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ABSTRACT

On a Riemannian manifold, M, the heat kernel is a smooth function on (0, +00)

XM x M, (t,x,y) — p(t,x,y), and the shape of this function depends on the prop-
erties of M. This article pays particular attention to the long-time, large-scale behavior of
the heat kernel and its relation to the global geometry of M. When does the heat kernel
look like a bell curve? If it does not, what does it look like and why? To answer such ques-
tions, one needs tools to obtain sharp two-sided estimates for the heat kernel in terms of
the time variable 7 > 0 and basic geometric quantities depending on x, y € M. Under what
assumptions on M, can one hope to obtain such bounds?
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1. INTRODUCTION

Over the last 50 years, the heat kernel has become the subject of many studies in
many different settings and for many purposes. Several fields of mathematics have obvious
good reasons to pay particular attention to the heat kernel. In partial differential equations,
it is the fundamental solution of the most basic parabolic equation which is the model for all
evolution equations. In probability theory, it is the density of the distribution of Brownian
motion at a given time. In mathematical physics, beyond its original role in the theory of heat,
it leads to the notion of “abstract Wiener space,” a building block in quantum field theory. But
interest in the heat kernel goes well beyond these natural areas. It has been called ubiquitous
and a universal gadget by mathematicians interested in topology (index theorems) or number
theory (trace formulae). On a Riemannian manifold M, the heat kernel is a smooth function
pon (0,+00)x M x M, (t,x,y) — p(t,x,y). When M is the real line, y — p(t, x, y)
is a scaled version of the bell curve. See Figure 1.

FIGURE 1
The bell curve as a model for the heat kernel: the heat kernel on the real line for x = 0 and three values of ¢:
t=1/16,1/4,1; p(t,0, ) = (4m1)" /2 exp(~|y|?/41).

This article pays particular attention to the long-time, large-scale behavior of the
heat kernel and its meaning in global geometry. The goal is to develop tools to obtain sharp
two-sided estimates for the heat kernel in terms of time, # > 0, and basic geometric quantities
depending on x, y € M. Because the heat kernel is the density function of the probability
distribution of Brownian motion on M started at x at time 7, if one can obtain sharp two-sided
bounds on p valid for all z > 0, x, y € M and uniform over all manifolds M in a certain class
M, then one can say that, in that class M, the geometry controls the behavior of Brownian
motion in a precise sense. Such bounds have many further implications concerning spectral
theory, potential theory, and global analysis.

2. EXISTENCE

When does the heat kernel exist? What is needed to define it uniquely? Even in
the basic setting of Riemannian manifolds, these questions require some attention, and the
answers involve the use of some significant machinery. It is useful to proceed by stages: first,
define and prove the existence of an abstract weaker version of the heat kernel; then extract
from this weaker version a proper heat kernel. For instance, one could prove existence in
the sense of distribution theory and then prove that the constructed distribution is, in fact,
a smooth function. Instead, we appeal here to semigroup theory so that our first step is to
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define the heat semigroup (P;);~¢, from which we later intend to extract the heat kernel
itself. What is needed for this purpose is a reasonable underlying space M equipped with a
measure \, the Hilbert space L?(M, 1), and a Dirichlet form, (&, D(&)), that is, a densely
defined closed nonnegative bilinear form on L2(M, i) with one additional property, the
Markovian property. Namely, one requires that, for any u € D (&), it holds that [u| € D (&)
and & (Ju|, |u]) < &(u, u). See [9] (the Markovian property is akin to restricting ourselves to a
positivity-preserving semigroup, something related to versions of the maximum principle).
Functional analysis associates to the data (M, u, (&, D(€))) a self-adjoint semigroup of
operators
P L*(M, ) — L*(M,p), [+ Pif.

which solves the initial value problem
d;u = Au,
u(0.) = f.

in the sense that u(z, x) = P; f(x) is the only solution of this problem when f € L2(M, ).
Here, A is the operator extracted from & in the same way that a symmetric matrix can be
associated with any given positive-definite bilinear form on a finite Euclidean space. Namely,
Au € L?(M, ) is such that ¢ — Ja (Au)pdp = E(u, p) for all ¢ € D(E) whenever u €
D (&) has the property that | (1, $)| < Cy @l 12(a,y.)- This densely-defined linear operator
is called the infinitesimal generator of the semigroup (P;);~¢, and it can also be obtained
using the formula
Av = lim t~'(P;v —v)
t—04

when this limit exists in L2(M, it). Moreover, P; = ¢! where one can think of the right-
hand side as defined by using the spectral theory applied to the self-adjoint operator A. In the
context of a Riemannian manifold M equipped with its Riemannian measure u, the classical
choice is

&(f. f) =/M|Vf|2du

with the domain equal to the closure of smooth compactly supported functions for the norm
(I f113 + E(f, £))V/2. Using integration by parts, the infinitesimal generator of the associ-
ated semigroup is, indeed, the Laplacian, A f = div(V f) (in the case M = R”, the Euclidian
space, A = Y] 81-2 where 0; is the partial derivative in the direction of the ith basis unit
vector).

This simple construction provides us with a transition kernel p(t, x, dy), which, for
each 7 and x, is a nonnegative measure of finite total mass at most 1 in y. This is sometimes
referred to as the heat kernel measure (at time ¢ and centered at x € M), and its definition
is simply that P; f(x) = [,, f(y)p(t,x,dy) forall f € L?(M, du). The question of the
existence of the heat kernel (as a function) becomes the question of the absolute continuity
of the measure p(¢, x, dy) with respect to the base measure p. If absolute continuity holds
then, abusing notation somewhat, p(¢, x, y) is defined by

p(t,x,dy) = p(t,x, y)du(y).
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Hence, to prove the existence of the heat kernel as a measurable locally bounded function,
it suffices to prove bounds of the type sup,cy{|P: f(x)|} < CE, U, V)| fl1, f € € (V),
for pairs (U, V') of open relatively compact sets that cover M x M . Here €. (V') is the space
of continuous functions with compact support in V. On a smooth Riemannian manifold, the
parabolic nature of the heat equation and local PDE theory provide such bounds, as well
as the smoothness of the heat kernel. Properties of this type are known under the name of
“ultracontractivity,” and they can often be proved via the use of functional inequalities such
as Sobolev or Nash inequalities. For instance, on a Riemannian manifold M, for any fixed
v > 0, the Nash inequality ([24])

2+4 4
1A < VAR, f e ez, @1
is equivalent to the ultracontractivity inequality
1P flloo < Cat ™2 fll1, 1 >0, f € L'(M. ),
which, in turn, is equivalent to
sup {p(t,x,y)} <Cu™"?, t>0. 2.2)
x,yeM
Even in the case of Riemannian manifolds where, thanks to local PDE theory, the exis-
tence and smoothness of the heat kernel are not in question, this Nash inequality technique
gives access to a more quantitative control of the heat kernel. Because sup, ,,{p:(x, y)} =
sup,{p (¢, x, x)}, bounds of type (2.2), possibly with different functions of ¢ on the right-
hand side, are often called “on-diagonal heat kernel upper-bounds.” They capture the decay
of the heat kernel as time tends to infinity; see, e.g., [5]. In fact, with a little more work, the

same set of ideas leads to the fact that (2.1) implies a Gaussian upper-bound involving the
Riemannian distance between two points x, y, that is,

(2.3)

d(x,v)>?
V>0, x,yeM, ptxy=< Cpt V2 exp(—M)

4(1 + o)t
for any small ¢ > 0 (see, e.g., [27, CHAPTER 4, SECTION 2] and the references therein). For
comparison, in our notation, the heat kernel in R” is

L lx =y
——exp| ——— ).
(4mr)n/2 P 4t

The essentially universal nature of the Gaussian factor, exp(—d?/4t), is somewhat surpris-
ing and very useful in practice: it makes the heat kernel behave almost like a compactly
supported function, and this facilitates many manipulations.

3. THE GEOMETRY OF NICE DIRICHLET SPACES

The Nash inequality easily makes sense on a Dirichlet space (M, u, (§, D(E)))
simply by interpreting ||V f |13 as E(f, f) for f € D(E) N L1 (M, p). It then implies (2.2)
and, in particular, the existence of a bounded heat kernel for all ¢ > 0. Dirichlet forms can
be local or nonlocal (the associated Markov process has continuous paths in the first case
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and includes jumps in the second). Under some additional relatively mild assumptions, it is
possible to extract from a (strictly) local Dirichlet form (&, O (&)) a measure-valued bilinear
form defined on D(€) x D(E), (f.g) = dI'(f.g),suchthat E(f.g) = [;,dT(f.g). Fora
given function f € D(&), dT'(f, /) may or may not be absolutely continuous with respect
to dp. When it is, we write dU(f, f) = T'(f, f)du. This is called the “carré du champ,”
and it is a substitute for the classical |V f|2. It extends naturally to a local version Do (&)
of O (&). For arbitrary points x, y € M, set

d(x,y) = sup{| f(x) = f)| : [ € €(M) N Dioc(€).dT(f. f) < dp}.

This symmetric function of x and y can vanish or take the value +oo. When it is finite,
continuous, and defines the topology of M, it provides a good notion of distance called the
“intrinsic distance” of the given Dirichlet form; see, e.g., [22,28]. In the Riemannian setting,
the intrinsic distance is simply the Riemannian distance. To see a different (non-Riemannian),
yet classical set of examples, let M = G be a unimodular Lie group equipped with its Haar
measure i, and a family { X, ..., Xy} of left-invariant vector fields which generates the Lie
algebra g of G (i.e., these fields together with all their iterated Lie brackets span g, linearly).
Set

k
e )= [ S IXifPdu
G
1

for f in the closure of €°(G) for the norm (g | f1?dp + [g Zlf |X; f|>du)'/?. In this
case, the distance d is the sub-Riemannian distance associated with the family { X1, ..., X}
and this example serves as a model for the development of sub-Riemannian geometry and the
analysis of the related subelliptic Laplacians (here, A = Z]f X iz, because G is unimodular).

In general, when the intrinsic distance d is continuous and defines the topology
of M, itis possible again to obtain (2.3) from (2.1) (e.g., [28]). Recently, based in part on the
notions and techniques described here, Carron and Tewodrose proved the following rigidity
result [4]. Consider a o-compact complete metric space (M, d), equipped with a positive
Radon measure p and with a Dirichlet form (&, D(&)). Assume that the associated heat
semigroup admits a heat kernel p which satisfies, for all (¢, x, y) € (0, +00) x M x M,

pt,x,y) = ;exp(—M).
o (4mt)/2 4t

Then « is an integer, M is R%, d is the Euclidean metric on R%, and p is the a-dimensional
Hausdorff measure. The Dirichlet form (&, 9(&)) is the usual Euclidean Dirichlet form.

On the other hand, there are many interesting examples that are definitively not
Euclidean and whose heat kernel satisfies

d(x,y)? C d(x,y)?
“ exp(—Clg) < p(t,x,y) < 2 exp(—czﬂ).

tﬁt/z ta/2 t

These examples include uniformly elliptic operators in R”, for which

60 = [ Y ay(0v /- Ve,

i,j=1
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where the coefficients a;; are bounded, measurable, and satisfy Zij ajj(x)&&; > ¢||&|)3 for
all x, & € R” and some ¢ > 0. In this case @ = n (see [1,2,25]). Another example is the
Heisenberg group H of 3 x 3 matrices

x,y,z €R,

[
S = =
—_— < N

equipped with the Dirichlet form &(f, /) = [ (IXf > + |Yf|*)d where X (resp. Y) is
the left-invariant vector field equal to d/dx (resp. d/dy) at the identity. In this case o = 4.
In all these examples the correct interpretation of the on-diagonal factor, #~%/2, is that it is
1/V(x,/t) where V(x,r) = u({z € M : d(x,z) < r}), the volume of the ball of radius r
and center x. This leads us to consider the following hypothetical two-sided Gaussian bound:

c1 d(x,y)z) C, ( d(x,y)z)
———exp| -C;———— ) < p(t,x,y) < ————exp| —co———— ).
V) p( T R A R
When (3.1) holds on a Riemannian manifold, one can answer many questions. For instance,
ds _ < 4o0. If this

V(x,4/5)
integral is finite then the Green function G(x, y), i.e., the function such that

A f(x) = [ Gl y) fO)du(y).  f € €X(M),
M

+oo ds +oo ds
c —§G(x,y)§C/ e
/d(x,y)z V(x,/s) e,y V(x, V/5)

By integrating (3.1) with respect to y over the ball B(x, 2+/7) and noting that the integral of

3.DH

Brownian motion on such a manifold is transient if and only if [ oo

satisfies

the heat kernel is at most 1, one easily sees that (3.1) implies that the manifold M must be
doubling in the following sense.

Definition 3.1. A metric measure space is called doubling if there exists a constant D such
that, forall x € M and r > 0, V(x,2r) = u(B(x,2r)) < DV(x,r) = Du(B(x,r)).

In the next section, we answer the following question: Which Riemannian manifolds
satisfy (3.1)?

4. HARNACK MANIFOLDS AND DIRICHLET SPACES

On a smooth manifold with boundary, a function u is harmonic in an open ball B if it
is smooth in B, satisfies Au = 0, and has vanishing normal derivative on §3y N B. Similarly,
a function u is a solution of the heat equation in a time-space cylinder Q = (a,b) x B ifitis
smooth there, satisfies (d; — A)u = 0 in Q, and has vanishing normal derivative on §3; N B.
When dealing with more general contexts, including local (regular) Dirichlet spaces, the
appropriate notion of a weak solution must be used instead; see, e.g., [28,29] for details.

The elliptic Harnack inequality is one of the most well-known inequalities in anal-
ysis and goes back to the nineteenth century. In R”, it states that there is a constant C,
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such that any nonnegative function u, harmonic in a ball B = B(x, r), satisfies sup 1B {u} <
Cy inf 1 glu} where %B = B(x,r/2). A Riemannian manifold (or Dirichlet space as above
which admits a good intrinsic distance) satisfies the elliptic Harnack inequality when there is
a constant Cps such that any nonnegative function u which is harmonicinaball B = B(x,r)
satisfies

sup{u} < Cyy inf{u}.

lp 1B

Until recently, there was no clear characterization of this property in geometric terms, but
this problem is resolved beautifully in [3], to which the reader is referred.

The importance and usefulness of the parabolic Harnack inequality only became
apparent in the second half of the twentieth century in the work of Nash [24], Moser [23],
and many others after them. Consider a time-space cylinder Q = (s — r2,s) x B(x,r) and
the smaller separated subcylinders Q_ = (s — 3r2/4,s —r?/2) x B(x,r/2) and Q4 =
(s —r?/4,s] x B(x,r/2). We say that M satisfies the parabolic Harnack inequality (at all
scales and locations) if there is a constant Cps such that any nonnegative solution u of the
heat equation in Q satisfies

sup{u} < Cpy inf{u}. 4.1
o_ O+

In what follows we will make constant use of the following definition.

Definition 4.1. We say that a Riemannian manifold M is Harnack with constant C if it
satisfies the parabolic Harnack inequality (4.1), at all scales and locations, with a constant
Cy <C.

Given a precompact open subset 2 C M, set

JoIVfPdp
Jo If = fal?du

Here, fq is the average value of f on Q and W 1(Q) is the set of all L2-functions in  whose

AMQ) = inf{ cfeWlQ), f— fo # o}.

gradient in Q (in the sense of distributions) can be represented as an L2-vector field in Q.
The language of Dirichlet spaces allows us to view A(2) as the lowest positive eigenvalue
of the Neumann-Laplacian in 2 (even if €2 does not have a smooth boundary).

Definition 4.2. We say that a Riemannian manifold M satisfies the Poincaré inequality at
all scales and locations, with a constant at most P, if

VxeM, r>0, A(B(x,r))>1/(Pr?). 4.2)

Definition 4.3. Fix x > 1. We say that a Riemannian manifold M satisfies the weak Poincaré
inequality with parameter « at all scales and locations, with a constant at most P, if
VxeM,r>0,Vfe€(B(x,kr)), / |f—f3(x’,)|2du§Pr2/ IV f1?du.
B(x,r) B(x,kr)
With these definitions we can answer the question posed at the end of the previ-

ous section: Which Riemannian manifolds satisfy the two-sided Gaussian heat kernel esti-
mate (3.1)?
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Theorem 4.4. A complete Riemannian manifold M is Harnack if and only if it satisfies (3.1).
These properties are also equivalent to the fact that M is doubling and satisfies the Poincaré
inequality (4.2) at all scales and locations. Finally, doubling and the weak Poincaré inequal-
ity with a fixed parameter k > 1 are enough to imply that M is Harnack.

This theorem is essentially taken from the independent works [1e] and [26], which
both used ideas developed in the earlier works by various other authors. The proof in [26,27]
uses the well-know techniques of Nash and Moser, as well as ideas developed by D. Jerison
and S. Kusuoka and D. Stroock. K. T. Sturm extended this theorem in an important and
useful way to the context of local Dirichlet spaces admitting a good intrinsic distance [28,29].
In this abstract context, the well-known fact that (4.1) implies the Holder continuity of the
(weak) solutions of the heat equation provides an important method to prove the continuity
of the heat kernel. Each property used in Theorem 4.4, the parabolic Harnack inequality
(4.1), the two-sided-Gaussian bound (3.1), and the conjunction of doubling and the Poincaré
inequality, comes with a small set of fundamental constants, the constant Cpy in (4.1), the
constants ¢, Cq, ¢z, Cy in (3.1), and the doubling constant D and Poincaré constants «, P. In
each case, the constants of a given property can be controlled solely in terms of the constants
of one of the other equivalent properties. For instance, fix large, positive, reals D and P.
There is a constant C = C(D, P) such that any complete manifold satisfying doubling with
constant at most D and the Poincaré inequality (4.2) with constant at most P also satisfies
the parabolic Harnack inequality (4.1) with constant at most C.

This brings us to the following conjecture due to Maria Gordina, Nate Eldredge, and
the author.

Conjecture 4.5 ([8]). Given a compact Lie group G, there exists a constant H(G) such that
all left-invariant Riemannian metrics on G are Harnack with constant at most H(G).

Because of (3.1), what this would mean is that, on a given compact Lie group, all
left-invariant diffusion processes are uniformly controlled by their own geometry.

A simple argument going back to the work of N. Varopoulos shows that a left-
invariant Riemannian metric on a unimodular Lie group G which is doubling also satisfies
the Poincaré inequality. It follows that the conjecture above can be stated in the following
much simpler form.

Conjecture 4.6 ([8]). Given a compact Lie group G, there exists a constant D(G) such that
all left-invariant Riemannian metrics on G are doubling with constant at most D(G).

The best evidence for these conjectures is that they hold for abelian Lie groups
(compact or not), for nilpotent Lie groups (not compact, if not abelian), and for SU(2) (see
[8]). The case of U(2) and SU(2) x A where A is an abelian Lie group is in preparation by
the same authors (it is surprisingly more involved than the case of SU(2)).

These conjectures can be compared with the following theorem which follows
from [21] (this theorem covers the case of abelian groups because their left-invariant Rie-
mannian metrics have 0 curvature).
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Theorem 4.7. Fix a dimension n. There is a constant C,, such that all complete Riemannian
manifolds with nonnegative Ricci curvature are Harnack with constant at most C,,.

Repeating something said above, one of the consequence of this theorem is that,
on manifolds with nonnegative Ricci curvature and dimension at most 7, the behavior of
Brownian motion is controlled by the geometry of the manifold, uniformly over all such
manifolds.

For a typical compact Lie group G in Conjectures 4.5—4.6, there is no finite common
lower bound on the Ricci curvature of all left-invariant Riemannian metrics. So, Theorem 4.7
does not help much in settling these conjectures. In fact, although we stated these con-
jectures for left-invariant Riemannian metrics, they automatically extend to (e.g., include)
left-invariant sub-Riemannian geometries because the desired property is uniform over all
Riemannian metrics on G. They further extend to left-invariant structures on analytic sub-
groups of the compact group G, showing that G cannot contain an analytic subgroup of
exponential volume growth (the fact that a compact Lie group G cannot contain an analytic
subgroup of exponential volume growth is indeed known; it can be viewed as supporting
evidence for the conjectures).

Remark 4.8. Most results concerning Harnack inequalities (elliptic or parabolic) in the con-
text of Riemannian geometry are based on Ricci curvature lower bounds in the spirit of the
famous works of S. T. Yau, Cheng and Yau, and Li and Yau. This technique leads to “gradient
Harnack inequalities” which imply inequalities of the type (4.1). One can strengthen Conjec-
ture 4.5 by asking for a uniform parabolic Harnack gradient inequality over all left-invariant
Riemannian metrics on G. This stronger conjecture is open even for SU(2).

5. NON-HARNACK MANIFOLDS

In the remaining sections, we will focus on examples of non-Harnack manifolds.
Finding ways to obtain sharp heat kernel estimates for manifolds to which Theorem 4.4
DOES NOT apply is a major challenge. Techniques exist that provide good on-diagonal
estimates in various particular situations, and it is known that the Gaussian factor of the type
exp(—cd(x, y)?/t) is somewhat universal (although not always sharp at large scales and
large time). One can phrase this challenge more precisely by asking for upper/lower bounds
for the heat kernel p(z, x, y) in terms of some explicit functions (z, x, y) + g¢(, x, ) which
are expressed in terms of ¢ and basic geometric quantities, including the volume functions
V(x,r), V(y,r), r > 0, the distance function d(x, y), and perhaps other similar quantities.
Here, ¢ represents a positive constant (more generally, finite set of positive constants) that
enters the definition of the function g and may be different in upper and lower bounds. In
case when one knows or expects that |’ y Pt x,y)dy =1 (i.e., heat diffusion on M is
conservative), it is highly desirable that the functions g, used to estimate p satisfy e, <
Jor 8et. x, y)dy < e !, for some g, > 0.

This challenge has many facets. Here, we will focus only on one of them. Namely,
we are going to focus on manifolds which lack basic homogeneity but can be decomposed

4460 L. SALOFF-COSTE



into simpler pieces that are Harnack. The simplest basic example of such is the catenoid
which, roughly speaking, is the connected sum of two planes. The catenoid is doubling but
does not satisfy the Poincaré inequality at all scales and locations; see the next section.
First, we briefly describe explicitly a different type of challenging example. The Lie
group Sol is the model for one of the eight “geometries” that are the building blocks of man-
ifolds in dimension 3 (Perelman’s theorem, formerly Thurston conjecture; the Heisenberg
group mentioned earlier is another one of these eight). We can describe Sol as the matrix

group

e* 0 y
0 e* z|, x,y,zeR.
0o 0 1

We equip Sol with the left-invariant metric associated with the orthonormal basis of R3
viewed as the tangent space of Sol at the identity, id. The rough on-diagonal behavior of the
heat kernel p(t,id, id) is described by the function exp(—z'/3) for large ¢, but no off-diagonal
estimate of the type described above is known. The simplest way to see that Theorem 4.4
does not apply (positively) to this example is to note that the volume of large balls grows
exponentially fast with the radius. Hence the doubling condition fails. In a similar spirit,
sharp off-diagonal estimates of the heat kernel of the universal cover of a compact mani-
fold whose fundamental group is a finitely generated solvable group of exponential volume
growth is a challenge that goes well beyond existing techniques.

6. MANIFOLDS MADE OF NICE PIECES AND RECONSTRUCTION:

BASIC EXAMPLES

Consider the connected sum of two Euclidean spaces, M = R"#R", n > 2, equipped
with a Riemannian metric, that is, the Euclidean metric away from the central collar gluing
the two copies of R” together. This manifold is made of two very nice Harnack pieces, the
two Euclidean spaces. It is doubling at all scales and locations, but the Poincaré inequality
fails to hold for balls of large radius centered at the collar. In fact, the second-lowest Neumann
eigenvalue for such a large central ball is of order 1/(r?logr) whenn = 2 and 1/r" when
n > 2 (for the Poincaré inequality to hold, we need 1/r2). Write M as the disjoint union of
a compact part K (the collar), and the two disconnected ends E1, E», both equal to R” \ B,
where B is a ball centered at the origin in R”, of radius large enough so that the metric of
M on each E; is Euclidean. For x, y € M, consider the following geometric quantities:

* x| = sup,egid(x, 2)};

¢ d;(x,y), the infimum of the lengths of smooth curves joining x to y in M having
a nonempty intersection with K;

* dg(x,y), the infimum of the lengths of smooth curves joining x to y in M having
a empty intersection with K.
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Forn > 2, set

1 1 1 di(x,y)?
gMc(t, x,y) = P (|x|"—2 + |y|"—2) CXP(—Cf

( d@(x,y)z)
exp| —c—————— ).

t

+

ctn/?

It is proved in [18] that there are constants c1, c; such that, for all (z, x, y) €
(0, +00) x M x M, the heat kernel of M, pas (¢, x, y), satisfies

gM,cl(t,X,Y)pr(t,x,y)ng,cz(t,x,y)' (61)

More complicated formulae of the same type apply when M = M #--- #M} with
each M; = R"™ x SN—ni for n; > 3. In particular, in this case, for any fixed pointo € M, there
are constants ¢1, C; such that, for all 7 > 1, ¢;r ™™}/ 2 < pai(t.0,0) < Cyr~mintni}/2,

The case of the connected sum of two planes, R2#R?2, is different because Brownian
motion on R? is recurrent (an open ball is visited with probability 1 from any starting point;
equivalently, there is no positive Green’s function). It is proved in [13, 18] (some technical
elementary manipulations are required to turn the results of [13,18] into the statement given
here) that the heat kernel for M = R?#R? satisfies (6.1) with

1 (log(e(l +1/1x) | log(e(1 + z/|y|2))) exp(_c d+(x,y)2)
ct \ log(l +¢t + |x|?) log(1+t + |y]?) t

grauRr2,c (1, X,y) =

1 ( dp(x, y)z)

+ —expl —¢c——— ).
ct t

1

> ¢t

planes, and it always dominates if x, y are in the same plane.

In this formula, the second term, - exp(—cdg(x, y)?/t), is 0 if x, y are in different

7. MANIFOLDS WITH FINITELY MANY NONPARABOLIC HARNACK

ENDS

Our goal now is to generalize as much as possible the results described above in
model cases. Consider the connected sum M = M;#---#My of k complete noncompact
weighted Riemannian manifolds with boundary. So M may have a nonempty “boundary”
8M C M along which it is modeled locally by the half-space R” , and M equipped with its
Riemannian distance is a complete metric space. The weight o is a positive smooth function
(in fact, continuity is more than enough). The heat equation on this weighted manifold, and
the heat kernel pjs, are associated with the Dirichlet space

(M,u, [ 19 P ot a)

where dx is the Riemannian measure, u(dx) = o(x)dx, and W} (M) is the closure of
smooth compactly supported functions on M under the norm ([, (| f 12+ |V f2)du)'/2.
By definition, we can write M as the disjoint union M = K U E; U --- U E; where K is
compact and E; are smooth manifolds with boundary isometric to M; \ K; for some compact
K; in M;. Each E; inherits a weight 0; = 0| ;. In more classical terms, the Laplacian of a
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smooth function f on (M, u) is édiv(oV f)(x) atpoint x € M \ M, and the heat equation
is taken with Neumann boundary condition along §M . Although we informally refer to the
M; orthe E;, 1 <i <k, as the “ends” of M, it is not necessarily the case in the setting
described above that they represent the full list of the topological ends of M as any one of
them could possibly split if a very large ball is removed.

In this section, we make two fundamental assumptions:

(HE) Each weighted manifold M; is Harnack at all scales and locations.
(NPE) Each weighted manifold M;, 1 <i < k, is nonparabolic.

Regarding (NPE), note that the dichotomy parabolic/nonparabolic (nonparabolic means the
“existence of a positive Green function”) is identical to the dichotomy recurrent/transient
(recurrence means an open ball is visited with probability 1). Moreover, a manifold satisfying
(HE) is nonparabolic if and only if || 1°° V(+S«fs) < 400. See [11] for a comprehensive review.
Under the two assumptions (HE)-(NPE), each E; is indeed a representative of an end of M
in the classical sense because nonparabolic Harnack manifolds can only have one end [15].

For any x,y € M, define |x|, d+(x, ), dg(x, y) in terms of the compact set K as
before. Also, set

i ifxekE;1<i<k,

0 ifx e K.

iy =

For x € Ej, set Vi(x,r) = u(B(x,r) N E;) and V;(r) = u(B(o,r) N (K U E;)) where o
is a fixed central point in K. Set

Vo(r) =min{V;(r) : 1 <i <k}

and

_ o |x|2 ! ds
Hoay(t,x) = H(t,x) = mln{l, —Vix(|x|) + (/le2 %x(ﬁ))+}. (7.1)

To understand the behavior of H (x, ), note that (HE) and (NPE) imply f too Ao ‘ii/E)
Whenever V; (r)/ Vi, (s) > c(r/s)* with & > 2, the integral f|;|2 AN (ii/i) is dominated by the

< +o00.

term V,le‘ljc\) This integral becomes relevant when the end containing x, E;_, is only barely
nonparabolic, for instance, if V;, (r) grows like r?(log r)2.

Theorem 7.1 ([18]). Assuming that (HE) and (NPE) are satisfied, the heat kernel

P, (t, x, y) satisfies the two-sided estimate (6.1) with

Hx.0Hy.n)  Hp.n - HxD )ex (_cd+(x,y)2)
cVo(V1) Vi, (WD) Vi, (V) t

B d@(x»J’)z)

gMmc(t,x,y) = (

c (1.2)

1
+—CX
Vi (x. V1) p( :
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Note that the last term comes into play only when x and y are in the same end. For
t € (0, 1), it is possible to show that

1 ( d(x,y)z) - (tox.y) < 1 ( d(x,y)z)
——exp|l ci———— )| < gmct,x,y) < —exp| —co——— ],
Vi vn P T EMELS = v v ST T
as expected, though this takes a bit of technical work.

1
Vo(v/1)
by the volume growth of the smallest end at scale W1 (it s possible that the “the smallest

For fixed x, yo and large ¢, pps (¢, X0, yo) behaves as , that is, it is controlled

end” changes depending on the scale at which the question is asked).

8. NONPARABOLIC MANIFOLDS WITH FINITELY MANY HARNACK

ENDS

In this section, the manifold M = M;#---#M} is a complete noncompact weighed
Riemannian manifold with boundary as before, and we continue to make assumption (HE)
that each end is a Harnack manifold. The manifold M is nonparabolic if and only if at least
one of the ends M;, 1 <i < k, is nonparabolic. So, we may weaken assumption (NPE) to

(NP) At least one of the weighted manifolds M;, 1 <i < k, is nonparabolic.

However, under these circumstances, we need to make a further assumption in order to obtain
sharp heat kernel estimates. Namely, we assume the following:

(RCA*) All the ends M;, 1 <i < k, that are parabolic must satisfy the relatively
connected annulus condition (RCA): There exists a constant A > 1 such
that, for any R > A2 and any two points x, y € E with |x| = |y| = R,
there is a continuous curve connecting x to y in {z : R/A < |z| < AR}.

In words, we assume that, in any parabolic end E;, of M, two points at a distance about R
from the central part K can be connected without going too far toward infinity (no further
than A R) and without coming back too close to the central part K (no closer than R/ A). This
condition is key to obtaining the results below. Note that again, under these assumptions,
E,, ..., Ey are indeed representative of the ends of M in the classical sense as any one of
them is a manifold with only one end in the classical sense: the nonparabolic ones because
they are Harnack, and the parabolic ones because of condition (RCA).

Each E; is an incomplete manifold with boundary such that §E; = §M N E; and
0E; = E-\ E; C K. A harmonic profile for E; is a function u; which is positive in Ej,
vanishes along dF;, and is harmonic in E; (this includes the condition that u; has vanishing
normal derivative along § E; ). It is known that such a function exists, is continuous on E-, and
is unique up to multiplication by a positive real (recall hypothesis (HE)). Moreover, there is
a constant ¢ > 0 such that, for all x € E; with |x| large enough (e.g., |x| > 2(1 4 diam(K))),

x> g . x> g
c/1 mﬁ)—”‘(")—cfl Vi(V5)
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This fact (see [15,18,20]) depends crucially upon the hypotheses (HE) and (RCA*). It implies
that the harmonic profile of a nonparabolic end E; is bounded and bounded away from 0 in
E; away from K while the harmonic profile of a parabolic end tends to infinity at infinity.

A harmonic profilefor M = K U Eq U ---U E} is a positive harmonic function / on
M (this implies it has vanishing normal derivative along §M ) which, in each E;, behaves as
u; atinfinity. Again, it is known that such a function exists under assumption (NP), see [18,3e].

We use this positive harmonic function # on M to consider the new weighted man-
ifold, (M, p1p,2), where

wpz(dx) = W2 (x)pu(dx) = h?(x)o(x)dx,
whose Dirichlet form is
[ 1V Pda = [ 195 Prdu.
M M
Because 4 is harmonic,
[ vrtian = [ 1vGRan. 1 eeEon.

This means that the heat equation associated with
(Wt [ 197 W3 01 ) )

is 9;u — § Ay (hu) = 0, and the associated heat kernel P(M,pu,») is given by

PMoyp) = mpw,u)(hx’y)- (8.1)
In probability theory, the use of this relation is often referred to as the “Doob transform”
technique after Joseph Doob. For us, its significance is that, assuming we know the profile
h, itis possible to turn estimates of p(a,,,) into estimates of p(az,y.). This is useful because

of the following theorem.

Theorem 8.1. Assume that (M, ) satisfies (HE), (NP), and (RCA¥*). Then (M, ;2) satis-
fies (HE) and (NPE).

What this theorem says is that the weighted Riemannian manifold (M, h? ),
M = M#---#M = KUE{U---U Eg,

is a connected sum of Harnack weighted manifolds, and, moreover, each of them is non-
parabolic. The proof that each (E;, jij2| E;) is a Harnack manifold proceeds by showing that
doubling and Poincaré inequalities hold at all scales and locations; see [17,2e].

Theorems 7.1-8.1 and (8.1) lead to a sharp two-sided estimate for the heat kernel
of the nonparabolic weighted manifold (M, i), u(dx) = o(x)dx in terms of the functions

g(M,/L),C(l$ xX,y) = h(x)h(y)g(M,/Lhz),c(l, X,¥), (8.2)

where g(a,yu,,),c 1s given by (7.2).
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Theorem 8.2. Assume that (M, ) satisfies (HE), (NP), and (RCA¥*). Then, there exist c1,c3
such that, forallt > 0, x,y € M, we have

EM . (X, Y) = gy (1, X, Y) < &M w).c2 (T, X, Y) (8.3)
where g(p.u),c 1S given by (8.2).

It takes quite a bit of work to unpack this statement. How explicit the obtained esti-
mates are depends very much on our ability to understand the function /, the harmonic profile
of M. One key point to notice is that everything depends on the volume growth function of
each end and our ability to compute, for r > 1, quantities such as

re—1+ /r2 L
1 Vi)'
which controls u; (hence & in E;), and
ds 5

1) > - :

which are needed to control the function Hyy, 12) in E;. These computations are the trickiest

for ends that are near the threshold separating parabolic from nonparabolic ends, e.g., when
V;(r) grows as r2 up to a slowly-varying factor (think of r2[log(1 + r)]* with @ € R). It is
worth noting that the result holds without restriction on the behavior of the volume growth
through the parabolic/nonparabolic threshold, as long as (M, p) itself is nonparabolic. The
simplest general result concerns the long-time behavior of p(as, ) (¢, X0, yo) for fixed xg, yo €
M which is that

c C
min < P (t, X0, o) < min { }
1szsk{(1+ff Vj;gpzmﬁ)} ' sisk (14 f] 5852V (VD)

Example 8.3. To illustrate what this says, consider the case when M = K U E; U E; U E3
is a solid 3-dimensional body with 3 ends that can be described as follows:

e FE; is a half-cylinder of radius 1 around the the bottom part of the z-axis,
E; ={(x.y.2): x>+ y* <L,z < -1}
* E, is essentially a solid planar slab around the xy-plane,
Ey ={(x.y,2) : x>+ y*>2,-1<2: < 1}

e FEj is essentially a solid half-cone of revolution of positive aperture around the
positive z-axis, say

Ey={(x,y,2): x>+ y* <z,z> 1}

* K is a compact set joining these ends smoothly together, and the measure on M
is Lebesgue measure (i.e., 0 = 1).

In this description, E; are smooth manifolds with corners but this can easily be fixed. The
attentive reader will note that the enumeration of the ends corresponds precisely to their
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volume growth, with V7 (r) growing linearly, V> (r) growing quadratically, and V3(r) grow-
ing as r3. These ends are all Harnack, satisfy (RCA), and E3 is nonparabolic so that M
is nonparabolic. The other two ends are parabolic. The harmonic profile & of M satis-
fies c|x| < h(x) < ¢! x| in Eq, clog(l + |x|) < h(x) < ¢ !log(l + |x|) in E,, and
¢ < h(x) < c~'in E3. It follows that V; p2(r) grows as 73 in both E; and E3, while V»(r)
grows as r2log? r. For o = (0,0,0) € M and ¢ > 1, these computations give
C
tlog* (1 +1)

Now, consider the following two questions (see Figure 2):

¢
— < t,0,0) <
tlog>(1+1) ~ Pt )

(a) Attimet > 1, where is pps (¢, 0, x) approximately the largest?

(b) Can we find balls B; = B(x;, %\/?) with |x;| < 44/t such that

lim pp(t,0,By) = lim pm(t,0,y)dy =0?
t—>—+o00 t—>—+o00 B(xt,%ﬁ)

Such balls contain an unusually small amount of heat given their sizes and loca-
tions.

The answer to the first question is that the heat kernel pys(¢, 0, x) is the largest
when x is relatively close to (0,0, —+/7), down in the cylinder E; where its approxi-
mate value is 1/¢. For comparison, note that py(t, 0, (0,0, ++/1)) is of the order of
1/13/2. However, the ball B((0,0, —+/7), %\/f) has small volume, of order /7, so that
pm(t, 0, B((0,0,—+/7), $+/1)) is approximately equal to 1/+/7. In the slab around the xy
plane, pp (1,0, B((v/1.+/1,0), 2 /1)) is approximately 1/log . However, in the largest end,
E3, where the heat kernel is the smallest, pys (¢, 0, B((0,0, /1), 1 /1)) is approximately 1;
see Figure 2. In terms of heat diffusion, the heat kernel describes punctual temperature, and
the integral over a ball is the caloric content. The caloric content of balls of a given radius

E

e | hot spot

FIGURE 2
The solid body of Example 8.3: the “hot spot” and balls of interest (scale is V).
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depends on both the local temperature and the local volume growth. These computations
illustrate the detailed information provided by Theorem 8.2.

9. PARABOLIC MANIFOLDS WITH FINITELY MANY HARNACK ENDS

It turns out that the case when the weighted manifold M = M #- - -#Mj, is parabolic
(i.e., Brownian motion is recurrent) is harder, and the treatment remains incomplete despite
good results presented in [13] and a forthcoming companion paper. To give an idea of what
is expected, let us consider the very simple case when each M; is a surface of revolution in
R3 associated with the rotation of the graph of

¢ : 10, +00) —> [0, +00),x B> z = ¢;(x) with ¢; (x) = x% for x > 2 and o;; € (0, 1].
The behavior of ¢ near 0 is 4/x so that the surface M; is smooth. These smooth surfaces
in R3 are equipped with their natural Riemannian metric and measure. Each such surface is
Harnack and (RCA) and its heat kernel satisfies

c C
Vg, v = Pl 4 ) (00 = p el
with V; ((s, ¢; (s)), ) approximately equal to

r? if 0 < r < max{l, s%},

s%r  if max{l,s%} <r <s,
ri*eif max{1,s} <r.

Reference [13] gives sharp global two-sided estimates for M = M #- - -#M} as above. Here
are some highlights:

e Ifforalli e {l,...,k},a; =« € (0,1),then M = M #---#My, is Harnack.

e If k >2andforalli € {1,...,k},®; =1, then M is doubling but does not satisfy
the Poincaré inequality in large balls centered at a fixed point 0 in M. For large
t and a fixed point 0 € M, pp (¢, 0, 0) is approximately equal to 1/¢, whereas if
x, y are in different ends, at distance +/7 from o, then pyy (z, x, y) is approximately
equal to 1/(¢ log?(1 + t)).

* In all cases, pa (%, 0, 0) is approximately equal to 1/ max;<;<x{V;(+/f)} where
r2 if r € (0,1),

o =1,

ifr > 1.

The simplest and most important thing to note is that pas (¢, 0, 0) is now controlled by the
volume of the largest end whereas, in the case when each end is nonparabolic (i.e., Section 7),
pm(t,0,0) is controlled by the volume of the smallest end. The first observation of this
phenomena in a simplified model case which appeared in [7]. It is also worth stressing that
the following problem remains open (see [14] for additional details on what is known).

Problem 9.1. Prove a sharp two-sided heat kernel estimate for M = M #- - -# M}, under the
assumption that each M; is Harnack, parabolic, and satisfies (RCA).
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106. MIXED BOUNDARY CONDITIONS ON HARNACK MANIFOLDS

Although we did not insist much on this aspect, the results discussed in Sections 7, 8
and 9 depend in a significant way on our ability to derive sharp heat kernel estimates with
Dirichlet boundary condition on domains obtained from a Harnack manifold by deleting a
compact set with nonempty interior and smooth boundary; see [15, 16, 18,19]. One is then
naturally led to consider the problem of heat kernel estimates for manifolds with bound-
ary and mixed boundary conditions (Neumann and Dirichlet). This requires new types of
hypotheses. Assume that M is a complete, weighted Riemannian manifold with boundary
8M, and that Q is an open subset of M such that M \  C §M . To simplify the presenta-
tion, assume that 02 = M \ € has finitely many connected components which are manifolds
with boundary. Our new object of interest here is the minimal heat kernel of 2, pq (¢, x, ),
which is the heat kernel of the Dirichlet form (L?(2, 1), [ |V f|*dp, Wy (R)) where the
domain W, () is the closure of smooth, compactly-supported functions in €2 for the norm
(Jo(f |2 + |V f1?)du)'/?. The corresponding heat equation has Dirichlet boundary condi-
tion along 92 and Neumann boundary condition along the rest of the original boundary of
M, §M . In [2e], sharp heat kernel estimates are derived under the condition that (1) (M, u)
is Harnack, and (2) Q is a uniform domain in M. Before we describe what uniform means,
observe that the distance between two points x, y in 2, dg (x, y), is the same as the distance
between x and y in M, dp(x, y).

To say that €2 is uniform in M with constant C is to say that, for any pair of points
x,y € Q, there is arectifiable curve parametrized by arc length, yyy, : [0, Tx,] — €2, joining x
to y, of length Ty, < Cdgq(x, y), and satisfying d(yxy(s), M \ Q) > C ™! min{s, Ty, — s},
for all s € [0, Tx,]. In words, the curve yx, is roughly of optimal length and, when moving
away from x (or y) along yxy, one also moves away from the boundary in a roughly linear
fashion. For instance, the open upper-half plane in the closed upper-half plane is uniform,
but the open infinite strip 2 = {(x,y) : —1 < y < 1,x € R} is NOT uniform in its closure
because one cannot escape from being close to the boundary; see Figure 3.

When 2 is uniform in M, it admits a harmonic profile hg, which is positive har-
monic in €2, vanishing continuously along €2 (this function has vanishing normal derivative
along 6M \ 0Q2).

FIGURE 3
The upper-half space is uniform; the band is not.
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Theorem 10.1 (See [20, THEOREM 5.11]). Referring to the setting outlined above, assume that
(M, ) is Harnack and that Q is uniform in M with harmonic profile hg. Then there are
constants c1, ¢ such that

8o, (t,x,y) < palt,x,y) < ga.c(t,x,y), (10.1)
where

_ ha(x)ha(y) dy(x,y)?
ga.clt,x,y) = —c———=".

e ex
Vi, (x, V1) P t

When reading this theorem, recall that

da(v.) =du(v.y) and V= [ i@,

By (x,r)
The lack of symmetry between x and y is intentional; because pg is symmetric, a symmetric
estimate can easily be derived from that stated here. This is a satisfactory and useful result
from a theoretical viewpoint, but detailed applications require estimating the profile hg,
which is a difficult problem.

11. MIXED BOUNDARY CONDITIONS ON MANIFOLDS WITH ENDS

The techniques used in the previous section to study uniform domains in complete
Riemannian manifolds with boundary can be implemented together with the techniques of
Section 7 to study the minimal heat kernel pg of a domain €2 in a complete Riemannian man-
ifold M = KU Ey U-.-U E} with boundary when 02 C M. A simplistic, yet interesting
example is depicted in Figure 4. Can you guess the behavior of pq (¢, 0, 0) in Figure 4? The
answer is 1/(z log2 t) because, far from o, one of the three cones is free of Dirichlet bound-
ary condition. If each cone had at least one of its sides contained in 9<2, the behavior would
depend in an explicit way on the apertures of the cones and whether each cone has one or two
sides contained in d€2. See [6] for a detailed discussion and general results in this direction,
including complete two-sided heat kernel estimates for such mixed boundary problems.

wz
.
o]
'
U

FIGURE 4
Sketch (corners should be rounded) of M (left, thick boundary lines are part of M) and 2 (right) with “Dirichlet
boundary” 02 € §M (dashed) not part of 2.
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12, ATTACHMENTS ALONG NONCOMPACT SUBMANIFOLDS

The basic ideas implemented in the study of connected sums above can be described
informally in greater generality as follows. Given a (metrically complete) manifold M, iden-
tify large chunks, hopefully, finitely many, My, ..., My, which, taken by themselves, are
Harnack manifolds. Each chunk has attachment boundaries along which they are attached
to each other to form the manifold M. Call Att; the attachment boundary of M; and set
Q; = M; \ Att;. If each Q; is uniform in M;, 1 <i < k, not only can we have good esti-
mates for the heat kernel pys, of M; (because M; is Harnack), but we can also estimate
the minimal heat kernel pg, of 2; (this heat kernel satisfies the Dirichlet boundary condi-
tion along Att;). For the next step, it may be necessary to make further assumptions about
the manifolds M; and their open subsets €2; (see, for instance, conditions (NP) and (RCA)
above). Now, find a way to use the known information regarding the different large chunks
M; to reconstruct and estimate the heat kernel pys of M. Sections 7-9 above describe how
these ideas apply successfully to connected sums (i.e., compact attachments). The article
[12] is, so far, the lone published attempt to carry out this approach when two large chunks
are glued along a noncompact attachment boundary. Emily Dautenhahn and the author are
working on applying these ideas beyond the cases treated in [12].

The results of Sections 7—12 should ultimately be developed in the more abstract
context of Dirichlet spaces so as to include ends that satisfy the Harnack inequalities that
appear in the context of fractals (see [3] and the references therein). This would allow for
the treatment of a larger class of Riemannian manifolds, as the geometry of a Riemannian
manifold at infinity can mimic that of a fractal object.
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