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Building Contextualized Trust Profiles in

Conditionally Automated Driving
Lilit Avetisyan , Jackie Ayoub, X. Jessie Yang , Associate Member, IEEE, and Feng Zhou , Senior Member, IEEE

Abstract—Trust is crucial for ensuring the safety, security, and
widespread adoption of automated vehicles (AVs), and if trust is
lacking, drivers and the general public may hesitate to embrace
this technology. This research seeks to investigate contextualized
trust profiles in order to create personalized experiences for drivers
in AVs with varying levels of reliability. A driving simulator ex-
periment involving 70 participants revealed three distinct contex-
tualized trust profiles (i.e., confident copilots, myopic pragmatists,
and reluctant automators) identified through K-means clustering,
and analyzed in relation to drivers’ dynamic trust, dispositional
trust, initial learned trust, personality traits, and emotions. The
experiment encompassed eight scenarios where participants were
requested to take over control from the AV in three conditions: a
control condition, a false alarm condition, and a miss condition. To
validate the models, a multinomial logistic regression model was
constructed using the shapley additive explanations explainer to
determine the most influential features in predicting contextualized
trust profiles, achieving an F1-score of 0.90 and an accuracy of
0.89. In addition, an examination of how individual factors im-
pact contextualized trust profiles provided valuable insights into
trust dynamics from a user-centric perspective. The outcomes of
this research hold significant implications for the development of
personalized in-vehicle trust monitoring and calibration systems to
modulate drivers’ trust levels, thereby enhancing safety and user
experience in automated driving.

Index Terms—Automated vehicles (AVs), emotion, personality
traits, contextualized trust profiles.

I. INTRODUCTION

A
UTOMATED vehicles (AVs) possess the potential to rev-

olutionize the transportation sector by offering safer and

more efficient modes of transportation [1]. Nevertheless, the
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widespread acceptance and implementation of AVs heavily rely

on users’ trust in this technology. In the absence of trust, drivers

may exhibit reluctance toward adopting AVs, thereby impeding

or even hindering the deployment of this transformative tech-

nology. Consequently, it becomes imperative to design AVs in

a manner that tailoring AV experiences for individual users (or

user models) based on their trust levels in AVs, encouraging users

to accept and embrace them. Moreover, the ability to perform

non-driving related tasks (NDRTs) is one of the promises of

AVs, allowing drivers to act like passengers. Conversely, lack of

trust may lead to hesitation in fully relying on automation, re-

sulting in divided attention between driving and NDRTs. While

trust enables NDRTs, drivers must remain vigilant to take over

control when needed. Therefore, balancing trust and vigilance

is critical [2], [3].

Thus, many researchers have conducted studies on trust in

AVs and other types of automation, with a particular focus on

factors that contribute to and influence trust, such as system

transparency, reliability, and performance [4], [5]. For example,

both Ayoub et al. [4] and Azevedo-Sa et al. [6] demonstrated

that when an AV exhibited a high level of system reliability

participants were more inclined to trust the vehicle. In addition,

several studies (e.g., [5], [7], and [8]) highlighted the importance

of enhancing system transparency. By providing information

about the system’s status and explanations for automation fail-

ures, trust in automation and AVs was increased.

The aforementioned studies have provided valuable insights

to aid in the design of automated systems. However, what

appears to be lacking and inconsistent is the consideration of

the impact of individual differences on trust in AVs, including

factors such as age, driving experience, knowledge of automa-

tion systems, personality traits, and emotions (e.g., [9], [10], and

[11]). For instance, empirical studies (e.g., [12]) indicated that

older adults exhibit a higher tendency to overtrust automated

systems compared to younger age groups. Conversely, survey

findings revealed that older participants (60 years and above:

45.2%) expressed greater concerns, and therefore, exhibited

lower levels of trust in AVs compared to their younger counter-

parts (18–29 years old: 26.1%) [13]. It is important to note that

individuals of ages often employ distinct strategies influenced

by various factors such as knowledge, personality traits, and

driving experience. Moreover, the specific impact of age may

vary in different contexts [14].

Moreover, the establishment of trust in AVs encompasses both

cognitive and emotional factors, with emotions serving as the

primary determinant of trusting behavior [15]. However, less
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attention has been paid to the nuanced and dynamic emotional

experiences users have while interacting with AVs with few

examples we found in the literature. For example, Avestian

et al. [11] found that trust was significantly correlated with emo-

tions that a high level of trust significantly improved participants’

positive emotions, and vice versa. However, emotions might

shape trust levels in complex ways beyond binary trust/distrust

judgments, especially when different personality traits. Thus,

additional research is required to gain insight into the intricate

nuances of how various emotions impact trust in AVs and how

these emotional responses may interact with other factors, such

as the reliability of the system, driver personality traits, and prior

experiences with AVs.

Another research gap in previous studies (e.g., [16]) pertains

to the investigation of individual differences, such as dispo-

sitional trust and personality, in relation to trust dynamics.

However, these studies primarily focused on capturing trust

levels before and after experiments or through cross-sectional

surveys, providing only a snapshot of trust dynamics. To gain

a comprehensive understanding, it is essential to explore how

individual factors influence trust dynamics across various trust

profiles. Previous research demonstrated the existence of dif-

ferent trust dynamics, including oscillators, disbelievers, and

Bayesian decision makers, in the context of human–robot in-

teraction [17], [18] and human–automation interaction [19].

Therefore, it is imperative to examine the associations between

different individual factors and trust dynamics in the domain of

human–AV interaction.

In this study, we explored contextualized trust profiles in

relation to varying AV reliability, focusing on factors such as

personality, emotions, dispositional tendencies, initial percep-

tions, and real-time trust adjustments. A contextualized trust

profile emphasizes the dynamic nature of trust of individual

characteristics and a profile that depends on the specific driving

situation and the AVs’ behavior in those contexts. We explored

the trust formation process, which laid the foundation for in-

vestigating long-term trust evolution, resulting from extensive

human–AV interaction experiences, such as transitions between

trust categories over time.

First, we employed a user segmentation approach in our user

research to assist designers in understanding the behaviors of

different contextualized trust profiles. This approach is particu-

larly valuable for comprehending user trust in AVs as it enables

designers to identify specific factors, particularly those related

to individual differences, that influence trust, and subsequently,

design interventions targeting these factors.

Second, building upon previous studies that demonstrated

how dispositional trust and initial learned trust encompass nu-

merous individual factors such as age, gender, culture, driving

experience, and knowledge in automation [14], we minimized

the number of factors by investigating dispositional and initial

learned trust.

Third, we utilized a data-driven methodology using machine

learning models, including K-means clustering to identify trust

profiles, multinomial logistic regression with shapley additive

explanations (SHAP) to validate these profiles [20], [21], and

statistical comparisons among the identified profiles. These

insights enable designers to develop trust-oriented solutions that

effectively address relevant factors.

Overall, this research contributes to the understanding of trust

dynamics in AVs and provides practical guidance for designers

to enhance trust through tailored design interventions.

II. RELATED WORK

In order to understand trust in AVs, it is important to under-

stand the factors that affect trust. Researchers have identified

a wide range of factors that impact trust in AVs. Hoff and

Bashir [14] proposed a taxonomy of these factors based on three

types of trust, namely dispositional, learned, and situational

trust. In the context of driver–AV interaction, dispositional trust

represented drivers’ tendency to trust AVs, including typical

factors such as age, gender, culture, and personality; learned

trust represents the drivers’ assessment of the AV based on their

past experience (e.g., preexisting knowledge about the AV) or

current interaction (e.g., reliability and performance of the AV)

with the AV; situational trust is dependent on the interaction

between drivers and the automation in specific contexts, includ-

ing external environment of the interaction between the driver

and the AV (e.g., the complexity and risks associated with the

task) and internal characteristics of the driver (e.g., the emotional

states and cognitive workload of the driver).

It is crucial to investigate individual factors that influence

dispositional trust. For instance, Robert et al. [22] found that

participants in high-context cultures, such as East Asia (includ-

ing China, South Korea, and Japan) exhibited greater trust in

AVs compared to individuals from low-context cultures (e.g.,

Western Europe and US) when explanations were provided.

Personality was also identified to be a vital factor on trust.

Chien et al. [23] demonstrated that higher levels of agreeableness

and conscientiousness in personality traits were associated with

increased initial trust in automation, with agreeableness and

conscientiousness being two of the dimensions in the Big Five

model of personality. However, experimental examination of

these factors can often be challenging due to contextualization

and potential interactions with other factors, such as age and

driving experience. This can result in inconsistent findings, as

observed in the effects of age on trust in AVs [12], [13]. Thus, it

is crucial to investigate multiple individual factors concurrently

to gain a comprehensive understanding of their overall impact

on trust in AVs.

For learned trust, numerous studies examined preexisting

knowledge and experience of AVs through surveys and current

interaction through experimental studies. For example, Ayoub

et al. [10] found that knowledge of AVs generally increased

trust in AVs while experience in driving decreased trust in

AVs. As mentioned previously, during interaction with AV, a

high level of system transparency, reliability, and performance

generally increased trust in AVs [4], [5], [6]. However, it is

crucial to consider the temporal aspect of trust development,

particularly during extended interaction periods with AVs. To
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explore this, Bhat et al. [17] conducted a study involving se-

quential decision-making tasks and employed a clustering model

to identify distinct trust dynamics and different types of trust

profiles.

For situational trust, both external variability and internal

factors should be considered to understand trust in AVs. For

example, Azevedo-Sa et al. [6] found that trust in AVs increased

over time when internal risk was low (i.e., system reliability was

high) while external risks (visibility in driving) did not impact

trust significantly.

While the effects of many other factors on trust were

investigated, less is known about the effects of emotions on trust

in AVs. Previous research has suggested that positive emotions

may foster trust due to their association with feelings of safety

and security [24]. For instance, Du et al. [25] discovered that

positive emotions improved takeover performance in AVs,

subsequently leading to increased trust. Ayoub et al. [10]

demonstrated a positive correlation between the feeling of

excitement and participants’ trust in AVs. Conversely, negative

emotions have been found to diminish trust, even when unrelated

to trust-related decisions [26]. Myers et al. [24] investigated the

influence of three negative emotions (anger, guilt, and anxiety)

on trust and found that negative emotions with low certainty

appraisals (e.g., anxiety) reduced trust, whereas those with

high certainty (e.g., anger and guilt) had no discernible effects

on trust. In addition, Ayoub et al. [1] revealed that negative

emotions such as concerns and worries decreased parents’ trust

in automated school buses. Thus, it is imperative to examine the

effects of emotions and their role in identifying contextualized

trust profiles in the context of AVs.

Overall, previous studies have highlighted several key factors

that influence the formation of initial trust profiles in AVs.

Dispositional factors like age, gender, culture, personality traits,

and general propensity to trust technology seem to predispose

individuals toward higher or lower baseline trust levels. These

initial trust tendencies are then calibrated through learned expe-

rience with an AV. However, emotional responses and perceived

risk in specific situational contexts further modulate trust levels

dynamically, going beyond objective performance assessments.

A key gap remains in understanding how the complex interplay

between an individual’s dispositional tendencies, learned system

judgments, and emotional reactions in specific contexts formu-

lates distinct trust profiles among people. Some individuals may

exhibit consistent, goal-oriented trust focused on the long-term

benefits of AVs. Others react more volatilely, with trust oscil-

lating sensitively to the AV’s short-term successes and failures.

While some maintain persistent skepticism, requiring a funda-

mental understanding of the AV’s underlying processes before

trusting. Therefore, examining how individual differences across

these factors interact to form distinct trust profiles is crucial for

designing personalized experiences that can effectively calibrate

and enable appropriate trust for widespread AV adoption.

III. METHODOLOGY

Fig. 1 provides an overview of the methodology in this study

and the details are described in the following.

Fig. 1. Framework of the proposed study. In data collection, the green numbers
indicate true TORs, while the red numbers represent false alarms or missed
TORs.

Fig. 2. Experiment setup.

A. Participants

In this study, we recruited 74 university students, each of

whom received a compensation of $25 for their participation,

involving a duration of approximately one hour. Four partici-

pants were excluded from further analysis due to missing data.

Data from the remaining 70 participants (mean age= 21.3, SD=
3.0; age range: 18 to 33; 32 female and 38 male participants)

were utilized for subsequent analysis. All participants satisfied

the requisite criterion of holding a valid driver’s license with

normal or corrected-to-normal vision.

B. Apparatus and Stimuli

The study employed a desktop-based driving simulator from

Realtime Technologies Inc. (RTI, MI, USA) for data collection,

as illustrated in Fig. 2. The simulation setup comprised three

LCD monitors, integrated with a Logitech driving kit, and two

touchscreens (i.e., a tablet and phone), located on the partici-

pant’s right side, for the NDRT and trust rating entry. The NDRT

involved a custom-designed Tetris game, implemented using the

PyGame library in Python. Participants were required to drag

tiles to navigate the game, which they could pause to respond

to takeover requests (TORs), and then, resume from the same

position afterward. Trust was evaluated using a questionnaire

created with Qualtrics (Provo, UT, USA, www.qualtrics.com)

on a mobile phone, following previous studies [27], [28].

The driving simulation was designed to simulate SAE Level 3

automation. To activate the automated mode, participants were

required to depress a red button situated on the steering wheel.

Upon initiation of the automated mode, an auditory message,

“Automated mode engaged,” would be emitted, after which the

car would proceed along a predefined route while maintaining a

speed of 35 mi/h. During the automated driving, participants
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Fig. 3. Examples of takeover event in (a) suburban area with dears ahead and
(b) urban area with a bus sudden stop ahead.

were directed to perform a NDRT with an auditory request

“Please start the secondary task,” which involved playing the

Tetris game on a tablet. In the event of a TOR, participants

would be alerted by an auditory warning of “Takeover” and

the automated mode would be promptly disengaged to facili-

tate the participant’s control of the vehicle. In instances where

participants failed to resume control of the vehicle within the

designated time frame (i.e., 7 s). including scenarios involving

control and false alarm (FA) situations where TOR was initiated,

as well as the missed condition where no TOR was made and

participants failed to notice the road hazard themselves, an

auditory warning (“Emergency Stop”) would sound, triggering

an immediate emergency stop to prevent potential collisions .

C. Experimental Design

In this study, we employed a between-subjects design in which

participants were assigned to one of the three conditions: control,

false alarm, or miss. In the control condition, all eight TORs were

valid. In the false alarm condition, four TORs (the first, fourth,

seventh, and eighth) were valid, and the other four TORs (the

second, third, fifth, and seventh) were triggered unnecessarily,

as the road was clear. Similarly, in the miss condition, four TORs

(the first, fourth, seventh, and eighth) were valid; whereas in the

other four TORs (the second, third, fifth, and sixth), there was an

obstacle on the road, but AV did not detect it or initiate a TOR.

This approach was adopted to evaluate the impact of different

levels of automation performance on trust, as previous studies

indicated that both false alarms and misses reduced trust in au-

tomated systems [29]. During the simulation, standard roadway

features were used to signify the occurrence of a TOR event,

such as the presence of deer, bicyclists, pedestrians, construction

zones, vehicle sudden stops, buses with sudden stops, and police

vehicles on the shoulder (see Fig. 3). The TOR events were

equally distributed between rural and urban areas, with four

TOR events taking place in each location. The order of the

rural and urban scenarios was alternated to minimize potential

order effects. To eliminate potential learning effects leading to

predictable expectations, we varied the distances at which TORs

occurred, with time intervals ranging from 2 to 4 min.

D. Experimental Procedure

Upon arrival, participants were asked to complete a consent

form and an online demographic survey. After that, participants

received an introduction and watched a short video about the

tasks they were required to do. Then, participants completed

an online survey that consisted of personality information,

propensity to trust AVs, and initial learned trust. The Big Five

Model [30] was used to examine different personality traits of

the participants. We evaluated participants’ personalities using

the Big Five Inventory scale (BFI-10) [31] in five-point Lik-

ert scales, measuring character traits across five dimensions:

extraversion (i.e., sociable and reversing reserved), agreeable-

ness (i.e., trusting and reversing carper), conscientiousness (i.e.,

meticulous and reversing lazy), neuroticism (i.e., nervous and

reversing relaxed), and openness to experience (i.e., imaginative

and reversing artistic). The dispositional trust was measured

using a six-item trust scale proposed by Merritt et al. [32]. The

statements (see Table III) were rated with seven-point Likert

scales. The initial learned trust was assessed with ten items (see

Table III) using seven-point Likert scales. Subsequently, the par-

ticipants underwent a training session to familiarize themselves

with the driving simulator and experimental protocol. They

were required to assess the automated mode functionality of the

vehicle and instructed to maintain vigilance and resume control

when necessary. Furthermore, they were informed about po-

tential system failure scenarios, including instances of failing to

detect obstacles (in the miss condition) and false alarms of TORs

(in the false alarm condition). There were two drives, including

urban and suburban with approximately 15 min each. The entire

experiment was completed within a duration of approximately

60 min. To monitor their trust levels dynamically, participants

were prompted to respond to a single-item trust rating, ranging

from 0 to 10, every 25 s [27], [28], with the aim of avoiding any

excessive mental or emotional stress [33]. In addition, they were

asked to rate their trust levels after completing the driving simu-

lation [27]. Finally, participants rated their anticipated emotional

responses to AVs using a seven-point Likert scale that consisted

of 19 emotion items, including disdainful, scornful, contemptu-

ous, hostile, resentful, ashamed, humiliated, confident, secure,

grateful, happy, respectful, nervous, anxious, confused, afraid,

freaked out, lonely, and isolated, which were used to investigate

trust in human–machine automation previously [11], [34].

IV. RESULTS

A. Identifying Contextualized Trust Profiles

We attempted to identify contextualized trust profiles using a

clustering method based on various measures recorded during

the experiment, taking into account factors such as personality,

emotions, dispositional, initial learned, and real-time dynamic

trust, as well as the performance of the AV (i.e., control, false

alarm, and misses). To do this, 48 features from these measures

were first normalized between 0 and 1, and then, used as input for

the K-means clustering model within the Azure Machine Learn-

ing environment. Through iterative optimization processes in the

environment, the optimal number of clusters was determined to

be 3. To validate this number, we employed the uniform manifold

approximation and projection for dimension reduction (UMAP)

method [35], which compared to the conventional approaches

could reveal hidden structures in our complex dataset. The

UMAP-transformed data in the new dimension confirmed the

presence of three distinct clusters. As a result, three clusters

were formed and named as follows:
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Fig. 4. Dynamic trust evaluation of three types of contextualized trust profiles
during the experiment where the x-axis is the ordinal number of trust ratings in
the experiment. Note the number of points of each participant were different,
and we aggregated them by the order of their self-reported trust to show the
dynamics of trust of three models.

1) Myopic pragmatists, consisting of 23 participants (8 fe-

male and 15 male), who were driven by the real-time per-

formance of automation and could change their behaviors

based on recent fluctuations. They were sensitive to both

AV successes and failures, demonstrating a more watchful

and cautious approach. This group was slower to fully

relinquish control to the AV, often requiring consistent

positive reinforcement to maintain trust;

2) Confident copilots, consisting of 31 participants (13 fe-

male and 18 male), who demonstrated consistently high

trust in AVs, viewed the technology favorably, and main-

tained positive emotions even after experiencing system

errors. These drivers prioritized the overall convenience

and benefits of AVs, displaying resilience to occasional

setbacks.

3) Reluctant automators, consisting of 16 participants (ten

female and six male), characterized by low baseline trust

and a preference for maintaining control. These drivers

were hesitant to cede agency to AVs, focusing on under-

standing the vehicle’s decision-making processes before

extending trust. They often exhibited more pronounced

negative emotional responses (e.g., fear and anxiety), pre-

ferring to rely on their own driving skills due to a desire

for transparency and control.

The following subsections detail the findings of each group

across trust, personality, and emotions dimensions.

B. Trust

1) Dynamic, Dispositional, and Initial Learned Trust: Ex-

amining the contextualized trust profiles, we found that first

profile (i.e., myopic pragmatists) corresponded to drivers who

exhibited a moderate high level of dynamic trust (Mean =
0.61 and SD = 0.23), but reported high levels of dispositional

(Mean = 0.67 and SD = 0.19) and initial learned trust (Mean =
0.65 and SD = 0.22). Despite the fact that myopic pragmatists

reported the highest levels of dispositional and initial learned

trust, their trust level were dynamically evolving based on their

most recent experiences resulting in rapid oscillation (see Fig. 4).

The confident copilots contextualized trust profile consisted of

drivers who showed a higher level of dynamic trust (Mean=0.69

Fig. 5. Mean and standard deviation (SD) of Big Five factors (dimensions) of
personalities among contextualized trust profiles.

and SD = 0.15) during the experiment, but reported moderate

levels of dispositional (Mean = 0.53 and SD = 0.22) and initial

learned trust (Mean = 0.55 and SD = 0.21). In this model, the

dynamic trust showed an increasing trend as participants rated

their trust considering their previous knowledge and experience

besides the most recent ones happening during the experiment

The last profile (i.e., reluctant automators) included drivers

who exhibited the lowest level of dynamic trust (Mean = 0.45

and SD = 0.26), as well as low levels of dispositional (Mean =
0.40 and SD = 0.24) and initial learned trust (Mean = 0.42

and SD = 0.24). The individual data observations of reluctant

automators showed that their levels of dynamic trust either

decreased or remained low throughout the experiment. Also,

drivers in this model tended to be carping rather than being

optimistic about the situation and the AV’s overall performance.

In examining dynamic trust changes statistically, the results

of one-way analysis of variance (ANOVA) showed significant

differences among contextualized trust profiles. Specifically,

reluctant automators exhibited significantly distinct trust levels

in urban and suburban areas. In the urban context, reluctant

automators had lower trust levels compared to other contex-

tualized trust profiles (p = 0.000), while in suburban areas,

this difference was significant compared to confident copilots

(p = 0.017).

Regarding dispositional and learned trust, the results of one-

way ANOVA showed that there was a significant difference

between three contextualized trust profiles for all the factors

(see Table III) measuring dispositional and initial learned trusts

(p < 0.05), except one from initial learned trust that measured

trust in delegating control task to AV when driving was boring

(p = 0.08).

C. Personality and Emotions

1) Personality: We conducted a one-way ANOVA test to

compare these dimensions across the contextualized trust

profiles and found a significant difference in agreeableness

(F (2, 67) = 2.452, p = 0.033). The post hoc analysis with

Tukey–Kramer test showed that myopic pragmatists had sig-

nificantly higher levels of agreeableness compared to reluctant

automators (see Fig. 5). In particular, a significant difference was
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TABLE I
MEAN, STANDARD DEVIATION (SD), AND p-VALUE OF INDIVIDUAL ITEMS IN

PERSONALITY

TABLE II
MEAN, STANDARD DEVIATION (SD), AND p-VALUE OF EMOTIONS

found in the item “I see myself as someone who tends to find

fault with others” statement (p = 0.015) where reluctant au-

tomators had higher ratings than confident copilots and myopic

pragmatists (see Table I). However, there were no significant

differences in the other four personality characteristics (i.e.,

extraversion, conscientiousness, neuroticism, and openness to

experience). This result was consistent with the SHAP model

outcome, as only the “carper” feature, which represented the

aforementioned questions related to personality, was selected as

an important feature in the model.

2) Emotions: The results of the one-way ANOVA test indi-

cated that there were significant differences in all the emotions

among the three contextualized trust profiles, except “Grateful,”

as detailed in Table II. To understand the underlying structure

of emotions associated with each contextualized trust profile,

we conducted an exploratory factor analysis and identified three

subsets that combined the correlated emotions, i.e., resentfully

aversion: disdainful, scornful, contemptuous, hostile, resentful,

ashamed, and humiliated; happily acceptance: confident, grate-

ful, secure, happy, respectful, not lonely, and not isolated; and

nervously fear: nervous, anxious, confused, afraid, and freaked

out. The results showed that confident copilots had significantly

lower scores for emotions related to resentfully aversion com-

pared to the other contextualized trust profiles (p = 0.000).

They also had significantly higher scores for confidence and

security in the happily acceptance category compared to my-

opic pragmatists, and higher scores for happiness, gratitude,

and respect compared to reluctant automators. For nervously

fear, confident copilots showed significantly lower scores than

the other contextualized trust profiles (p = 0.000). Moreover,

Fig. 6. Mean and standard deviation (SD) of three emotion categories among
contextualized trust profiles.

Fig. 7. Summary of SHAP values where the features are ordered from the
highest to the lowest effect on the prediction. In the figure, the prefix “p_” in
features indicates personality-related items, “d_” indicates dispositional trust
items, and “l_” indicates learned trust items.

myopic pragmatists had significantly higher scores for happiness

(p = 0.016) compared to reluctant automators (see Fig. 6).

D. Validating Contextualized Trust Profiles

In order to validate the contextualized trust profiles, we

used the cluster membership as the ground truth and tested

the accuracy of the clustering model by training supervised

machine learning models with all the 48 features. We used

an Azure automated ML experiment job to identify the best

machine learning model in Azure automated ML experiment

by fine-tuning the hyperparameters. The multinomial logistic

regression model was found to perform the best across a large

number of models, including XGBoost, LightGBM, Random

Forest, etc. The results showed that the model was able to predict

the contextualized trust profile with F1-score = 0.90.

We also used SHAP explainer to interpret the model and

understand the importance of individual features in the model’s
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TABLE III
MEAN, STANDARD DEVIATION (SD), AND p-VALUE OF DISPOSITIONAL AND INITIAL LEARNED TRUST

Fig. 8. Impact of individual features on overall performance of the model. During each iteration, a single feature was added to the model based on SHAP
importance ranking. The error bars show the standard errors computed from fivefold cross validation.

decision-making process. Fig. 7 illustrates the feature impor-

tance rankings, from the most influential to the least influential

on the prediction. The features of condition (miss, false alarm, or

control), emotions of freaked out and confused were found to be

the most significant ones in predicting the contextualized trust

profiles, regardless of whether they had a positive or negative

effect. The color coding indicates the feature importance in

distinguishing between different contextualized trust profiles.

We used a feature selection method to improve the model’s

performance while preserving the patterns and relationships in

the data, as suggested by Ayoub et al. [20], [21]. We added

one feature at a time based on the feature importance ranking

from the SHAP explainer and validated the results with stratified

fivefold cross validation. As shown in Fig. 8, the model reached

the highest performance (F1-score = 0.90) using the top 25

features, i.e., condition, emotions: freaked out, lonely, confused,

disdainful, contemptuous, isolated, hostile, ashamed, anxious,

scornful, nervous, humiliated, and happy; personality: carper,

initial learned trust: I could confidently focus on NDRT, I

would keep manual control, I would consider AV more safe

than manuals, I would trust in complex situations, and I would

trust AV; and dispositional trust: I likely to trust AV without

knowledge, I have high tendency to trust AV, I easily can trust

AV, I would rely on an AV, and I mostly distrust AV. Overall,

across all the 48 features, the F1-score ranged from 0.52 to 0.90,

and the accuracy ranged from 0.60 to 0.90.

Even though the experiment condition was found to be the

most influential feature in predicting these three contextualized

Fig. 9. Distribution of the clusters across the three conditions.

trust profiles, it was not sufficient to determine the identified

contextualized trust profiles alone. As shown in Fig. 9, there was

no one-to-one mapping relationships between the participants

in three conditions, including control, FA, and misses and those

formed the three identified contextualized trust profiles. Also

shown in Fig. 8, the condition alone only had F1-score = 0.52

and accuracy = 0.60 in predicting contextualized trust profiles.

Other factors, such as emotions, personality, initial learned trust,

and dispositional trust, also played important roles in determin-

ing these profiles.

V. DISCUSSION

A. Implications

Our study identified three distinct contextualized trust

profiles: myopic pragmatists, confident copilots, and reluctant
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automators. These profiles, predicted with good accuracy by the

proposed model, demonstrate the complexity of how individuals

react to automated driving experiences. Trust emerges as highly

dynamic, shaped by the intersection of personality, initial biases,

emotional responses, and ongoing AV performance assessment.

Myopic pragmatists are performance-driven and emotionally

volatile. They exhibit trust fluctuations closely tied to real-time

AV performance. Successes bolster trust, while errors trigger

emotional responses such as fear and disappointment [11].

This sensitivity might be advantageous in certain situations,

prompting quicker reactions when necessary. Consistent with

our previous research, trust here focuses on the system’s per-

formance capabilities within specific contexts [4]. However,

unlike previous findings, myopic pragmatists seemed to easily

recover from low levels of trust caused by errors made by the

AV [36]. This is also represented by their corresponding emo-

tional responses associated with overall experience. Moreover,

as agreeable individuals, myopic pragmatists tend to be more

adaptable and cooperative, which may explain their willingness

to adjust trust levels based on recent experiences.

In order to help mitigate such volatility, the design should

aim to deliver a consistently positive experience. This can

be achieved by providing reliable and consistent performance

across a variety of situations, such as inclement weather, heavy

traffic, and challenging road conditions. In this aspect, adaptive

automation might help myopic pragmatists to calibrate their trust

by adapting the level of automation based on the drivers’ current

trust level in AV and the system’s past performance [37]. For

instance, if the driver is confident and happy in the AV, the

system can perform in conditional autonomy and require less

intervention from the driver. On the other hand, if the driver

is less confident in the AV resulting from previous negative

experiences, the system can provide feedback about system

status in order to increase the feelings of confidence, control, and

safety. Furthermore, since negative experiences might stem from

either excessive trust or unfamiliarity with the AV’s capabilities,

the AV can require driver intervention to familiarize them with

its behavior, demonstrating its range of capabilities and response

patterns to enhance the driver’s understanding and trust in the

system. Therefore, by integrating adaptive automation into the

AV system, designers would help myopic pragmatists to cal-

ibrate their trust in the automation system, improving overall

system performance and safety [37], [38].

Confident copilots show consistently a high level of trust,

fueled by positive experiences and potentially downplaying

occasional errors. They focus on the overall purpose of the AV

and demonstrate greater emotional resilience even in the face of

setbacks. While aligning with prior work highlighting purpose-

driven trust [15], [39], their trajectory diverges from Bayesian

decision makers [17], as they maintain a trend of relatively higher

level of trust than stabilizing trust levels. From the emotion point

of view, confident copilots had a more positive attitude toward

AV performance and were less prone to fear or disappointment

when encountering failures. Specifically, they felt a greater sense

of safety and were less vulnerable to false alarms, even if the

TORs were unfounded, in contrast to reluctant automators who

regarded such incidents as severe system malfunctions.

In order to design for confident copilots, the design should aim

to provide features that increase their confidence and comfort

levels, such as clear and intuitive interfaces, well-defined com-

munication protocols, and robust safety features that effectively

communicate the system’s status and capabilities. They also tend

to relate to the purpose of trust [15], [39] and believe that automa-

tion could help improve efficiency, reduce errors, and enhance

safety by delegating their tasks to machines and freeing up their

own cognitive and physical resources to focus on other tasks.

This could be not limited to automated driving but in various

domains, such as healthcare, aviation, and manufacturing.

However, confident copilots exhibited significantly more pos-

itive emotions, which might impact their tendency to take

risks [40] and potentially lead to overtrust in AVs. To address

this issue, the design should incorporate clear and transparent

communication that explains the system’s capabilities and limi-

tations by clearly showing the limitations of the system [41], and

include educational materials to help them understand how the

technology works. For example, the system should be designed

to clearly communicate when the system would request the

driver to take over control.

Reluctant automators possess low baseline trust, likely rooted

in a need to understand the AV’s underlying processes for trust to

emerge. This aligns with process-based trust [39] and the group

of participants identified in [17] who generally had a low level of

trust in automation. Despite the AV’s capabilities, they maintain

negative emotional responses (e.g., fear and nervousness) and

insist on having control over driving. Their persistent negative

emotions and nonagreeable personality traits create a barrier

to trust that goes beyond simply enhancing AV performance

or providing more information. To build trust with this group,

strategies may need to focus more on addressing underlying

emotional and personality factors, potentially through long-term

exposure and gradual introduction of autonomy.

Regarding predictive models, while Bhat et al.’s model [17]

successfully predicted the Bayesian decision makers and dis-

believers, our model, which incorporates emotions, personal-

ity traits, and both learned and dispositional trust, predicts all

three trust profiles more accurately. This highlights the need to

consider a broader range of variables beyond dynamic trust in

predicting contextualized trust profiles.

Given the distinct emotional profiles associated with each

contextual trust profile, future AV designs could benefit from

incorporating emotion recognition and response mechanisms.

For example, detecting increased anxiety in reluctant automa-

tors could trigger more detailed explanations of the AV’s

decision-making process. For myopic pragmatists, the system

could provide reassurance and positive feedback after success-

ful maneuvers to help stabilize their emotional state and trust

levels.

While our study identified significant differences in Agree-

ableness among trust groups, future research should investigate

how other personality traits might interact with emotional re-

sponses to influence trust in AVs. In addition, these emotional

and personality differences may be influenced by cultural fac-

tors. Cross-cultural studies could explore how these contextu-

alized trust profiles manifest in different societies, potentially
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revealing new insights into the universality or cultural specificity

of trust formation in AVs.

The significant role of AV performance in the trust formation

process is integral to establishing and sustaining user trust over

time. The most important aspect is to improve the vehicle

reliability itself [4], such as rigorous testing and refinement of

perception and control systems to ensure handling complex sce-

narios and takeover transitions. However, human factors issues

also play an important role, such as transparent communication

of the situation awareness [8], capabilities, and limitations so

that users have a realistic understanding of what an AV per-

ceives, can and cannot do in different scenarios. Previous studies

showed that people exhibit a propensity to accept automation

malfunctions if they are able to promptly regain manual control,

thus mitigating the risk of potential accidents [42]. However, the

nuances of transparency requirements hinge on the initial trust

profile of the driver. Hence, adaptive transparency mechanisms

are needed to further facilitate driver trust and improve their

driving performance [43], [44].

Despite the success of the audio alert in prompting partici-

pants to take over control, ensuring a seamless transition requires

attention to other interfaces. If the vehicle is designed so that they

can easily understand what the system is doing and why it is

doing it through clear and intuitive communication as feedback,

this would be helpful [8]. For example, by explaining “why”

and “what will” information with speech and augmented reality

during the takeover process, participants reported it to be easy to

use and accept SAE Level 3 vehicles [7]. We should also consider

predictability of the system so that the system’s behavior aligns

with user expectations and how well it performs in different

scenarios. For example, when participants received explanations

about the vehicle’s behavior ahead of the time and their possible

projection in the future, they had better situation awareness of the

driving scenarios and trust in automated driving [8]. These two

strategies can help drivers to understand the system’s behavior

and performance, which in turn can enhance their learned trust

and confidence in the system.

B. Limitations

This study has several limitations that require further investi-

gation in future research. First, the study was conducted using

a low-fidelity experimental setup utilizing a desktop driving

simulator with its reliance on only an auditory alert of TORs.

We recognize the need to refine and enhance the realism of our

experimental setup to better align with the complexities of level

3 automation systems. The sample size of 70 participants was

relatively small and we only considered a limited number of fac-

tors to identify contextualized trust profiles. Moreover, the study

sample was composed primarily of university students, which

resulted in a homogeneous sample, regarding age, education,

driving experience, and knowledge about AVs. To overcome

these limitations, future studies should be conducted in higher

fidelity experimental settings and with a larger and more diverse

sample size. More external factors should be included, such as

time constraints, perceived risks, complexity of NDRTs, and

situation awareness [8], [14], [45].

Second, our clustering approach aimed to discover natural

groupings based on shared patterns across various trust di-

mensions. This enabled us to identify potential models with-

out any preexisting assumptions. We then used multinomial

logistic regression to confirm these clusters and see whether

the extracted models were predictable based on the original

features. In addition, we utilized SHAP to understand the relative

importance of these features, providing insights for tailoring

future AV experiences to these different user models. While we

acknowledge that this validation may have limitations due to

the use of the same dataset, both methods offer complementary

strengths. Clustering reveals patterns within our sample, while

regression hints at broader generalizability. Ideally, validation

would involve a completely separate dataset. However, given

our sample size constraints, this will be a crucial focus for future

studies to assess the robustness of our identified models.

Finally, we only included a limited number of factors that

formed the contextualized trust profiles. While these factors pro-

vided valuable insights into the dynamics of trust, they may not

fully capture the complexity and diversity of trust. It is important

to acknowledge that trust is a multifaceted construct influenced

by various individual and contextual factors, which might not be

fully accounted for in this study. Therefore, the generalizability

of the study findings to other contexts and populations might be

limited and future studies should include a wider range of trust

indicators to enhance the external validity of the results.

VI. CONCLUSION

The purpose of our research was to examine the contex-

tualized trust profiles in AVs and determine the underlying

behavioral patterns of drivers that could be useful for designing

profile-based systems. To accomplish this, we collected multidi-

mensional data and clustered them into three contextualized trust

profiles: confident copilots, myopic pragmatists, and reluctant

automators. We used these profiles to build a logistic regression

model that could predict the contextualized trust profile with ac-

curacy of 0.89 and F1-score of 0.90. In addition, we used SHAP

explainer to identify the most significant factors in the dataset

that influenced the creation of contextualized trust profiles.

Furthermore, we investigated the dynamic trust patterns among

these profiles, as well as the associated initial learned trust,

dispositional trust, emotional, and personality characteristics,

based on which we discussed how to develop a system that can

adjust AV’s behavior based on the driver’s contextualized trust

profiles, and eventually promote their acceptance and adoption

of such technologies.

REFERENCES

[1] J. Ayoub and F. Zhou, “Investigating drivers’ trust in autonomous vehicles’
decisions of lane changing events,” in Proc. Hum. Factors Ergonom. Soc.

Annu. Meeting, 2020, vol. 64, no. 1, pp. 1274–1278.
[2] M. Jaussein, L. Lévêque, J. Deniel, T. Bellet, H. Tattegrain, and C.

Marin-Lamellet, “How do non-driving-related tasks affect engagement
under highly automated driving situations? A literature review,” Front.

Future Transp., vol. 2, 2021, Art. no. 687602.

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 06,2025 at 13:39:09 UTC from IEEE Xplore.  Restrictions apply. 



AVETISYAN et al.: BUILDING CONTEXTUALIZED TRUST PROFILES IN CONDITIONALLY AUTOMATED DRIVING 667

[3] L. Petersen, L. Robert, J. Yang, and D. Tilbury, “Situational awareness,
driver’s trust in automated driving systems and secondary task perfor-
mance,” SAE Int. J. Connected Auton. Veh., vol. 2, no. 2, pp. 129–141,
2019, doi: 10.4271/12-02-02-0009.

[4] J. Ayoub, L. Avetisyan, M. Makki, and F. Zhou, “An investigation
of drivers’ dynamic situational trust in conditionally automated driv-
ing,” IEEE Trans. Human-Mach. Syst., vol. 52, no. 3, pp. 501–511,
Jun. 2021.

[5] R. Luo, N. Du, and X. J. Yang, “Evaluating effects of enhanced autonomy
transparency on trust, dependence, and human-autonomy team perfor-
mance over time,” Int. J. Human–Comput. Interact., vol. 38, no. 18–20,
pp. 1962–1971, 2022.

[6] H. Azevedo-Sa, H. Zhao, C. Esterwood, X. J. Yang, D. M. Tilbury, and
L. P. Robert Jr, “How internal and external risks affect the relationships
between trust and driver behavior in automated driving systems,” Transp.

Res. C, Emerg. Technol., vol. 123, 2021, Art. no. 102973.
[7] N. Du, F. Zhou, D. Tilbury, L. P. Robert, and X. J. Yang, “Designing alert

systems in takeover transitions: The effects of display information and
modality,” in Proc. 13th Int. Conf. Automot. User Interfaces Interactive

Veh. Appl., 2021, pp. 173–180.
[8] L. Avetisyan, J. Ayoub, and F. Zhou, “Investigating explanations in condi-

tional and highly automated driving: The effects of situation awareness and
modality,” Transp. Res. F, Traffic Psychol. Behav., vol. 89, pp. 456–466,
2022.

[9] Y. Chen, Y. Li, W. Yan, and X. Wang, “The effect of gender and cultural
differences on trust in automated vehicles,” Transp. Res. Rec., J. Transp.

Res. Board, vol. 2663, no. 2, pp. 140–148, 2017.
[10] J. Ayoub, X. J. Yang, and F. Zhou, “Modeling dispositional and initial

learned trust in automated vehicles with predictability and explainability,”
Transp. Res. F, Traffic Psychol. Behav., vol. 77, pp. 102–116, 2021.

[11] L. Avetisian, J. Ayoub, and F. Zhou, “Anticipated emotions asso-
ciated with trust in autonomous vehicles,” in Proc. Hum. Factors

Ergonom. Soc. Annu. Meeting, vol. 66, no. 1, pp. 199–203, 2022,
doi: 10.1177/1071181322661002.

[12] R. Pak, A. C. McLaughlin, W. Leidheiser, and E. Rovira, “The effect of
individual differences in working memory in older adults on performance
with different degrees of automated technology,” Ergonomics, vol. 60,
no. 4, pp. 518–532, 2017.

[13] B. Schoettle and M. Sivak, “Motorists’ preferences for different levels of
vehicle automation: 2016,” Univ. Michigan Sustain. Worldwide Transp.,
Ann Arbor, MI, USA, Tech. Rep. SWT-2016-8 2016.

[14] K. A. Hoff and M. Bashir, “Trust in automation: Integrating empirical
evidence on factors that influence trust,” Hum. Factors, vol. 57, no. 3,
pp. 407–434, 2015.

[15] J. D. Lee and K. A. See, “Trust in automation: Designing for appropriate
reliance,” Hum. Factors, vol. 46, no. 1, pp. 50–80, 2004.

[16] S. M. Merritt and D. R. Ilgen, “Not all trust is created equal: Dispositional
and history-based trust in human-automation interactions,” Hum. Factors,
vol. 50, no. 2, pp. 194–210, 2008.

[17] S. Bhat, J. B. Lyons, C. Shi, and X. J. Yang, “Clustering trust dynamics in
a human-robot sequential decision-making task,” IEEE Robot. Automat.

Lett., vol. 7, no. 4, pp. 8815–8822, Oct. 2022.
[18] Y. Guo and X. J. Yang, “Modeling and predicting trust dynamics in

human–robot teaming: A Bayesian inference approach,” Int. J. Social

Robot., vol. 13, no. 8, pp. 1899–1909, 2020.
[19] H. Chung and X. J. Yang, “Associations between trust dynamics and

personal characteristics,” in Proc. IEEE 4th Int. Conf. Human- Mach. Syst.,
2024, pp. 1–6.

[20] J. Ayoub et al., “Cause-and-effect analysis of ADAS: A comparison study
between literature review and complaint data,” in Proc. 14th Int. Conf.

Automot. User Interfaces Interactive Veh. Appl., 2022, pp. 139–149.
[21] J. Ayoub, N. Du, X. J. Yang, and F. Zhou, “Predicting driver takeover

time in conditionally automated driving,” IEEE Trans. Intell. Transp. Syst.,
vol. 23, no. 7, pp. 9580–9589, Jul. 2022.

[22] L. Robert, “Personality in the human robot interaction literature: A review
and brief critique,” in Proc. 24th Amer. Conf. Inf. Syst., Aug. 2018,
pp. 16–18.

[23] S.-Y. Chien, K. Sycara, J.-S. Liu, and A. Kumru, “Relation between trust
attitudes toward automation, Hofstede’s cultural dimensions, and big five
personality traits,” in Proc. Hum. Factors Ergonom. Soc. Annu. Meeting,
2016, vol. 60, pp. 841–845.

[24] C. D. Myers and D. Tingley, “The influence of emotion on trust,” Political

Anal., vol. 24, no. 4, pp. 492–500, 2016.
[25] N. Du et al., “Examining the effects of emotional valence and arousal on

takeover performance in conditionally automated driving,” Transp. Res.

C, Emerg. Technol., vol. 112, pp. 78–87, 2020.
[26] J. B. Engelmann, F. Meyer, C. C. Ruff, and E. Fehr, “The neural circuitry

of affect-induced distortions of trust,” Sci. Adv., vol. 5, no. 3, 2019, Art. no.
eaau3413.

[27] M. Desai, P. Kaniarasu, M. Medvedev, A. Steinfeld, and H. Yanco, “Impact
of robot failures and feedback on real-time trust,” in Proc. IEEE 8th

ACM/IEEE Int. Conf. Human-Robot Interact., 2013, pp. 251–258.
[28] J. Ayoub, L. Avetisian, X. J. Yang, and F. Zhou, “Real-time trust prediction

in conditionally automated driving using physiological measures,” IEEE

Trans. Intell. Transp. Syst., vol. 24, no. 12, pp. 14642–14650, Dec. 2023.
[29] V. L. Pop, A. Shrewsbury, and F. T. Durso, “Individual differences in

the calibration of trust in automation,” Hum. Factors, vol. 57, no. 4,
pp. 545–556, 2015.

[30] M. Zuckerman, D. M. Kuhlman, J. Joireman, P. Teta, and M. Kraft, “A
comparison of three structural models for personality: The big three, the
big five, and the alternative five,” J. Pers. Social Psychol., vol. 65, no. 4,
1993, Art. no. 757.

[31] B. Rammstedt and O. P. John, “Measuring personality in one minute or
less: A 10-item short version of the big five inventory in English and
German,” J. Res. Pers., vol. 41, no. 1, pp. 203–212, 2007.

[32] S. M. Merritt, H. Heimbaugh, J. LaChapell, and D. Lee, “I trust it, but i
don’t know why: Effects of implicit attitudes toward automation on trust
in an automated system,” Hum. Factors, vol. 55, no. 3, pp. 520–534, 2013.

[33] S. Hergeth, L. Lorenz, R. Vilimek, and J. F. Krems, “Keep your scanners
peeled: Gaze behavior as a measure of automation trust during highly
automated driving,” Hum. Factors, vol. 58, no. 3, pp. 509–519, 2016.

[34] T. Jensen, M. M. H. Khan, Y. Albayram, M. A. A. Fahim, R. Buck, and E.
Coman, “Anticipated emotions in initial trust evaluations of a drone system
based on performance and process information,” Int. J. Human–Comput.

Interact., vol. 36, no. 4, pp. 316–325, 2020.
[35] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approxi-

mation and projection for dimension reduction,” 2018, arXiv:1802.03426.
[36] R. Parasuraman and D. H. Manzey, “Complacency and bias in human use

of automation: An attentional integration,” Hum. Factors, vol. 52, no. 3,
pp. 381–410, 2010.

[37] N. Moray, T. Inagaki, and M. Itoh, “Adaptive automation, trust, and self-
confidence in fault management of time-critical tasks,” J. Exp. Psychol.,

Appl., vol. 6, no. 1, 2000, Art. no. 44.
[38] D. B. Kaber, M. C. Wright, L. J. Prinzel III, and M. P. Clamann, “Adaptive

automation of human-machine system information-processing functions,”
Hum. Factors, vol. 47, no. 4, pp. 730–741, 2005.

[39] R. C. Mayer, J. H. Davis, and F. D. Schoorman, “An integrative model
of organizational trust,” Acad. Manage. Rev., vol. 20, no. 3, pp. 709–734,
1995.

[40] F. Zhou, Y. Ji, and R. J. Jiao, “Prospect-theoretic modeling of customer
affective-cognitive decisions under uncertainty for user experience de-
sign,” IEEE Trans. Human-Mach. Syst., vol. 44, no. 4, pp. 468–483,
Aug. 2014.

[41] Y. Jiang, X. Li, and Y. Yang, “The effects of information on overtrust in
highly automated driving,” Appl. Ergonom., vol. 82, 2020, Art. no. 102936.

[42] M. Seet, J. Harvy, R. Bose, A. Dragomir, A. Bezerianos, and N. Thakor,
“Differential impact of autonomous vehicle malfunctions on human trust,”
IEEE Trans. Intell. Transp. Syst., vol. 23, no. 1, pp. 548–557, Jan. 2022.

[43] F. Hartwich, C. Hollander, D. Johannmeyer, and J. F. Krems, “Improv-
ing passenger experience and trust in automated vehicles through user-
adaptive HMIs: “The more the better” does not apply to everyone,” Front.

Hum. Dyn., vol. 3, 2021, Art. no. 669030.
[44] P. Wintersberger, F. Janotta, J. Peintner, A. Löcken, and A. Riener, “Eval-

uating feedback requirements for trust calibration in automated vehicles,”
It- Inf. Technol., vol. 63, no. 2, pp. 111–122, 2021.

[45] J. Manchon, M. Bueno, and J. Navarro, “From manual to automated
driving: How does trust evolve?,” Theor. Issues Ergonom. Sci., vol. 22,
no. 5, pp. 528–554, 2021.

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 06,2025 at 13:39:09 UTC from IEEE Xplore.  Restrictions apply. 


