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Abstract. The hydrology of thawing permafrost affects the fate of the vast amount of permafrost carbon due to its controls on
waterlogging, redox status, and transport. However, regional mapping of soil water storage in the soil layer that experiences
the annual freeze-thaw cycle above permafrost, known as the active layer, remains a formidable challenge over remote arctic
regions. This study shows that Interferometric Synthetic Aperture Radar (InSAR) observations can be used to estimate the
amount of soil water originating from the active layer seasonal thaw. Our ALOS InSAR results, validated by in situ obser-
vations, show that the thickness of the soil water that experiences the annual freeze-thaw cycle ranges from 0 to 75 cm in a
60-by-100-km area near the Toolik Field Station on the North Slope of Alaska. Notably, the spatial distribution of the soil water
correlates with surface topography and land vegetation cover types. We found that pixel-mismatching of the topographic map
and radar images is the primary error source in the Toolik ALOS InSAR data. The amount of pixel misregistration, the local
slope, and the InSAR perpendicular baseline influence the observed errors in InSAR Line-Of-Sight (LOS) distance measure-
ments. For most of the study area with a percent slope of less than 5%, the LOS error from pixel misregistration is less than 1

cm, translating to less than 14 cm of error in the soil water estimates.

1 Introduction

Permafrost soils in the Arctic store twice the amount of carbon found in the atmosphere (Hugelius et al., 2014; Ping et al.,
2008). Over the past decades, warming has led to permafrost thawing (Jorgenson et al., 2006), which may result in the release
of stored organic matter into the atmosphere as greenhouse gases and further amplify global warming (Serreze and Barry, 2011;
Schaefer et al., 2014; Schuur et al., 2015). In permafrost regions, groundwater flows through the topmost portion of the soil,
known as the active layer, that freezes and thaws annually (Woo, 2012; O’Connor et al., 2020). This groundwater flow contains
carbon and is important in the export of carbon from land to the ocean and atmosphere (Kling et al., 1991; Stieglitz et al., 2003;
Walvoord and Striegl, 2007; Vonk and Gustafsson, 2013; Paytan et al., 2015; Neilson et al., 2018). To understand how thawing
permafrost contributes to the global carbon cycle, it is important to understand the hydrologic flow and transport processes in

the active layer. Whether the carbon held by the active layer soils will be transformed to carbon dioxide or methane (a more
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powerful greenhouse gas), or whether it will flow towards rivers and lakes as dissolved carbon in groundwater, depends largely
on the wetness or dryness (i.e., how much water is stored) of the active layer (Bond-Lamberty et al., 2016; Taylor et al., 2021).

Most of the arctic permafrost region is hard to access, and in situ observations of water storage and water flow in the
active layer are extremely limited. Remote sensing techniques hold promise for local to regional observation of the hydrologic
properties and hydrologic states of permafrost. For example, observations from the Gravity Recovery and Climate Experiment
(GRACE) mission detect changes in permafrost water mass over a regional scale (Muskett and Romanovsky, 2009), but the
spatial resolution is too coarse (~ 100s of km) to be used in most hydrologic models (Text S1). In comparison, by measuring
the phase difference between two paired radar images, Interferometric Synthetic Aperture Radar (InSAR) techniques estimate
surface deformation between the two radar acquisition times along the radar Line-Of-Sight (LOS) direction (Rosen et al., 2000;
Hanssen, 2001) at the spatial scale (~ 10s to 100s meters spatial resolution) that overlaps with the scale of hydrologic field
measurements and modeling grids. Although spaceborne InSAR has been used for estimating surface deformation associated
with solid earth processes since the 1990s (Massonnet et al., 1993; Fialko et al., 2002; Pritchard and Simons, 2002; Shirzaei
et al., 2013; Chen et al., 2014), it has only been recently used to estimate surface deformation associated with the seasonal
freeze-thaw process of the soil active layer (Liu et al., 2010; Short et al., 2011; Antonova et al., 2018; Strozzi et al., 2018;
Rouyet et al., 2019). Because ice density is less than water density (and thus ice volume is greater than water volume), the land
surface subsides as the active layer thaws from winter to summer (Liu et al., 2010). Furthermore, InSAR-observed long-term
subsidence trend signals over permafrost terrain have been used to study the deepening of the active layer due to wildfires or
excessive melt of ground ice (Michaelides et al., 2019; Liu et al., 2014, 2015; Iwahana et al., 2016; Yanagiya and Furuya, 2020;
Abe et al., 2020; Eshqi Molan et al., 2018; Streletskiy et al., 2025).

Existing InSAR permafrost studies tended to associate the magnitude of the InSAR-observed thaw subsidence with the active
layer thickness (Liu et al., 2012; Schaefer et al., 2015; Chen et al., 2021). However, the amplitude of the thaw subsidence and
frost heave could depend on other factors such as sediment type and local topographic slope (Daout et al., 2017). Chen et al.
(2020) found that the amplitude of the seasonal thaw subsidence is proportional to the amount of water stored in the saturated
active layer at the end of a thaw season. This is consistent with findings from recent studies that InSAR-derived seasonal
subsidence rates reflect spatial soil moisture patterns (Chen et al., 2022, 2023; Widhalm et al., 2024). In this paper, we further
established a conceptual model that relates InSAR seasonal thaw subsidence observations to soil water storage in the saturated
active layer. Our goal is to advance InSAR techniques for the high-resolution mapping of water storage above-permafrost. To
demonstrate this, we mapped soil water stored in the saturated active layer using ALOS PALSAR data over a much larger area
in the Arctic Foothills than used in Chen et al. (2020). We validated the InSAR results using in-situ soil measurements collected
at more than 200 remote sites within ~ 100 km of the Toolik Field Station as well as optical imagery and land cover maps.
Our results show that InSAR soil water storage estimates derived from two separate satellite frames are consistent with in-situ
observations under different vegetation covers. An important new contribution of this work is on uncertainty quantification.
We determine the primary error sources in Toolik ALOS PALSAR Line-Of-Sight (LOS) measurements, and we discuss how

errors in INSAR LOS measurements can be linearly related to errors in soil water storage estimates.
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Figure 1. A map of the Toolik study site. The 2018 and 2019 sample sites are shown in red diamonds and yellow stars. The ALOS PALSAR
coverage is outlined in green (path 255, frame 1370) and orange (path 255, frame 1380). The blue lines show five helicopter flight lines
within the satellite data coverage, along which field measurements were collected. The 2007 Anaktuvuk River Fire scar is outlined with a

red dashed line.

2 Methods

In this section, we first describe the conceptual model that relates the soil water storage in the saturated active layer to ground
ice melting during summer thaw seasons (Section 2.1). We then explain our InSAR processing strategy for estimating average
seasonal thaw subsidence from ALOS PALSAR data (Section 2.2), and discuss key error sources in InSAR measurements

(Section 2.3). Finally, we review available field observations and strategies for validating the InSAR results (Section 2.4).
2.1 Estimating Soil Water Storage in the Saturated Active Layer from Thaw Subsidence Measurements

Our study site near Toolik Lake is in continuous permafrost of the upper Kuparuk River basin on the North Slope of Alaska
(Figure 1). In 1987, the Toolik Field Station became part of the NSF Long Term Ecological Research program (LTER), which
maintains long-term meteorological, ecological, and hydrological observations of the Arctic Foothills (Hobbie and Kling,
2014). The availability of the long-term databases of many basic parameters of the permafrost system makes the Toolik area
an excellent site for studying how different soils control hydrological dynamics and may change as the climate warms and

permafrost thaws.
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Based on in situ thaw measurements at Toolik, the active layer starts to thaw in early June, and the maximum seasonal thaw
typically occurs in late August (Romanowicz and Kling, 2022). Thawing processes typically slow down around the time of
maximum thaw, because (1) thermal diffusivity of ice is larger than that of liquid water; and (2) heat takes much longer to
diffuse through a thicker active layer soil column. Due to the density difference between ice and liquid water, the land surface
subsides during the thaw season, with the opposite occurring when the active layer refreezes (Short et al., 2011; Painter et al.,
2016; Sjoberg et al., 2016; Antonova et al., 2018; Strozzi et al., 2018). The maximum seasonal thaw subsidence (dseqson) 1S
proportional to the amount of water stored in the saturated active layer that experiences the ice-to-water phase change in a thaw
season (denoted as zy,q4¢er) following (Liu et al., 2012; Chen et al., 2020):

Pw = Pi

4

dseason = Zwater ~ 0'092water (l)

where p,, and p; are the density of water and ice respectively. Figure 2 illustrates the definition of z,,4¢e;,- in this work. Here
we exclude soil water stored above the water table (tension or unsaturated zone water) in the 2,4t €Stimation. Because the
porosity in the organic soil layers is high (~ 0.78-0.98), water in the unsaturated zone can expand to fill the empty pore space
during freezing without contributing to surface deformation. In this study, we assume the density of water is a constant value
of 0.997 g/cm?, and the density of ice is a constant value of 0.917 g/cm?®. Our calculation does not account for variations
in subsurface water and ice density due to capillarity associated with surface tension, cation hydration, surface hydration, and
interlamellar cation hydration (Zhang and Lu, 2018).

Equation (1) shows that dscgson 1S proportional to z,,4¢e- rather than to the Active Layer Thickness (ALT). For example,
minimal thaw subsidence signals would be observed over thick but dry active layers (Chen et al., 2020). This means that active
layers with higher ice-to-water content are expected to experience larger thaw subsidence, which may have no bearing on ALT.

Furthermore, the active layer (liquid) water storage balance can be defined as:
AS=A+(P-ET-Q) )

where AS is the change in total soil water storage of the active layer. P, ET, and ( stand for changes in soil water storage
due to precipitation, evapotranspiration, and runoff, respectively. A is the amount of soil water change associated with the
active layer freeze and thaw process detectable by InSAR. When the active layer thaws during the summer, A > 0; when the
temperature drops in autumn and the active layer refreezes, A < 0. In the case that InNSAR-observed seasonal thaw subsidence
signals are similar over multiple years, the amount of water that experienced the annual freeze-thaw cycle does not change
much during this period (the net water drainage P — KT — @ ~ 0).

We emphasize that many geophysical processes can lead to surface deformation in permafrost terrain detectable by InSAR
(Zwieback et al., 2024b). For example, solifluction and other slope creep processes may produce long-term downward defor-
mation trends in regions with large slope angles (Dini et al., 2019). Post-glacial rebound and tectonic motions typically vary
at 100-km or larger spatial scales and can be considered as nearly spatially uniform over our study area (Liu et al., 2010;
Stephenson et al., 2022). Given that InNSAR measures relative deformation with respect to a local reference point, InSAR is

only sensitive to spatially varied surface deformation over the study area. Hydrological loading and unloading can produce
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Figure 2. Conceptual diagram of how the depth of saturated water (zwqter) affects soil surface deformation. The soil is divided into three
zones: (1) the active layer unsaturated zone (thickness of w), which contains soil particles (dark circles) and soil atmosphere (white open
space). It may also contain tension (capillary) water (shown in light blue in column (B)); (2) the water-saturated active layer (thickness of
s). The upper surface defines the water table, and the lower surface defines the ice table that separates the thawed active layer from frozen
ground (or the permafrost layer at maximum annual thaw depth); and (3) the permafrost (thickness of p), which may or may not be saturated
with water as ice. In column (A), zwater represents the amount of water stored in the saturated active layer. While there is tension water in
the upper unsaturated zone in (B), Zwater i the same in columns (A) and (B). The reason is shown in (C), where the entire soil column has
now frozen. The saturated water freezes and the expansion heaves the soil column above and the ground surface (s + 0.09z.,qter ), While the
tension water freezes but expands into pores containing soil atmosphere and thus does not contribute to deformation of the ground surface

(thickness u does not change).
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millimeter-level surface deformation signals (Liu et al., 2010), which is much smaller than centimeter-level freeze-thaw defor-
mation. Furthermore, peat accumulation processes (Jones et al., 2017) may lead to a long-term deformation signal detectable
by InSAR, and surface erosion can cause changes in surface scattering properties that decorrelate radar phase measurements
(Zebker and Villasenor, 1992). In Section 2.2, we discuss how to extract long-term and seasonal deformation signals from
InSAR observations. The magnitude and characteristics of deformation signals, combined with in-situ observations (Section

2.4), can be used to determine the primary geophysical processes that contribute to the observed deformation patterns.
2.2 InSAR Processing Strategy

Interferometric SAR (InSAR) computes the phase difference between two Synthetic Aperture Radar (SAR) images. The re-
sulting interferogram can be used to infer a map of surface deformation between two SAR acquisition times along the radar
Line-Of-Sight (LOS) direction (Hanssen, 2001). More specifically, a phase cycle of 27 (in radians) equals to A/2 of LOS
deformation, where A is the radar wavelength. For L-band ALOS PALSAR data, A equals 24 cm, and thus a phase cycle of 27
represents 12 cm of LOS deformation occurred between two radar acquisition times.

In a recent proof-of-concept study (Chen et al., 2020), we processed 12 L-band ALOS PALSAR scenes (Table B1) acquired
during summer seasons (June to October) between 2006 and 2010 from path 255 frame 1370 over our study region (Figure 1).
Note that we excluded all winter scenes acquired between November and April because the observed phases in winter-winter
interferograms are likely related to variations in snow accumulation and snow redistribution, which is not the focus of this study.
We first solved for the long-term LOS deformation trend at a pixel of interest based on a stacking approach (Sandwell and Price,
1998; Lyons and Sandwell, 2003; Rouyet et al., 2019). That is, averaging all interferograms that contain minimal seasonal
deformation signals (e.g., a July-to-July pair) and relatively large long-term signals (e.g., span multiple freeze-thaw cycles).
An important finding of this pilot study was that no detectable long-term deformation trend above the InSAR measurement
noise level was observed outside the 2007 Anaktuvuk River fire scar (Figure 1) during the study period of 2006 to 2010.
This allowed us to substantially simplify our InSAR processing strategy for reconstructing seasonal freeze-thaw deformation
patterns over undisturbed permafrost terrain. We estimated the LOS deformation signatures due to the seasonal active layer
freeze-thaw processes between (i) early June and late July, (ii) late July and early September, and (iii) early September and
late October by averaging all interferograms that span these periods regardless of how many years those interferograms span.
The averaged LOS deformation between early June and late July was used as an approximation of the maximum seasonal
LOS deformation because no ALOS acquisitions were made over the study area around the time of the maximum thaw (late
August at Toolik area). This approximation is reasonable given that a few centimeters of late summer thaw (August) of the
relatively dry low-porosity mineral layer does not cause surface thaw subsidence detectable by InSAR (O’Connor et al., 2020;
Chen et al., 2020). For example, 10 cm of thaw of the saturated organic layer (~ 90% porosity) would lead to ~ 0.8 cm of
thaw subsidence. In comparison, 10 cm of thaw of the saturated mineral soil (~ 20% porosity) would lead to < 0.2 cm of thaw
subsidence.

We note that InNSAR measures the change in distance between the antenna and the ground object, known as the LOS direction.

Assuming the horizontal motion of the land surface is negligible, we converted InNSAR seasonal deformation estimates along
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the LOS direction (d,og) to seasonal vertical thaw subsidence estimates dgeqs0n aS:

dseason = dLOS (3)
es

where e3 is the vertical component of the radar LOS direction unit vector e = [eq,e2,e3]. The LOS unit vector e can be
computed based on the known satellite position and ground pixel location in the Earth-centered, Earth-fixed (ECEF) coordinate
system, and then converted to the local east-north-up (ENU) system (Misra and Enge, 2011). For the ALOS ascending imaging
geometry over the Toolik area, e = [0.61,0.13,—0.78] at the mid-swath, and the variation of e3 across the entire swath is
minimal (less than 3%). This means that ~ 5 cm thaw subsidence can cause 4 cm positive LOS deformation for the Toolik
ALOS PALSAR case.

To confirm that our InSAR processing strategy is suitable for studying the active layer freeze-thaw process over vast areas,
here we analyzed an additional 11 L-band ALOS PALSAR scenes (Table B1) acquired during summer seasons (June to Oc-
tober) between 2006 and 2010 from path 255 frame 1380 (Figure 1). We merged interferograms from the same path but two
different frames by calibrating the phase differences within the overlapping regions of the two frames. A sample merged inter-
ferogram is shown in Figure B1, and the same reference point (68.83° N, 150.23° W) as our previous study (Chen et al., 2020)
was used to calibrate all interferograms. We chose this reference point because it is in a dry highland area of relatively flat
terrain, and the expected seasonal deformation is minimal. Only ~ 4% of interferograms contain visible phase decorrelation
artifacts outside the fire scar, and the overall phase coherence (Figure B2(a)) of the remaining interferograms is comparable to
the sample interferogram (Figure B1). We masked out pixels with amplitude dispersion < 0.25 and pixels with phase coherence
< 0.2 to exclude water bodies and the area burned by the 2007 Anaktuvuk River fire (Figure B2(b)). A comparable pixel mask
can also be generated using the North Slope Science Initiative (NSSI) land cover GIS Data.

Similar to our previous study, we found that the long-term subsidence trend is negligible outside the fire scar (Figure B3(d)).
This allows us to follow the same processing strategy as our previous study to extract seasonal deformation between (i) early
June and late July, (ii) late July and early September, and (iii) early September and late October by averaging all interferograms
that span these periods regardless of how many years those interferograms span (Figure B3(a)-(c)). We note that averaging
interferograms that contain the common signal of interest (stacking) reduces the impact of random tropospheric turbulent noise
by ~ /N, where N is the number of independent SAR acquisitions (Sandwell and Price, 1998; Chen et al., 2020). A thaw
subsidence pattern similar to the final stacking solution was identified from all individual interferograms that span a common
season (e.g., early June to late July). The averaged LOS deformation between early June and late July was used as an approxi-
mation of the maximum seasonal LOS deformation because no ALOS acquisitions were made over the study area around the
time of the maximum thaw (late August at Toolik area). This approximation is reasonable given that a few centimeters of late
summer thaw (August) of the relatively dry low-porosity mineral layer does not cause surface thaw subsidence detectable by
InSAR (O’Connor et al., 2020; Chen et al., 2020). For example, 10 cm of thaw of the saturated organic layer (~ 90% porosity)
would lead to ~ 0.8 cm of thaw subsidence. In comparison, 10 cm of thaw of the saturated mineral soil (~ 20% porosity)

would lead to < 0.2 cm of thaw subsidence.
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Based on Equation (1) and Equation (3), we further established a linear relationship between InSAR LOS deformation
observations and the amount of water in the saturated active layer that experiences the ice-to-water phase change (2, qter) aS:

Pi

R 4
(oo = pi)es “LOS “4)

Zwater =

where p,, and p; are the density of water and ice, respectively. e = —0.78 is the vertical component of the ALOS LOS direction
unit vector e = [e1, ea,e3] as defined in Equation (3). This equation shows that InNSAR-observed seasonal thaw subsidence is
proportional to the active layer water storage 2 qter- FOr the ALOS Toolik case, 5 cm InNSAR LOS deformation measurements
(dros) can be related to 70 cm of saturated active layer soil water column (zgter), 1 cm errors in InNSAR LOS deformation
measurements can lead to 14 cm error in 2z,,4¢¢, €stimates. We note that Equation (4) employs the assumption that the horizontal
motion of the land surface is negligible. Our study site is a transitional region located between the Coastal Plain and the steep
mountains of the Brooks Range, which consists of gently rolling hills and broad exposed ridges that extend along the northern
flank of the Brooks Range. Given that the long-term subsidence trend is negligible outside the fire scar and seasonal deformation
signatures follow the expected seasonal freeze-thaw patterns (Figure S3), InSAR observations at our study site are primarily
related to the volume change associated with water-to-ice phase change rather than slope creep processes. For a 5% slope
angle, 1 cm of freeze-thaw deformation perpendicular to the land surface leads to 0.87 mm horizontal deformation and 9.96
mm vertical deformation. For a 10% slope angle, 1 cm of thaw deformation perpendicular to the land surface leads to 1.74 mm
horizontal deformation and 9.85 mm vertical deformation. Because the slope angle at most radar pixels is less than 10%, we

conclude that the assumption of negligible horizontal motion is reasonable.
2.3 Error Sources in InSAR-based z,,,te- Estimates

To quantify errors in InSAR-based z,,4t¢ €stimates, here we evaluate major error sources in InSAR LOS deformation solutions

(dros), which can be written as (Zebker and Villasenor, 1992; Zebker et al., 1994, 1997):
A
dLOS - E‘p + Addern + Addecor + Adunwrp + Ado’r‘b + Adaiﬁ?ﬂ + Adiono + Adn (5)

where ) is the radar wavelength (24 cm for L-band ALOS data), and ¢ is the average phase of all interferograms that con-
tain the common seasonal deformation signal of interest. The remaining noise terms on the right-hand side are errors due to
topography-related artifacts (Adgerm, ), phase decorrelation (Adgecor) and phase unwrapping errors (Ady,qrp), Orbital errors
(Adyrp), atmospheric (Adgytm,) and ionospheric (Ad;on,) artifacts, and other smaller error terms associated with thermal and
soil moisture effects (Ad,,).

In the Toolik ALOS InSAR data analysis, we excluded ~ 4% of interferograms containing visible phase decorrelation and
phase unwrapping errors. Long-wavelength phase signatures, varying at spatial scales of tens to hundreds of kilometers and
potentially caused by orbital errors and tropospheric or ionospheric noises, were removed as a planar phase ramp from each
interferogram (Staniewicz et al., 2020; Wang and Chen, 2022; Zebker et al., 2023). The deramp process does not remove
localized freeze-thaw deformation patterns that vary from hilltop ridges to the lowland valleys and riparian zones on the spatial

scale of ~ 100s of meters. Interferograms formed by the SAR scenes acquired on 8 September 2008 (for frame 1380) and SAR
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scenes acquired on 22 July 2007, 24 July 2008, and 14 September 2010 (for both frame 1370 and 1380) were also excluded
because of severely distorted ionospheric artifacts (Gray et al., 2000; Wegmuller et al., 2006; Chen and Zebker, 2012; Fattahi
etal., 2017). Because of a cool and dry tundra climate and relatively small elevation variation (~ 200-300 meters), the stratified
tropospheric noise component (Doin et al., 2009) is minimal over the study site. Given that long-wavelength tropospheric and
ionospheric noise was removed during the planar ramp removal process, the residual atmospheric noise term (e.g., due to
localized temperature or water vapor variations) is mostly random at time scales longer than one day, but is correlated in
space and typically increases with distance from the InSAR reference point (Emardson et al., 2003; Staniewicz et al., 2020).
Assuming a 2 cm tropospheric error in each ALOS PALSAR interferogram (Zebker et al., 1997; Emardson et al., 2003),
the turbulent random noise level can be reduced to less than 1 cm after stacking four interferograms formed from four SAR
acquisitions. In the remainder of this section, we focus on the dominant error term associated with topography-related artifacts
for the ALOS Toolik case.

At a pixel of interest, an error in the Digital Elevation Model (DEM; 0) with respect to the reference pixel can lead to an
error (Adge.,) in the LOS deformation estimates as (Berardino et al., 2002; Werner et al., 2003; Fattahi and Amelung, 2013):

Adgom = 22125 ©)
rsind,

where By, is the perpendicular component of the InSAR spatial baseline, which can be calculated from known radar imaging
geometry. For ALOS interferograms, By, typically ranges from several hundred to several thousand meters. r is the distance
between the radar antenna and the ground pixel, and 6; is the radar look angle. Because the look angle of ALOS PALSAR does
not vary much over the ~ 60 km radar swath, both  ~ 850 km and 8; ~ 34 degrees can be approximated as constant values
for all ALOS interferograms collected from the same path and frame.

In this study, we removed the topographic phase during interferogram formation using the Arctic DEM (10-meter resolution
and resampled to a 30-meter grid) data (Porter et al., 2018), which are widely used in the Arctic community because of its pan-
arctic coverage and high quality (Tozer et al., 2019). Interferograms with comparable quality can be also generated using the
Kuparuk River watershed DEM (Chen et al., 2020). While the Kuparuk River watershed DEM has been thoroughly validated
and highly accurate (Nolan, 2003b), it does not have complete spatial coverage over the entire study area. It is common to
assume that Ad e, is linearly proportional to B,e;,. This assumption is valid when ¢ in Equation (6) is introduced by errors
in the DEM dataset itself (thus J is the same for all interferograms). Because thaw subsidence patterns over undisturbed
permafrost terrain are expected to be spatially coherent, phase discontinuity in interferograms was visually inspected. If the
magnitude of these artifacts is linearly proportional to InSAR perpendicular baseline B, they are likely associated with the
errors in the Arctic-DEM dataset, given that thaw subsidence signals do not depend on B,,,.,. Furthermore, we discovered that
& can also be introduced by misregistration of the DEM and a SAR image. For example, as shown in Figure 3(a), a radar image
(blue) and a topography map (black) are misregistered by 1 pixel to the east, which leads to a positive § on the east-facing
slope and a negative § on the west-facing slope. Similarly, pixel misregistration to the north or south can lead to § on the north-
and south-facing slopes across the hill ridge. Because the same amount of pixel misregistration leads to larger § in areas with

larger slopes (Figure 3(b)), these artifacts are most prominent in interferograms formed using misregistered SAR scenes over
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Figure 3. An illustration of SAR and DEM misregistration in hilly terrains. The DEM profile is shown in black. When the SAR image (blue)

is misregistered by 1 pixel to the east, there is a positive DEM error on the east-facing slope and a negative DEM error on the west-facing
slope. Similarly, pixel misregistration to the north or south can lead to DEM errors on the north- and south-facing slopes across the hill ridge.

The same amount of pixel misregistration leads to larger errors in areas with steep terrain (panel a) than in relatively flat terrain (panel b).

steep terrains. In this study, we employed the same image co-registration routine as the standard InSAR processing software
such as the InSAR Scientific Computing Environment (ISCE) (Rosen et al., 2012) and GMTSAR (Sandwell et al., 2011). The
2-D cross correlation method for image alignment can achieve sub-pixel accuracy in most cases. However, the alignment can
be worse than 1 pixel, because SAR images and DEM data were acquired from sensors with different spatial resolutions and
imaging geometries. To better understand these pixel-mismatching artifacts, we approximated the DEM error ¢ due to pixel
misregistration as the difference between the Arctic-DEM and the shifted Arctic-DEM in east/west and north/south directions.

For example, the DEM error §; ; due to 1 pixel misregistration to the east at pixel (¢, 7) can be written as:
8ij = hij —hiy1; @

where h;; is the Arctic-DEM at pixel (¢, j). Similarly, we can approximate J; ; due to 1 pixel misregistration to the south at
pixel (i,7) as h; j — h; j4+1. We then calculated the expected LOS errors Adge,, due to ¢ based on Equation (6) for a given
imaging geometry and perpendicular baseline. Results from these numerical experiments were then compared to actual InSAR

LOS observations across hill ridges.
2.4 Field Observation for validating InSAR-estimated z.,qter

Our InSAR thaw subsidence estimates were validated using a relatively large number of field observations collected within
~ 100 km of Toolik Field Station (Figure 1) in 2018 (August 15 - August 24) and 2019 (July 26 - August 3). Particularly,
the amount of water stored in the saturated active layer can be quantified by determining saturated active layer thickness and
porosity. Tundra soil in the Toolik area consists of three layers from top to bottom: the acrotelm (peat that contains living
plants), the catotelm (peat that contains dead plant materials), and the mineral soil (Figure 4). The thickness of these three soil
layers and the depth to the water table were measured at each sampling site. The porosity (¢) of each soil core sample was also

measured to characterize the water-holding capacity of active layer soils. z,4te can then be calculated as:

Zwater = Z Z5i P 3

i=1,2,3

10
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Figure 4. (Left) A cartoon showing the three soil layers. The lighter blue dashed line denotes the groundwater level, and the darker blue line
shows the location of the permafrost table note that the depth of permafrost may be in any soil layer. (Right) A photo of a soil pit with three
soil layers from top to bottom: the acrotelm (peat that contains living plants), the catotelm (peat that contains dead plant materials), and the

mineral soil.

where z,; and ¢; are the saturated thickness and the porosity of the i*" soil layer. Here, we assume the soil column below
the water table is fully saturated. We also note that the mineral soil layer has much lower porosity (thus much less water-
holding capability) than organic soil layers. For example, a fully saturated, 10-cm-thick acrotelm layer with a porosity of 0.90
contributes to 9 cm of 24, While a fully saturated, 10-cm-thick mineral soil layer with a porosity of 0.20 only contains 2
cm of Zyater-

To jointly analyze remote sensing and in situ observations, an exact point-to-point comparison is challenging, if not impossi-
ble, because they were collected at very different spatial and temporal scales. A pixel in an InSAR-derived deformation map is
~ 100-by-100 meter, while field measurements were collected at sites with size ~ 900 cm? (30-by-30 cm plots). To overcome
this challenge, we designed a statistical comparison approach. This was done by fitting probability density functions (PDFs)
to the empirical distributions (histograms) of the in-situ soil property measurements, including the thickness and porosity of
the acrotelm, the catotelm, and the mineral soil as well as the depth to water table (O’Connor et al., 2020; Chen et al., 2020),
and using these distributions to calculate the range of possible thaw subsidence. There are also sources of error in the property
measurements, which are (1) errors from reading the measured value, which is typically small (e.g., <0.5 cm for thaw depth
measurements from probing), and (2) in situ measurements varying due to the sub-meter-scale heterogeneity of arctic soils.
To reduce estimation bias, we targeted specific vegetation cover types and soil layers needing larger sample sizes over time
to improve statistical robustness. The PDF fitting results did not change much after a second year of sampling, indicating that
the sample size in this study is sufficiently large to capture the statistical characteristics of soil properties. We drew random
samples from the PDFs of soil properties, and calculated the statistical distribution of 2,4, following Equation (8).

Finally, we validated InSAR-observed zy,4¢¢ using field-based predictions of z,,4¢c, at different vegetation types. For the

purpose of studying active layer soil properties, we grouped various subclassifications of vegetation types over the study area
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(Walker and Walker, 1996; Stow et al., 2004; Walker et al., 2017) into four primary land cover types: "sedge", "tussock",
"woody shrub", and "sparse vegetation" (O’Connor et al., 2020). The sedge land cover typically occurs in wet to saturated
sites (e.g., riparian zones) and may occasionally mix with shrub mounds on slightly elevated ground. The tussock land cover is
distributed broadly from ridges to riparian zones. The term "woody shrub land cover" refers to areas dominated by woody-stem
plants, which include both woody shrubs along the water tracks and heath vegetation on ridges. Because the soil in water tracks
typically consists of well-drained acrotelm with underlying gravel and boulders, we did not collect soil samples in the water
tracks. As a result, this study focuses on soil measurements collected over three land cover types: sedge, tussock, and woody
shrub on ridge-tops (referred to as "heath"). Photographs of the land cover types are shown in Figure B4. We also identified
the land cover type of each InSAR pixel using the North Slope Science Initiative (NSSI) Land Cover Map (Payne et al., 2016),

which does not distinguish between woody shrubs within water tracks and heath on hill ridges.

3 Results and Discussion
3.1 InSAR-estimated soil water storage in the saturated active layer

InSAR-observed average seasonal thaw subsidence estimates (2006-2010) between early June and late July from two indepen-
dently processed ALOS PALSAR frames are consistent with no visual discontinuity or artifacts (Figure 5(a)). This confirms
that our InSAR analysis is robust for reconstructing thaw subsidence over permafrost terrain. Ninety-five percent of the ob-
served thaw subsidence ranged from O cm to 5.4 cm, which correlates with the topography as well as the watershed and river
network morphology (Figure 5(b)). The drier ridge-top areas usually show less than 2 cm thaw subsidence, while the wetter
valleys and riparian zones show up to 6 cm subsidence. Thaw subsidence of ~ 4 cm is observed near the transition zone as the
steeper hilly terrain (south) transitions to flatter plains (north). Based on Equation (1), 1 cm thaw subsidence (~ 0.78 cm LOS
deformation) is caused by an ~ 11 cm 2y,qter. Ninety-five percent of 2,44, estimates range from 0 to 62 cm in the Toolik
area, with up to 75 cm 2y,q¢er Observed in the wettest riparian zone after removing less than 3% of outliers (Figure 5(c)). Here,
pixels are marked as outliers if they are larger than the upper adjacent value, which is, by definition, the largest observation that
is less than or equal to the threshold located at the 1.5 Inter-Quartile Range (IQR) above the upper quartile (Q3). The spatial
variation of 2,4t 1S consistent with groundwater flows and accumulation from the higher ridges to the flatter riparian zones
and valleys (e.g., Figure 6). Large z,,4¢c values are often observed in wet local low regions.

Because the amount of soil water influences the type of vegetation that can grow, the spatial pattern of InSAR-observed
Zwater correlates with land cover types (Figure 5(d)). We found that land cover type indicates the characteristics of soil stratig-
raphy (Figure B5), and each soil layer possesses different characteristics (e.g., porosity and thickness) that influence the water-
holding capability of the active layer. For example, water-loving sedges tend to grow on wet soils with a thick porous catotelm
layer and a shallow water table, while heath vegetation is often found on dry hill ridges with a thin catotelm layer and a deep
water table. To further illustrate the spatial correlation between the amount of soil water and land cover types, Figure 7 (a)-(c)
shows a zoomed-in area near the Toolik Field Station from frame 1370 (with the location outlined by the purple dashed line

in Figure 5(c)), where all three major land cover types are present. We found that (1) sedges are often distributed over regions
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Figure 5. (a) Seasonal thaw subsidence (in the vertical direction) over the area of interest. A darker red color means larger thaw subsidence
between early June and late July during the 2006-2010 study period. Water bodies and the area burned by the 2007 Anaktuvuk River fire have
been masked out. (b) Digital Elevation Model of the same region. A darker color indicates a lower elevation. (c) InSAR-estimated zwater
map. A darker blue color indicates a larger amount of zqter. (d) Land vegetation cover map of the same region. The map was modified

from the North Slope Science Initiative (NSSI) Land Cover Map (Payne et al., 2016).
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Figure 6. Normalized surface elevation (yellow) and InSAR-estimated z.,qter (blue) along five flight lines shown in Figure 1. The original
elevation and zqter data were adjusted to a notionally common scale by subtracting the mean from the original data and dividing the data
by its range. The normalized 2.qter curve was then smoothed using a box car filter with a window size equal to 4% of the number of radar

pixels along the transect.

Table 1. Relationship between z.qter and land vegetation cover

Unit: cm Woody Shrub  Tussock  Sedge  Wet Tussock
Mean 24.7 31.8 39.0 36.6
Std. dev. 20.3 23.0 234 15.0
Q1 -25th % 8.5 14.0 222 26.9
Median - 50th % 20.0 28.8 359 354
Q3 -75th % 36.6 44.7 51.9 44.9

with large z,qte Values, where open water bodies are visible in the optical image; (2) woody shrubs are typically distributed
over well-drained high ground. On average, soils covered by sedges store 23% more 2,,qe, than soils covered by tussocks and
58% more Zyqier than soils covered by woody shrubs (Table 1). Figure 7 (d)-(f) shows another zoomed-in area from frame
1380 (with the location outlined in a red dashed line in Figure 5(c)), where the terrain transitions from rolling hills to coastal
plains. This region is wetter than the Toolik Lake area (Figure 7 (g) and Table 1). Here, tussock is the dominant land-cover
type, and water-loving shrubs and sedges are distributed along the water tracks (visible in the optical image).

To validate InSAR z,4:c, estimates, the expected distribution of 2., Was also calculated from field measurements col-
lected near Toolik (Figure 1) following Equation (8). We found that z,,,¢., estimated from field and satellite observations is

statistically consistent (Figure 8(a)-(d)). The median 2,4t values derived from field data, ALOS PALSAR path 255 frame
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Figure 7. (a-c) InSAR-estimated zqter map, land cover map, and optical image (from Google Earth Landsat imagery acquired in April
2013) for the Toolik area (outlined in purple dashed line in Figure 5(c)). (d-f) InSAR-estimated z.,qter map, land cover map, and Landsat
optical image (provided by Google Earth) for the northern study area (outlined in red dashed line in Figure 5(c)). Areas outlined in red show
larger zyater values. The color bar and legend are the same as Figure 5(c) and (d). (g) Boxplots of InSAR-estimated z.qter for woody shrub,
tussock, and sedge in the Toolik area (outlined in purple dashed line in Figure 5(c)), and wet tussock in the northern study area (outlined in
red dashed line in Figure 5(c)). The wet tussock in the north generally stores more soil water than those growing near the Toolik area. The

boxplots display lower adjacent, lower quartile, median, upper quartile, and upper adjacent values.

1370 data, and ALOS PALSAR path 255 frame 1380 data are 30.8 cm, 28.4 cm, and 28.1 cm, respectively. The standard devi-
ation values of 2,,4¢¢, derived from field data, ALOS PALSAR path 255 frame 1370 data, and ALOS PALSAR path 255 frame
1380 data are 21.2 cm, 18.9 cm, and 17.3 cm, respectively. Both InSAR and field observations are also consistent over three
major land cover types (Figure 8 (e)). Based on in situ data, 2,4t has a median of 19.5 cm, 24.1 cm, and 34.9 cm for heath,
tussock, and sedge land covers. This is consistent with InSAR observations over three land cover types: 20.0 cm for woody
shrubs, 28.8 cm for tussocks, and 35.9 cm for sedges (Table 1). InSAR observations for each land-cover type generally show a
larger variation of z,,,+e compared to field observations. This is likely because InSAR pixels were classified using the NSSI
land cover map, which is less accurate than field-based land-cover classification at each sampling site. We also note that the
land cover map used for classifying InNSAR pixels does not distinguish woody shrubs located near the water tracks and those on
dry ridge tops, while during field data collection, we only sampled dry heath land covers on the ridges. This is another reason
that InNSAR woody shrub observations show a larger variation compared to the other two land cover types.

Due to the remote nature of the study area, the number of available field observations is limited. We acknowledge that most
field sites are located within the coverage of ALOS PALSAR path 255 frame 1370. Nevertheless, both frames exhibit similar
land cover type combinations, suggesting similar climatic and geological settings (Figure 5 (d)). While some of our field sites
are located outside the radar footprint (Figure 1), field observations at these sites follow similar statistical distributions as those
sites located within the radar footprint. Furthermore, InSAR-observed average seasonal thaw subsidence estimates (2006-2010)

from two independently processed ALOS PALSAR frames are consistent with no visual discontinuity or artifacts at the frame
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Figure 8. Histograms of z.,,qter values calculated from (a) in-situ data, and (b)-(c) ALOS PALSAR path 255 frame 1370-1380 thaw subsi-
dence estimates. InSAR pixels with a long-term trend greater than 6 mm/year were excluded in the statistics, because this study is focused
on undisturbed permafrost terrain with negligible subsidence trend. (d) Boxplots comparing z.water calculated from in situ data and InSAR
thaw subsidence estimates. (e) Boxplots comparing zwater calculated from in situ data and InSAR thaw subsidence for woody shrub (heath),
tussock and sedge land covers. Here z.qter derived from InSAR subsidence observations is for the Toolik area in Figure 7 (a). The boxplots

display lower adjacent, lower quartile, median, upper quartile, and upper adjacent values.

boundary (Figure 5 (a)). This indicates the InNSAR processing strategy produced consistent thaw subsidence estimates. We
observed surface subsidence due to the thawing of the active layer from early June to late July and a net surface uplift between
late July and late October resulting from the refreezing of the soil (Figure B3(a)-(c)). Minimal long-term subsidence trends
were observed outside the fire scar (Figure B3(d)). These observations confirm that the observed InSAR seasonal deformation
signals at our study site are primarily related to the volume change associated with water-to-ice phase change. We translated
InSAR measurements into soil water storage in the saturated active layer following Equation (4), which does not require
additional information on soil properties. We used in-situ soil measurements as an independent validation for InSAR results
in regions wherever it is possible, and our goal is to develop a remote sensing technique that can fill the observational gaps in
remote Arctic areas with no in-situ observations.

We also acknowledge that field observations were collected in 2018 and 2019, while ALOS PALSAR InSAR data were
used to estimate the average seasonal thaw subsidence between 2006 and 2010. In-situ thaw depth measurements show that
the August 11 thaw depth (~ 40 cm) at the Toolik long-term monitoring site has increased very slightly since 1990. At the
Imnavait site, the August 11 thaw depth increase between 2006 and 2010 is ~ 5 cm. At both sites, we did not observe any
long-term subsidence trend above the InSAR noise level (Chen et al., 2020). This is because a 5 cm thaw of the low porosity
(thus less water-holding capacity) mineral soils was unlikely to cause any soil water content increase that is detectable by
InSAR. Therefore, our study focuses on the comparison between InSAR average seasonal thaw subsidence estimates (2006-
2010) and recent field observations over undisturbed permafrost terrain (relatively stable with long-term changes undetectable

by InSAR). Due to the limited ALOS PALSAR temporal sampling rate, the investigation of inter-annual variability of InSAR
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thaw subsidence patterns is outside the scope of this work. Future work can focus on studying how the signal magnitude of
seasonal thaw subsidence changes over multiple years using Sentinel-1 data collected with 6-12 day revisit cycles (Zwieback
and Meyer, 2021; Zwieback et al., 2024a).

3.2 The signature of Arctic-DEM errors

Because DEM error is the dominant error source in the ALOS Toolik InSAR data, here we discuss errors in thaw subsidence
estimates associated with errors in the DEM data. When there is an error in the DEM data, a similar signature may be observed
in the InSAR surface deformation observations. For example, Figure 9(a) shows seasonal thaw subsidence between early June
and late July outside the 2007 Anaktuvuk River fire zone inferred from an L-band ALOS interferogram that spans 3 June 2006
and 30 July 2010. We zoomed into the region outlined in blue (Figure 9(c)), where a discontinuity in thaw subsidence estimates
across the blue dashed line is visible and affects a relatively flat area. This artifact is likely associated with a discontinuity
observed at the same location in the Arctic v3.0 Pan-Arctic DEM data (Figure 9(e)), which were used to remove topographic
phases in interferograms. As a comparison, Figure 9(b) shows the seasonal thaw subsidence map between early June and late
July over the same region inferred from an L-band ALOS interferogram that spans 8 June 2008 and 30 July 2010. While
both interferograms suggest similar seasonal thaw subsidence patterns, the error in the DEM data does not lead to any visible
discontinuity in the thaw subsidence derived from the second interferogram (Figure 9(d)). This is because the perpendicular
baseline is 5070 m for the interferogram shown in Figure 9(a) and 1558 m for the interferogram shown in Figure 9(b). As
shown in Fattahi and Amelung (2013), DEM errors in the LOS measurement are linearly proportional to the perpendicular
baseline for a fixed error in the Arctic-DEM (Equation (6)).

To better illustrate that our observations are consistent with existing INSAR DEM error studies, we analyzed all 51 interfer-
ograms from path 255 frame 1380 and identified a linear relationship between the InSAR perpendicular baseline and the thaw
subsidence errors at P1-P2 across the discontinuity line (marked in Figure 9 (c) and (d)). The observed linear slope (Figure
9 (f)) suggests a 1.16-meter error in the Arctic-DEM, which is consistent with the ~ 1-2 m DEM discontinuity observed in
the actual Arctic-DEM data (Figure 9 (e)). Existing InSAR studies tend to assume non-negligible DEM artifacts are typically
observed in areas with steep terrain (Li et al., 2014; Staniewicz et al., 2020; Zhou et al., 2020). However, our results show that
more than 1.5 cm LOS errors associated with inaccurate DEM can be observed over relatively flat areas in ALOS PALSAR
interferograms with B, values > 4000 m. This error is on the same order of magnitude as the observed centimeter-level
thaw subsidence signals; thus, it is not negligible. These artifacts caused by errors in the Arctic-DEM can be mitigated by (1)
excluding interferograms with larger By, or (2) estimating and removing a phase component that is proportional to Bpe,p
from all interferograms (Berardino et al., 2002). In our case, the discontinuity line is no longer observable after applying the

stacking technique (as shown in Figure 5(c)), thus having minimal impact on the final 2,4t €Stimates.
3.3 Topographic artifacts related to DEM-SAR pixel misregistration

An important finding of this study is that pixel misregistration between the DEM and a SAR image can lead to DEM-related

errors in InSAR LOS measurements. As an example, Figure 10(a) shows an interferogram formed by SAR images acquired on
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Figure 9. Seasonal thaw subsidence between early June and late July (cm; in orange-red color) outside the 2007 Anaktuvuk River fire zone
as inferred from an L-band ALOS interferogram that spans (a) 3 June 2006 and 30 July 2010, and (b) 8 June 2008 and 30 July 2010.
The perpendicular baseline is 5070 m for interferogram (a) and 1558 m for interferogram (b). (c) A zoomed-in region of interferogram (a)
as outlined in blue. Here Arctic-DEM errors lead to a visible discontinuity in thaw subsidence estimates across the blue dashed line. (d) A
zoomed-in region of interferogram (b) as outlined in blue. With a smaller perpendicular baseline, no substantial discontinuity exists across the
blue dashed line. (e) A shaded relief map derived from the Arctic v3.0 Pan-Arctic Digital Elevation Model. The averaged DEM gradient of 50
transects along the red solid line shows the location of the Arctic-DEM error marked by the blue triangle symbol. This sharp discontinuity is
co-located with the dashed line marked in panel (c). (f) Thaw subsidence difference (in cm) between P1 and P2 of all available interferogram
pairs vs. the perpendicular baseline (in m). A linear relationship between the perpendicular baseline and the deformation error (orange line)

can be observed.

8 June 2008 and 30 July 2010, and Figure 10(b) shows an interferogram formed by SAR images acquired on 3 June 2006 and
27 July 2009. Because the long-term subsidence trend is negligible, similar early June to late July thaw subsidence patterns are
present in these two interferograms. To quantify InSAR LOS errors in areas with larger percent slopes (> 7.5%), we zoomed
in to a hilly area near Imnavait Creek with a slope between 8.4% and 11.0%, and calculated the phase difference (a phase
difference of 27 is equivalent to 12 cm LOS distance difference for L-band ALOS PALSAR data) between points Pr on
the east-facing slope and Py on the west-facing slopes across a hill ridge. Because water flows away from ridges with very
small catchment areas, we expect to observe minimal freeze-thaw deformation on either side of the dry hill ridge. However,
the phase difference between Pg and Py is 1.23 rad (an equivalent LOS deformation error of 2.3 cm) for the interferogram
that spans 8 June 2008 and 30 July 2010 (Figure 10(d)), and 0.92 rad (an equivalent LOS deformation error of 1.7 cm) for
the interferogram that spans 3 June 2006 and 27 July 2009 (Figure 10(e)). Although the perpendicular baselines of these two

interferograms are similar (~ 1500 meters), the observed errors are different. These artifacts were observed in many Toolik
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Figure 10. (Top) (a) An L-band ALOS interferogram (path 255 frame 1370) that spans 8 June 2008 and 30 July 2010. (b) An L-band ALOS
interferogram (path 255 frame 1370) that spans 3 June 2006 and 27 July 2009. (c) A map of the percent slope in the study area. The black box
outlines the zoomed-in area. Point Py ("f" stands for "flat") marks the location of a flat region analyzed in Figure 14. (Bottom) The InSAR
phase measurement over the zoomed-in region outlined with the black box. Pr and Py are on the east-facing and west-facing slopes. The
phase difference between Pr and Py is 1.23 rad in (d) and 0.92 rad in (e). A phase difference of 27 is equivalent to a 12 cm LOS error for

L-band ALOS PALSAR data. (f) A map of the percent slope in the zoomed-in area.
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Figure 11. InSAR phase measurements over the zoomed-in region outlined with the black box in Figure 10 for interferograms with large
pixel misregistration errors. Pr and Py are on the east-facing and west-facing slopes. Here all interferograms were referenced to a local

reference point near Pg.

ALOS interferograms across ridges (Figure 11). These phase artifacts are most noticeable in interferograms formed using one
of the three SAR images (acquired on 8 June 2008, 24 October 2008, and 27 October 2009), which likely suffer more severe
pixel misregistration errors than other SAR scenes. By contrast, an error in the DEM dataset itself can lead to LOS errors that
are linearly proportional to the perpendicular baseline (B).,,,) in all interferograms (Section 3.2), while long-term deformation
trend signals are proportional to temporal baselines (e.g., related to various slope processes as discussed in (Dini et al., 2019)).

To confirm that the observed InSAR phase errors between east-facing and west-facing slopes are indeed associated with

DEM-SAR misregistration, the Kuparuk River watershed DEM data (Nolan, 2003a) were shifted to the east by 1 pixel (~
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Figure 12. Estimated DEM errors (in m) introduced by 1 pixel shift (~ 12 m) to (a) east, (b) west, (c) north, and (d) south, and shifting the
DEM for 2 pixels (~ 24 m) to the (e) east, (f) west, (g) north, and (h) south. At a given pixel location, larger pixel misregistration leads to
larger DEM errors. For fixed pixel misregistration, pixels with larger slopes show larger DEM errors. The study area is the same as in Figure

10, zoomed-in panels. The green color means the error is negligible. Purple and pink colors indicate positive and negative errors, respectively.

12 m). The difference between the original and shifted DEM was used as an approximation of the DEM error () caused by
1-pixel misregistration to the east as described in Equation (7). In this case, a positive DEM error on the east-facing slope with
respect to the west-facing slope was observed (Figure 12 (a)). Similarly, a negative DEM error was observed on the east-facing
slope with respect to the west-facing slope when the original DEM was shifted by 1 pixel to the west (Figure 12 (b)). When
the DEM-SAR misregistration is in the north-south direction, DEM errors on the north-facing slope with respect to the south-
facing slope were observed (Figure 12 (c) and (d)). Furthermore, at a given location, DEM errors increase as the amount of
pixel misregistration increases to 2 pixels (Figure 12 (e)-(h)). Finally, the simulated DEM errors due to pixel misregistration
were compared to real LOS InSAR observations over the same region. Because ridges in the zoomed-in Imnavait Creek area
are mainly along the north-south direction, the observed LOS error patterns in real ALOS Toolik interferograms (Figure 11)
are most visible on the east-facing and west-facing slopes, which closely resemble DEM error patterns as shown in Figure 12
(a).

The land-surface slope is another factor that could affect the magnitude of DEM errors § at different pixels. We classified
radar pixels into four groups based on their percent slope. For each group, phase errors associated with pixel-mismatching (1
radian phase error is equivalent to 1.9 cm LOS error) were calculated for the case that the location of the ridge is off by 1 pixel
(~ 12 m) to the east and a perpendicular baseline of 5104 m. This scenario can be considered as the error upper bound because
(1) the perpendicular baselines of L-band ALOS Toolik data are typically less than 5104 meters, and (2) the amount of pixel
misregistration in the standard InSAR processing software packages is on the order of sub-pixels. We found that topographic
artifacts associated with DEM-SAR pixel misregistration are most noticeable in areas with a slope larger than 10%, and the
majority of the surface area with a low slope (0-5%) show negligible phase errors due to DEM-SAR pixel misregistration
(Figure 13). To further illustrate this, Figure 14 shows the amount of the LOS errors (in cm) in all interferograms at a steep
area and a flat area. Up to ~ 6 cm LOS errors associated with pixel misregistration were observed in the steep area, while < 1

cm LOS errors were observed in the flat area.

20



Percent Slope: 0-5% * Percent Slope: 5-7.5 % *
Mean Phase Error:'0.09 rad Mean Phase Error: 0.15 rad

[rad]

1
IO 8
Percent Slope: 7.5 - 10 %' Percent Slope: >10 % *
Mean Phase Error: 0.20 rad Mean Phase Error: 0.35 rad
S ) 0.6
04

Figure 13. Estimated InSAR phase errors (in radians) at pixels with different slopes (0-5%, 5-7.5%, 7.5-10%, and >10%). Here DEM errors
are introduced by 1 pixel misregistration (~ 12 m) to the east as in Figure 12(a). InSAR phase errors were calculated based on an InSAR

perpendicular baseline of 5104 m. An error of 1 radian equals an LOS error of 1.9 cm for L-band ALOS data.
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Figure 14. Line-of-sight (LOS) errors (in cm) of all interferogram pairs vs. perpendicular baseline (in m) at Pr-Py with percent slopes
8.4% to 11.0% (blue dots) and around Py with percent slopes 2.0% to 1.8% (orange dots). The location of these pixels is shown in Figure
10.
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In summary, we found that (1) the DEM error § increases as the amount of pixel misregistration increases for a given pixel
location (Figure 12); (2) the DEM error § increases with local slopes at different pixel locations for the same amount of pixel
misregistration (Figure 13 and Figure 14); and (3) the relationship between the LOS error due to § and the perpendicular
baseline is non-linear. We emphasize that both the amount of pixel misregistration and the slope influence the DEM error
6. For example, ¢ equals O if there is no pixel misregistration. At a given pixel location, § increases as the amount of pixel
misregistration increases. For a fixed amount of pixel misregistration, § increases as the slope increases at different pixel
locations. This means that the perpendicular baseline is not the only factor that controls the observed DEM artifacts in InSAR
LOS measurements Adge,. It is difficult to fully correct the pixel misregistration because SAR images and DEM data were
acquired from sensors with different spatial resolutions and imaging geometries. For example, the generation of the ArcticDEM
using multiple imagery data acquired at different times can introduce distortions, which makes it challenging to precisely
quantify the propagation of this effect in the misregistration. Additionally, pixel misalignment could also be influenced by
atmospheric distortions in optical imagery. Given that these pixel misregistration artifacts are mostly observed in a small subset
of pixels with relatively large slope angles, we did not develop a misalignment correction algorithm in this study. Nonetheless,
our approach provides a method to estimate spatial characteristics and upper bound of InSAR phase errors due to DEM-SAR

pixel misregistration in individual interferograms.

4 Conclusions

InSAR-estimated seasonal surface thaw subsidence can be related to the amount of water stored in the saturated soil active layer
above permafrost, which can be used to constrain hydrologic models and water mass budgets. In the Toolik area, 95% of zqter
estimates range from O to 62 cm, and the spatial distribution of z,4e, correlates with elevation and vegetation cover types.
The amount of error in InSAR-estimated 2,4t 1S linearly proportional to the error in InNSAR LOS deformation measurements.
Although most InSAR measurement noises have been mitigated during the processing procedure, errors in the Arctic-DEM
data and DEM-SAR misregistration can lead to visible INSAR LOS measurement errors. In the ALOS Toolik case, a 1-2 meter
error in the Arctic-DEM data can lead to a LOS error larger than 1.5 cm when the perpendicular baseline is larger than 4000 m.
Errors associated with the DEM-SAR misregistration are determined by the amount of pixel misregistration, the local slope,
and InSAR perpendicular baselines. In the Toolik area, these pixel-mismatching artifacts are mainly observed in regions with
a steeper slope (> 10%) in interferograms formed using a subset of SAR scenes with noticeable misregistration issues. Most
pixels in our study area have percent slopes smaller than 5%, and the LOS measurement error is generally smaller than 1 cm
(equivalent to zqter errors smaller than 14 cm.). As the landscape near Toolik Lake on the North Slope of Alaska transitions
from hilly terrain to the south to flat plains to the north, DEM-SAR misregistration no longer produces visible phase artifacts
in InNSAR LOS observations. Our study shows that InSAR is an effective and powerful technique for accurately monitoring the
status of and changes in hydrological characteristics in active-layer soils above continuous permafrost. InSAR estimates of soil
water depth are statistically consistent with in situ observations, and the advantages of InSAR estimates include broader spatial

coverage, higher spatial resolution, and the ability to map spatial patterns.
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Data availability. ALOS PALSAR data were downloaded from the Alaska Satellite Facility at https://asf.alaska.edu/asfsardaac/. Arctic-
DEM data were provided by the Polar Geospatial Center at https://www.pgc.umn.edu/data/arcticdem/. Kuparuk River watershed DEM data
were obtained at https://toolik.alaska.edu/gis/data/index.php. Toolik in situ soil measurements collected in the 2018 and 2019 summer field

campaigns can be accessed from O’Connor et al. (2020).

Appendix A: Comparison between InSAR and Other Satellite Remote Sensing Techniques for Studying Water in the
Active Layer

Observations from the Gravity Recovery and Climate Experiment (GRACE) mission have been used to estimate changes in
water mass within permafrost regions with a grid size of 1 arc degree, approximately 111 km. However, the spatial resolution
is too coarse for applications in understanding water flow in the active layer and for constraining most and especially detailed
hydrologic models. Meanwhile, instead of estimating the amount of water stored in the active layer, the mass change observed
by GRACE is mainly caused by mass loading by snow accumulation in winter and mass unloading by runoff in spring—summer
(Muskett and Romanovsky, 2009).

In recent years, a spaceborne GNSS-R mission, the Cyclone Global Navigation Satellite System (CYGNSS) mission, has
also been applied to study the freeze-thaw process in permafrost regions (Wu et al., 2020; Carreno-Luengo and Ruf, 2022).
CYGNSS focuses on detecting the freeze-thaw state of the surface soil on top of the permafrost by monitoring changes in the
dielectric constant. A regional map of the freeze-thaw state is derived by comparing the measured reflectivity with reflectivity
measurements corresponding to frozen and thawed reference states. According to Carreno-Luengo and Ruf (2021), the detected
freeze-thaw state could be sensitive to properties of the top soil layer (0-7 cm), such as soil temperature and soil moisture
content (SMC). However, according to our field data collected at ~ 200 sites (marked in Figure 1 in the main paper), the
active layer thickness in our study area has a mean of 56 cm with a quartile range of 44-67 cm, much thicker than the top soil
layer (0-7 cm). Therefore, it is hard to infer soil water storage in the entire active layer using the information of SMC in the
top soil layer. Moreover, in Carreno-Luengo and Ruf (2022), the authors showed that the SMC of the top soil layer actually
does not impact the freeze-thaw state results from CYGNSS data. Therefore, there does not exist a strong relationship between
CYGNSS-detected freeze-thaw states and SMC in the top soil layer. To conclude, CYGNSS observations could be used to

infer soil properties in the top soil layer, but monitoring soil water equivalent depth in the entire active layer would be difficult.

Appendix B: Supplementary Tables and Figures
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Table B1. Synthetic Aperture Radar scenes used in the study

Date Orbit  Path  Frame Date Orbit  Path  Frame
2006/06/03 01900 255 1370 2006/06/03 01900 255 1380
2006/10/19 03913 255 1370 2006/10/19 03913 255 1380
2007/09/06 08610 255 1370 2007/09/06 08610 255 1380
2007/10/22 09281 255 1370 2007/10/22 09281 255 1380
2008/06/08 12636 255 1370 2008/06/08 12636 255 1380
2008/09/08 13978 255 1370 2008/10/24 14649 255 1380
2008/10/24 14649 255 1370 2009/07/27 18675 255 1380
2009/07/27 18675 255 1370 2009/09/11 19346 255 1380
2009/09/11 19346 255 1370 2009/10/27 20017 255 1380
2009/10/27 20017 255 1370 2010/06/14 23372 255 1380
2010/06/14 23372 255 1370 2010/07/30 24043 255 1380
2010/07/30 24043 255 1370
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Figure B1. An L-band ALOS PALSAR interferogram (Path 255 Frame 1370-1380) that spans June 3, 2006 and July 27, 2009 over the study
area. A phase cycle (27) equals 12 cm radar Line-Of-Sight (LOS) deformation. Subsidence leads to positive LOS deformation (pink). The

same reference point at 68.83° N, 150.23° W were used for both frames, as marked by the red star.
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(a) Coherence map

(b) Pixel mask

0.5

Figure B2. (a) A map of the average phase coherence of all interferograms used for estimating seasonal thaw subsidence. Low phase
coherence is observed over water bodies and regions burned by the 2007 Anaktuvuk River fire. (b) The pixel mask used in this study. The
black color indicates pixels that have been masked out or are outside the study area. This mask excludes any pixels with amplitude dispersion

< 0.25 and phase coherence < 0.2 (e.g. water bodies and the area affected by the 2007 Anatuvuk River fire).
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Figure B3. Average seasonal surface deformation (in cm) between (a) early June and late July, (b) late July and early September, and (c)
early September and late October derived from ALOS PALSAR Path 255 Frame 1380 InSAR observations. (d) Average long-term surface
deformation trend (cm/yr) between 2006 and 2010 derived from ALOS PALSAR Path 255 Frame 1380 InSAR observations. Here red means
subsidence, yellow means no significant deformation, and blue means uplift. The area affected by the 2007 Anaktuvuk River fire, along
with water bodies, has been masked out based on InSAR phase coherence. Toolik Field Station in-situ data suggest that the air temperature
fluctuated around or below freezing in early September during the ALOS PALSAR data acquisition times (at ~ 12 am local time). In this

scenario, ice can be formed at the top of the soil, which leads to frost heave in saturated soils (Chen et al., 2020)
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= (b) Tussock Tundra

Figure B4. Field photos of (a) heath land cover, (b) tussock tundra land cover, (c) wet sedge land cover (Adapted from Chen et al. (2020)).
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Figure B5. Soil stratigraphy under different land covers near Toolik Lake area as derived from field measurements collected at sites marked

in Figure 1 in the main paper (Adapted from Chen et al. (2020)).
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