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Abstract

In this paper, we construct a class of second-order cell-centered Lagrangian discontinuous
Galerkin (DG) schemes for the two-dimensional compressible Euler equations on quadrilateral
meshes. This Lagrangian DG scheme is based on the physical coordinates rather than the
fixed reference coordinates, hence it does not require studying the evolution of the Jacobian
matrix for the flow mapping between the different coordinates. The conserved variables are
solved directly, and the scheme can preserve the conservation property for mass, momentum
and total energy. The strong stability preserving (SSP) Runge-Kutta (RK) method is used
for the time discretization. Furthermore, there are two main contributions. Firstly, differently
from the previous work, we design a new Lagrangian DG scheme which is truly second-order
accurate for all the variables such as density, momentum, total energy, pressure and velocity,
while the similar DG schemes in the literature may lose second-order accuracy for certain
variables, as shown in numerical experiments. Secondly, as an extension and application, we
develop a particular Lagrangian DG scheme in the cylindrical geometry, which is designed
to be able to preserve one-dimensional spherical symmetry for all the linear polynomials
in two-dimensional cylindrical coordinates when computed on an equal-angle-zoned initial
grid. The distinguished feature is that it can maintain both the spherical symmetry and
conservation properties, which is very important for many applications such as implosion
problems. A series of numerical experiments in the two-dimensional Cartesian and cylindrical
coordinates are given to demonstrate the good performance of the Lagrangian DG schemes in

terms of accuracy, symmetry and non-oscillation.

Keywords: Lagrangian DG scheme; Second-order accuracy; Conservation; Spherical symme-

try preservation; Compressible Euler equations

@ School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China and Graduate
School, China Academy of Engineering Physics, Beijing 100088, China. E-mail: fengwenjing22@gscaep.ac.cn.

b Corresponding author. Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics,
Beijing 100088, China and HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University,
Beijing 100871, China. E-mail: cheng juan@iapcm.ac.cn. Research is supported in part by NSFC grant 12031001 and National
Key R&D Program of China No. 2022YFA1004500.

¢ Division of Applied Mathematics, Brown University, Providence, RI 02912, USA. E-mail: chi-wang shu@brown.edu. Research
is supported in part by NSF grant DMS-2309249.



1 Introduction

In many fields involving multi-material fluid flows such as astrophysics, inertial confinement fusion (ICF) and
computational fluid dynamics (CFD), numerical simulations aim to track fluid motion as closely as possible,
including locating and tracking material interfaces sharply, and achieving high resolution of the wave structure.
For this reason, the Lagrangian method is regarded as the first choice. The Lagrangian method is based on the
grid moving with local fluid velocity, where there is no mass exchange across the moving cell edges. Compared
with the Eulerian method based on the fixed grid, the Lagrangian method has the significant advantage in
capturing material interfaces and contact discontinuities automatically and sharply. Moreover, the Lagrangian
method should be particularly careful to ensure that the cell mass is not changed during the movement of the
grid, especially for high-dimensional applications.

In the past decades, there has been a lot of work devoted to developing the Lagrangian methods. Some
work is based on the staggered-grid discretization, where velocity (momentum) is stored at the vertices, while
density and internal energy are within the cells, such as [1,5-7,27,37]. The artificial viscosity term is often
needed to stablize the scheme. The other work is built on the cell-centered discretization [8,9,20, 33, 35, 36],
where all the variables are defined at the cell centers, and evolved on the same control volume. Unlike the
staggered schemes, the cell-centered schemes usually do not require additional artificial viscosity, as standard
high resolution non-oscillatory techniques are directly applicable. Also, they are easier to achieve high-order
accuracy, preserve the conservation property, and design the remapping algorithms when necessary.

As another aspect of the Lagrangian simulation, it is critical but challenging to preserve the spherical
symmetry property of a scheme in two-dimensional cylindrical coordinates, when the original physical problems
have this symmetry. In fact, in many applications such as the implosion problems, there are many three-
dimensional cylindrical symmetric models such as sphere-shape capsules and cylinder-shape hohlraum. In order
to reduce the computational cost, the Lagrangian methods in two-dimensional cylindrical coordinates are used
to simulate these models. Thus, the preservation of physical symmetry needs to be considered in numerical
simulations. If the spherical symmetry of a scheme is lost, a small spherical symmetry deviation caused by
numerical errors may be amplified by physical or numerical instabilities which may produce unpredicted large
errors.

The spherical symmetry-preserving property of the Lagrangian schemes in two-dimensional cylindrical co-
ordinates has been widely studied. In the earlier years, there were the area-weighted schemes [2, 6, 34, 43]
discretized on the planar area, and the true volume schemes [3] discretized on the genuine control volume.
Unfortunately, these spherical symmetry-preserving Lagrangian schemes may not satisfy the conservation of
momentum and total energy, and are only first-order accurate. In [10,11,13], the above difficulties have been
resolved in a finite volume framework. It is worth mentioning that Cheng and Shu in [13] pioneeringly proposed
a second-order cell-centered Lagrangian finite volume scheme based on the true control volume discretizations
in two-dimensional cylindrical coordinates. By compatible discretizations of the source term in the momen-
tum equation and maintaining the symmetry of the reconstructed polynomials in the local coordinates, the
second-order scheme is designed to preserve one-dimensional spherical symmetry in two-dimensional cylindrical
geometry using an equal-angel-zoned initial grid without losing the conservation of mass, momentum and total
energy. Later, in [26], Ling et al. further extended this idea and developed a cell-centered Lagrangian scheme

which can achieve positivity-preserving and symmetry-preserving properties simultaneously.



Note that most of the methods mentioned above are based on the finite volume framework. Thus, an
important aspect worth exploring is the application of discontinuous Galerkin (DG) method in the Lagrangian
simulations. The DG method was first introduced to solve the linear steady-state neutron transport equation
in [39]. Later, it was developed into Runge-Kutta DG (RKDG) methods by Cockburn et al. in [14-18], in which
the authors established a framework to easily solve nonlinear time-dependent problems such as the Burgers
equation, Euler equations, and shallow water equations, etc. Compared with the finite volume methods, the
DG methods have distinguished advantages in smaller stencil, easiness to be parallelized, flexibility on complex
geometry and on h-p adaptation.

In the past years, there has been some research on the Lagrangian DG methods. In [22,32,44,45], the
total Lagrangian DG schemes have been extensively discussed. The total Lagrangian schemes refer to the
discretization on a fixed reference configuration, which is usually the initial one. The physical variables in
different configurations are related by the deformation gradient tensor, i.e., the Jacobian matrix associated
to the flow mapping. To ensure the consistency between the reference and the physical configurations, the
deformation gradient tensor has to satisfy a constraint condition, namely the Piola compatibility condition [45].
In the total Lagrangian formulation, the variables solved directly are mostly the primitive variables, i.e., the
specific volume, velocity, and specific total energy. Similar research can be found in [28-31]. Recently, in [46,47],
the authors developed a cell-centered updated Lagrangian DG scheme, where the updated Lagrangian scheme
refers to the discretization on the moving physical configuration of the flow. The variables solved directly are the
conservative ones, i.e., the density, momentum and total energy. The basis functions are defined on the time-
dependent moving mesh, rather than on a fixed frame. The second-order accuracy of pressure or internal energy
for two-dimensional numerical examples is shown in these papers. However, we observe that the second-order
accuracy for the conserved variables may be lost for this kind of schemes, see the numerical results in Section
5. Moreover, in [29], Liu et al. presented two different Lagrangian DG schemes in the cylindrical coordinates:
the first one is the true volume DG scheme and the second one is the area-weighted DG scheme, in which the
physical evolution equations for the specific volume, velocity and specific total energy are discretized in these two
schemes. Unfortunately, these two schemes cannot maintain the conservation and spherical symmetry properties
simultaneously. To the best knowledge of the authors, no previous work has focused on the Lagrangian DG
scheme that preserves both the spherical symmetry and conservation properties in the cylindrical coordinates.

In this paper, we will construct a new second-order cell-centered Lagrangian discontinuous Galerkin scheme
for the two-dimensional compressible Euler equations on quadrilateral meshes. Here we only consider the pure
Lagrangian scheme without involving the rezoning and remapping phases. This Lagrangian DG scheme belongs
to the updated Lagrangian formulation, and the DG space is defined in the physical coordinates rather than
in the fixed reference coordinates, hence there is no need to study the evolution of the Jacobian matrix for
the flow mapping between the different coordinates. To be more specific, we solve the conserved variables such
as density, momentum and total energy directly, so the scheme can keep the conservation property naturally.
The Harten-Lax-van Leer Contact (HLLC) numerical flux is used, and it has a particularly simple form in the
Lagrangian description [12]. To suppress spurious oscillations, we use the multi-resolution weighted essentially
non-oscillatory (WENO) limiters [48]. The time discretization is based on the second-order strong stability
preserving (SSP) Runge-Kutta (RK) method [41]. As an extension and application, we develop the above
framework in the two-dimensional cylindrical geometry, and design a spherical symmetry-preserving conservative

Lagrangian DG scheme. Furthermore, there are two main contributions.



(1) Differently from the previous work, the Lagrangian DG scheme in this paper is second-order accurate for
all the variables such as density, momentum, total energy, pressure and velocity, while the existing updated
DG schemes may lose second-order accuracy for certain variables. In fact, according to the framework
proposed by Cockburn et al. in [14-18], the DG scheme is constructed as (2.6) without any adjustments,
which can achieve arbitrarily high order accuracy. In the Lagrangian simulation, the grid moves with the
fluid velocity, so the u — u, flux term in (2.6) is thrown away simply in the previous literature, where u is
the fluid velocity and uy is the grid velocity. This treatment leads to some flaws in accuracy, and we have
seen that the second-order accuracy for certain variables may be lost in numerical experiments in Section 5.
The simplest way to deal with this flaw is to recover the u —u, flux term, but it will lead to mass exchange
between neighboring cells, which is not allowed in the pure Lagrangian method. To balance the above two
issues, we add this u — u, flux term only to equations where the test functions are not equal to 1, i.e., we
assume that the u — uy flux term is equal to 0 only in the equations of cell averages. In this way, we will
obtain a truly second-order Lagrangian DG scheme without mass exchange between neighboring cells. See

Section 5 for the accuracy tests.

(2) Based on the above framework, we further design a second-order Lagrangian DG scheme solving the com-
pressible Euler equations in two-dimensional cylindrical coordinates. This DG scheme is designed to preserve
one-dimensional spherical symmetry when computed on an equal-angle-zoned initial grid without losing the
conservation of mass, momentum and total energy. In fact, it is very difficult to construct a high-order DG
scheme that preserves both the spherical symmetry and conservation. Not only the vertex velocity but also
all the variables that occur in the DG scheme should be calculated symmetrically. Unlike the finite volume
scheme, we want to ensure the the symmetry property of linear polynomials for all the conserved variables,
rather than just the symmetry of the cell averages. Specifically, this DG scheme is constructed in three
steps. Firstly, we use a true volume scheme to calculate the cell averages of the conserved variables, which
guarantees the conservation property. And then we use an area-weighted scheme to calculate the slopes of
the polynomials, which is easier to preserve the symmetry property. Finally, the mass matrix and source
terms appearing in these schemes must be treated carefully to ensure the symmetry of all the numerical
solution polynomials without losing the original second-order accuracy. Moreover, we point out that the
WENO limiter is accomplished in the cell’s local £&-1 coordinates as shown in Fig. 3.1, which does not affect

the spherical symmetry-preserving property of the scheme, as explained in [13].

Several two-dimensional numerical examples in the Cartesian and cylindrical coordinates are given to demon-
strate the good performance of the Lagrangian DG schemes in terms of accuracy, symmetry and non-oscillation.

The rest of this paper is organized as follows. In Section 2, we describe all the details of the second-
order conservative Lagrangian DG scheme for the compressible Euler equations in two-dimensional Cartesian
coordinates. In Section 3, we design a second-order Lagrangian DG scheme which preserves both the spherical
symmetry and conservation properties in two-dimensional cylindrical coordinates. In Section 4, we prove the
symmetry-preserving property of the scheme proposed in Section 3. The two-dimensional numerical experiments

are given in Section 5. We will end in Section 6 with concluding remarks.



2 Second-order conservative Lagrangian discontinuous Galerkin scheme
for the Euler equations in the Cartesian coordinates

2.1 The compressible Euler equations in two-dimensional Cartesian coordinates

The Euler equations for unsteady compressible flow in two-dimensional Cartesian coordinates can be expressed
as
ou

S+ VFU) =0, (2.y) € Q). t 20, (2.1)

where U is the vector of the conserved variables, F is the flux vector and (t) is the moving control volume.

Here U and F are given by

p pu
U= (pul|, FU)=|puul +pI]|, (2.2)
E (E + p)u

where p is density, u = (u,v)? is velocity, M = pu is momentum, E is total energy, p is pressure and I is the

2 x 2 identity matrix. The set of equations is completed by adding an equation of state (EOS) with the general
form p = p(p, e), where e = % — %|u|2 is the specific internal energy. Especially, if we consider the perfect gas,

then the equation of state is given as

p=(r—1)pe = (3~ 1)(E - Lplul). (23)

where + is the specific gas constant.
In this paper, we focus on the Lagrangian framework, where the control volume moves with the fluid velocity.
Therefore, the kinematic equation can be expressed as
dx
— =u, x(0)=x, 2.4
> (0) =0 (2.9
where x = (7,7)7, and x represents the coordinates at t = 0.

2.2 The second-order conservative Lagrangian DG scheme

In this subsection, we will construct a second-order conservative cell-centered Lagrangian DG scheme, where
we solve the conserved variables such as density, momentum and total energy directly. Before we do that,
we first introduce the notations used throughout the paper. We discretize the two-dimensional moving spatial

domain Q(t) into M x N cells. I;;(t) is a cell with the general quadrilateral shape constructed by the four

vertices {(z;_1 ;- 1,y 15-1), (@1 Y jo1)s (@pn i Yt i), (@1 51,91 5 1) ) The edges
of the cell I;; is denoted as 01;;. In the Cartesian coordinates, we use rectangular cells at the initial time unless

otherwise stated. The finite element space is defined as

ViE(t) = {o(@,y,t) € L2(Q(1)) = (z,y,1)

) € PP(I5(t), 1<i< M, 1< j <N}, (2.5)

where P¥(I;;(t)) denotes the set of polynomials of degree up to k defined in the cell I;;, and the polynomial
¢ € V/F(t) is time-space dependent. According to [8,9], in multi-dimensions, the pure Lagrangian scheme on
linear grid can achieve at most second order accuracy, so we set k = 1 in this paper.

By using the Reynold’s transport theorem and divergence theorem, we can get the semi-discrete Lagrangian

DG scheme for solving (2.1): find U € V¥(¢) such that for all the test functions ¢(z,y,t) € VF(t) and all



1<i1<M,1<j5<N, we have

4 // (Up(z,y,t)) dedy = // (U (u -V + (“)(p)) dxdy — / (ﬁ(ﬁ ‘n— uﬁ)cp) ds
dt ) J1; ) 15 (t) ot 0135 (t)
+// (G~Vg0)d:rdy7/ (@~ncp> ds
Ii; (t) OI:;(t)

where G(U) = (0,pI,pu)”, u? = u, - n, u, is the grid velocity, and n = (n,,n,)’ denotes the unit outward

(2.6)

normal to 8I;;. G-n = (0, pn, pu-n)”, U = (5, 11, E)” and 1-n are the numerical fluxes, which will be described
in detail later. We notice that there is the flux term falij(t) (ﬁ(ﬁ ‘n— ufl)go) ds in the above scheme. In the
Lagrangian framework, there should be no mass exchange between neighboring cells. Therefore, we consider
that the flux term |, o1, (t) (ﬁ(ﬁ -n— u%)(p) ds is only computed in the equations where the test functions are
not equal to 1, i.e., if ¢ = 1, we assume that falij(t) (ﬁ(ﬁ ‘n— u%)) ds = 0. By doing so, the local conservation
of the cell mass is valid, and the DG scheme is limited to second-order accuracy. As we know, we cannot get
higher than second order accuracy with the pure Lagrangian scheme on the straight-line grid anyway [8,9].
Moreover, it should be noted that we cannot simply throw away the flux term [, oI5 (1) (ﬁ(ﬁ ‘n— ufb)gp) ds.
Although it has been done in some references, this treatment may result in a loss of second-order accuracy. We
have tested the accuracy of the scheme with/without |, 1., (t) (ﬂ'(ﬁ ‘n— uﬁ)cp) ds in the numerical experiments.
The results show that the accuracy is second-order for all the variables such as density, momentum, total energy,
pressure and velocity by using the scheme (2.6) with the flux term falij(t) (ﬁ(ﬁ ‘n— u%)gp) ds (p #1). At
the same time, we observe that the scheme without the term fmij(t) (ﬁ(ﬁ ‘n— u%)gp) ds may lose second-
order accuracy of the conserved variables, see Tables 5.3 and 5.5. Therefore, we can conclude that this term
fajij(t) (ﬁ(ﬁ ‘n— u%)go) ds (¢ # 1) is necessary for keeping the second-order accuracy of the DG scheme (2.6).
See Section 5 for more details.

Next, we explain other details in the design of the DG scheme, including numerical fluxes, grid velocity,
time derivatives of basis functions and numerical quadrature. For the numerical fluxes, we use the approximate
Riemann solvers, which have smaller computational cost compared to the exact Riemann solvers. To be more
specific, we choose the HLLC Riemann solver [12] in the Lagrangian description for the numerical flux G - n =
(0,pn,pu - n)?. The HLLC numerical flux has a particularly simple form in the Lagrangian framework. Since
its viscosity vanishes at the Lagrangian contact, it can resolve the contact discontinuities sharply. Also, it is

easier to prove positivity-preserving when necessary [12]. We first define o, and p, as follows:

out,, out out int, int int int out
P Up, (U+_un )_p Up, (O—*_un)—"_p - D

Oy — )

P o — ugt) — o (o — ) (27)

Dy = pint (uilnto,i)(uilnt _ U*) _’_pz’nt,
where (p™¢, u™, pm)T and (p°*t, u°*, p°u!)T are the variables inside and outside the cell I;; (inside the neigh-

boring cell) along the cell edges 0I;;, respectively. irt/out — int/out g o — Lf is the sound speed, and

i, and ¢ are the Roe averages of u,, and c respectively. The acoustic wavespeeds o_ and o4 can be taken as
follows,

int _ int  ~

o_ = min{u™ — "™, @, — &}, oy = max{u®"t + ¢, 1, + ¢}.

Thus we have

P=ps, U-N=0,, PU-N = P,0,. (2.8)



For the other fluxes U = (p, pu, E)T, we choose the upwind form, which has the following expression

int _int_ . int int :
(P pt ™ BT, i o, —ud >0,

(ﬁv ﬁlv E) = " " " " . (29)

(P, p?tut B, if o, —ud < 0.
For the grid velocity u, = (ug,vg)T, we need to derive an expression on the cell edges. In this paper, we
only consider the straight-edge grid, so the grid moves with the fluid velocity defined at the vertex. We assume
that (u1,v1) and (ug,vs) are the two vertex velocities of the cell edge m, which are defined in detail in the next

subsection. In order to ensure that the grids have straight line edges during the movement, we can obtain the

following expression of the grid velocity on the edge m,

R R — LY2 4, YU (2.10)

Ug = U1 U2 5 Vg =11 2 P
1 — T2 T2 — X1 Y1 — Y2 Y2 — 1

where the point (x,y) is located on the cell edge m from (x1,y1) to (x2,y2).

For %—f in the scheme (2.6), we obtain it by using the Reynold’s transport theorem. We set ¢ = ¢l (¢ =
1,2,3) in scheme (2.6), where ¢/, ¢, ¢ are three basis functions of the V,}(t) DG space in the cell I;;. For
simplicity, we choose qb’ij = 1 and the other two basis functions are orthogonal to 1, which have the following

expressions,
where 2% (t) = ﬁ ff[ij(t) wdxdy, yi(t) = ﬁ ff]ij(t) ydxdy, and S;; represents the area of the cell I;;(t).

Using the Reynold’s transport theorem, we can get

0o 1 / ,

—_— = T —x)ulds,

o S0 am)( Jug (2.12)
995 _ 1

=—— —y.)ulds,
ot S(t) /am) = ye)ug

where we omit the superscript ‘ij’.
In addition, the Gauss-Lobatto quadrature rule is used in this paper. We first define coordinate transfor-
mation that converts the quadrilateral cell I;; in the z-y coordinates to the square [—1/2,1/2] x [-1/2,1/2] in

the z-y coordinates. The mapping relationship is as follows.

(x) _ (alfﬂ—k as + azy + a4> (2.13)

Yy bliﬂJr bgf + b3§+ b4
where
(a1,01) =%X;_1 .1 —X; 1 1+ X, 1 .01 —X,;_ 1.1
? 1=35.]73 1+35.-3 t+3.J+3 1—5,j+3°

1

(a2,b2) = (=% g j g + Xy 51 +Xipd 01 =Xy 541),
1

(a3,b3) = 5 (=%ig i —Xipg i g T Xipdj0d + X4 501);
1

(a4,bs) = Z(Xi—%,j_% +Xi+%,j_% +Xi+%7j+% +X'—%7j+%)-

And the determinant of Jacobian matrix is
|J(§, :;D| == (agbl - albg)f + (a1b3 - agbl)ng a2b3 - agbg. (214)

We point out that the mapping (2.13) is only used to compute the integrals in the DG scheme (2.6) and is

not used as a reference configuration of the flow. From the mapping relationship (2.13), we can find that the



a X a-point Gauss-Lobatto quadrature rule is exact for the integral of polynomials of degree (a — 2) in the z-y
coordinates. This is because a polynomial of degree (a—2) in the 2-y coordinates becomes a polynomial of degree
(2a — 4) in the Z-y coordinates, the Jacobian |J(Z,%)| is a linear function, and the a x a-point Gauss-Lobatto
quadrature rule is exact for the integral of polynomials of degree up to (2a — 3) in the Z-y coordinates. We take
a = 4 for the second order scheme. Define the set of quadrature points for the square [—1/2,1/2] x [—-1/2,1/2]
to be {(Za,yp), o, 8 =1,2,3,4}, and its weights are w, or wg. Using (2.13), we can get the quadrature points
{(Za,8,Ya,8), @, B = 1,2,3,4} for the cell I;;. With the above definition, we can compute all the integrals in
the scheme (2.6) numerically. For example, the integral for the mass matrix A is discretized by the following

formula,

4 4

Aoy = [ (o160 oy = 3 S ooty 004 0,51 o )

a=1 =1

where p,q = 1,2,3. The line integral for the numerical fluxes is calculated by
/ (W no(@,y.0) ds = 33 Jwa (WU, UGL) 0 6(2a, yar 1)) Al
Ol m=1a=1 .

where W -n = G -n + U@t -n—ul), Uit and Ut are the vectors of the conserved variables inside and
outside the cell I;; at the quadrature point (24,%a) along the the m-th edge, n;; is the unit outward normal to
the m-th edge, and Alj} is the length of the m-th edge. Note that there are two main reasons why we use the
Gauss-Lobatto quadrature rule instead of the Gaussian quadrature rule. The first reason is that it is easier to
implement the positivity-preserving technique when necessary, which can be seen in [12]. The second reason is

to avoid the double calculation of the normal part of the vertex velocity, which has been calculated in numerical

quadrature of the fluxes.

2.3 The determination of the vertex velocity

Now we introduce how to determine the vertex velocity, which is used in the formula (2.10) and the movement
of the grid. In fact, the determination of the vertex velocity is similar to that in [8]. Briefly, we consider a
vertex (z;_ 1Y ) shared by four edges which are given a serial number m = 1,2, 3,4. The tangential velocity
at the vertex (acifé,yjfé) along each edge m is defined as the average of that on both sides, i.e.,

1
u' =S ), m=1,2,3,4,

where uTi = um*.t™, u™* is the left /right value of velocity at this vertex along the edge m, and t™ = (¢, ty')

mo,,m
n

is the unit tangential of the edge m. For the normal velocity, we set u;' = u-n™ = 0., where n™ = (n7',n;") is

the unit normal of the edge m. And then we convert u;* and «" into the z-y velocity components, which have

the following form,
uﬁt;" —uy'n)’ —u it 4wt nlt

mo__ Y m o __ n x _
Uy = mgm _ pmym’ Uy = mym _ pmym m=1,2,34.
Mgty = Ny'ly Mgty = Ny'ly
Finally, we can get the vertex velocity as follows,
14 14
Uisyyoy =g DU Vieggor =g DUy (2.15)
m=1 m=1

2.4 Time discretization

In this paper, we use the second-order SSP-RK time discretization [41]. In the Lagrangian simulation, the

vertex velocity, the grid point position and the polynomials of the conserved variables need to be updated at



each RK stage, that is, the SSP-RK method is applied to the time marching for the semi-discrete scheme (2.6)
and the grid point update formulation (2.4). Specifically, the second-order SSP-RK method has the following

form.
Stage 1:
X,(»l)l =X A
=573 K EY A 1=35) 73 (2.16)
AWUD = AU + A"L(U™);
Stage 2:
1 1 1
X;ﬂjgl j—% = §X?_%7j_% + §X§1_)%j_% + EAt"ufl_)% j—%’
’ ' ’ (2.17)

AU = %A"UZ + %A(l)Ugl) + %At"L(U(l)),
where L is the numerical spatial operator at the right hand of the scheme (2.6), A is the mass matrix, U,
represents the coefficients of the polynomials for any conserved variables on the cell I;;. Here the variables with
the superscripts n and n + 1 represent the values of the corresponding variables at the n-th and (n + 1)-th time

steps, respectively. And we omit the subscript ‘45" in A and U,.. The time step At™ is calculated as follows,
At"™ = Amin (Aly;/ (¢ + [ulfy)) (2.18)
0. :
where Al;; is the shortest edge length of the cell I;;(t") and A is the Courant number.

Up to now, we have a fully discrete Lagrangian scheme with second-order accuracy in both space and time.

3 Second-order Lagrangian DG scheme for the Euler equations in the
cylindrical coordinates

We have introduced the full algorithm of the Lagrangian DG scheme in Section 2. In this section, we develop
the above algorithm to the two-dimensional cylindrical coordinates. We first construct two Lagrangian DG
schemes for the axisymmetric compressible Euler equations: a true volume DG scheme and an area-weighted
DG scheme. The aim is to design a Lagrangian DG scheme that preserves both the spherical symmetry and

conservation properties by combining these two schemes.

3.1 The compressible Euler equations in two-dimensional cylindrical coordinates

The compressible Euler equations in two-dimensional cylindrical coordinates can be described as follows

p puz purT 0
0 | pu. 0 | puu, +p 10 PULULT 0
il - - = = Qt 3.1
ot |pu | "0z | puue | T 700 | (ouruy + ) p/r |’ (z.m) € 20) (3.1)
E (E +pu, (E+ p)uyr 0

where z and r are the axial and radial directions respectively. We use the same notations as in the Cartesian
coordinates. u = (u,,u,)’, M = pu = (M., M,)T, where M., M, u,,u, are the momentum and velocity
components in the z and r directions respectively. p is density, E is total energy, and p is pressure given by
the equation of state, such as the equation (2.3). Similarly, denote the vector of the conserved variables U and

pressure flux function G as

p 0
U=(M], G(@U)=|pI
E pu



3.2 Basic notations

We introduce the notations used in the cylindrical coordinates. Similar to the notations in the Cartesian coordi-

nates, the two-dimensional domain €(t) is discretized into @ x L computational cells. I, is a quadrilateral cell

with the four vertices {(zqfé,lfé’rqfé,lfé)’ (Zqu%,lfévqur%,lf%)v (zq+%’l+%7rq+%’l+%), (zq7%71+%,rq7%11+%)},
g=1,---,Q,l=1.---,L. Sy denotes the area of the cell I ;, and V;; denotes the volume of the cell obtained
by rotating this cell around the z-axis, which can be formulated as Vy; = [ I rdrdz (without the 27 factor).
If we simulate a spherical symmetric problem, we hope to preserve the spherical symmetry property of the
numerical solutions. Thus, we use the equal-angle-zoned grid at the initial time, see Fig. 3.1. (&, 7) is the cell’s
local polar coordinates used for the analysis of the symmetry-preserving property in the next section, where £
is the radial direction through the cell center and the origin, 7 is the angular direction which is orthogonal to £
counterclockwise. Besides, we define Af# as the angle between any two neighboring [ lines which is a constant
for the equal-angle-zoned grid. Since the equal-angle-zoned cell is an equal-sided trapezoid (or isosceles triangle
A6

connecting the origin), the angles between £ and the two equal sides of the cell are 57>.

Figure 3.1: Equal-angle-zoned polar grid in the cylindrical geometry.

3.3 The true volume DG scheme

In this subsection, we design a Lagrangian DG scheme based on the true volume discretization in the cylindrical
coordinates. It preserves the conservation of mass, momentum and total energy. Similar to the scheme (2.6),
we can get the semi-discrete true volume Lagrangian DG scheme for solving (3.1): find U € VF(¢) such that

for all the test functions ¢(z,7,t) € Vi¥(t) and all 1 < ¢ < @, 1 <1 < L, we have

4 // (Up(z,r, t)r) dzdr = // (U <u Vo + &P> T) dzdr — / (ﬁ(ﬁ ‘n— u%)(pr) ds
) S Lu(®) ot OLu(t)
+// (G'chr)dzdrf/ (aon<pr)ds+//
Iql(t) 6)Iql(t) Iql(t)

where n = (n,,n,)? denotes the unit outward normal to 0l in the z-r coordinates, U is the vector of the

(3.2)
wdzdr,

oy o o

numerical fluxes for the conserved variables U, G - n is the vector of the numerical fluxes for pressure and
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velocity functions G, ug = uy -n and uy = (ug, ug)T is the grid velocity. There is the ‘r’ factor in the integrals
of the above scheme, because 2 [ [, rdzdr = [[[,, dxdydz for the axisymmetric problems, where W is the
three-dimensional domain obtained by rotating the two-dimensional area (2 about the z axis. This means
that the scheme is constructed on the genuine three-dimensional control volume. Moreover, the source term
If L(t) ppdzdr exists in the formula of the momentum in the r direction, which differs from that in the Cartesian
coordinates.

The treatment of the flux term falq,(t) (ﬁ(ﬁ -n — u%)gm") ds is similar to that in the subsection 2.2. We
only compute the flux term falq,(t) (ﬁ(ﬁ ‘n— u%)gpr) ds in the equations using the second and third basis
functions (the basis functions orthogonal to 1), i.e., if ¢ = 1, we assume that fBIqL(t) (ﬁ(ﬁ ‘n— u,%)r) ds = 0.
This treatment ensures that there is no mass exchange passing through the moving cell edges in (3.2), which is
crucial for pure Lagrangian methods.

We use the same method as in the Cartesian coordinates to compute the vertex velocity, the numerical fluxes,
and the time derivatives of basis functions. We also use the Gauss-Lobatto quadrature rule. Time discretization

is chosen as the second-order SSP-RK method, see the subsection 2.4 for more details.

3.4 The area-weighted DG scheme

In the numerical simulation of the spherical symmetry problems in two-dimensional cylindrical coordinates,
there is another Lagrangian scheme called the area-weighted scheme. In this subsection, we will construct an

area-weighted DG scheme. We first rewrite the divergence term of the Euler system (3.1) in the following form

OHu, 10Huw,r OHu, OHu,
+= = +

u,
0z r  Or 0z or +H7’ (3.3)

where H represents any physical variables such as H = p, M, F or p. Using the equality (3.3), we can rewrite
the Euler system (3.1) as follows

p puUz Pty p
0 | pu. 0 | pusu, +p 0 PUL Uy ur | pu,
— — — — =0 Q(t). 3.4
ot | pu, 0z PUrU + or | puru, +p + r PUr ’ (Z’T) < ( ) ( )
E (E+ p)u, (E + p)uy, E+p

The semi-discrete area-weighted Lagrangian DG scheme for the system (3.4) is to find U € V¥ (¢) such that for
all the test functions ¢(z,7,t) € VF(¢) and all 1 < ¢<Q, 1 <I <L,

4 // (Up(z,r,t)) dzdr = // (U (u -V + W)) dzdr — / (ﬁ(ﬁ ‘n— u%)(p) ds
dt J )1, To(t) ot DT, (1)

p
~ M Uy
+ // (G- V)dzdr — / G ny)ds— // | —dzdr,
(1) oL (1) ( ) L | Meo o7
E+p

(3.5)
where the symbols n, [AJ', G- n, u-n and ug are similar to those in the scheme (3.2). The vertex velocity,
the numerical fluxes, the term |, O (1) (ﬁ(ﬁ -n — u%)cp) ds and the time derivatives of the basis functions are
calculated in a similar way to the scheme (2.6). We will not repeat these details.

The true volume DG scheme (3.2) and the area-weighted DG scheme (3.5) are cell-centered Lagrangian
schemes, where density, momentum and total energy are solved directly. Furthermore, the two schemes have
their own features. On the one hand, the true volume DG scheme is based on true control volume discretization

and preserves the conservation of mass, momentum and total energy, while the area-weighted DG scheme is
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based on planar area discretization and is not conserved. On the other hand, the area-weighted DG scheme is
easier to preserve one-dimensional spherical symmetry than the true volume DG scheme in the two dimensional
cylindrical geometry, where we only need to carefully discretize the source terms in the scheme (3.5).

Next, we hope to combine the advantages of the above two schemes to construct a Lagrangian DG scheme

that preserves both spherical symmetry and conservation properties, and maintains second-order accuracy.

3.5 The symmetry-preserving and conservative Lagrangian DG scheme

In the following, we will design a symmetry-preserving and conservative Lagrangian DG scheme in two-
dimensional cylindrical coordinates. In fact, it is very difficult to design an area-weighted DG scheme or a
true volume DG scheme that maintains both the symmetry and conservation properties. Here our basic idea is
to calculate the cell averages using the true volume scheme (3.2), calculate the slopes of the numerical solution
polynomials using the area-weighted scheme (3.5), and deal with the mass matrix and source terms carefully.
The details are as follows.

Find U = (p, M., M,, E)T € V} to satisfy the following semi-discrete scheme,

0
4 // Urdzdr = —/ (é . nr) ds + // 0 dzdr, (3.6)
dt JJ 1, 9L (1) L (1) Poa

a4 // (U;) dzdr :// (U (u Vs + M)) dzdr —/ (ﬁ(ﬁ ‘n— ug)@) ds

dt JJ 1, L(t) ot D0

p
~ M u?
+ // G - Vo;)dzdr — / G - ng;)ds — // 2| Lidzdr, i = 2,3,
I,(t) ( ) Al (t) ( ) I,(t) M, Ta
E+p

(3.7)
where ¢o and ¢3 are the two basis functions orthogonal to ¢; = 1 in the DG space V!, which have multiple
expressions, such as

61 =1, ¢o(z,1m,t) = 2 — 224(t), ¢3(z,t,t) =1 —ri(t),
a_ fflqz zdzdr Ll fflqz rdzdr (3.8)
¢ Sa 7€ Sq
Note that (3.6) is from the true volume scheme, which is based on the genuine control volume discretization in
a conservation form, hence it preserves naturally the conservation of mass, momentum and total energy, and
(3.7) is from the area-weighted scheme. Thus, the details of the calculation in the scheme (3.6)-(3.7) are similar
to the previous two schemes. And the time marching of this semi-discrete DG scheme is implemented by the

second-order SSP-RK method.

In order to keep spherical symmetry, the mass matrix and source terms are determined as follows.
1. In (3.6), we set fflqz Urdzdr ~ rd fflqz Udzdr, i.e., for the mass matrix, we have

GIr prgar  Prgsr rdl prpardt prpard
// P12 B3 dags | dzdr = // P102 ?3 bags | dzdr. (3.9)
fa \p1¢3 P23 o3 Ta \ pr1o3  ao3 o3

Since the basis functions ¢2, ¢3 are orthogonal to ¢; = 1, we can get ffI . ¢10;dzdr =0 (i = 2,3), which

means that the mass matrix is a symmetric matrix.
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2. In (3.6), we set [, , pdzdr & paSqi, where p, is calculated as follows,

v, = 2 PIWal? + Piwapis) (3.10)

Za (waﬂ? + Waﬂg)

where P and pg are pressure numerical fluxes at the a-th quadrature points (2{,7{) and (2§,7§) on
the first and third edges of the cell I, shown in Fig. 3.1, respectively. w, is the quadrature weight.
u = /(22)2 + (r%)? represents the length of the line between the origin and the a-th quadrature point

(22, 7%) on the m-th edge of the cell .

m?»’'m

3. In (3.7), we set fflqz ﬁ%qﬁidzdr ~ % fflqz Ug,dzdr, where U = (p, M, E + p)T and

up _ up (2 rd)

The above three approximations do not affect conservation and second-order accuracy. In fact, for the first

[f; Urdzdr [f, Udzdr
f}.‘” —— = f}fﬂ — + O(h?), where h is the cell size. The
Iyl Iy

discretization for the source term of pressure is similar to that in [13]. And we refer to [29] for the discretization of

approximation, we can prove that when r # 0,

the term f f ﬁ%gbidzdr. Numerical experiments demonstrate the good performance of our designed Lagrangian
DG scheme (3.6)-(3.7), such as symmetry, conservation and second-order accuracy. In the next section, we will
give a theorem to show that this scheme can keep the spherical symmetry property on an equal-angle-zoned

initial grid.

4 Analysis of the spherical symmetry property
4.1 Spherical symmetry condition in the cylindrical coordinates

In this subsection, we declare the definition of one-dimensional spherical symmetry in two-dimensional cylindrical
coordinates for the linear polynomials of the numerical solutions such as density, momentum and total energy.

We use U®* = (p°@ M®®, E¢®)T and U = (p, M, E)T to represent exact and numerical solutions, respectively.
Define (u,6) as the local polar coordinates, where p is the radial direction through any point (z,7) and the

origin, and 6 is the angle between the p direction and the z axis. Thus we have
z=pcosf, r = psind. (4.1)

Here the definition of (u,d) is different from that of (£,7) shown in Fig. 3.1, and we have the following
transformation relationship

z=¢€cosf —nsin@?, r = Esin B9 + ycos 9!, (4.2)
and
€ = pcos(f — 01), 7 = psin(0 — 0%, (43)

where 0% is the angle between the local ¢ direction and z axis. The exact solutions U®* are called spherically

symmetric if they satisfy
pr (:ua 01, t) =p* (M, 02, t)v

Msw(/iv glvt) = Miw(/iv 92’t)a
Mg*(n,0,t) =0,

Eem(% 917t) = Eex(u702at)7
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where (u,601) and (u, 02) are any two points in the p-6 coordinates which have the same radial radius, M =
MZ* cos 0 + MS"sin 6 is the momentum component in the p direction, Mg§* = —MZ*sinf + MS* cos 0 is the
momentum component in the direction orthogonal to u. If the conditions (4.4) are satisfied at the initial time,
we can show that the conditions (4.4) are still valid at any time when there is no asymmetric external action,
which can be obtained by analyzing the Euler equations (3.1). We note that the symmetry conditions (4.4) for

the exact solutions hold point by point, which implies derivative information, i.e.,

exr eT eT

0 f 0 / 0 f
MECE M@I ME.T
— K = — s , = H =0. 4.5
op | Mg~ o 0 00 | Mg* (4.5)
B (k,01) E (k,02) E

Next, we state the spherical symmetry conditions for the linear polynomials of the numerical solutions, which

are based on the cell’s local &-7 coordinates. For the sake of discussion, we choose the basis functions as

¢1 = la ¢2(§7773t) = g - gzl(t), ¢3(€an7t) =nN- Ugl(t)7 (46)
Edzd dzd
where ¢3! = ffzq,Siq”“ and n? = m‘”sizr, so [[, p1¢2dzdr = [[, p1¢p3dzdr = 0. In the equal-angle-zoned

grid, £€4' and S, are independent of the index [ and n¢’ = 0. Thus, we take {2 = ¢4, S,y = S, and g = nd = 0.

With the above notations, we can represent the numerical solutions in the cell I as follows,

1 1 1
pqll & P ps
Mq Mq Mq Mq
SlEm=1 S|+ 5 |6+ dsEn) (4.7)
l J l I 2057 1 SN
o Mo My Mo
B Ef 12 By
where Mgl and Mgl are momentum components in the £ and n directions that satisfy Mgl = M cos 99" +
M2 sin 92 and Mgl = —MZsin 03 + M3 cos 02, U?l(j = 1,2,3) are the coefficients of the corresponding

polynomials. Here for simplicity and without any confusion, we omit the time variable t. To analyze the
symmetry-preserving conditions, we need to re-decompose momentum into the p-6 coordinates, that is
Mg (&, m) = M cos(0 — 02') + M sin(0 — ), s
M (€, n) = =M sin(8 — 62) + MZ cos(6 — 62). 9
It should be noted that we cannot use a formula to describe the spherical symmetry of the numerical solutions
point by point, because the numerical solutions are linear polynomials. Therefore, we only consider the cell
center (£4,74"), and then we apply the conditions (4.4) and (4.5) to the numerical solutions (p?, M2, Mgl, Ed)

at the cell center. We can get the following definition.

Definition 4.1 The numerical solutions defined in the formula (4.7) are called the one-dimensional spherically

symmetric if they satisfy the following conditions,

Pt p? P4 pd P4 0
ME| M| | ME | M | M| ] O (4.9
M 0 || M 0 || M M| '
Eiﬂ Eiﬂ/ Egl Egl’ Egl 0

where 1 <g<Q and1 <1, ' <L.

4.2 Proof of the spherical symmetry-preserving property

Next, we will prove our scheme (3.6)-(3.7) can preserve the spherical symmetry property if an equal-angle-zoned
grid is used at the initial time. Notice that symmetry preservation for the Lagrangian solution includes two

parts: the evolution of the conserved variables and the grid. The theorem is as follows.
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Theorem 4.1 The scheme (3.6)-(3.7) on an equal-angle-zoned initial grid can preserve the one-dimensional
spherical symmetry property. That is, if the initial solution has one-dimensional spherical symmetry, the nu-

merical solution will keep this symmetry during the time evolution.

Proof Since the SSP-RK method [41] is a convex combination of the Euler forward time discretization, we
only need to prove the scheme (3.6)-(3.7) with Euler forward time stepping is symmetry-preserving. Without
loss of the generality, we assume that the solutions of the scheme (3.6) -(3.7) have spherical symmetry property
and the grid is a polar grid with equal angles at the n-th time step, and then we only need to prove that the
numerical solution preserves the spherical symmetry and the grid is equal-angle-zoned at the (n + 1)-th time
step. For the convenience of notation, we omit the superscript 'n’ of the variables at the n-th time step. The
proof is divided into two parts.

1. The proof of symmetry preservation for the grid at the (n + 1)-th step.

We consider a vertex (zq_%yl_%,rq_%yl_%) shared by four edges ‘L’, ‘R’, ‘B’, ‘T”, which connects four cells
Ig—11-1, Iq-14, Ig0—1 and I;;. We define this vertex’s local polar coordinates (5,7‘7) , where £ is the radial
direction through the vertex (zq_%,l_; , rq_%7l_%) and the origin, and 7 is orthogonal to gcounterclockwise, see

2

Fig. 4.1. Since the grid and the numerical solutions are symmetrical at the n-th step, we have

Figure 4.1: The local £-77 coordinates at the vertex (zq_%,l_%,rq_%ﬁl_%)
n,l;ll pn,ll pﬁ
M,‘-{, - MH, B ME
piat | GamgampTampaeg) = | D | Gamgamprampang) = | i [ i=a- Lo
EZ,H En?l E*

)

where we omit the superscript 'l — 1’ and ’I’ for the variables which are independent of the [ index, Mg” -1
and M,’;’l_l are the momentum components in the I, ;1 cell’s local &-n coordinates, see Fig. 4.1. Here the
numerical solutions represent the values of the corresponding variables at this vertex (z

q_%,l_%,rq_%7l_%). We
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set the direction of each edge to be the increasing direction of the index ¢ or I, and we get

L— L+ _ B— T
=p

ol = 1 R

:pfzqu’ pisz+:pB+:pT+:pq7
EL— — EL+ — EIB— — ET— — Eq_l, ER— — ER+ — EB+ — ET+ — Eq,

£+ = A[fi = Milji = ?7 = COS(AQ/Q)Mg_l —‘FSID(AH/Q)M;;_l,
3 3 3 3 (4.10)
It = MI = ML = —MPT =sin(A6/2) M — cos(A60/2) M,
R+ _ aqR— _ g7+ _ B+ _ q ; q
Mg =M =M T =M = cos(AB/2)M¢ + sin(A6/2) My,
MEF = MIT = — M~ = —MP* = sin(A0/2) M — cos(A6/2) MY,

where UL+ and UL~ are the values of the corresponding variables at the vertex (zq_%yl_% , Tq—%,l—%) along the
two sides of the edge ‘L’, M ¢ and Mj are the momentum components in this vertex’s local 5-77 coordinates. The
unit normal and tangential vectors of the four edges in the local 5-77 coordinates are represented as follows,

E=nf=(0,1), tl=t%=(1,0),

nf = COS& —sinM t8 = sinﬁcos&
N 2’ 2 )7 B 2 2 )7

n’ = (cosM7sin M) , tT = <— sing,cos M) .

=

2 2 2 2
Let MLE = MEE . nl MEE = MEE .t represent the normal and tangential momenta at the two sides of the

edge ‘L’, respectively. MB* MtBi, M+, MtTi7 MF* and MtRi are defined in the same way. Through the

above relationship, we obtain

MEt = —ME= MET = ME
MR+ _ _MR— MtR-‘r _ MtR_
(4.11)
MnB_:Mrj;_v MtBiz_MtTiv
MB+ = pT+ MtB+ _ _MtT*.
Using (4.10) and (4.11), we have
ul =0, uff =0, uB =ul, (4.12)

where u' is the normal velocity calculated by the HLLC approximate Riemann solver at this vertex along the

edge ‘m’, m = L, R, B, T. The tangential velocities at each edge are as follows,

Uy = %(MtLi/PL_ + Mt/ pE),

uft = S(MF=p" 4+ M /1), .
up = %(MtB‘/pB‘ +MPT/pPT), .
uf = L(MF= o 4 MI )T = P

Here u and u® (m = L, R, B,T) are independent of the [ index because all the variables in (4.10) and (4.11)

are independent of the [ index. And then we convert u]"" and u;” into the 5-77 components, that is
(ubouk) = (uf, 0), (uf,ul}) = f', 0),
(u?,ug) = (cos(AH/Q)uf +sin(A0/2)ul, —sin(A0/2)u + cos(AQ/Q)uf) ,
(ug, ur) = (cos(AB/2)u,, — sin(A0/2)u], sin(A0/2)u); + cos(Af/2)u] ).

Therefore, we can get the the following vertex velocity,

1 1
(Ug)g-11-1 = —(uE +uf +ul +ul) = — (uf +uff +2cos(A0/2)ul} + 2sin(A0/2)uf),
25073 4" ¢ 13 13 13 4 (4 14)
1 .
(U)g—11-1 = Z(u% +U§ +u,~73 +u%) =0.
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Since (uz)y—1,-1 = 0and (ug),_1, 1 depends only on the ¢ index, we can conclude that the vertex velocity
is symmetric. Thus we have finished the proof of the symmetry for the grid at the (n 4 1)-th step.

2. The proof of symmetry preservation for the conserved variables at the (n + 1)-th step.

In order to save space, we only give the proof of symmetry preservation for the momentum. The symmetry
proof for density and total energy is similar. We consider the cell I, with four edges m = 1,2, 3,4. We use the

4 x 4-point Gauss-Lobatto quadrature rule. Since the proof is based on the I cell’s local &-n coordinates, we

rewrite the momentum schemes in (3.6)-(3.7) as follows,

d / / <M§> / . (715) (sin eql>
— rdzdr = — D rds + pa Sy c 4.15
dt JJ 1,0 \Mn o) \™ * \cos 67 19

/], () ) (o (2) % i) @
— ¢idzdr = u- [ % |+ dzdr — — | (u-n—ud)pids
dt J )1,y \My Lty \Mn %i;,‘ ot a1, (t) \ My
9¢; a
~(n M Uy
+// p| 95 dzdr—/ p< f) bids — // ( 5) pidzdr——, i = 2,3,
Tqi(t) (851)71 0Iq (1) nn T (t) Mn ' Ta

(4.16)

where (ng,n,)” denotes the unit outward normal to 81, in the £&-n coordinates, u = (ug,u,)7, and ¢; is chosen
as that in (4.6). Next, we first analyze the symmetry of the cell averages in (4.15), and then prove the symmetry
of the slopes of the momentum polynomials in (4.16).

(1) The proof of symmetry preservation for the cell averages in (4.15).

Let (2%,r%) and (£2,n%) (m=1,--- .4, a =1,---,4) be the a-th Gauss-Lobatto quadrature point on the

m-th edge of the I cell in the z-r and the local -1 coordinates, respectively, see Fig. 4.2. u% = /(2%,)% + (r%,)?

Figure 4.2: The Gauss-Lobatto quadrature points on the four edges of the I ; cell.

represents radial length of the corresponding quadrature point. The length of each cell edge is defined as

Al"™, m=1,--- 4. The radial length at the middle point of each edge is denoted as ', m =1,--- ,4. Since

m

m
! e

the grid is symmetrical, A" and " are independent of the [ index. Thus we denote them as

1 3 — 2 4 _
He = He = Mg, He = llJ’q—&-%? He = :uq—%’

Al = AP = Aly, AP = Al s, A=Al s

[N

The unit tangential vector t™ = (¢*,#;") and unit outward normal vector n™ = (ng*,n;") of the m-th edge in
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the local £&-n coordinates are represented as follows,

n' = —sin& —cosM th = cosM —SinM
B 2 2 )7 B 2’ 2 )7

3 . Af A6 3 AO . A6
n°=|(—-sin—,cos — |, t°=|[cos—,sin— |,
2 2 2 2

n’ = (1,0), t*=(0,1), n*=(-1,0), t*=(0,1).

We define ( a, mt’ (Mn)a,int’ (Mt)%,int’Eg{int) and ( a, out7 (‘1\471)04,out7 (Mt)

po o o aout | pasout) o represent the vari-

m
ables inside and outside the cell at the a-th quadrature point on the m-th edge, where M, and M; are the
normal and tangential momenta, respectively. According to the definition of one-dimensional spherical symme-

try, we have 4
Ut)oz ,int (Ut)tlx,out _ (Ut)g,mt — (Ut)g,out’ o= 17 . )47

(

( n)& ot _(Mn)(lxout = (Mn)?mt = _(Mn)?omv a=1,--,4,
(U,)5" = (U,)3" = (U,)Y" = (U,)5", 6§ = 2,4, v ="int’ or "out’,
(My)5" = —(My)3", (My)2" = —(My)¥", § = 2,4, v ="int’ or "out’,

where U, = (p, My, E), U,, = (p, M,,, E). By the above relationship, we get

~o ~1

]/5(11: 3 2:%3 ﬁ%zﬁgv i)\}i:ﬁiv ﬁi:ﬁzaazla"'74a (417)

where p2, is the numerical flux of pressure computed by (2.7) at the a-th quadrature point on the m-th edge,
which is independent of the [ index. Moreover, using the symmetry property of grid at the (n + 1)-th step, the

area and volume of the cell I at the (n + 1)-th step can be denoted as follows

Syt = Syt = AL sin(A), Vit = 2 2 Gin(691) tan(A0/2) (( Y - (wﬂ)B) . (4.18)

Thus, the full discretization of the scheme (4.15) is as follows,

74 7 n a, mAJm .
(Jng)n+1 _ Mgl Vi n At~ Z}:l ;Zl(waﬁfnrmng Al™) + p, sin(941) S, (4.19)
(M) MY ) Vit VT = 3 e (wah iy AI™) + pa cos(62)S, )

where the Euler forward time discretization is considered, m represents the cell edge, a represents the quadrature

. . . —ql —ql . .
point, and w,, is the quadrature weight. M g and M Z are the cell averages of M and M, respectively, which
are also the first coefficients of the corresponding polynomials in (4.7). Using (4.17), (3.10), u$ = g and

A A
ry = posin (ml ;) , 75 = pgsin (ml ;) :

1 4 2 . 1 4 2 .
rs+ry =715+ rg’ = 2,uq+% sm(Ggl), ry+ry=r;+ 7‘2 = 2,uq7% sm(GZl),

we have
4 4
> D (waPh g AI™)
m=1a=1

= —sin(AG/2)Al Y (BF (rf + 75 )wa) + Alyy s (Pywi (ry + r3) + Powa(r3 +73))

a=1

(4.20)
—Al,_s (ﬁim(ri +75) + Pwa(rf +17))

—Al, sin(Af) Z PYHTwa) + 200 1pigy s (Pyw1 + Paws) — 2Alq_%uq_%(ﬁiw1 + plws) | sin(09),
a=1
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and

4 4
- Z Z(waﬁr%nnmAlm) + pa cos 043,

4
o 20 (PTwalt + PEwatis) ! :
= —cos(Af/2)Al E ry — 1 )wa) + == cos(02 ) g Al sin(Af
(A0/2)Alg p (p7(rg 1)wa) (W ht§ + waltd) (0F) g Alg sin(A0)

(4.21)

4 4
= — sin(A0) cos(0%) Al Z(ﬁ?‘,u‘fwa Z (Prwaps') cos(02) Al sin(AB)
a=1

a=1

=0.

By (4.18), (4.20) and (3.10), we know that V"+1 (f anzl Zizl(waﬁf‘nr%ngbAlm) + Pa sin(9g1)5q> is indepen-

dent of the [ index, so we simplify it to

4 4
V”H < Z Z WaDp T g Al™) + pa sin(04)S, ) = RHSg. (4.22)
ql

m=1a=1

According to Definition 4.1, we get ME = Mg, M = 0. Substituting (4.18), (4.21) and (4.22) into (4.19), we

— _ 3
((Mgl)"+1 _ (M} Hgyr =K
Mq n+1 0 n +1) . (

(M) (H a+3
By now, we can conclude that the cell averages of momentum at the (n+1)-th step are symmetric, i.e., (Mgl)”“

l
)l =0.

obtain

o % & Tals
A (RHsﬁ) . (4.23)

is independent of the [ index and (M
(2) The proof of symmetry preservation for the scheme (4.16).

We first analyze the momentum component Mgl. Define the mass matrix of the scheme (4.16) as follows,

M) // t><£ Sy Cas nc>>dZdT<M%(t) Mg(i(t))v

where M% and MY, are independent of the [ index. So we denote M9 as

Mql(t)—/\/lq(t)—< h® M;%(t))'

The fully discrete scheme of Mgl in (4.16) is as follows,
ML yn+1 . Mql . . bql
(EM’;’%MI) = (Mo e (qu ) (M)A (bq , (4.21)
n,3

where Mng and Mgf3 are the last two coeflicients of the M 4" polynomial in (4.7). According to Definition 4.1,
we get Mgg =0, Mgld = M, ;. Here bn , and b 3 are the right hand terms of M, in (4.16), which are defined

in detail as follows,

dgd —
b, = / Myuedzdr — % / Mydzdr — | Mo(@-n - ug)(€ — £)ds
) I 14 Al

/mqlpnn(s €1)d f—// My (€ — €0)dzdr,

b(f]l_3 :/ M,uy,dzdr — M, p(a-n—ud)(n—nd)ds
: I

8Iql
I

Next, we analyze each term in (4.25). Let Hq g, (a, 5 =1,---,4) be the value of variable H at the (¢, §)

(4.25)

pdzdr — / png(n —ni)ds — 5 / M, (n —nd)dzdr.
oIy r Iy

ql

Gauss-Lobatto quadrature point in the Iy cell, see Fig. 4.3. Since the grid and the numerical solution are
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Figure 4.3: The Gauss-Lobatto quadrature points in the cell 1.

symmetrical at the n-th step, we have
]:a,ﬁ = ]:a’,B; gl,ﬂ = _g4,57 g276 = _g37ﬂ7 Oé,O/,,B = 17 o a4a (426)

where F = p, B, M¢,u¢,p,&,J and G = M,, u,,n. Here J is Jacobian of coordinate transformation defined in
(2.14). Since the cell is an equal-sided trapezoid, we have J, g = Jo 3. And these variables are independent of

the [ index. By the above relationship, we get

4

/ / FGdzdr = (Wa,5Fa,89a,67a,8) =0,
Iq: a,f=1
4

// FFdzdr = Z (wa,8F2 g dap)
Iq],

a,f=1

(w1868 g 1.5 + w2593 5J2.5) -

4 4
=1

// GGdzdr = Z (Wo(,ﬂgi”ﬁjocﬁ) =2
Iql

a,f=1 B

Specifically, we have

// Myuedzdr =0, // M,dzdr =0, // My(§ —&8)dzdr = 0. (4.27)
Iy Iq Iq

fflqz M,uydzdr, fflqz pdzdr and fflqz M, (n — n%)dzdr are independent of the [ index. Using (3.11), we obtain

ug Hgl sin(64") g

_ _ ¥ 4.28
Tq al sin(@gl) & (4.28)

Thus, u%/r, depends only on the ¢ index. For the normal grid velocity u¢, by formulas (4.14) and (2.10), we

n?
have

_ — (at3 — (9%
1,3_07 u%‘Z_Cq 2, u%|4_cq 2,

us,
where uZ|,, represents the normal component of the grid velocity on the m-th edge of the cell, C9%z2 and C9 2
are two constants that depend only on the ¢ index. Moreover, similar to the analysis of (4.12) and (4.17), it is
easy to obtain
@-n)¢=({-ny=0, (G-n)j=@{-n)j @ni=@{ n}a=1--.,406=24,

M)k =—(M)E, (M3 = —(M)3, 6 =2,4,
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where T/J\'ﬁ‘l is the corresponding numerical flux at the a-th quadrature point on the m-th edge of the cell Iy.
Thus, the integrals along the cell edges are expressed as follows,
My (@0 — uf)) (€~ €0)ds
dly
=Dl gy =€) [wr (V)3 + (AE)3) (@ )3 = uflz) +wa (V)3 + (M)3F) (@~ m)3 — )]
+ Al (g =€) [wr (AL + (L)1) (@ 0)} = udle) +wz (1) + (1)) (@ - 0)F = ugla) |

=0,
(4.29)

4 4
/ (P (€ — €9))ds = —Al cos( ) Z £9)) + Al cos( ) Z — €)= 0. (4.30)
Oy a1 a=1
Analogously, faI (u n —u?)(n —n?)ds and faI (pny,(n — nd))ds are independent of the [ index. By the
above analyses, we obtain that bf%2 =0 and b;lhg) = by 5 is independent of the [ index in (4.25). Thus, the scheme
(4.24) is further written as

(Eﬁ’iﬁ;:i):( I ) () + 80 (i) 030

7,

From the scheme (4.31), we can find that the last two coefficients of the Mgl polynomial satisfy the symmetry
condition at the (n + 1)-th step, i.e., (thlQ)"*'1 =0, and (M:71f3)"‘“1 is independent of the [ index. Similarly, we
can analyze that the last two coefficients of the M, gl polynomial satisfy the definition of the spherical symmetry.

The proof of the theorem is completed. [

Remark 4.1 The Lagrangian DG scheme in the z-r coordinates is equivalent to that in the local £-1 coordinates.
In the analysis of spherical symmetry preservation, we use the basis functions (4.6) and the expressions (4.7) of
the conserved variables (p, M¢, M), E) in the cell’s local -1 coordinates. In practice, we use the basis functions

(3.8) and solve the conserved variables (p, M, M., E) in the DG scheme (3.6)-(3.7) in the z-r coordinates.

Remark 4.2 In this paper, we use the HLLC numerical flux and the upwind numerical flux. Other numerical
fluzes such as the Dukowicz or Godunov fluxes can also be selected, and the proof of symmetry preservation
will also work well. However, the Lax-Friedrichs fluxz should be used with caution. More specifically, the Lax-
Friedrichs flux can be used in the parts of the scheme where the test functions are not equal to 1, but not in the
cell average equations, because it may cause a change in the cell mass during the time evolution, which is not
allowed in the pure Lagrangian method. Here we do not intend to further compare the features and numerical
performance between different numerical fluzes. Please refer to [8] for a more in-depth discussion of these

numerical fluxes.

5 Numerical tests
5.1 Accuracy tests

In this subsection, we test the accuracy of the Lagrangian DG schemes for the two-dimensional compressible
Euler equations. The first three examples are computed in the Cartesian coordinates using the DG scheme (2.6),
focusing on verifying the importance of the term fal(t) (ﬁ(u —ug) - n(j)j) ds (j = 2, 3) for maintaining second-
order accuracy. The last example is computed in the cylindrical coordinates using the symmetry-preserving and

conservative DG scheme (3.6)-(3.7) to verify that the design of this DG scheme in two-dimensional cylindrical
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geometry does not change the original second-order accuracy. The Courant number A = 0.4 is applied in these

examples.
Example 5.1

In the Cartesian coordinates, let us first consider an example where the velocity is constant, which can be found

in [21]. We set the initial condition is as follows:
po(x,y) =1+ 0.5sin(x +y), (uo,v0) = (1,1), po =1, (z,y) € [0,2x]%.
The exact solutions are
plx,y,t) =1+ 0.5sin(x + y — 2¢), u(z,y,t) = (1,1), p(z,y,t) =1,

with v = 1.4. The periodic boundary conditions are used.

The computational domain is divided into uniform squares with mesh size h = %’T at t = 0. We take final time
t = 0.1. The numerical errors of the Lagrangian DG scheme (2.6) containing the term fal(t) (IAJ(G ‘n— u%)@) ds
(j = 2,3) are shown in Table 5.1, where we can see the second-order accuracy of density. Here we only show the
error table of density. In fact, the error tables of momentum and total energy are the same as that of density,
because the exact solutions for momentum and total energy are similar to the density, and the errors of pressure
and velocity are close to machine zero.

If we test the scheme (2.6) without the term fm(t) (ﬁ(ﬁ ‘n— u%)@-) ds (j = 2,3), the numerical convergence
rates do not change. It shows that in the simple example where the velocity is constant, the DG scheme (2.6)

without this term may maintain second-order accuracy. However, this conclusion cannot be generalized to the

more complicated examples.

Table 5.1: Errors of the scheme (2.6) for density p in Example 5.1.

N(=M) | Lgerror Order(Ls) | Ly error Order(L;) | Lo error  Order(Loo)
20 3.4271E-3 - 2.4601E-3 - 1.4087E-2 -
40 8.5931E-4 2.00 6.1788E-4 1.99 3.5401E-3 1.99
80 2.1499E-4 2.00 1.5465E-4 2.00 8.8617E-4 2.00
160 5.3756E-5 2.00 3.8673E-5 2.00 2.2161E-4 2.00

Example 5.2

The example is an isentropic problem with smooth solutions [25]. The initial condition is:

1+ 0.2sin(25Y) ~y
p0($7y) = TQu Uo((E,y) = ’Uo(l‘,y) = 5[307 pO(may> = pg? (.’L‘,y) € [0a4ﬂ-]27

with the periodic boundary condition. If we take v = 3, we can verify that \/ép(x, y, 1) is the exact solution of

the two-dimensional Burgers’ equation:
> 2 [T+
Mt + (,ué) + (/.;) = Oa Mo(x?y) =1 + 0.2sin <2y) )
x y

5
u(z,y,t) = v(z,y,t) = \Ep(mm), p(x,y,t) = p(z,y,t)".

and
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The errors and numerical rates of convergence at ¢ = 0.3 are summarized in Table 5.2, where the Lagrangian
DG scheme (2.6) containing faI(t) <ﬁ(ﬁ ‘n— ui)@) ds (j = 2,3) is used. One can observe that the numerical
rates for all the variables are second-order.

For comparison, we test the DG scheme without the term fm(t) (ﬁ(ﬁ ‘n— ug)qﬁj) ds (j = 2,3), which is
used in some references. The numerical results are shown in Table 5.3, where we can see that although the
accuracy for pressure and velocity is second-order, the DG scheme without this term cannot achieve the second-
order accuracy of the conserved variables such as density, momentum and total energy. Therefore, this term
B 1) (ﬁ(ﬁ ‘n— ug)gbj) ds (j = 2,3) is essential for maintaining the second-order accuracy of the conserved

variables.

Table 5.2: Errors of the scheme (2.6) with the term fBI(t) (ﬁ(ﬁ ‘n— u%)(bj) ds (j = 2,3) for Example 5.2.

N(=M) | Lgerror Order(Ls) | Ly error  Order(Ly) | Lo error Order(Ly,)
20 | 6.3343E4 N 4.5095E-4 - 3.0721E-3 3
density 40 | 1.6286BE-4 1.96 1.1422E-4 1.98 8.0958E-4 1.92
80 | 4.1050E-5 1.99 2.8664E-5 1.99 2.0611E-4 1.97
160 | 1.0289E-5 2.00 7.1734E-6 2.00 5.1881E-5 1.99
20 | 6.7266E-4 _ 4.6420E-4 3 4.2210E-3 -
40 | 1.7167E-4 1.97 1.1616E-4 2.00 1.1053E-3 1.93
eherey 80 | 4.2088E-5 2.00 2.8843E-5 2.01 2.8064F-4 1.98
160 | 1.0733E-5 2.00 7.1822E-6 2.01 7.0365E-5 2.00
20 | 9.2059E-4 - 6.7070E-4 - 5.0251E-3 -
vomentum | 40| 2:3772E-4 1.95 1.7340E-4 1.95 1.3125E-3 1.94
80 | 5.9815E-5 1.99 4.3714E-5 1.99 3.3311E-4 1.98
160 | 1.4961E-5 2.00 1.0938E-5 2.00 8.3708E-5 1.99
20 | 3.6204E-4 - 2.6384E-4 - 2.0501E-3 -
40 | 9.1724E-5 1.98 6.5348E-5 2.01 5.4701E-4 1.91
pressure 80 | 2.2957E-5 2.00 1.6165E-5 2.02 1.3935E-4 1.97
160 | 5.7382E-6 2.00 4.0202E-6 2.01 3.5081E-5 1.99
20 | 1.2683E-3 - 9.6882E-4 - 5.3077E-3 -
velocity 40 | 3.3400E-4 1.92 2.5803E-4 1.91 1.3724E-3 1.98
80 | 8.4498E-5 1.98 6.5417E-5 1.98 3.5264F-4 1.96
160 | 2.1157E-5 2.00 1.6387E-5 2.00 8.9245E-5 1.98

23



Table 5.3: Errors of the scheme (2.6) without the term fal(t) (ﬁ(ﬁ ‘n— u%)qﬁj) ds (j = 2,3) for Example 5.2.

N(=M) | Lgerror Order(Lg) | Ly error  Order(Ly) | Lo error Order(Loo)
20 | 7.2387E-4 5 5.2452E-4 5 3.5514E-3 :
density 40 | 2.4817E-4 1.54 1.8622E-4 1.49 1.1039E-3 1.69
80 | 9.7553E-5 1.35 7.4449E-5 1.32 3.77TTTE-4 1.55
160 | 4.3194E-5 1.18 3.2767E-5 1.18 1.4939E-4 1.34
20 | 6.8450E-4 5 4.6609E-4 : 4.3997E-3 :
40 | 1.8829E-4 1.86 1.2743E-4 1.87 1.2299E-3 1.84
energy 80 | 5.3852E-5 1.81 3.7582E-5 1.76 3.4847E-4 1.82
160 | 1.7216E-5 1.65 1.2502E-5 1.59 1.0491E-4 1.73
20 | 9.6597E-4 5 7127864 5 5.3497E-3 5
vomentun | 40| 2.8686E-4 1.75 2.1535E-4 1.73 1.5837E-3 1.76
80 | 9.3255E-5 1.62 7.1284E-5 1.60 4.8409E-4 1.71
160 | 3.5299E-5 1.40 9.7241E-5 1.39 1.6269E-4 1.57
20 | 3.6305E-4 5 2.5892E-4 5 21125E-3 :
40 | 9.4237E-5 1.95 6.5639E-5 1.98 5.7127E-4 1.89
pressure 80 | 2.3813E-5 1.98 1.6391E-5 2.00 1.4632F-4 1.97
160 | 5.9640E-6 2.00 4.0891E-6 2.00 3.6827E-5 1.99
20 | 1.2703E-3 5 9.7402E-4 5 5.3031E-3 5
velocity 40 | 3.3391E-4 1.93 2.5815E-4 1.92 1.3777E-3 1.94
80 | 8.4382E-5 1.98 6.5299E-5 1.98 3.5432E-4 1.96
160 | 2.1120E-5 2.00 1.6339E-5 2.00 8.9342E-5 1.99

Example 5.3 Taylor-Green vortex problem

The two-dimensional Taylor-Green vortex problem [4] is a benchmark test with analytical solutions. The initial

condition is prescribed by
1
po =1, ug(x,y) = sin(mzx) cos(wy), vo(z,y) = — cos(wx) sin(wy), po(x,y) = Z(cos(27m;) + cos(2my)) + 1.

The working fluid is ideal gas with v = % In the compressible inviscid case, a source term is required in the
energy equation to make the flow steady state:
S = ﬁ(cos(&mc) cos(my) — cos(mz) cos(3my)).

The computational domain is a square [0, 1] x [0, 1]. We set the final time to ¢ = 0.4. The final mesh and the
pressure results with N = M = 40 are shown in Fig. 5.1. The numerical errors at ¢ = 0.4 are listed in Table
5.4. From the table, we can find the second-order accuracy for all the variables.

Moreover, if we test the DG scheme (2.6) without fal(t) (ﬁ(ﬁ ‘n— u{{)qﬁj) ds (j = 2,3), the numerical errors
are shown in Table 5.5, where we can find that the numerical rates of convergence for the conserved variables

are only first-order. Therefore, we can not simply throw the term [, ) (ﬁ(ﬁ ‘n— uﬁ)qf)j) ds away.
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Table 5.4: Errors of the scheme (2.6) with the term fal(t) (fj(ﬁ ‘n— u%)gbj) ds (j = 2,3) for Example 5.3.

N(=M) | Lgerror Order(Ls) | L error  Order(Ly) | Loo error  Order(Lo)
20 | 2.1267E-3 - 1.6721E-3 ; 6.5795E-3 -
density 40 | 5.0453E-4 2.08 3.8701E-4 2.11 1.7409E-3 1.92
80 | 1.2411E-4 2.02 9.4499E-5 2.03 4.6227E-4 1.91
160 | 3.1072E-5 2.00 2.3649E-5 2.00 1.1993E-4 1.95
20 | 4.3517E-3 - 3.2830E-3 : 2.0350E-2 -
enerey 40 | 1.1348E-3 1.94 8.4958E-4 1.95 5.4646E-3 1.90
80 | 2.9833E-4 1.93 2.2105E-4 1.94 1.4044E-3 1.96
160 | 7.7635E-5 1.94 5.7020E-5 1.95 3.5544E-4 1.98
20 | 7.2207E-3 - 5.8144E-3 ; 2.5404E-2 5
nomentan | 40| 1:98T3E-3 1.86 1.5857E-3 1.87 7.1634E-3 1.83
80 | 5.2970E-4 1.91 4.1931E-4 1.92 1.9207E-3 1.90
160 | 1.3780E-4 1.94 1.0839E-4 1.95 5.0126E-4 1.94
20 | 2.9431E-3 - 2.1581E-3 ; 1.2579E-2 -
40 | 7.8672E-4 1.90 5.4266E-4 1.99 3.6839E-3 1.77
pressure 80 | 2.0911E-4 1.91 1.3823E-4 1.97 1.0339E-3 1.83
160 | 5.4608E-5 1.94 3.5325E-5 1.97 2.8015E-4 1.88
20 | 6.8693E-3 - 5.5680E-3 ; 2.3229E-2 5
velocity 40 | 1.9169E-3 1.84 1.5328E-3 1.86 6.9587E-3 1.74
80 | 5.1440E-4 1.90 4.0665E-4 1.91 1.9592E-3 1.83
160 | 1.3425E-4 1.94 1.0526E-4 1.95 5.2496E-4 1.90

pressure pressure

o el
: .’;; I 08
S5

0.6
X

(a) initial grid (b) grid at t =0.4

Figure 5.1: The mesh and pressure results of the Taylor-Green vortex problem.
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Table 5.5: Errors of the scheme (2.6) without the term fal(t) (ﬁ(ﬁ ‘n— u%)qﬁj) ds (j = 2,3) for Example 5.3.

N(=M) | Lgerror Order(Lg) | Ly error  Order(Ly) | Lo error Order(Loo)
20 | 2.1017E-2 5 1.2833E-2 5 1.1689E-1 :
density 40 | 8.0879E-3 1.38 5.4191E-3 1.24 4.2067E-2 1.47
80 | 3.5251E-3 1.20 2.5289E-3 1.10 1.7455E-2 1.27
160 | 1.7617E-3 1.00 1.2797E-3 0.98 8.6082E-3 1.02
20 | 8.4084E-3 5 5.8732E-3 5 4.0676E-2 :
40 | 3.1346E-3 1.42 1.8599E-3 1.66 1.8472E-2 1.14
energy 80 | 1.3451E-3 1.22 7.9885E-4 1.22 7.8895E-3 1.23
160 | 6.4433E-4 1.06 4.0886E-4 0.97 3.5949E-3 1.13
20 | 1.2845E-2 5 9.4996E-3 5 5.7429E-2 :
40 | 5.2018E-3 1.30 3.5022E-3 1.44 2.9045E-2 0.98
momentum | g5 | 9 5e00p 3 1.01 1.7468E-3 1.00 1.4451E-2 1.01
160 | 1.3707E-3 0.91 9.4824F-4 0.88 7.1802E-3 1.01
20 | 4.1164E-3 5 2.6122E-3 5 2. 4156E-2 :
40 | 1.2405E-3 1.73 7.2898E-4 1.84 7.7175E-3 1.65
pressure 80 | 3.4340E-4 1.85 1.9837E-4 1.88 2.1386E-3 1.85
160 | 9.0444E-5 1.92 5.2362E-5 1.92 5.5093E-4 1.96
20 | 8.3221E-3 5 6.1654E-3 5 £.0584E-2 5
velociby 40 | 2.3862E-3 1.80 1.6399E-3 1.91 1.4311E-2 1.50
80 | 6.8717E-4 1.80 4.8047E-4 1.77 4.4504E-3 1.69
160 | 2.4293E-4 1.50 1.8721E-4 1.36 1.3144E-3 1.76

Example 5.4 The free expansion problem

In the cylindrical coordinates, we test the accuracy of the Lagrangian DG scheme (3.6)-(3.7) on a free expansion
problem [40]. The initial computational domain is [0,1] x [0, 7/2] defined in the polar coordinates. Its initial
condition is:

Po = 17 Uz,0 = Upr o = 07 po(Z,T) =1- (Z2 +T2)'

The problem has the following analytical solutions,

R(t) = /(1 + 2¢2),

( t) 2t ( t) 2t
uz 277‘7 Z? uT Z7T7 = b
1+ 2¢2 1+ 2¢2
1
p(Z,T, t) ﬁ7
1 22 472

where R is radius of the free outer boundary.
We perform the test on two different types of grids as shown in Fig. 5.2. The first one is an initially
equal-angled polar grid. The second one is an initially non-uniform smooth polar grid, for which each internal

grid vertex is obtained by a smooth perturbation from an equal-angled polar grid as follows

1 . .
005(577917%) + esin(2mg, 1) sin(27;_ 1),

1
sin(§ﬂ917%) + esin(27E, )sin(27n9l7%), g=1,---,Q,1=1,--- L,

1 1
2 2

where §q7% = %, 917% = l_Tl, (qué,lfé , rq—%,l—%) is the grid point in the 2z-r coordinates with the sequential
indices (g,1) in the radial and angular directions respectively. @, L represent the number of cells in the above

mentioned two directions. € is a parameter which is chosen as 0.015 in this test. Free boundary condition is

applied on the outer boundary.
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(a) equal-angled polar grid (b) non-uniform smooth polar grid

Figure 5.2: The initial grid of the free expansion problem with 20 x 20 cells.

(a) equal-angled polar grid (b) non-uniform smooth polar grid

Figure 5.3: The final grid of the free expansion problem with 20 x 20 cells at ¢ = 1.

Fig. 5.3 shows the final grids at ¢ = 1. The errors of the spherical symmetry-preserving DG scheme (3.6)-
(3.7) on these two kinds of grids are listed in Tables 5.6-5.7, which are measured on the interval [1Q, 3Q] % [1, L]
to remove the influence from the boundary. In Tables 5.6 and 5.7, we can observe the expected second-order
accuracy, which means that the design of the symmetry-preserving DG scheme (3.6)-(3.7) in two-dimensional

cylindrical geometry does not change the accuracy.
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Table 5.6: Errors of the scheme (3.6)-(3.7) for Example 5.4 using @ x L initially equal-angled polar grid cells.

Q(=L) | Lo error Order(Ly) | Lj error  Order(Ly) | Lo error  Order(Ly)
10 2.8103E-3 - 2.3963E-3 - 5.0009E-3 -
density 20 8.2328E-4 1.77 6.9510E-4 1.79 1.4304E-3 1.81
40 2.2858E-4 1.85 1.9084E-4 1.86 3.5966E-4 1.99
80 6.0328E-5 1.92 4.9539E-5 1.95 9.8956E-5 1.86
10 7.0455E-4 - 6.1108E-4 - 1.3147E-3 -
energy 20 2.1672E-4 1.70 1.9592E-4 1.64 3.8867E-4 1.76
40 6.1611E-5 1.81 5.7048E-5 1.78 9.7387E-5 2.00
80 1.6580E-5 1.89 1.5453E-5 1.88 2.6085E-5 1.90
10 1.3741E-3 - 9.8534E-4 - 3.1078E-3 -
momentum 20 3.8569E-4 1.83 2.7143E-4 1.86 9.1867E-4 1.76
40 1.0225E-4 1.92 7.2552E-5 1.90 2.3750E-4 1.95
80 2.5644E-5 2.00 1.8597E-5 1.96 5.5974E-5 2.09

Table 5.7: Errors of the scheme (3.6)-(3.7) for Example 5.4 using @ X L initially non-uniform smooth polar grid
cells.

Q(=L) | Lgerror Order(Ly) | Lj error  Order(Ly) | Lo error  Order(Lyo)
10 2.9124E-3 - 2.4682E-3 - 5.8851E-3 -
density 20 8.4991E-4 1.78 7.1383E-4 1.79 1.6567E-3 1.83
40 2.3443E-4 1.86 1.9492E-4 1.87 4.2777E-4 1.95
80 6.1537E-5 1.93 5.0254E-5 1.96 1.0970E-4 1.96
10 7.2766E-4 - 6.2697E-4 - 1.6082E-3 -
energy 20 2.2168E-4 1.71 1.9951E-4 1.65 4.6636E-4 1.79
40 6.2534E-5 1.83 5.7703E-5 1.79 1.2011E-4 1.96
80 1.6744E-5 1.90 1.5503E-5 1.90 2.9233E-5 2.04
10 1.4726E-3 - 1.0473E-3 - 3.8238E-3 -
momentum 20 4.1065E-4 1.84 2.8895E-4 1.86 1.1034E-3 1.79
40 1.0767E-4 1.93 7.6503E-5 1.92 2.9088E-4 1.92
80 2.6733E-5 2.01 1.9395E-5 1.98 7.0604E-5 2.04

Next, we focus on verifying the properties of spherical symmetry and non-oscillation of the second-order DG

scheme (3.6)-(3.7).

5.2 Spherical symmetry-preserving tests in two-dimensional cylindrical coordi-
nates

In this subsection, we test six well-known examples in two-dimensional cylindrical coordinates. The second-
order DG scheme (3.6)-(3.7) on initially equal-angled polar grid is used in the following tests unless otherwise
stated. The material is ideal gas with the ratio of specific heat capacities v = % Reflective boundary conditions
are applied to the z and r axes in all the tests. p = v/22 4 2 is the radial coordinate. u,, and ug represent the
values of velocity in the radial and angular directions in local polar coordinates. The multi-resolution WENO
limiter [48] is used to avoid spurious oscillations in most examples except the Sod and Kidder problems, and
we use the local characteristic decomposition along the normal direction of the cell edges when applying the
WENO limiter. According to [13], in order not to affect the symmetry-preserving property, the WENO limiter

is accomplished in the cell’s local &-n coordinates.

Example 5.5 The one-dimensional spherical Sod Riemann problem
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The spherical Sod shock tube [42] is a classical test problem. For this problem, the initial computational domain

is [0,20] x [0,7/2] defined in the polar coordinates with the following initial condition:

(1,0,0,1), 0< u< 10,

(p7 uua Ug, p) = {
(0.125,0,0,0.1), 10 < p < 20.

The reflective boundary condition is applied on the outer boundary. The initial grid consists of 400 x 10 equal-
angled polar cells. The final time is set to ¢t = 1.4. Fig. 5.4 shows the numerical results of the mesh and density
contour of the second-order DG scheme (3.6)-(3.7), and density as a function of the radial radius at all grid
points performed by both the second-order scheme and the first-order scheme. Here the reference solution is the
converged result obtained by using a one-dimensional second-order Eulerian code in the spherical coordinate
with 10000 grid points. We observe the good symmetry behavior of the scheme. And the numerical results of

the second-order DG scheme are less dissipative than the first-order solutions.

reference

a 1st order 400x10
Ll 2nd order 400x10

Figure 5.4: The results of the Sod problem with 400 x 10 cells at ¢ = 1.4. Left: final grid; Middle: density
contour of the second-order scheme; Right: density p versus radial radius p at all grid points.

Example 5.6 The Noh problem in the cylindrical coordinate system

The Noh problem [38] is a typical test problem which is widely used to validate the performance of Lagrangian

schemes on strong shocks. In this problem, the initial condition is as follows:

p=1, wu,=-1, up=0, p=10"°.

The equal-angled polar grid is applied in the i—circlc computational domain defined in the polar coordinates

by [0,1] x [0, 7]. Free boundary condition is used on the outer boundary. The shock is generated by bringing
the cold gas to rest at the origin. The analytical post shock density is 64 and the shock speed is 1/3. Fig. 5.5
shows the numerical results with initially equal-angled polar cells at ¢ = 0.6. We can find that the final mesh
and density contour are symmetric. The scatter plots of density obtained from the first-order scheme and the
second-order DG scheme are non-oscillatory. And the density from the second-order DG scheme is closer to the

analytical solution than that from the first-order scheme.
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Figure 5.5: The results of the Noh problem at t = 0.6. Left: final grid with 100 x 20 cells; Middle: density
contour of the second-order scheme with 100 x 20 cells; Right: density p versus radial radius p at all grid points
with 100 x 20 or 200 x 40 cells.

Example 5.7 Implosion problem of Lazarus

Implosion problem of Lazarus [24] has self-similar solutions. In this problem, the initial condition is described
as follows:

p=1 wu,=ug=0, e=10"°.

A sphere of unit initial radius is driven by an inward radial velocity given by

_ af
up(t) = Ta- e

where a = 0.6883545, f = 1—et—6t3, ¢ = 0.185, § = 0.28. The initial computational domain is [0, 1] x [0, 7/2]
defined in the polar coordinates. Free boundary condition is applied on the outer boundary. We test the problem
on an initially equal-angled polar grid of 200 x 30 cells. Fig. 5.6 shows the results of the DG scheme (3.6)-(3.7)
including the final grid and density solutions at ¢ = 0.74, 0.8. Here the reference solutions are computed using
a one-dimensional second-order Lagrangian code in the spherical coordinate with 10000 cells. In the plots of
grid and density contour, we observe the expected symmetry. The non-oscillatory property is well reflected in
the scatter plot of density. Compared with the first-order scheme, we find that the numerical solutions from

the second-order DG scheme have higher resolution.

reference t=0.74

a 1st order
o 2nd order
reference t=0.8
1st order
2nd order

0‘HHH|HH|HH|_UHHH|HH
0 0.05 0.1 015 02 025 03 035
radius

I
0.4

Figure 5.6: The results of the Lazarus problem with 200 x 30 cells. Left: final grid at ¢ = 0.8; Middle: density
contour of the second-order scheme at ¢ = 0.8; Right: density p versus radial radius p at all grid points at
t=0.74 and t = 0.8.

Example 5.8 Kidder’s isentropic compression problem [23,34]
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In 23], Kidder has computed the analytical solution of the self-similar isentropic compression for a shell filled
with perfect gas. At the initial time, we set the computational region as [y, p2] x [0, /2] in the polar coordinates.

The initial density, velocity and pressure have the following expression,

2 2 2 2 —1

I i N (el G A

po(u)=<§ =P+ H—=p3 ) ; ug=0, po(p)=s(po(p)”,
Ky — K1 Ky — K1

where 117 = 0.9, po = 1.0, p; = 6.31 x 1074, py = 1072, s = 2.15 x 10*. With the time marching, the pressure
p1(t) and po(t) are imposed continuously at the internal and external boundaries respectively which have the
following representation

_ 2y
pi(t) = pla(t) ™71,  pa(t) = pa(t) 71,

where pd = 0.1, p§ = 10 and a(t) = /1 — (%)2 T =6.72 x 1073 is the focusing time of the shell and ¢ € [0, 7)
is the evolving time. The analytical solutions of the three fundamental variables for this problem in spherical
geometry are as follows:

P, 1)) = polw)a(t)” 7T,

ue(C(p, ), 1) = p ),

P(C(s 1), ) = po()a(t) 7T,
where (1, t) represents the radius at time ¢ of a point initially located at radius u. Its analytical solution is
(1) = alt)p.

We test the problem on an initially 40 x 80 equal-angular grid. The final time is set to be t = 0.997.
We display the numerical results of the DG scheme (3.6)-(3.7) in Fig. 5.7 and Fig. 5.8. From the figures,
we observe the non-oscillatory and symmetry-preserving properties of the DG scheme. Compared with the
first-order scheme, the numerical solutions from the second-order DG scheme are much closer to the analytical

solutions.

0 1 1 1 1 1 0 1 1 1 1 1

1 1 . '
0.02 0.04 006 0.08 0.1 012  0.14 002 004 0.06 008 0.1 012  0.14
z z

Figure 5.7: The results of the Kidder problem with 40 x 80 cells at ¢ = 0.997. Left: initial grid; Middle: final
grid of the second-order scheme; Right: density contour of the second-order scheme.
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Figure 5.8: Scatter plot of three fundamental variables as a function of the radial position at all grid points in
the Kidder problem. Left: density p versus radial radius p; Middle: velocity u,, versus radial radius u; Right:

pressure p versus radial radius p.

Example 5.9 The spherical Sedov problem in cylindrical coordinate system

The spherical Sedov blast wave problem [40] in the cylindrical coordinates is a commonly used example of a

diverging shock wave. Consider this problem with the initial condition as:
p=1, u, =ug =0,

and the initial internal energy e = 107% almost everywhere except in the cells connected to the origin where
they share a total value of 0.2468. Reflective boundary conditions are used on all boundaries. The analytical
solution is a shock with a peak density of 4 at radius unity at t = 1.

In this work, we consider two different types of grids. The first type of grid is the initially equal-angled
polar grid with 30 x 30 cells, where the initial computational domain is [0,1.125] x [0, 7/2] defined in the polar
coordinates. The second type of grid is the initially rectangular grid consisting of 30 x 30 uniform cells, where
the initial computational domain is a 1.125 x 1.125 square. Fig. 5.9 shows the numerical results on initially
equal-angled polar grid at ¢ = 1. From the figure, we observe the expected symmetry of grid and density.
The shock position and peak density obtained by the second-order DG scheme are more consistent with the

analytical solution than those obtained by the first-order scheme, which demonstrates the advantages of the

second-order DG scheme (3.6) -(3.7).
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Figure 5.9: The results of the Sedov blast wave problem on 30 x 30 initially equal-angled polar grid at ¢t = 1.
Left: final grid; Middle: density contour of the second-order scheme; Right: density p versus radial radius p at

all grid points.
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As a contrast, we test this problem on the initially rectangular grid. In this case, the shock direction is not
aligned with the grid lines. Fig. 5.10 shows the second-order results on 30 x 30 initially rectangular grid at
t = 1. Although the symmetry-preserving property of the second-order DG scheme is only proved on the initially
equal-angled polar grid, we observe that the numerical results on this non-polar grid are roughly symmetric in

the region near the shock wave.
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Figure 5.10: The second-order results of the Sedov blast wave problem on 30 x 30 initially rectangular grid at
t = 1. Left: final grid; Middle: density contour; Right: density p versus radial radius p at all grid points.

Example 5.10 Coggeshall expansion problem [19]

In this example, we apply Coggeshall’s adiabatic compression problem to test the performance of the second-
order DG scheme (3.6)-(3.7) on a two-dimensional asymmetric problem. The computational domain is [0, 1] x

[0, 5] defined in the polar coordinates. The initial condition is
p=1, (uzaur) = (_Z/4a _T)v €= (326/8)27

where z. is the z coordinates of the cell center. We set 100 x 10 initially equal-angular cells. The final time is
set to be ¢t = 0.8, and the analytical solution for density is a constant with a value of 37.4. Fig. 5.11 shows
the results of the grids, density contour and density plotted as a function of the radial radius along each radial
line, where we can observe the numerical results of the second-order DG scheme converge well to the analytical
solutions except in the small region near the origin. This example demonstrates that our proposed DG scheme
in two-dimensional cylindrical coordinates can not only effectively simulate the spherical symmetric problems,

but also simulate the asymmetric problems well.

1st order
2nd order

Figure 5.11: The results of the Coggeshall problem with 100 x 10 cells at ¢ = 0.8. Left: final grid; Middle:
density contour; Right: density p versus radial radius p along each radial line.

33



6 Concluding remarks

In this paper, we have constructed a class of new second-order cell-centered Lagrangian DG schemes for solving
the compressible Euler equations on quadrilateral meshes. This DG scheme is based on the moving physical
configuration, and the conserved variables are solved directly. It is conservative for the density, momentum
and total energy. Compared to previous research, our proposed Lagrangian DG scheme is truly second-order
accurate for all the variables such as density, momentum, total energy, pressure and velocity. The key point
is to properly deal with the flux term of the difference between the fluid velocity and the grid velocity. On
the one hand, we need to ensure that there is no mass exchange between neighboring cells, which is crucial
for the pure Lagrangian methods. On the other hand, the design of this flux term should not destroy second-
order accuracy of any variables. To balance these two issues, we compute this flux term only to equations
where the test functions are not equal to 1. Our strategy can obtain a truly second-order Lagrangian DG
scheme without mass exchange between neighboring cells. Based on this framework, we have further designed
a second-order Lagrangian DG scheme in the two-dimensional cylindrical geometry that maintains both the
spherical symmetry and conservation properties. The basic idea is to combine the true volume scheme and
the area-weighted scheme, and carefully discretize the mass matrix and source terms. We have tested many
well-known numerical examples in the two-dimensional Cartesian and cylindrical coordinates to demonstrate
the good performance of the Lagrangian DG schemes in terms of accuracy, symmetry and non-oscillation.
Finally, we point out that our proposed pure Lagrangian DG schemes can achieve at most second-order
accuracy for multi-dimensional problems on the straight-line grid, and the discussion of higher order Lagrangian

type DG schemes on the straight-line grid is a part of our future work.
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