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ABSTRACT

Voice conversion (VC) aims to modify the speaker’s iden-
tity while preserving the linguistic content. Commonly, VC
methods use an encoder-decoder architecture, where disen-
tangling the speaker’s identity from linguistic information is
crucial. However, the disentanglement approaches used in
these methods are limited as the speaker features depend on
the phonetic content of the utterance, compromising disentan-
glement. This dependency is amplified with attention-based
methods. To address this, we introduce a novel masking
mechanism in the input before speaker encoding, masking
certain discrete speech units that correspond highly with
phoneme classes. Our work aims to reduce the phonetic de-
pendency of speaker features by restricting access to some
phonetic information. Furthermore, since our approach is at
the input level, it is applicable to any encoder-decoder based
VC framework. Our approach improves disentanglement
and conversion performance across multiple VC methods,
showing significant effectiveness, particularly in attention-
based method, with 44% relative improvement in objective
intelligibility.

Index Terms— one-shot voice conversion, disentangle-
ment, phonetic units, discrete speech units, attention

1. INTRODUCTION

Speaker identity plays a crucial role in voice conversion (VC)
as it enables the synthesized speech to be personalized for
various applications. Historically, early VC methods relied on
parametric and non-parametric approaches of statistical learn-
ing [1]. In the deep learning era, methods initially focused on
VC with parallel training data [2–4]. However, the introduc-
tion of advanced networks such as generative adversarial net-
works (GANs) [5,6] and variational autoencoders (VAEs) [7]
opened up ways to train VC architectures without any paral-
lel training data. Recently, encoder-decoder-based methods
have been the state-of-the-art (SOTA) and most-adopted ap-
proach [7–10] (as reported in Figure 1), allowing more break-
throughs in voice quality and speaker similarity in VC.

*Equal contribution
Speech samples: https://conv-synth.github.io/unit-masked-VC/
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Fig. 1. Standard encoder-decoder based VC training vs VC
training with the proposed masking approach

Zero-shot VC techniques aim to transform source speech
into the voice of a target speaker using a limited amount of
reference speech from that target, thereby allowing the usabil-
ity of VC methods across various scenarios. Popular zero-
shot VC methods have an encoder-decoder architecture [8–
10] where speech is encoded to linguistic and speaker fea-
tures, which are then decoded back to speech. Voice conver-
sion is performed by using source linguistic information and
target speaker information during decoding. The most crucial
points in encoder-decoder-based approaches are the disentan-
glement and descriptive power of linguistic and speaker fea-
tures to synthesize high-quality speech while controlling the
speaker identity.

There are different disentanglement approaches adopted
by the SOTA VC methods [7–11]. In [7], the authors attain
disentanglement by limiting the bottleneck feature dimension
of linguistic features. In [8], the authors introduce adaptive
instance normalization for disentanglement. In [9], to dis-
entangle encoded features, the authors impose a mutual in-
formation estimation and minimization objective on encoded
features. All these disentanglement approaches are enforced
at the feature level and seem to be effective. However, they
have limitations in terms of disentanglement, and we suggest
that all these feature-level disentanglement approaches can be
supported by additional input-level approaches.

As representation ability is another significant challenge
in VC, attention-based feature extraction methods are intro-
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duced to obtain more fine-grained, detailed speaker identity
information from input speech. In [12], the authors proposed
TriAAN-VC where they modify the instance normalization
by introducing attention-based statistics calculation. In [13],
the authors extract speaker identity information through the
cross-attention between discrete semantic tokens and frame-
level speaker features. However, we suggest that having more
detailed information through attention is likely to compro-
mise disentanglement, and this approach needs a remedy.

It is shown that speaker identity information is connected
with the phonetics of the speech, and speaker features tend to
contain phonetic information and are dependent on the pho-
netic structure of the input speech [14–16]. We believe this
phenomenon is harmful to zero-shot, encoder-decoder-based
VC methods as this dependency is a form of entanglement.
In the most adopted approach, the network is trained with a
reconstruction objective where speaker features are extracted
from the same phonetic structure of the source speech. How-
ever, in the inference scenario, the reference speech from the
target speaker might not have the same phonetic structure as
the source speech, degrading the ability to extract speaker in-
formation and potentially causing overfitting.

In this paper, we propose a very straightforward yet ef-
fective way to reduce the phonetic dependency of speaker
features and improve disentanglement in VC as reported in
Figure 1 conceptually. In VC training, we apply masking
to the utterance before feeding it into the speaker encoder
such that we mask all occurrences of randomly selected dis-
crete speech units in the speech that are highly correlated with
phonemes. We apply our approach to multiple VC frame-
works to show that it applies to different VC methods regard-
less of the framework. We show that our method is effective
in both VC frameworks, especially with remarkable improve-
ments in the attention-based framework, proving to be a rem-
edy for the potential phonetic dependency of those methods.

2. RELATED WORK

Masking on input is applied in various ways for different pur-
poses in VC [17–21]. In [17], a GAN-based method, the au-
thors applied time-masking to the input to enforce the model
to predict the missing frames, which resulted in improved VC
performance. In [18], the authors applied multiple maskings,
including time and frequency masking, to augment the lim-
ited parallel data. More recently, in [19], the authors applied
masking to the prior of the diffusion model to improve ro-
bustness. Most similar to our work in terms of motivation,
in [20, 21], the authors perturb the pitch of input speech be-
fore feeding it to the linguistic encoder to prohibit its access
to speaker information. This method has been proven to be
very effective in improving disentanglement in both works.
To our knowledge, this is the first work to address the pho-
netic dependency of speaker features and focus on informa-
tion perturbation specifically designed for speaker encoders
in VC methods.

3. DISCRETE UNIT BASED MASKING FOR VOICE

CONVERSION

We propose a novel masking approach specifically designed
for encoder-decoder based, zero-shot voice conversion. Our
masking approach focuses on disrupting the phonetic content
of the input utterance before feeding it to the speaker en-
coder. We aim to reduce the phonetic dependency of speaker
features and improve disentanglement. Our approach is a
time-masking approach; however, unlike traditional random
time-masking, we propose to mask all occurrences of certain
speech units in an utterance. In random masking, phonetic
units in the masked region could also be present in the un-
masked region, making masking ineffective. In our approach,
we ensure that the speaker encoder does not have access to
some of the phoneme information in the input, reducing the
reliance on input phonetic unit distribution. Our method is ex-
pected to maintain the capability of modeling speaker charac-
teristics, relying on the assumption that not all phonetic units
in the input utterance are needed to infer speaker identity, as
the speaker can be fairly inferred from a short duration of
speech where a limited number of phonetic units are present.

3.1. Discrete Speech Units

A phonetic unit can be defined at various levels and groups
such as phonemes, tri-phones, and even subphoneme units.
However, such phonetic unit definitions require human
knowledge about phonetics. Phonetic units should be de-
termined by either manual labeling or an automatic approach
such as speech recognition, which is computationally costly
and has errors that would propagate. In this work, we opted
for discrete units from self-supervised learning (SSL) mod-
els [22, 23] that are trained by masked unit prediction ob-
jective over speech frames and performed remarkably on
automatic speech recognition (ASR) and many other down-
stream tasks. Discrete units are obtained by K-means clus-
tering applied on intermediate layer representations of those
SSL models. It is shown that the discrete units obtained by
clustering the SSL features have high correlation and mutual
information with phoneme classes [22, 24]. We used a clus-
tering model trained with pre-trained HuBERT [22] layer 7
features to discretize input speech and determine correspond-
ing unit classes for frames.

3.2. Time-masking based on Discrete Speech Units

In our approach (illustrated in Figure 2), we extract discrete
units from input speech using HuBERT and a k-means model
as z = [z1, z2, ..., zT ] where T is the number of frames. We
get the set of discrete unit classes present in the utterance as
set(z) = {zk|z} where k is the discrete unit class index. We
randomly select a portion of unit classes to mask in the set
of discrete units and calculate timestamps of the correspond-
ing frames classified as one of the selected unit classes for
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Fig. 2. Proposed training for encoder-decoder based VC frameworks

masking. We omit frames inside those timestamps in input
speech features during training. We apply this masking only
before feeding input features to the speaker encoder to avoid
disrupting linguistic information needed by the content en-
coder, which could destabilize training by making the objec-
tive harder. By this approach, the speaker encoder is guaran-
teed not to have access to certain discrete units in the input
speech, which are highly correlated with phoneme classes.

3.3. Masking Applied on VC Approaches

To show the universality of our approach, we applied our
masking approach to two different encoder-decoder based,
zero-shot voice conversion frameworks, denoted as TriAAN-
VC [12] and VQMIVC [9]. Both methods rely on unsuper-
vised and non-parallel training, where input speech utterance
is encoded into linguistic and speaker representations by con-
tent and speaker encoders. The representations are then de-
coded back to reconstruct input speech. At inference, the
voice is converted by decoding the linguistic representation
from source speech and the speaker representation from a ref-
erence speech of the target speaker. This VC paradigm relies
on the disentanglement of the speaker and linguistic features
to maintain the source linguistic content while altering the
speaker identity [1]. Next, we elaborate on the specifics of
the proposed masking approach for VC.

3.3.1. TriAAN-VC

Triple Adaptive Attention Normalization VC (TriAAN-VC)
[12] is an encoder-decoder based zero-shot VC framework.
It has shown SOTA performance, especially in speaker sim-
ilarity of the synthesized speech with the help of attention
mechanisms introduced. It has two encoders for linguistic and
speaker feature extraction followed by a bottleneck layer and

decoder. It utilizes adaptive instance normalization (AdaIN)
for disentanglement between linguistic and speaker features
[8, 25]. Furthermore, it is shown to improve speaker infor-
mation extraction by incorporating attention while calculating
instance normalization statistics utilizing fine-grained, frame-
level details.

The two encoders of TriAAN-VC consist of multiple
blocks containing convolutional layers and instance normal-
ization. The speaker encoder has an additional self-attention
layer on the time dimension to calculate instance normaliza-
tion statistics.

After encoding the features, a bottleneck layer consisting
of a gated recurrent unit (GRU) and dual adaptive normal-
ization (DuAN) is present. Following the bottleneck layer,
the decoder consists of blocks containing convolutional lay-
ers, and the TriAAN module produces the mel spectrogram of
the input utterance during training and the converted utterance
during inference.

Dual Adaptive Normalization:

In TriAAN-VC, DuAN calculates the weighted statistics
of the speaker features for the stylization of content features
after instance normalization. It is applied on both channel
and time dimension separately hence it is called dual. The
weights ω for weighted statistics are calculated by the cross-
attention between content features xc and speaker features
Fs. The instance normalized content feature IN(xc) is then
styled by weighted mean M and standard deviation S as
x→
c = IN(xc)S +M . During training, the input utterance is

the same for the speaker and linguistic encoder. This suggests
that cross-attention would easily get corresponding similar
speaker features for each content feature during training.
However, in inference, the reference speech from the target
speaker most likely won’t have the same linguistic and pho-
netic content as the source speech. This paradigm has an
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additional phonetic dependency on speaker features, which
would suffer from overfitting and mismatch during inference.
We believe our method would be especially effective in such
cases.

Loss: TriAAN-VC uses L-1 reconstruction loss be-
tween predicted mel-spectrogram ŷ and ground-truth mel-
spectrogram y as loss = ||ŷ → y||1. Furthermore, they utilize
siamese loss siam = ||ŷsiam → y||1 where it is the L1-loss
between ground truth y predicted spectrogram ŷsiam from
random time masking applied input before both encoders.
They also include consistency loss cons = ||ŷ → ŷsiam||1
which is the L1-loss between predicted mel-spectrogram
from actual input and predicted spectrogram from random
time masked input. The overall loss function becomes
L = (loss + siam)/2 + cons. In our work, we only ap-
ply our masking when predicting ŷ. For the sake of training
stability, we did not choose to apply our masking when pre-
dicting ŷsiam where the input is already masked by random
time masking. In this work, the loss and cons terms in the
overall loss promote reducing phonetic dependency while
the siam term promotes robustness for extracting content
information.

3.3.2. VQMIVC

Similarly, VQMIVC is an encoder-decoder based zero-shot
VC framework. It utilizes vector-quantization (VQ) for con-
tent encoding and mutual information (MI) minimization be-
tween encoded features for disentanglement. It consists of
two encoders Ec, Es for content and speaker identity respec-
tively, a pitch extractor Ep, and a decoder D. It uses log-mel
spectrogram as the input to the encoders and raw waveform
for the pitch extractor. The decoder reconstructs input mel-
spectrogram from content zc, speaker zs, and pitch represen-
tations zp during training. They utilized vector-quantization
with contrastive predictive coding (VQCPC) which is shown
to learn speaker-independent linguistic units implicitly [26,
27] as the content feature. To enforce the disentanglement
further, the authors introduced mutual information estimation
by utilizing vCLUB [28] between representation pairs. The
authors include the estimated MI term in the overall loss func-
tion to minimize the common knowledge between the repre-
sentations to improve the disentanglement explicitly.

However, both disentanglement approaches utilized in
VQMIVC have limitations and can be further improved by
our approach at the input side, where the access of the speaker
encoder to the phonetic content of the speech is restricted. In
this work, we apply our masking on the input log-mel spec-
trogram before feeding it to the speaker encoder Es for the
speaker representation zs extraction during training. During
inference, we don’t apply masking. At the inference, the
content zs and pitch zp representations are extracted from
source speech, while speaker representation zs is extracted
from a reference speech from a target speaker. The decoder
D produces a converted log-mel spectrogram.

4. EXPERIMENTAL SETUP

4.1. Datasets

We utilized the VCTK [29] corpus for VC experiments, which
consists of 109 speakers uttering 400 utterances each. We
have followed the default data partition for TriAAN-VC [12]
experiments and partitioned the dataset into a ratio of 60%:
20%: 20% for training, validation, and testing respectively in
terms of speakers. Similarly, for VQMIVC [9] experiments,
the dataset was partitioned into a training, validation, and test-
ing ratio of 70%: 10%: 20%.

4.2. Training

The audios are downsampled to 16 kHz sampling rate. For
TriAAN-VC, we followed the default setting and CPC fea-
tures from pre-trained SSL model [30] is used as input fea-
tures. For the f0 features, DIO algorithm [31] is used on raw
waveforms for both methods. Log mel-spectogram features
of 80 mel bins using a 25ms window and 10ms hop size are
used as input features and output features for VQMIVC and
only as output features for TriAAN-VC.

We have used official implementations of TriAAN-VC1

and VQMIVC2 for training. We initialize default parameters
for both frameworks according to [9, 12] with no additional
modifications other than proposed masking before the speaker
encoder. We extract discrete units for input utterance using
HuBERT-base and kmeans model [32] with K = 100 offline.
We apply masking to a fixed amount of the set of discrete units
for a given utterance, where the masked units are selected
randomly each time. We have experimented with different
masked unit ratios of 10%, 20%, 30% in different training set-
tings. The TriAAN-VC framework is trained using the Adam
optimizer with a constant learning rate of 1e-4. A batch size
of 64 is used to train to 400 epochs. The VQMIVC framework
is trained using the Adam optimizer starting with a 15-epoch
warmup which gradually increases the learning rate from 1e-
6 to 1e-3. After 200 epochs, the learning rate is halved every
100 epochs until it reaches 500 epochs. The input utterances
are segmented to a frame size of 128 for all of the training.
Masking is applied to those segments and masked features
are zero-padded at the end, to frame size. A batch size of 64
and 256 are utilized for TriAAN-VC and VQMIVC training,
respectively. Parallel WaveGAN [33] vocoder pre-trained on
the VCTK corpus is used to synthesize waveforms from pre-
dicted log mel-spectograms for both methods during infer-
ence.

4.3. Evaluations

For the evaluations, we have performed VC for unseen speak-
ers during the training. For TriAAN-VC, VC between pairs
of 20 unseen speakers experimented. For the objective eval-
uations, 600 converted utterances are created. For VQMIVC,

1https://github.com/winddori2002/TriAAN-VC
2https://github.com/Wendison/VQMIVC
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Table 1. Objective Results for TriAAN-VC
Intelligibility Similarity

Conversion Resynth ! Conversion
Methods WER(%) ↑ CER(%) ↑ WER(%) ↑ CER(%) ↑ !WER(%) ↑ !CER(%) ↑ SECS ↓

TriAAN-VC 22.81 12.37 8.74 3.37 14.07 9.00 70.77

TriAAN-VC w/ random masking (10%) 26.41 14.03 11.41 4.43 15.00 9.60 70.05
TriAAN-VC w/ random masking (20%) 27.34 14.67 11.18 4.79 16.16 9.88 69.90

TriAAN-VC w/ our masking (10%) 15.89 7.66 7.97 3.08 7.92 4.58 69.49
TriAAN-VC w/ our masking (20%) 12.71 5.79 8.37 3.07 4.34 2.72 68.25
TriAAN-VC w/ our masking (30%) 11.40 5.14 8.20 3.21 3.20 1.93 67.48

Table 2. Objective Results for VQMIVC
Intelligibility Similarity

Conversion Resynth ! Conversion
Methods WER(%) ↑ CER(%) ↑ WER(%) ↑ CER(%) ↑ !WER(%) ↑ !CER(%) ↑ SECS ↓

VQMIVC 21.90 11.06 19.54 9.96 2.36 1.10 63.35
VQMIVC w/ random masking(10%) 26.05 13.78 21.92 11.51 4.13 2.27 62.91
VQMIVC w/ random masking(20%) 28.38 15.23 23.90 12.55 4.48 2.68 62.60

VQMIVC w/ our masking (10%) 19.71 10.22 19.78 10.20 -0.07 0.02 63.44

VQMIVC w/ our masking (20%) 21.70 11.38 20.76 10.81 0.94 0.57 62.35

Table 3. Subjective Results for TriAAN-VC with 95% confidence interval
Method Naturalness (MOS) ↓ Intelligibility (MOS) ↓ Similarity (SMOS) ↓

Ground-truth 4.72 ± 0.11 4.76 ± 0.10 -
TriAAN-VC 3.39 ± 0.11 3.34 ± 0.15 3.46 ± 0.11

TriAAN-VC w/ our masking (10%) 3.68 ± 0.13 3.68 ± 0.14 3.56 ± 0.11
TriAAN-VC w/ our masking (20%) 3.99 ± 0.12 4.01 ± 0.12 3.65 ± 0.12

VC pairs are created from 20 unseen speakers totaling 720
converted utterances.

Objective Evaluations: In objective evaluations, we
measured word error rate (WER) and character error rate
(CER) when the synthesized speech is fed into a state-of-
the-art automatic speech recognition model3 to measure
intelligibility. To show the phonetic dependency and dis-
entanglement, we have constructed a resynthesis scenario at
inference where we don’t use a reference utterance from the
target speaker, but we use the source utterance itself as the ref-
erence utterance, just like in training. We report !WER and
!CER between conversion and resynthesis, where the refer-
ence utterance has a different and same phonetic structure as
the source utterance, respectively. We also measured speaker
embedding cosine similarity (SECS) between embeddings
from synthesized speech and ground truth utterances of the
given speaker using the d-vector4 speaker embeddings [34]
to assess the similarity of converted utterance to the target
speaker.

Subjective Evaluations: We conducted subjective evalu-
ations for TriAAN-VC with 15 participants. We have sampled
144 total utterances from conversion pairs of 16 speakers (8
male and 8 female) for the evaluations. We have conducted
mean opinion score [1] (MOS) measurements for naturalness
and intelligibility of the synthesized speech separately. We

3https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self
4https://github.com/resemble-ai/Resemblyzer

also asked participants to rate speaker similarity compared to
the ground truth utterance from the target speaker for similar-
ity mean opinion score [35] (SMOS) measurements.

5. RESULTS

In the experiments, we have applied the default setting for
TriAAN-VC and VQMIVC as the baselines and applied our
masking approach with different masked unit ratios. We also
experimented with random time masking where a random
segment consisting of consecutive frames is masked before
feeding input to the speaker encoder. For random time mask-
ing we applied a fixed masked frame ratio with respect to the
total number of frames in the input utterance.

The objective results for TriAAN-VC can be seen in Table
1. It is clear that the WER/CER difference between conver-
sion and resynthesis scenarios is very high, indicating overfit-
ting and being dependent on having the same or different lin-
guistic, thus phonetic structure between source and reference.
Our proposed masking approach improved WER/CER signif-
icantly where for both 20% and 30% masking the relative im-
provement is around 50%. Furthermore, the difference be-
tween the conversion and resynthesis scenarios is also much
smaller with our proposed masking. These results indicate
the very effectiveness of our approach to remedy the depen-
dence on phonetic structure and overfitting of the attention-
based baseline. The WER/CER gets better with increasing
masked unit ratio but at the same time, the speaker similarity
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decreases. We believe with increased masking, speaker in-
formation extraction becomes less reliable thus we opted for
20% masking where the loss in speaker similarity is negligible
compared to the gain in intelligibility. Random time mask-
ing decreases the intelligibility significantly, which does not
help with the disentanglement and possibly compromises the
training by introducing artifacts in the input utterance. This
supports our motivation to mask all occurrences of a speech
unit to be effective rather than random masking.

In the VQMIVC objective results, the difference in con-
version/resynthesis scenario is smaller compared to TriAAN-
VC. This indicates that attention-based methods suffer more
from dependency on the phonetic structure of the input utter-
ance. Similarly, our proposed method improves WER/CER
in VQMIVC both for 10% and 20% masked unit cases. Fur-
thermore, the disentanglement is also improved significantly
as the !WER/!CER is much smaller in proposed cases, it
even becomes negative in 10% masking scenario.

The subjective results can be seen in Table 3. For intelli-
gibility proposed method significantly performed better than
the baseline for both 10% and 20% masking, the latter having
an impressive subjective score. The same pattern is observed
in naturalness where both masking scenarios are significantly
better than baseline where 20% masking has a very high nat-
uralness score. For the speaker similarity, all the methods
have similar results just like in the similarity objective met-
ric. However, the proposed 20% sampling has a slightly bet-
ter result where we believe significantly improved naturalness
might affected the listeners. Subjective results show that our
proposed approach improves intelligibility and naturalness re-
markably without compromising speaker similarity.

6. CONCLUSION

In this study, we proposed a straightforward yet very effec-
tive approach to reduce the phonetic dependency of speaker
features and improve disentanglement in zero-shot, encoder-
decoder based VC architectures. We applied our approach
to multiple VC frameworks and showed that our approach
has improved intelligibility and disentanglement in differ-
ent VC methods suggesting universality. We have shown
that attention-based VC frameworks especially suffer from
this dependency because of the connection between content
and speaker features in the training paradigm, which has an
overfitting tendency. Our method is very effective in this
paradigm, with remarkable improvements in intelligibility
and naturalness resulting in a high-quality SOTA VC. In
future work, we plan to apply our method to other VC frame-
works and investigate the approaches where the phonetic
dependency can be remedied more effectively by an objective
in the loss function.
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