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Building Contextualized Trust Profiles in
Conditionally Automated Driving

Lilit Avetisyan ", Jackie Ayoub, X. Jessie Yang

Abstract—Trust is crucial for ensuring the safety, security, and
widespread adoption of automated vehicles (AVs), and if trust is
lacking, drivers and the general public may hesitate to embrace
this technology. This research seeks to investigate contextualized
trust profiles in order to create personalized experiences for drivers
in AVs with varying levels of reliability. A driving simulator ex-
periment involving 70 participants revealed three distinct contex-
tualized trust profiles (i.e., confident copilots, myopic pragmatists,
and reluctant automators) identified through K-means clustering,
and analyzed in relation to drivers’ dynamic trust, dispositional
trust, initial learned trust, personality traits, and emotions. The
experiment encompassed eight scenarios where participants were
requested to take over control from the AV in three conditions: a
control condition, a false alarm condition, and a miss condition. To
validate the models, a multinomial logistic regression model was
constructed using the shapley additive explanations explainer to
determine the most influential features in predicting contextualized
trust profiles, achieving an F1-score of 0.90 and an accuracy of
0.89. In addition, an examination of how individual factors im-
pact contextualized trust profiles provided valuable insights into
trust dynamics from a user-centric perspective. The outcomes of
this research hold significant implications for the development of
personalized in-vehicle trust monitoring and calibration systems to
modulate drivers’ trust levels, thereby enhancing safety and user
experience in automated driving.

Index Terms—Automated vehicles (AVs), emotion, personality
traits, contextualized trust profiles.

I. INTRODUCTION

UTOMATED vehicles (AVs) possess the potential to rev-
olutionize the transportation sector by offering safer and
more efficient modes of transportation [1]. Nevertheless, the
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widespread acceptance and implementation of AVs heavily rely
on users’ trust in this technology. In the absence of trust, drivers
may exhibit reluctance toward adopting AVs, thereby impeding
or even hindering the deployment of this transformative tech-
nology. Consequently, it becomes imperative to design AVs in
a manner that tailoring AV experiences for individual users (or
user models) based on their trust levels in AVs, encouraging users
to accept and embrace them. Moreover, the ability to perform
non-driving related tasks (NDRTSs) is one of the promises of
AVs, allowing drivers to act like passengers. Conversely, lack of
trust may lead to hesitation in fully relying on automation, re-
sulting in divided attention between driving and NDRTs. While
trust enables NDRTSs, drivers must remain vigilant to take over
control when needed. Therefore, balancing trust and vigilance
is critical [2], [3].

Thus, many researchers have conducted studies on trust in
AVs and other types of automation, with a particular focus on
factors that contribute to and influence trust, such as system
transparency, reliability, and performance [4], [5]. For example,
both Ayoub et al. [4] and Azevedo-Sa et al. [6] demonstrated
that when an AV exhibited a high level of system reliability
participants were more inclined to trust the vehicle. In addition,
several studies (e.g., [5], [7], and [8]) highlighted the importance
of enhancing system transparency. By providing information
about the system’s status and explanations for automation fail-
ures, trust in automation and AV's was increased.

The aforementioned studies have provided valuable insights
to aid in the design of automated systems. However, what
appears to be lacking and inconsistent is the consideration of
the impact of individual differences on trust in AVs, including
factors such as age, driving experience, knowledge of automa-
tion systems, personality traits, and emotions (e.g., [9], [10], and
[11]). For instance, empirical studies (e.g., [12]) indicated that
older adults exhibit a higher tendency to overtrust automated
systems compared to younger age groups. Conversely, survey
findings revealed that older participants (60 years and above:
45.2%) expressed greater concerns, and therefore, exhibited
lower levels of trust in AVs compared to their younger counter-
parts (18-29 years old: 26.1%) [13]. It is important to note that
individuals of ages often employ distinct strategies influenced
by various factors such as knowledge, personality traits, and
driving experience. Moreover, the specific impact of age may
vary in different contexts [14].

Moreover, the establishment of trustin AVs encompasses both
cognitive and emotional factors, with emotions serving as the
primary determinant of trusting behavior [15]. However, less
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attention has been paid to the nuanced and dynamic emotional
experiences users have while interacting with AVs with few
examples we found in the literature. For example, Avestian
etal. [11] found that trust was significantly correlated with emo-
tions that a high level of trust significantly improved participants’
positive emotions, and vice versa. However, emotions might
shape trust levels in complex ways beyond binary trust/distrust
judgments, especially when different personality traits. Thus,
additional research is required to gain insight into the intricate
nuances of how various emotions impact trust in AVs and how
these emotional responses may interact with other factors, such
as the reliability of the system, driver personality traits, and prior
experiences with AVs.

Another research gap in previous studies (e.g., [16]) pertains
to the investigation of individual differences, such as dispo-
sitional trust and personality, in relation to trust dynamics.
However, these studies primarily focused on capturing trust
levels before and after experiments or through cross-sectional
surveys, providing only a snapshot of trust dynamics. To gain
a comprehensive understanding, it is essential to explore how
individual factors influence trust dynamics across various trust
profiles. Previous research demonstrated the existence of dif-
ferent trust dynamics, including oscillators, disbelievers, and
Bayesian decision makers, in the context of human-robot in-
teraction [17], [18] and human—automation interaction [19].
Therefore, it is imperative to examine the associations between
different individual factors and trust dynamics in the domain of
human—AV interaction.

In this study, we explored contextualized trust profiles in
relation to varying AV reliability, focusing on factors such as
personality, emotions, dispositional tendencies, initial percep-
tions, and real-time trust adjustments. A contextualized trust
profile emphasizes the dynamic nature of trust of individual
characteristics and a profile that depends on the specific driving
situation and the AVs’ behavior in those contexts. We explored
the trust formation process, which laid the foundation for in-
vestigating long-term trust evolution, resulting from extensive
human—AV interaction experiences, such as transitions between
trust categories over time.

First, we employed a user segmentation approach in our user
research to assist designers in understanding the behaviors of
different contextualized trust profiles. This approach is particu-
larly valuable for comprehending user trust in AVs as it enables
designers to identify specific factors, particularly those related
to individual differences, that influence trust, and subsequently,
design interventions targeting these factors.

Second, building upon previous studies that demonstrated
how dispositional trust and initial learned trust encompass nu-
merous individual factors such as age, gender, culture, driving
experience, and knowledge in automation [14], we minimized
the number of factors by investigating dispositional and initial
learned trust.

Third, we utilized a data-driven methodology using machine
learning models, including K-means clustering to identify trust
profiles, multinomial logistic regression with shapley additive
explanations (SHAP) to validate these profiles [20], [21], and

statistical comparisons among the identified profiles. These
insights enable designers to develop trust-oriented solutions that
effectively address relevant factors.

Overall, this research contributes to the understanding of trust
dynamics in AVs and provides practical guidance for designers
to enhance trust through tailored design interventions.

II. RELATED WORK

In order to understand trust in AVs, it is important to under-
stand the factors that affect trust. Researchers have identified
a wide range of factors that impact trust in AVs. Hoff and
Bashir [14] proposed a taxonomy of these factors based on three
types of trust, namely dispositional, learned, and situational
trust. In the context of driver—AV interaction, dispositional trust
represented drivers’ tendency to trust AVs, including typical
factors such as age, gender, culture, and personality; learned
trust represents the drivers’ assessment of the AV based on their
past experience (e.g., preexisting knowledge about the AV) or
current interaction (e.g., reliability and performance of the AV)
with the AV; situational trust is dependent on the interaction
between drivers and the automation in specific contexts, includ-
ing external environment of the interaction between the driver
and the AV (e.g., the complexity and risks associated with the
task) and internal characteristics of the driver (e.g., the emotional
states and cognitive workload of the driver).

It is crucial to investigate individual factors that influence
dispositional trust. For instance, Robert et al. [22] found that
participants in high-context cultures, such as East Asia (includ-
ing China, South Korea, and Japan) exhibited greater trust in
AVs compared to individuals from low-context cultures (e.g.,
Western Europe and US) when explanations were provided.
Personality was also identified to be a vital factor on trust.
Chien et al. [23] demonstrated that higher levels of agreeableness
and conscientiousness in personality traits were associated with
increased initial trust in automation, with agreeableness and
conscientiousness being two of the dimensions in the Big Five
model of personality. However, experimental examination of
these factors can often be challenging due to contextualization
and potential interactions with other factors, such as age and
driving experience. This can result in inconsistent findings, as
observed in the effects of age on trust in AVs [12], [13]. Thus, it
is crucial to investigate multiple individual factors concurrently
to gain a comprehensive understanding of their overall impact
on trust in AVs.

For learned trust, numerous studies examined preexisting
knowledge and experience of AVs through surveys and current
interaction through experimental studies. For example, Ayoub
et al. [10] found that knowledge of AVs generally increased
trust in AVs while experience in driving decreased trust in
AVs. As mentioned previously, during interaction with AV, a
high level of system transparency, reliability, and performance
generally increased trust in AVs [4], [5], [6]. However, it is
crucial to consider the temporal aspect of trust development,
particularly during extended interaction periods with AVs. To
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explore this, Bhat et al. [17] conducted a study involving se-
quential decision-making tasks and employed a clustering model
to identify distinct trust dynamics and different types of trust
profiles.

For situational trust, both external variability and internal
factors should be considered to understand trust in AVs. For
example, Azevedo-Sa et al. [6] found that trust in AVs increased
over time when internal risk was low (i.e., system reliability was
high) while external risks (visibility in driving) did not impact
trust significantly.

While the effects of many other factors on trust were
investigated, less is known about the effects of emotions on trust
in AVs. Previous research has suggested that positive emotions
may foster trust due to their association with feelings of safety
and security [24]. For instance, Du et al. [25] discovered that
positive emotions improved takeover performance in AVs,
subsequently leading to increased trust. Ayoub et al. [10]
demonstrated a positive correlation between the feeling of
excitement and participants’ trust in AVs. Conversely, negative
emotions have been found to diminish trust, even when unrelated
to trust-related decisions [26]. Myers et al. [24] investigated the
influence of three negative emotions (anger, guilt, and anxiety)
on trust and found that negative emotions with low certainty
appraisals (e.g., anxiety) reduced trust, whereas those with
high certainty (e.g., anger and guilt) had no discernible effects
on trust. In addition, Ayoub et al. [1] revealed that negative
emotions such as concerns and worries decreased parents’ trust
in automated school buses. Thus, it is imperative to examine the
effects of emotions and their role in identifying contextualized
trust profiles in the context of AVs.

Overall, previous studies have highlighted several key factors
that influence the formation of initial trust profiles in AVs.
Dispositional factors like age, gender, culture, personality traits,
and general propensity to trust technology seem to predispose
individuals toward higher or lower baseline trust levels. These
initial trust tendencies are then calibrated through learned expe-
rience with an AV. However, emotional responses and perceived
risk in specific situational contexts further modulate trust levels
dynamically, going beyond objective performance assessments.
A key gap remains in understanding how the complex interplay
between an individual’s dispositional tendencies, learned system
judgments, and emotional reactions in specific contexts formu-
lates distinct trust profiles among people. Some individuals may
exhibit consistent, goal-oriented trust focused on the long-term
benefits of AVs. Others react more volatilely, with trust oscil-
lating sensitively to the AV’s short-term successes and failures.
While some maintain persistent skepticism, requiring a funda-
mental understanding of the AV’s underlying processes before
trusting. Therefore, examining how individual differences across
these factors interact to form distinct trust profiles is crucial for
designing personalized experiences that can effectively calibrate
and enable appropriate trust for widespread AV adoption.

III. METHODOLOGY

Fig. 1 provides an overview of the methodology in this study
and the details are described in the following.
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Fig.1. Framework of the proposed study. In data collection, the green numbers
indicate true TORs, while the red numbers represent false alarms or missed
TORs.

Fig. 2.

Experiment setup.

A. PFarticipants

In this study, we recruited 74 university students, each of
whom received a compensation of $25 for their participation,
involving a duration of approximately one hour. Four partici-
pants were excluded from further analysis due to missing data.
Data from the remaining 70 participants (mean age =21.3,SD =
3.0; age range: 18 to 33; 32 female and 38 male participants)
were utilized for subsequent analysis. All participants satisfied
the requisite criterion of holding a valid driver’s license with
normal or corrected-to-normal vision.

B. Apparatus and Stimuli

The study employed a desktop-based driving simulator from
Realtime Technologies Inc. (RTI, MI, USA) for data collection,
as illustrated in Fig. 2. The simulation setup comprised three
LCD monitors, integrated with a Logitech driving kit, and two
touchscreens (i.e., a tablet and phone), located on the partici-
pant’s right side, for the NDRT and trust rating entry. The NDRT
involved a custom-designed Tetris game, implemented using the
PyGame library in Python. Participants were required to drag
tiles to navigate the game, which they could pause to respond
to takeover requests (TORs), and then, resume from the same
position afterward. Trust was evaluated using a questionnaire
created with Qualtrics (Provo, UT, USA, www.qualtrics.com)
on a mobile phone, following previous studies [27], [28].

The driving simulation was designed to simulate SAE Level 3
automation. To activate the automated mode, participants were
required to depress a red button situated on the steering wheel.
Upon initiation of the automated mode, an auditory message,
“Automated mode engaged,” would be emitted, after which the
car would proceed along a predefined route while maintaining a
speed of 35 mi/h. During the automated driving, participants
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Fig.3. Examples of takeover event in (a) suburban area with dears ahead and
(b) urban area with a bus sudden stop ahead.

were directed to perform a NDRT with an auditory request
“Please start the secondary task,” which involved playing the
Tetris game on a tablet. In the event of a TOR, participants
would be alerted by an auditory warning of “Takeover” and
the automated mode would be promptly disengaged to facili-
tate the participant’s control of the vehicle. In instances where
participants failed to resume control of the vehicle within the
designated time frame (i.e., 7 s). including scenarios involving
control and false alarm (FA) situations where TOR was initiated,
as well as the missed condition where no TOR was made and
participants failed to notice the road hazard themselves, an
auditory warning (“Emergency Stop”) would sound, triggering
an immediate emergency stop to prevent potential collisions .

C. Experimental Design

In this study, we employed a between-subjects design in which
participants were assigned to one of the three conditions: control,
false alarm, or miss. In the control condition, all eight TORs were
valid. In the false alarm condition, four TORs (the first, fourth,
seventh, and eighth) were valid, and the other four TORs (the
second, third, fifth, and seventh) were triggered unnecessarily,
as the road was clear. Similarly, in the miss condition, four TORs
(the first, fourth, seventh, and eighth) were valid; whereas in the
other four TORs (the second, third, fifth, and sixth), there was an
obstacle on the road, but AV did not detect it or initiate a TOR.
This approach was adopted to evaluate the impact of different
levels of automation performance on trust, as previous studies
indicated that both false alarms and misses reduced trust in au-
tomated systems [29]. During the simulation, standard roadway
features were used to signify the occurrence of a TOR event,
such as the presence of deer, bicyclists, pedestrians, construction
zones, vehicle sudden stops, buses with sudden stops, and police
vehicles on the shoulder (see Fig. 3). The TOR events were
equally distributed between rural and urban areas, with four
TOR events taking place in each location. The order of the
rural and urban scenarios was alternated to minimize potential
order effects. To eliminate potential learning effects leading to
predictable expectations, we varied the distances at which TORs
occurred, with time intervals ranging from 2 to 4 min.

D. Experimental Procedure

Upon arrival, participants were asked to complete a consent
form and an online demographic survey. After that, participants
received an introduction and watched a short video about the
tasks they were required to do. Then, participants completed

an online survey that consisted of personality information,
propensity to trust AVs, and initial learned trust. The Big Five
Model [30] was used to examine different personality traits of
the participants. We evaluated participants’ personalities using
the Big Five Inventory scale (BFI-10) [31] in five-point Lik-
ert scales, measuring character traits across five dimensions:
extraversion (i.e., sociable and reversing reserved), agreeable-
ness (i.e., trusting and reversing carper), conscientiousness (i.e.,
meticulous and reversing lazy), neuroticism (i.e., nervous and
reversing relaxed), and openness to experience (i.e., imaginative
and reversing artistic). The dispositional trust was measured
using a six-item trust scale proposed by Merritt et al. [32]. The
statements (see Table III) were rated with seven-point Likert
scales. The initial learned trust was assessed with ten items (see
Table IIT) using seven-point Likert scales. Subsequently, the par-
ticipants underwent a training session to familiarize themselves
with the driving simulator and experimental protocol. They
were required to assess the automated mode functionality of the
vehicle and instructed to maintain vigilance and resume control
when necessary. Furthermore, they were informed about po-
tential system failure scenarios, including instances of failing to
detect obstacles (in the miss condition) and false alarms of TORs
(in the false alarm condition). There were two drives, including
urban and suburban with approximately 15 min each. The entire
experiment was completed within a duration of approximately
60 min. To monitor their trust levels dynamically, participants
were prompted to respond to a single-item trust rating, ranging
from O to 10, every 25 s [27], [28], with the aim of avoiding any
excessive mental or emotional stress [33]. In addition, they were
asked to rate their trust levels after completing the driving simu-
lation [27]. Finally, participants rated their anticipated emotional
responses to AVs using a seven-point Likert scale that consisted
of 19 emotion items, including disdainful, scornful, contemptu-
ous, hostile, resentful, ashamed, humiliated, confident, secure,
grateful, happy, respectful, nervous, anxious, confused, afraid,
freaked out, lonely, and isolated, which were used to investigate
trust in human—machine automation previously [11], [34].

IV. RESULTS
A. Identifying Contextualized Trust Profiles

We attempted to identify contextualized trust profiles using a
clustering method based on various measures recorded during
the experiment, taking into account factors such as personality,
emotions, dispositional, initial learned, and real-time dynamic
trust, as well as the performance of the AV (i.e., control, false
alarm, and misses). To do this, 48 features from these measures
were first normalized between 0 and 1, and then, used as input for
the K-means clustering model within the Azure Machine Learn-
ing environment. Through iterative optimization processes in the
environment, the optimal number of clusters was determined to
be 3. To validate this number, we employed the uniform manifold
approximation and projection for dimension reduction (UMAP)
method [35], which compared to the conventional approaches
could reveal hidden structures in our complex dataset. The
UMAP-transformed data in the new dimension confirmed the
presence of three distinct clusters. As a result, three clusters
were formed and named as follows:
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Fig.4. Dynamic trust evaluation of three types of contextualized trust profiles
during the experiment where the x-axis is the ordinal number of trust ratings in
the experiment. Note the number of points of each participant were different,
and we aggregated them by the order of their self-reported trust to show the
dynamics of trust of three models.

1) Myopic pragmatists, consisting of 23 participants (8 fe-
male and 15 male), who were driven by the real-time per-
formance of automation and could change their behaviors
based on recent fluctuations. They were sensitive to both
AV successes and failures, demonstrating a more watchful
and cautious approach. This group was slower to fully
relinquish control to the AV, often requiring consistent
positive reinforcement to maintain trust;

2) Confident copilots, consisting of 31 participants (13 fe-
male and 18 male), who demonstrated consistently high
trust in AVs, viewed the technology favorably, and main-
tained positive emotions even after experiencing system
errors. These drivers prioritized the overall convenience
and benefits of AVs, displaying resilience to occasional
setbacks.

3) Reluctant automators, consisting of 16 participants (ten
female and six male), characterized by low baseline trust
and a preference for maintaining control. These drivers
were hesitant to cede agency to AVs, focusing on under-
standing the vehicle’s decision-making processes before
extending trust. They often exhibited more pronounced
negative emotional responses (e.g., fear and anxiety), pre-
ferring to rely on their own driving skills due to a desire
for transparency and control.

The following subsections detail the findings of each group

across trust, personality, and emotions dimensions.

B. Trust

1) Dynamic, Dispositional, and Initial Learned Trust: Ex-
amining the contextualized trust profiles, we found that first
profile (i.e., myopic pragmatists) corresponded to drivers who
exhibited a moderate high level of dynamic trust (Mean =
0.61 and SD = 0.23), but reported high levels of dispositional
(Mean = 0.67 and SD = 0.19) and initial learned trust (Mean =
0.65 and SD = 0.22). Despite the fact that myopic pragmatists
reported the highest levels of dispositional and initial learned
trust, their trust level were dynamically evolving based on their
mostrecent experiences resulting in rapid oscillation (see Fig. 4).

The confident copilots contextualized trust profile consisted of
drivers who showed a higher level of dynamic trust (Mean = 0.69

Openness to Experience |

Neuroticism

@ Reluctant Automators

Conscientiousness

oo @ Confident Co-pilots

Agreeableness O Myopic Pragmatists

Extraversion

0 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9

Fig.5. Mean and standard deviation (SD) of Big Five factors (dimensions) of
personalities among contextualized trust profiles.

and SD = 0.15) during the experiment, but reported moderate
levels of dispositional (Mean = 0.53 and SD = 0.22) and initial
learned trust (Mean = 0.55 and SD = 0.21). In this model, the
dynamic trust showed an increasing trend as participants rated
their trust considering their previous knowledge and experience
besides the most recent ones happening during the experiment

The last profile (i.e., reluctant automators) included drivers
who exhibited the lowest level of dynamic trust (Mean = 0.45
and SD = 0.26), as well as low levels of dispositional (Mean =
0.40 and SD = 0.24) and initial learned trust (Mean = 0.42
and SD = 0.24). The individual data observations of reluctant
automators showed that their levels of dynamic trust either
decreased or remained low throughout the experiment. Also,
drivers in this model tended to be carping rather than being
optimistic about the situation and the AV’s overall performance.

In examining dynamic trust changes statistically, the results
of one-way analysis of variance (ANOVA) showed significant
differences among contextualized trust profiles. Specifically,
reluctant automators exhibited significantly distinct trust levels
in urban and suburban areas. In the urban context, reluctant
automators had lower trust levels compared to other contex-
tualized trust profiles (p = 0.000), while in suburban areas,
this difference was significant compared to confident copilots
(p = 0.017).

Regarding dispositional and learned trust, the results of one-
way ANOVA showed that there was a significant difference
between three contextualized trust profiles for all the factors
(see Table IIT) measuring dispositional and initial learned trusts
(p < 0.05), except one from initial learned trust that measured
trust in delegating control task to AV when driving was boring
(p = 0.08).

C. Personality and Emotions

1) Personality: We conducted a one-way ANOVA test to
compare these dimensions across the contextualized trust
profiles and found a significant difference in agreeableness
(F(2,67) = 2.452,p = 0.033). The post hoc analysis with
Tukey—Kramer test showed that myopic pragmatists had sig-
nificantly higher levels of agreeableness compared to reluctant
automators (see Fig. 5). In particular, a significant difference was
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TABLE I
MEAN, STANDARD DEVIATION (SD), AND p-VALUE OF INDIVIDUAL ITEMS IN
PERSONALITY
Feature Myopic pragmatists  Confident copilots Reluctant automators p-value
Reserved 0.51 (0.27) 0.49 (0.36) 0.65 (0.31) 0.085
Trusting 0.77 (0.21) 0.65 (0.32) 0.67 (0.34) 0.305
Lazy 0.46 (0.28) 0.53 (0.30) 0.47 (0.34) 0.622
Relaxed 0.66 (0.21) 0.60 (0.29) 0.53 (0.34) 0.344
Artistic 0.51 (0.30) 0.52 (0.33) 0.48 (0.37) 0.950
Sociable 0.74 (0.22) 0.75 (0.25) 0.58 (0.36) 0.101
Carper *#* .39 (0.28) 0.38 (0.28) 0.62 (0.25) 0.000
Meticulous .87 (0.15) 0.78 (0.25) 0.89 (0.13) 0.127
Nervous 0.57 (0.26) 0.57 (0.27) 0.56 (0.28) 0.991
Imaginative ~ 0.76 (0.19) 0.82 (0.22) 0.72 (0.27) 0.291

Carper of reluctant automators was significantly higher than that of myopic pragmatists and confident copilots.

TABLE II
MEAN, STANDARD DEVIATION (SD), AND p-VALUE OF EMOTIONS

Feature Myopic F i C Co-pilots  Rel, A s p-value
Lonely *#* 0.18 (0.22) o 0.06 (0.17) up 0.000
Isolated *** 0.20 (0.22) o 0.08 (0.17) 4 0.000
Resentful ##% 0.10 (0.20) 0.003
Humiliated *** 0.06 (0.12) 0.000
Ashamed ##% 0.06 (0.13) 0.000
Hostile 0.10 (0.25) 4 0.000
Disdainful ## 0.09 (0.18) 4 0.000
Afraid 0.20 (0.24) 4 0.000

0.001
0.000
0.080
0.000
0.000
0.001

Scornful ###
Freaked out ***
Grateful

Nervous ##*
Confused ***
Contemptuous *##

0.13 (029)

0.06 (0.14)
0.62 (0.21)

Secure ##%* 0.75 (0.14) 0.000
Confident *## 0.72 (0.12) 4 0.003
Happy *** 0.63 (0.20) 4 0.000

0.001
0.000

Respectful *#* 0.61 (0.27) 4
Anxious *#* 0.66 (0.27) 4 0.70 (0.24) 4
Note: The models that share the same letter (i.e., a, b, or ¢) are not statistically different.

0.72 (0.21) 4p

found in the item “I see myself as someone who tends to find
fault with others” statement (p = 0.015) where reluctant au-
tomators had higher ratings than confident copilots and myopic
pragmatists (see Table I). However, there were no significant
differences in the other four personality characteristics (i.e.,
extraversion, conscientiousness, neuroticism, and openness to
experience). This result was consistent with the SHAP model
outcome, as only the “carper” feature, which represented the
aforementioned questions related to personality, was selected as
an important feature in the model.

2) Emotions: The results of the one-way ANOVA test indi-
cated that there were significant differences in all the emotions
among the three contextualized trust profiles, except “Grateful,”
as detailed in Table II. To understand the underlying structure
of emotions associated with each contextualized trust profile,
we conducted an exploratory factor analysis and identified three
subsets that combined the correlated emotions, i.e., resentfully
aversion: disdainful, scornful, contemptuous, hostile, resentful,
ashamed, and humiliated; happily acceptance: confident, grate-
ful, secure, happy, respectful, not lonely, and not isolated; and
nervously fear: nervous, anxious, confused, afraid, and freaked
out. The results showed that confident copilots had significantly
lower scores for emotions related to resentfully aversion com-
pared to the other contextualized trust profiles (p = 0.000).
They also had significantly higher scores for confidence and
security in the happily acceptance category compared to my-
opic pragmatists, and higher scores for happiness, gratitude,
and respect compared to reluctant automators. For nervously
fear, confident copilots showed significantly lower scores than
the other contextualized trust profiles (p = 0.000). Moreover,
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Fig. 6. Mean and standard deviation (SD) of three emotion categories among
contextualized trust profiles.
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Fig. 7. Summary of SHAP values where the features are ordered from the
highest to the lowest effect on the prediction. In the figure, the prefix “p_" in
features indicates personality-related items, “d_" indicates dispositional trust
items, and “I_" indicates learned trust items.

myopic pragmatists had significantly higher scores for happiness
(p = 0.016) compared to reluctant automators (see Fig. 6).

D. Validating Contextualized Trust Profiles

In order to validate the contextualized trust profiles, we
used the cluster membership as the ground truth and tested
the accuracy of the clustering model by training supervised
machine learning models with all the 48 features. We used
an Azure automated ML experiment job to identify the best
machine learning model in Azure automated ML experiment
by fine-tuning the hyperparameters. The multinomial logistic
regression model was found to perform the best across a large
number of models, including XGBoost, LightGBM, Random
Forest, etc. The results showed that the model was able to predict
the contextualized trust profile with F1-score = 0.90.

We also used SHAP explainer to interpret the model and
understand the importance of individual features in the model’s
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TABLE III
MEAN, STANDARD DEVIATION (SD), AND p-VALUE OF DISPOSITIONAL AND INITIAL LEARNED TRUST

Feature Myopic Pragmatists  Confident Co-pilots  Reluctant Automators  p-value
= T usually trust self-driving vehicles until there is a reason not to 0.81 (0.16) o 0.67 (0.20) 4 0.45 (0.26) . 0.000
g For the most part, I distrust self-driving vehicles 0.24 (0.21) o 0.39 (0.21) 0.000
Zé In general, I would rely on a self-driving vehicle to assist me 0.78 (0.18) o 0.61 (0.19) 4 0.41 (0.27) 0.000
& My tendency to trust self-driving vehicles is high ).19) o 0.35 (0.24) 0.000
g It is easy for me to trust self-driving vehicles to do their job (0.16) o 0.42 (0.25) pc 0.000
I am likely to trust self-driving vehicles even when I have little knowledge about it 0.27) o 0.42 (0.28) 4 0.23 (0.19) . 0.000
I would feel safe in a self-driving vehicle .80 (0.11) o 0.65 (0.16) 0.46 (0.22) . 0.000
The self-driving vehicle system provides me with more safety 0.70 (0.25) o 0.45 (0.20) ¢ 0.39 (0.22) 4. 0.000
3 I would rather keep manual control of my vehicle than delegate it to the self-driving vehicle system on every occasion 0.39 (0.30) o 0.76 (0.18) p. 0.000
£ I would trust the self-driving vehicle system decisions 0.76 (0.14) 4 0.65 (0.13) 4p 0.43 (0.25) ¢ 0.000
8 I would trust the self-driving vehicle system capacities to manage complex driving situations 0.64 (0.24) 0.42 (0.21) 4 0.33 (0.28) p 0.000
= If the weather conditions were bad, I would delegate the driving task to the self-driving vehicle system 0.45 (0.30) o 0.35 (0.25) ap 0.22 (0.19) pe 0.030
:E Rather than monitoring the driving environment, I could focus on other activities confidently 0.61 (0.24) o 0.48 (0.29) 41 0.26 (0.24) 0.001
= If driving was boring for me, I would rather delegate it to the self-driving vehicle system than do it myself 0. ) 0.67 (0.21) 0.081
I would delegate the driving to the self-driving vehicle system if I was tired .79 (0.24) o 0.74 (0.20) 4 0.042
I would trust the self-driving vehicle 0.76 (0.15) o 0.30 (0.26) 0.000

Note: The models that share the same letter (i.c., a, b, or ¢) are not statistically different.
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Fig. 8.

Impact of individual features on overall performance of the model. During each iteration, a single feature was added to the model based on SHAP

importance ranking. The error bars show the standard errors computed from fivefold cross validation.

decision-making process. Fig. 7 illustrates the feature impor-
tance rankings, from the most influential to the least influential
on the prediction. The features of condition (miss, false alarm, or
control), emotions of freaked out and confused were found to be
the most significant ones in predicting the contextualized trust
profiles, regardless of whether they had a positive or negative
effect. The color coding indicates the feature importance in
distinguishing between different contextualized trust profiles.
We used a feature selection method to improve the model’s
performance while preserving the patterns and relationships in
the data, as suggested by Ayoub et al. [20], [21]. We added
one feature at a time based on the feature importance ranking
from the SHAP explainer and validated the results with stratified
fivefold cross validation. As shown in Fig. 8, the model reached
the highest performance (Fl-score = 0.90) using the top 25
features, i.e., condition, emotions: freaked out, lonely, confused,
disdainful, contemptuous, isolated, hostile, ashamed, anxious,
scornful, nervous, humiliated, and happy; personality: carper,
initial learned trust: 1 could confidently focus on NDRT, I
would keep manual control, I would consider AV more safe
than manuals, I would trust in complex situations, and I would
trust AV; and dispositional trust: 1 likely to trust AV without
knowledge, I have high tendency to trust AV, I easily can trust
AV, I would rely on an AV, and I mostly distrust AV. Overall,
across all the 48 features, the F1-score ranged from 0.52 to 0.90,
and the accuracy ranged from 0.60 to 0.90.

Even though the experiment condition was found to be the
most influential feature in predicting these three contextualized

£ control
SFA

E/misses

o : S

Myopic Pragmatists

Confident Co-pilots Reluctant Automators

Contextualized trust profiles

Fig. 9. Distribution of the clusters across the three conditions.

trust profiles, it was not sufficient to determine the identified
contextualized trust profiles alone. As shown in Fig. 9, there was
no one-to-one mapping relationships between the participants
in three conditions, including control, FA, and misses and those
formed the three identified contextualized trust profiles. Also
shown in Fig. 8, the condition alone only had F1-score = 0.52
and accuracy = 0.60 in predicting contextualized trust profiles.
Other factors, such as emotions, personality, initial learned trust,
and dispositional trust, also played important roles in determin-
ing these profiles.

V. DISCUSSION

A. Implications

Our study identified three distinct contextualized trust
profiles: myopic pragmatists, confident copilots, and reluctant
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automators. These profiles, predicted with good accuracy by the
proposed model, demonstrate the complexity of how individuals
react to automated driving experiences. Trust emerges as highly
dynamic, shaped by the intersection of personality, initial biases,
emotional responses, and ongoing AV performance assessment.

Myopic pragmatists are performance-driven and emotionally
volatile. They exhibit trust fluctuations closely tied to real-time
AV performance. Successes bolster trust, while errors trigger
emotional responses such as fear and disappointment [11].
This sensitivity might be advantageous in certain situations,
prompting quicker reactions when necessary. Consistent with
our previous research, trust here focuses on the system’s per-
formance capabilities within specific contexts [4]. However,
unlike previous findings, myopic pragmatists seemed to easily
recover from low levels of trust caused by errors made by the
AV [36]. This is also represented by their corresponding emo-
tional responses associated with overall experience. Moreover,
as agreeable individuals, myopic pragmatists tend to be more
adaptable and cooperative, which may explain their willingness
to adjust trust levels based on recent experiences.

In order to help mitigate such volatility, the design should
aim to deliver a consistently positive experience. This can
be achieved by providing reliable and consistent performance
across a variety of situations, such as inclement weather, heavy
traffic, and challenging road conditions. In this aspect, adaptive
automation might help myopic pragmatists to calibrate their trust
by adapting the level of automation based on the drivers’ current
trust level in AV and the system’s past performance [37]. For
instance, if the driver is confident and happy in the AV, the
system can perform in conditional autonomy and require less
intervention from the driver. On the other hand, if the driver
is less confident in the AV resulting from previous negative
experiences, the system can provide feedback about system
status in order to increase the feelings of confidence, control, and
safety. Furthermore, since negative experiences might stem from
either excessive trust or unfamiliarity with the AV’s capabilities,
the AV can require driver intervention to familiarize them with
its behavior, demonstrating its range of capabilities and response
patterns to enhance the driver’s understanding and trust in the
system. Therefore, by integrating adaptive automation into the
AV system, designers would help myopic pragmatists to cal-
ibrate their trust in the automation system, improving overall
system performance and safety [37], [38].

Confident copilots show consistently a high level of trust,
fueled by positive experiences and potentially downplaying
occasional errors. They focus on the overall purpose of the AV
and demonstrate greater emotional resilience even in the face of
setbacks. While aligning with prior work highlighting purpose-
driven trust [15], [39], their trajectory diverges from Bayesian
decision makers [17], as they maintain a trend of relatively higher
level of trust than stabilizing trust levels. From the emotion point
of view, confident copilots had a more positive attitude toward
AV performance and were less prone to fear or disappointment
when encountering failures. Specifically, they felt a greater sense
of safety and were less vulnerable to false alarms, even if the
TORs were unfounded, in contrast to reluctant automators who
regarded such incidents as severe system malfunctions.

In order to design for confident copilots, the design should aim
to provide features that increase their confidence and comfort
levels, such as clear and intuitive interfaces, well-defined com-
munication protocols, and robust safety features that effectively
communicate the system’s status and capabilities. They also tend
to relate to the purpose of trust [ 15], [39] and believe that automa-
tion could help improve efficiency, reduce errors, and enhance
safety by delegating their tasks to machines and freeing up their
own cognitive and physical resources to focus on other tasks.
This could be not limited to automated driving but in various
domains, such as healthcare, aviation, and manufacturing.

However, confident copilots exhibited significantly more pos-
itive emotions, which might impact their tendency to take
risks [40] and potentially lead to overtrust in AVs. To address
this issue, the design should incorporate clear and transparent
communication that explains the system’s capabilities and limi-
tations by clearly showing the limitations of the system [41], and
include educational materials to help them understand how the
technology works. For example, the system should be designed
to clearly communicate when the system would request the
driver to take over control.

Reluctant automators possess low baseline trust, likely rooted
in aneed to understand the AV’s underlying processes for trust to
emerge. This aligns with process-based trust [39] and the group
of participants identified in [17] who generally had a low level of
trust in automation. Despite the AV’s capabilities, they maintain
negative emotional responses (e.g., fear and nervousness) and
insist on having control over driving. Their persistent negative
emotions and nonagreeable personality traits create a barrier
to trust that goes beyond simply enhancing AV performance
or providing more information. To build trust with this group,
strategies may need to focus more on addressing underlying
emotional and personality factors, potentially through long-term
exposure and gradual introduction of autonomy.

Regarding predictive models, while Bhat et al.’s model [17]
successfully predicted the Bayesian decision makers and dis-
believers, our model, which incorporates emotions, personal-
ity traits, and both learned and dispositional trust, predicts all
three trust profiles more accurately. This highlights the need to
consider a broader range of variables beyond dynamic trust in
predicting contextualized trust profiles.

Given the distinct emotional profiles associated with each
contextual trust profile, future AV designs could benefit from
incorporating emotion recognition and response mechanisms.
For example, detecting increased anxiety in reluctant automa-
tors could trigger more detailed explanations of the AV’s
decision-making process. For myopic pragmatists, the system
could provide reassurance and positive feedback after success-
ful maneuvers to help stabilize their emotional state and trust
levels.

While our study identified significant differences in Agree-
ableness among trust groups, future research should investigate
how other personality traits might interact with emotional re-
sponses to influence trust in AVs. In addition, these emotional
and personality differences may be influenced by cultural fac-
tors. Cross-cultural studies could explore how these contextu-
alized trust profiles manifest in different societies, potentially
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revealing new insights into the universality or cultural specificity
of trust formation in AVs.

The significant role of AV performance in the trust formation
process is integral to establishing and sustaining user trust over
time. The most important aspect is to improve the vehicle
reliability itself [4], such as rigorous testing and refinement of
perception and control systems to ensure handling complex sce-
narios and takeover transitions. However, human factors issues
also play an important role, such as transparent communication
of the situation awareness [8], capabilities, and limitations so
that users have a realistic understanding of what an AV per-
ceives, can and cannot do in different scenarios. Previous studies
showed that people exhibit a propensity to accept automation
malfunctions if they are able to promptly regain manual control,
thus mitigating the risk of potential accidents [42]. However, the
nuances of transparency requirements hinge on the initial trust
profile of the driver. Hence, adaptive transparency mechanisms
are needed to further facilitate driver trust and improve their
driving performance [43], [44].

Despite the success of the audio alert in prompting partici-
pants to take over control, ensuring a seamless transition requires
attention to other interfaces. If the vehicle is designed so that they
can easily understand what the system is doing and why it is
doing it through clear and intuitive communication as feedback,
this would be helpful [8]. For example, by explaining “why”
and “what will” information with speech and augmented reality
during the takeover process, participants reported it to be easy to
use and accept SAE Level 3 vehicles [7]. We should also consider
predictability of the system so that the system’s behavior aligns
with user expectations and how well it performs in different
scenarios. For example, when participants received explanations
about the vehicle’s behavior ahead of the time and their possible
projection in the future, they had better situation awareness of the
driving scenarios and trust in automated driving [8]. These two
strategies can help drivers to understand the system’s behavior
and performance, which in turn can enhance their learned trust
and confidence in the system.

B. Limitations

This study has several limitations that require further investi-
gation in future research. First, the study was conducted using
a low-fidelity experimental setup utilizing a desktop driving
simulator with its reliance on only an auditory alert of TORs.
We recognize the need to refine and enhance the realism of our
experimental setup to better align with the complexities of level
3 automation systems. The sample size of 70 participants was
relatively small and we only considered a limited number of fac-
tors to identify contextualized trust profiles. Moreover, the study
sample was composed primarily of university students, which
resulted in a homogeneous sample, regarding age, education,
driving experience, and knowledge about AVs. To overcome
these limitations, future studies should be conducted in higher
fidelity experimental settings and with a larger and more diverse
sample size. More external factors should be included, such as
time constraints, perceived risks, complexity of NDRTs, and
situation awareness [8], [14], [45].

Second, our clustering approach aimed to discover natural
groupings based on shared patterns across various trust di-
mensions. This enabled us to identify potential models with-
out any preexisting assumptions. We then used multinomial
logistic regression to confirm these clusters and see whether
the extracted models were predictable based on the original
features. In addition, we utilized SHAP to understand the relative
importance of these features, providing insights for tailoring
future AV experiences to these different user models. While we
acknowledge that this validation may have limitations due to
the use of the same dataset, both methods offer complementary
strengths. Clustering reveals patterns within our sample, while
regression hints at broader generalizability. Ideally, validation
would involve a completely separate dataset. However, given
our sample size constraints, this will be a crucial focus for future
studies to assess the robustness of our identified models.

Finally, we only included a limited number of factors that
formed the contextualized trust profiles. While these factors pro-
vided valuable insights into the dynamics of trust, they may not
fully capture the complexity and diversity of trust. It is important
to acknowledge that trust is a multifaceted construct influenced
by various individual and contextual factors, which might not be
fully accounted for in this study. Therefore, the generalizability
of the study findings to other contexts and populations might be
limited and future studies should include a wider range of trust
indicators to enhance the external validity of the results.

VI. CONCLUSION

The purpose of our research was to examine the contex-
tualized trust profiles in AVs and determine the underlying
behavioral patterns of drivers that could be useful for designing
profile-based systems. To accomplish this, we collected multidi-
mensional data and clustered them into three contextualized trust
profiles: confident copilots, myopic pragmatists, and reluctant
automators. We used these profiles to build a logistic regression
model that could predict the contextualized trust profile with ac-
curacy of 0.89 and F1-score of 0.90. In addition, we used SHAP
explainer to identify the most significant factors in the dataset
that influenced the creation of contextualized trust profiles.
Furthermore, we investigated the dynamic trust patterns among
these profiles, as well as the associated initial learned trust,
dispositional trust, emotional, and personality characteristics,
based on which we discussed how to develop a system that can
adjust AV’s behavior based on the driver’s contextualized trust
profiles, and eventually promote their acceptance and adoption
of such technologies.
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