2
)]

+∆lq− 1
2
(µq− 1

2
− ξqc )

[
ω1

(
(M̂η)

1
4 + (M̂η)

4
4

) (
(û · n)14 − ug

n|4
)
+ ω2

(
(M̂η)

2
4 + (M̂η)

3
4

) (
(û · n)24 − ug

n|4
)]

=0,
(4.29)∫

∂Iql

(p̂nη(ξ − ξqc ))ds = −∆lq cos

(
∆θ

2

) 4∑
α=1

(ωαp̂
α
1 (ξ

α
1 − ξqc )) + ∆lq cos

(
∆θ

2

) 4∑
α=1

(ωαp̂
α
3 (ξ

α
3 − ξqc )) = 0. (4.30)

Analogously,
∫
∂Iql

M̂η(û · n − ug
n)(η − ηqc )ds and

∫
∂Iql

(p̂nη(η − ηqc ))ds are independent of the l index. By the

above analyses, we obtain that bqlη,2 = 0 and bqlη,3 = bqη,3 is independent of the l index in (4.25). Thus, the scheme

(4.24) is further written as(
(Mql

η,2)
n+1

(Mql
η,3)

n+1

)
=

(
Mq

11/(M
q
11)

n+1 0
0 Mq

22/(M
q
22)

n+1

)(
0

Mq
η,3

)
+∆tn

(
0

bqη,3/(M
q
22)

n+1

)
. (4.31)

From the scheme (4.31), we can find that the last two coefficients of the Mql
η polynomial satisfy the symmetry

condition at the (n+1)-th step, i.e., (Mql
η,2)

n+1 = 0, and (Mql
η,3)

n+1 is independent of the l index. Similarly, we

can analyze that the last two coefficients of the Mql
ξ polynomial satisfy the definition of the spherical symmetry.

The proof of the theorem is completed. □

Remark 4.1 The Lagrangian DG scheme in the z-r coordinates is equivalent to that in the local ξ-η coordinates.

In the analysis of spherical symmetry preservation, we use the basis functions (4.6) and the expressions (4.7) of

the conserved variables (ρ,Mξ,Mη, E) in the cell’s local ξ-η coordinates. In practice, we use the basis functions

(3.8) and solve the conserved variables (ρ,Mz,Mr, E) in the DG scheme (3.6)-(3.7) in the z-r coordinates.

Remark 4.2 In this paper, we use the HLLC numerical flux and the upwind numerical flux. Other numerical

fluxes such as the Dukowicz or Godunov fluxes can also be selected, and the proof of symmetry preservation

will also work well. However, the Lax-Friedrichs flux should be used with caution. More specifically, the Lax-

Friedrichs flux can be used in the parts of the scheme where the test functions are not equal to 1, but not in the

cell average equations, because it may cause a change in the cell mass during the time evolution, which is not

allowed in the pure Lagrangian method. Here we do not intend to further compare the features and numerical

performance between different numerical fluxes. Please refer to [8] for a more in-depth discussion of these

numerical fluxes.

5 Numerical tests

5.1 Accuracy tests

In this subsection, we test the accuracy of the Lagrangian DG schemes for the two-dimensional compressible

Euler equations. The first three examples are computed in the Cartesian coordinates using the DG scheme (2.6),

focusing on verifying the importance of the term
∫
∂I(t)

(
Û(u− ug) · nϕj

)
ds (j = 2, 3) for maintaining second-

order accuracy. The last example is computed in the cylindrical coordinates using the symmetry-preserving and

conservative DG scheme (3.6)-(3.7) to verify that the design of this DG scheme in two-dimensional cylindrical
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geometry does not change the original second-order accuracy. The Courant number λ = 0.4 is applied in these

examples.

Example 5.1

In the Cartesian coordinates, let us first consider an example where the velocity is constant, which can be found

in [21]. We set the initial condition is as follows:

ρ0(x, y) = 1 + 0.5 sin(x+ y), (u0, v0) = (1, 1), p0 = 1, (x, y) ∈ [0, 2π]2.

The exact solutions are

ρ(x, y, t) = 1 + 0.5 sin(x+ y − 2t), u(x, y, t) = (1, 1), p(x, y, t) = 1,

with γ = 1.4. The periodic boundary conditions are used.

The computational domain is divided into uniform squares with mesh size h = 2π
N at t = 0. We take final time

t = 0.1. The numerical errors of the Lagrangian DG scheme (2.6) containing the term
∫
∂I(t)

(
Û(û · n− ug

n)ϕj

)
ds

(j = 2, 3) are shown in Table 5.1, where we can see the second-order accuracy of density. Here we only show the

error table of density. In fact, the error tables of momentum and total energy are the same as that of density,

because the exact solutions for momentum and total energy are similar to the density, and the errors of pressure

and velocity are close to machine zero.

If we test the scheme (2.6) without the term
∫
∂I(t)

(
Û(û · n− ug

n)ϕj

)
ds (j = 2, 3), the numerical convergence

rates do not change. It shows that in the simple example where the velocity is constant, the DG scheme (2.6)

without this term may maintain second-order accuracy. However, this conclusion cannot be generalized to the

more complicated examples.

Table 5.1: Errors of the scheme (2.6) for density ρ in Example 5.1.

N(=M) L2 error Order(L2) L1 error Order(L1) L∞ error Order(L∞)
20 3.4271E-3 - 2.4601E-3 - 1.4087E-2 -
40 8.5931E-4 2.00 6.1788E-4 1.99 3.5401E-3 1.99
80 2.1499E-4 2.00 1.5465E-4 2.00 8.8617E-4 2.00
160 5.3756E-5 2.00 3.8673E-5 2.00 2.2161E-4 2.00

Example 5.2

The example is an isentropic problem with smooth solutions [25]. The initial condition is:

ρ0(x, y) =
1 + 0.2 sin(x+y

2 )
√
6

, u0(x, y) = v0(x, y) =

√
γ

2
ρ0, p0(x, y) = ργ0 , (x, y) ∈ [0, 4π]2,

with the periodic boundary condition. If we take γ = 3, we can verify that
√
6ρ(x, y, t) is the exact solution of

the two-dimensional Burgers’ equation:

µt +

(
µ2

2

)
x

+

(
µ2

2

)
y

= 0, µ0(x, y) = 1 + 0.2 sin

(
x+ y

2

)
,

and

u(x, y, t) = v(x, y, t) =

√
γ

2
ρ(x, y, t), p(x, y, t) = ρ(x, y, t)γ .
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The errors and numerical rates of convergence at t = 0.3 are summarized in Table 5.2, where the Lagrangian

DG scheme (2.6) containing
∫
∂I(t)

(
Û(û · n− ug

n)ϕj

)
ds (j = 2, 3) is used. One can observe that the numerical

rates for all the variables are second-order.

For comparison, we test the DG scheme without the term
∫
∂I(t)

(
Û(û · n− ug

n)ϕj

)
ds (j = 2, 3), which is

used in some references. The numerical results are shown in Table 5.3, where we can see that although the

accuracy for pressure and velocity is second-order, the DG scheme without this term cannot achieve the second-

order accuracy of the conserved variables such as density, momentum and total energy. Therefore, this term∫
∂I(t)

(
Û(û · n− ug

n)ϕj

)
ds (j = 2, 3) is essential for maintaining the second-order accuracy of the conserved

variables.

Table 5.2: Errors of the scheme (2.6) with the term
∫
∂I(t)

(
Û(û · n− ug

n)ϕj

)
ds (j = 2, 3) for Example 5.2.

N(=M) L2 error Order(L2) L1 error Order(L1) L∞ error Order(L∞)

density

20 6.3343E-4 - 4.5095E-4 - 3.0721E-3 -
40 1.6286E-4 1.96 1.1422E-4 1.98 8.0958E-4 1.92
80 4.1050E-5 1.99 2.8664E-5 1.99 2.0611E-4 1.97
160 1.0289E-5 2.00 7.1734E-6 2.00 5.1881E-5 1.99

energy

20 6.7266E-4 - 4.6420E-4 - 4.2210E-3 -
40 1.7167E-4 1.97 1.1616E-4 2.00 1.1053E-3 1.93
80 4.2988E-5 2.00 2.8843E-5 2.01 2.8064E-4 1.98
160 1.0733E-5 2.00 7.1822E-6 2.01 7.0365E-5 2.00

momentum

20 9.2059E-4 - 6.7070E-4 - 5.0251E-3 -
40 2.3772E-4 1.95 1.7340E-4 1.95 1.3125E-3 1.94
80 5.9815E-5 1.99 4.3714E-5 1.99 3.3311E-4 1.98
160 1.4961E-5 2.00 1.0938E-5 2.00 8.3708E-5 1.99

pressure

20 3.6204E-4 - 2.6384E-4 - 2.0501E-3 -
40 9.1724E-5 1.98 6.5348E-5 2.01 5.4701E-4 1.91
80 2.2957E-5 2.00 1.6165E-5 2.02 1.3935E-4 1.97
160 5.7382E-6 2.00 4.0202E-6 2.01 3.5081E-5 1.99

velocity

20 1.2683E-3 - 9.6882E-4 - 5.3977E-3 -
40 3.3400E-4 1.92 2.5803E-4 1.91 1.3724E-3 1.98
80 8.4498E-5 1.98 6.5417E-5 1.98 3.5264E-4 1.96
160 2.1157E-5 2.00 1.6387E-5 2.00 8.9245E-5 1.98
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Table 5.3: Errors of the scheme (2.6) without the term
∫
∂I(t)

(
Û(û · n− ug

n)ϕj

)
ds (j = 2, 3) for Example 5.2.

N(=M) L2 error Order(L2) L1 error Order(L1) L∞ error Order(L∞)

density

20 7.2387E-4 - 5.2452E-4 - 3.5514E-3 -
40 2.4817E-4 1.54 1.8622E-4 1.49 1.1039E-3 1.69
80 9.7553E-5 1.35 7.4449E-5 1.32 3.7777E-4 1.55
160 4.3194E-5 1.18 3.2767E-5 1.18 1.4939E-4 1.34

energy

20 6.8450E-4 - 4.6609E-4 - 4.3997E-3 -
40 1.8829E-4 1.86 1.2743E-4 1.87 1.2299E-3 1.84
80 5.3852E-5 1.81 3.7582E-5 1.76 3.4847E-4 1.82
160 1.7216E-5 1.65 1.2502E-5 1.59 1.0491E-4 1.73

momentum

20 9.6597E-4 - 7.1278E-4 - 5.3497E-3 -
40 2.8686E-4 1.75 2.1535E-4 1.73 1.5837E-3 1.76
80 9.3255E-5 1.62 7.1284E-5 1.60 4.8409E-4 1.71
160 3.5299E-5 1.40 2.7241E-5 1.39 1.6269E-4 1.57

pressure

20 3.6305E-4 - 2.5892E-4 - 2.1125E-3 -
40 9.4237E-5 1.95 6.5639E-5 1.98 5.7127E-4 1.89
80 2.3813E-5 1.98 1.6391E-5 2.00 1.4632E-4 1.97
160 5.9640E-6 2.00 4.0891E-6 2.00 3.6827E-5 1.99

velocity

20 1.2703E-3 - 9.7402E-4 - 5.3031E-3 -
40 3.3391E-4 1.93 2.5815E-4 1.92 1.3777E-3 1.94
80 8.4382E-5 1.98 6.5299E-5 1.98 3.5432E-4 1.96
160 2.1120E-5 2.00 1.6339E-5 2.00 8.9342E-5 1.99

Example 5.3 Taylor-Green vortex problem

The two-dimensional Taylor-Green vortex problem [4] is a benchmark test with analytical solutions. The initial

condition is prescribed by

ρ0 = 1, u0(x, y) = sin(πx) cos(πy), v0(x, y) = − cos(πx) sin(πy), p0(x, y) =
1

4
(cos(2πx) + cos(2πy)) + 1.

The working fluid is ideal gas with γ = 5
3 . In the compressible inviscid case, a source term is required in the

energy equation to make the flow steady state:

S =
π

4(γ − 1)
(cos(3πx) cos(πy)− cos(πx) cos(3πy)).

The computational domain is a square [0, 1]× [0, 1]. We set the final time to t = 0.4. The final mesh and the

pressure results with N = M = 40 are shown in Fig. 5.1. The numerical errors at t = 0.4 are listed in Table

5.4. From the table, we can find the second-order accuracy for all the variables.

Moreover, if we test the DG scheme (2.6) without
∫
∂I(t)

(
Û(û · n− ug

n)ϕj

)
ds (j = 2, 3), the numerical errors

are shown in Table 5.5, where we can find that the numerical rates of convergence for the conserved variables

are only first-order. Therefore, we can not simply throw the term
∫
∂I(t)

(
Û(û · n− ug

n)ϕj

)
ds away.
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Table 5.4: Errors of the scheme (2.6) with the term
∫
∂I(t)

(
Û(û · n− ug

n)ϕj

)
ds (j = 2, 3) for Example 5.3.

N(=M) L2 error Order(L2) L1 error Order(L1) L∞ error Order(L∞)

density

20 2.1267E-3 - 1.6721E-3 - 6.5795E-3 -
40 5.0453E-4 2.08 3.8701E-4 2.11 1.7409E-3 1.92
80 1.2411E-4 2.02 9.4499E-5 2.03 4.6227E-4 1.91
160 3.1072E-5 2.00 2.3649E-5 2.00 1.1993E-4 1.95

energy

20 4.3517E-3 - 3.2839E-3 - 2.0350E-2 -
40 1.1348E-3 1.94 8.4958E-4 1.95 5.4646E-3 1.90
80 2.9833E-4 1.93 2.2105E-4 1.94 1.4044E-3 1.96
160 7.7635E-5 1.94 5.7020E-5 1.95 3.5544E-4 1.98

momentum

20 7.2207E-3 - 5.8144E-3 - 2.5404E-2 -
40 1.9873E-3 1.86 1.5857E-3 1.87 7.1634E-3 1.83
80 5.2970E-4 1.91 4.1931E-4 1.92 1.9207E-3 1.90
160 1.3780E-4 1.94 1.0839E-4 1.95 5.0126E-4 1.94

pressure

20 2.9431E-3 - 2.1581E-3 - 1.2579E-2 -
40 7.8672E-4 1.90 5.4266E-4 1.99 3.6839E-3 1.77
80 2.0911E-4 1.91 1.3823E-4 1.97 1.0339E-3 1.83
160 5.4608E-5 1.94 3.5325E-5 1.97 2.8015E-4 1.88

velocity

20 6.8693E-3 - 5.5689E-3 - 2.3222E-2 -
40 1.9169E-3 1.84 1.5328E-3 1.86 6.9587E-3 1.74
80 5.1440E-4 1.90 4.0665E-4 1.91 1.9592E-3 1.83
160 1.3425E-4 1.94 1.0526E-4 1.95 5.2496E-4 1.90
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Figure 5.1: The mesh and pressure results of the Taylor-Green vortex problem.
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Table 5.5: Errors of the scheme (2.6) without the term
∫
∂I(t)

(
Û(û · n− ug

n)ϕj

)
ds (j = 2, 3) for Example 5.3.

N(=M) L2 error Order(L2) L1 error Order(L1) L∞ error Order(L∞)

density

20 2.1017E-2 - 1.2833E-2 - 1.1689E-1 -
40 8.0879E-3 1.38 5.4191E-3 1.24 4.2067E-2 1.47
80 3.5251E-3 1.20 2.5289E-3 1.10 1.7455E-2 1.27
160 1.7617E-3 1.00 1.2797E-3 0.98 8.6082E-3 1.02

energy

20 8.4084E-3 - 5.8782E-3 - 4.0676E-2 -
40 3.1346E-3 1.42 1.8599E-3 1.66 1.8472E-2 1.14
80 1.3451E-3 1.22 7.9885E-4 1.22 7.8895E-3 1.23
160 6.4433E-4 1.06 4.0886E-4 0.97 3.5949E-3 1.13

momentum

20 1.2845E-2 - 9.4996E-3 - 5.7429E-2 -
40 5.2018E-3 1.30 3.5022E-3 1.44 2.9045E-2 0.98
80 2.5820E-3 1.01 1.7468E-3 1.00 1.4451E-2 1.01
160 1.3707E-3 0.91 9.4824E-4 0.88 7.1802E-3 1.01

pressure

20 4.1164E-3 - 2.6122E-3 - 2.4156E-2 -
40 1.2405E-3 1.73 7.2898E-4 1.84 7.7175E-3 1.65
80 3.4340E-4 1.85 1.9837E-4 1.88 2.1386E-3 1.85
160 9.0444E-5 1.92 5.2362E-5 1.92 5.5093E-4 1.96

velocity

20 8.3221E-3 - 6.1654E-3 - 4.0584E-2 -
40 2.3862E-3 1.80 1.6399E-3 1.91 1.4311E-2 1.50
80 6.8717E-4 1.80 4.8047E-4 1.77 4.4504E-3 1.69
160 2.4293E-4 1.50 1.8721E-4 1.36 1.3144E-3 1.76

Example 5.4 The free expansion problem

In the cylindrical coordinates, we test the accuracy of the Lagrangian DG scheme (3.6)-(3.7) on a free expansion

problem [40]. The initial computational domain is [0, 1] × [0, π/2] defined in the polar coordinates. Its initial

condition is:

ρ0 = 1, uz,0 = ur,0 = 0, p0(z, r) = 1− (z2 + r2).

The problem has the following analytical solutions,

R(t) =
√
(1 + 2t2),

uz(z, r, t) =
2t

1 + 2t2
z, ur(z, r, t) =

2t

1 + 2t2
r,

ρ(z, r, t) =
1

R3
,

p(z, r, t) =
1

R5
(1− z2 + r2

R2
),

where R is radius of the free outer boundary.

We perform the test on two different types of grids as shown in Fig. 5.2. The first one is an initially

equal-angled polar grid. The second one is an initially non-uniform smooth polar grid, for which each internal

grid vertex is obtained by a smooth perturbation from an equal-angled polar grid as follows

zq− 1
2 ,l−

1
2
= ξq− 1

2
cos(

1

2
πθl− 1

2
) + ϵ sin(2πξq− 1

2
) sin(2πθl− 1

2
),

rq− 1
2 ,l−

1
2
= ξq− 1

2
sin(

1

2
πθl− 1

2
) + ϵ sin(2πξq− 1

2
) sin(2πθl− 1

2
), q = 1, · · · , Q, l = 1, · · · , L,

where ξq− 1
2
= q−1

Q , θl− 1
2
= l−1

L , (zq− 1
2 ,l−

1
2
, rq− 1

2 ,l−
1
2
) is the grid point in the z-r coordinates with the sequential

indices (q, l) in the radial and angular directions respectively. Q,L represent the number of cells in the above

mentioned two directions. ϵ is a parameter which is chosen as 0.015 in this test. Free boundary condition is

applied on the outer boundary.
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Figure 5.2: The initial grid of the free expansion problem with 20× 20 cells.
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Figure 5.3: The final grid of the free expansion problem with 20× 20 cells at t = 1.

Fig. 5.3 shows the final grids at t = 1. The errors of the spherical symmetry-preserving DG scheme (3.6)-

(3.7) on these two kinds of grids are listed in Tables 5.6-5.7, which are measured on the interval [ 15Q, 4
5Q]× [1, L]

to remove the influence from the boundary. In Tables 5.6 and 5.7, we can observe the expected second-order

accuracy, which means that the design of the symmetry-preserving DG scheme (3.6)-(3.7) in two-dimensional

cylindrical geometry does not change the accuracy.
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Table 5.6: Errors of the scheme (3.6)-(3.7) for Example 5.4 using Q× L initially equal-angled polar grid cells.

Q(=L) L2 error Order(L2) L1 error Order(L1) L∞ error Order(L∞)

density

10 2.8103E-3 - 2.3963E-3 - 5.0009E-3 -
20 8.2328E-4 1.77 6.9510E-4 1.79 1.4304E-3 1.81
40 2.2858E-4 1.85 1.9084E-4 1.86 3.5966E-4 1.99
80 6.0328E-5 1.92 4.9539E-5 1.95 9.8956E-5 1.86

energy

10 7.0455E-4 - 6.1108E-4 - 1.3147E-3 -
20 2.1672E-4 1.70 1.9592E-4 1.64 3.8867E-4 1.76
40 6.1611E-5 1.81 5.7048E-5 1.78 9.7387E-5 2.00
80 1.6580E-5 1.89 1.5453E-5 1.88 2.6085E-5 1.90

momentum

10 1.3741E-3 - 9.8534E-4 - 3.1078E-3 -
20 3.8569E-4 1.83 2.7143E-4 1.86 9.1867E-4 1.76
40 1.0225E-4 1.92 7.2552E-5 1.90 2.3750E-4 1.95
80 2.5644E-5 2.00 1.8597E-5 1.96 5.5974E-5 2.09

Table 5.7: Errors of the scheme (3.6)-(3.7) for Example 5.4 using Q×L initially non-uniform smooth polar grid
cells.

Q(=L) L2 error Order(L2) L1 error Order(L1) L∞ error Order(L∞)

density

10 2.9124E-3 - 2.4682E-3 - 5.8851E-3 -
20 8.4991E-4 1.78 7.1383E-4 1.79 1.6567E-3 1.83
40 2.3443E-4 1.86 1.9492E-4 1.87 4.2777E-4 1.95
80 6.1537E-5 1.93 5.0254E-5 1.96 1.0970E-4 1.96

energy

10 7.2766E-4 - 6.2697E-4 - 1.6082E-3 -
20 2.2168E-4 1.71 1.9951E-4 1.65 4.6636E-4 1.79
40 6.2534E-5 1.83 5.7703E-5 1.79 1.2011E-4 1.96
80 1.6744E-5 1.90 1.5503E-5 1.90 2.9233E-5 2.04

momentum

10 1.4726E-3 - 1.0473E-3 - 3.8238E-3 -
20 4.1065E-4 1.84 2.8895E-4 1.86 1.1034E-3 1.79
40 1.0767E-4 1.93 7.6503E-5 1.92 2.9088E-4 1.92
80 2.6733E-5 2.01 1.9395E-5 1.98 7.0604E-5 2.04

Next, we focus on verifying the properties of spherical symmetry and non-oscillation of the second-order DG

scheme (3.6)-(3.7).

5.2 Spherical symmetry-preserving tests in two-dimensional cylindrical coordi-
nates

In this subsection, we test six well-known examples in two-dimensional cylindrical coordinates. The second-

order DG scheme (3.6)-(3.7) on initially equal-angled polar grid is used in the following tests unless otherwise

stated. The material is ideal gas with the ratio of specific heat capacities γ = 5
3 . Reflective boundary conditions

are applied to the z and r axes in all the tests. µ =
√
z2 + r2 is the radial coordinate. uµ and uθ represent the

values of velocity in the radial and angular directions in local polar coordinates. The multi-resolution WENO

limiter [48] is used to avoid spurious oscillations in most examples except the Sod and Kidder problems, and

we use the local characteristic decomposition along the normal direction of the cell edges when applying the

WENO limiter. According to [13], in order not to affect the symmetry-preserving property, the WENO limiter

is accomplished in the cell’s local ξ-η coordinates.

Example 5.5 The one-dimensional spherical Sod Riemann problem
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The spherical Sod shock tube [42] is a classical test problem. For this problem, the initial computational domain

is [0, 20]× [0, π/2] defined in the polar coordinates with the following initial condition:

(ρ, uµ, uθ, p) =

{
(1, 0, 0, 1), 0 ≤ µ ≤ 10,

(0.125, 0, 0, 0.1), 10 ≤ µ ≤ 20.

The reflective boundary condition is applied on the outer boundary. The initial grid consists of 400× 10 equal-

angled polar cells. The final time is set to t = 1.4. Fig. 5.4 shows the numerical results of the mesh and density

contour of the second-order DG scheme (3.6)-(3.7), and density as a function of the radial radius at all grid

points performed by both the second-order scheme and the first-order scheme. Here the reference solution is the

converged result obtained by using a one-dimensional second-order Eulerian code in the spherical coordinate

with 10000 grid points. We observe the good symmetry behavior of the scheme. And the numerical results of

the second-order DG scheme are less dissipative than the first-order solutions.
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Figure 5.4: The results of the Sod problem with 400 × 10 cells at t = 1.4. Left: final grid; Middle: density
contour of the second-order scheme; Right: density ρ versus radial radius µ at all grid points.

Example 5.6 The Noh problem in the cylindrical coordinate system

The Noh problem [38] is a typical test problem which is widely used to validate the performance of Lagrangian

schemes on strong shocks. In this problem, the initial condition is as follows:

ρ = 1, uµ = −1, uθ = 0, p = 10−5.

The equal-angled polar grid is applied in the 1
4 -circle computational domain defined in the polar coordinates

by [0, 1] × [0, π
2 ]. Free boundary condition is used on the outer boundary. The shock is generated by bringing

the cold gas to rest at the origin. The analytical post shock density is 64 and the shock speed is 1/3. Fig. 5.5

shows the numerical results with initially equal-angled polar cells at t = 0.6. We can find that the final mesh

and density contour are symmetric. The scatter plots of density obtained from the first-order scheme and the

second-order DG scheme are non-oscillatory. And the density from the second-order DG scheme is closer to the

analytical solution than that from the first-order scheme.
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Figure 5.5: The results of the Noh problem at t = 0.6. Left: final grid with 100 × 20 cells; Middle: density
contour of the second-order scheme with 100× 20 cells; Right: density ρ versus radial radius µ at all grid points
with 100× 20 or 200× 40 cells.

Example 5.7 Implosion problem of Lazarus

Implosion problem of Lazarus [24] has self-similar solutions. In this problem, the initial condition is described

as follows:

ρ = 1, uµ = uθ = 0, e = 10−5.

A sphere of unit initial radius is driven by an inward radial velocity given by

uµ(t) = − αf

(1− ft)1−α
,

where α = 0.6883545, f = 1− ϵt− δt3, ϵ = 0.185, δ = 0.28. The initial computational domain is [0, 1]× [0, π/2]

defined in the polar coordinates. Free boundary condition is applied on the outer boundary. We test the problem

on an initially equal-angled polar grid of 200× 30 cells. Fig. 5.6 shows the results of the DG scheme (3.6)-(3.7)

including the final grid and density solutions at t = 0.74, 0.8. Here the reference solutions are computed using

a one-dimensional second-order Lagrangian code in the spherical coordinate with 10000 cells. In the plots of

grid and density contour, we observe the expected symmetry. The non-oscillatory property is well reflected in

the scatter plot of density. Compared with the first-order scheme, we find that the numerical solutions from

the second-order DG scheme have higher resolution.
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Figure 5.6: The results of the Lazarus problem with 200× 30 cells. Left: final grid at t = 0.8; Middle: density
contour of the second-order scheme at t = 0.8; Right: density ρ versus radial radius µ at all grid points at
t = 0.74 and t = 0.8.

Example 5.8 Kidder’s isentropic compression problem [23,34]
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In [23], Kidder has computed the analytical solution of the self-similar isentropic compression for a shell filled

with perfect gas. At the initial time, we set the computational region as [µ1, µ2]×[0, π/2] in the polar coordinates.

The initial density, velocity and pressure have the following expression,

ρ0(µ) =

(
µ2
2 − µ2

µ2
2 − µ2

1

ργ−1
1 +

µ2 − µ2
1

µ2
2 − µ2

1

ργ−1
2

) 1
γ−1

, u0 = 0, p0(µ) = s (ρ0(µ))
γ
,

where µ1 = 0.9, µ2 = 1.0, ρ1 = 6.31× 10−4, ρ2 = 10−2, s = 2.15× 104. With the time marching, the pressure

p1(t) and p2(t) are imposed continuously at the internal and external boundaries respectively which have the

following representation

p1(t) = p01a(t)
− 2γ

γ−1 , p2(t) = p02a(t)
− 2γ

γ−1 ,

where p01 = 0.1, p02 = 10 and a(t) =

√
1−

(
t
τ

)2. τ = 6.72× 10−3 is the focusing time of the shell and t ∈ [0, τ)

is the evolving time. The analytical solutions of the three fundamental variables for this problem in spherical

geometry are as follows:
ρ(ζ(µ, t), t) = ρ0(µ)a(t)

− 2
γ−1 ,

uξ(ζ(µ, t), t) = µ
d

dt
a(t),

p(ζ(µ, t), t) = p0(µ)a(t)
− 2γ

γ−1 ,

where ζ(µ, t) represents the radius at time t of a point initially located at radius µ. Its analytical solution is

ζ(µ, t) = a(t)µ.

We test the problem on an initially 40 × 80 equal-angular grid. The final time is set to be t = 0.99τ .

We display the numerical results of the DG scheme (3.6)-(3.7) in Fig. 5.7 and Fig. 5.8. From the figures,

we observe the non-oscillatory and symmetry-preserving properties of the DG scheme. Compared with the

first-order scheme, the numerical solutions from the second-order DG scheme are much closer to the analytical

solutions.
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Figure 5.7: The results of the Kidder problem with 40 × 80 cells at t = 0.99τ . Left: initial grid; Middle: final
grid of the second-order scheme; Right: density contour of the second-order scheme.

31



radius

d
e

n
s

it
y

0.13 0.135 0.14
0

0.5

1

1.5

2

2.5

3

3.5

4

exact

1st order 40×80

2nd order 40 ×80

radius

v
e

lo
c

it
y

0.13 0.135 0.14
­1060

­1040

­1020

­1000

­980

­960

­940

exact

1st order 40×80

2nd order 40×80

radius

p
re

s
s

u
re

0.13 0.135 0.14

0

50000

100000

150000

200000

exact

1st order 40×80

2nd order 40×80

Figure 5.8: Scatter plot of three fundamental variables as a function of the radial position at all grid points in
the Kidder problem. Left: density ρ versus radial radius µ; Middle: velocity uµ versus radial radius µ; Right:
pressure p versus radial radius µ.

Example 5.9 The spherical Sedov problem in cylindrical coordinate system

The spherical Sedov blast wave problem [40] in the cylindrical coordinates is a commonly used example of a

diverging shock wave. Consider this problem with the initial condition as:

ρ = 1, uµ = uθ = 0,

and the initial internal energy e = 10−6 almost everywhere except in the cells connected to the origin where

they share a total value of 0.2468. Reflective boundary conditions are used on all boundaries. The analytical

solution is a shock with a peak density of 4 at radius unity at t = 1.

In this work, we consider two different types of grids. The first type of grid is the initially equal-angled

polar grid with 30× 30 cells, where the initial computational domain is [0, 1.125]× [0, π/2] defined in the polar

coordinates. The second type of grid is the initially rectangular grid consisting of 30× 30 uniform cells, where

the initial computational domain is a 1.125 × 1.125 square. Fig. 5.9 shows the numerical results on initially

equal-angled polar grid at t = 1. From the figure, we observe the expected symmetry of grid and density.

The shock position and peak density obtained by the second-order DG scheme are more consistent with the

analytical solution than those obtained by the first-order scheme, which demonstrates the advantages of the

second-order DG scheme (3.6) -(3.7).
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Figure 5.9: The results of the Sedov blast wave problem on 30 × 30 initially equal-angled polar grid at t = 1.
Left: final grid; Middle: density contour of the second-order scheme; Right: density ρ versus radial radius µ at
all grid points.
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As a contrast, we test this problem on the initially rectangular grid. In this case, the shock direction is not

aligned with the grid lines. Fig. 5.10 shows the second-order results on 30 × 30 initially rectangular grid at

t = 1. Although the symmetry-preserving property of the second-order DG scheme is only proved on the initially

equal-angled polar grid, we observe that the numerical results on this non-polar grid are roughly symmetric in

the region near the shock wave.
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Figure 5.10: The second-order results of the Sedov blast wave problem on 30× 30 initially rectangular grid at
t = 1. Left: final grid; Middle: density contour; Right: density ρ versus radial radius µ at all grid points.

Example 5.10 Coggeshall expansion problem [19]

In this example, we apply Coggeshall’s adiabatic compression problem to test the performance of the second-

order DG scheme (3.6)-(3.7) on a two-dimensional asymmetric problem. The computational domain is [0, 1]×

[0, π
2 ] defined in the polar coordinates. The initial condition is

ρ = 1, (uz, ur) = (−z/4,−r), e = (3zc/8)
2,

where zc is the z coordinates of the cell center. We set 100× 10 initially equal-angular cells. The final time is

set to be t = 0.8, and the analytical solution for density is a constant with a value of 37.4. Fig. 5.11 shows

the results of the grids, density contour and density plotted as a function of the radial radius along each radial

line, where we can observe the numerical results of the second-order DG scheme converge well to the analytical

solutions except in the small region near the origin. This example demonstrates that our proposed DG scheme

in two-dimensional cylindrical coordinates can not only effectively simulate the spherical symmetric problems,

but also simulate the asymmetric problems well.
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Figure 5.11: The results of the Coggeshall problem with 100 × 10 cells at t = 0.8. Left: final grid; Middle:
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6 Concluding remarks

In this paper, we have constructed a class of new second-order cell-centered Lagrangian DG schemes for solving

the compressible Euler equations on quadrilateral meshes. This DG scheme is based on the moving physical

configuration, and the conserved variables are solved directly. It is conservative for the density, momentum

and total energy. Compared to previous research, our proposed Lagrangian DG scheme is truly second-order

accurate for all the variables such as density, momentum, total energy, pressure and velocity. The key point

is to properly deal with the flux term of the difference between the fluid velocity and the grid velocity. On

the one hand, we need to ensure that there is no mass exchange between neighboring cells, which is crucial

for the pure Lagrangian methods. On the other hand, the design of this flux term should not destroy second-

order accuracy of any variables. To balance these two issues, we compute this flux term only to equations

where the test functions are not equal to 1. Our strategy can obtain a truly second-order Lagrangian DG

scheme without mass exchange between neighboring cells. Based on this framework, we have further designed

a second-order Lagrangian DG scheme in the two-dimensional cylindrical geometry that maintains both the

spherical symmetry and conservation properties. The basic idea is to combine the true volume scheme and

the area-weighted scheme, and carefully discretize the mass matrix and source terms. We have tested many

well-known numerical examples in the two-dimensional Cartesian and cylindrical coordinates to demonstrate

the good performance of the Lagrangian DG schemes in terms of accuracy, symmetry and non-oscillation.

Finally, we point out that our proposed pure Lagrangian DG schemes can achieve at most second-order

accuracy for multi-dimensional problems on the straight-line grid, and the discussion of higher order Lagrangian

type DG schemes on the straight-line grid is a part of our future work.
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