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Abstract
Motivation: As fewer than 1% of proteins have protein function information determined experimentally, computationally predicting the function of 
proteins is critical for obtaining functional information for most proteins and has been a major challenge in protein bioinformatics. Despite the 
significant progress made in protein function prediction by the community in the last decade, the general accuracy of protein function prediction is still 
not high, particularly for rare function terms associated with few proteins in the protein function annotation database such as the UniProt.
Results: We introduce TransFew, a new transformer model, to learn the representations of both protein sequences and function labels [Gene 
Ontology (GO) terms] to predict the function of proteins. TransFew leverages a large pre-trained protein language model (ESM2-t48) to learn 
function-relevant representations of proteins from raw protein sequences and uses a biological natural language model (BioBert) and a graph 
convolutional neural network-based autoencoder to generate semantic representations of GO terms from their textual definition and hierarchical 
relationships, which are combined together to predict protein function via the cross-attention. Integrating the protein sequence and label 
representations not only enhances overall function prediction accuracy, but delivers a robust performance of predicting rare function terms with 
limited annotations by facilitating annotation transfer between GO terms.
Availability and implementation: https://github.com/BioinfoMachineLearning/TransFew.

1 Introduction
Proteins are essential molecules that play critical functional 
roles in biological systems. Their functions encompass cata
lyzing biochemical reactions, serving as structural elements, 
transducing cellular signals, defending against viruses, regu
lating gene activities, among others. Elucidating protein func
tions is crucial for gaining valuable insights into the 
molecular intricacies of biological systems. However, experi
mentally determining protein function is a time consuming 
and laborious process. Currently, fewer than 1% known pro
teins have function information determined experimentally 
according to the statistics in UniProt Consortium (2019). 
Therefore, it is important to develop computational methods 
to predict protein function from sequence and other relevant 
information.

In the realm of protein function prediction, there are two 
common challenges: (i) effectively integrating diverse infor
mation sources, such as protein sequence, protein-protein in
teraction, structural features, domain features, and biological 
texts, to accurately predict protein functions (Boadu et al. 
2023), and (ii) accurately assigning rare or novel Gene 
Ontology(GO) terms (labels) (Aleksander et al. 2023) with 
few/no observations in labeled protein function datasets to 
new proteins that may have the function. It is harder to 

predict rare (low-frequency) GO terms than common GO 
terms because the former is less represented than the latter in 
the function datasets. But it is important to predict rare GO 
terms because they are usually specific and highly informative 
function classes that are more useful for generating biological 
hypotheses than common ones. Moreover, a large portion of 
all the GO terms are rather rare. Out of over 40 000 GO 
terms in the three main Gene Ontology categories: Cellular 
Component (CC), Molecular Function (MF), and Biological 
Process (BP), around 20 000 terms each are assigned to fewer 
than 100 proteins experimentally (Kulmanov and Hoehndorf 
2022). Therefore, there is an urgent need to develop compu
tational methods to predict rare function terms for proteins 
whose function is described by them.

Predicting rare GO terms is analogous to the few-shot 
learning problems (Sung et al. 2018) in various domains like 
computer vision (Dhakal et al. 2023, Safavigerdini et al. 
2023, Giri and Cheng 2024), and natural language process
ing(NLP). For example, in the classification task of named 
entity typing (Yuan and Downey 2018, Zhang et al. 2020) in 
NLP, assigning rare entity types to entity names pose a simi
lar challenge, due to the increasing size and granularity of en
tity types. Two kinds of methods, i.e. embedding-based 
methods and generative methods, have been proposed to 
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tackle this challenge (Pourpanah et al. 2022). Embedding- 
based methods focus on learning an embedding space 
associating low-level features of highly annotated classes 
with semantic information of both highly annotated classes 
and rarely annotated classes to transfer knowledge from 
highly annotated classes to rarely annotated ones with few 
annotations. Generative methods generate features for rare 
classes based on samples from adequately annotated classes, 
converting the problem into the conventional supervised 
learning. In the protein function prediction, the hierarchical 
structure and textual descriptions of GO terms (classes/ 
labels) provides us with the vital semantic information to 
transfer knowledge from the well-annotated classes to the 
ones with few or no annotations (Cao and Shen 2021).

In this study, we introduce an embedding-based deep learn
ing method called TransFew to predict protein functions 
(Boadu et al. 2023), with an emphasis on improving the pre
diction of protein function described by rare GO terms. 
TransFew generates a function-relevant representations of a 
single protein sequence in the sequence space using a pre
trained protein language model [i.e. ESM2 (Lin et al. 2022, 
Boadu et al. 2023)] and multi-layer perceptrons (MLP). The 
sequence representation of a protein is generated by multiple 
MLP modules with residual connections each designed to 
predict functions for proteins in terms of a specific group of 
GO terms with similar annotation frequency, which therefore 
cover all the GO terms from rare ones to common ones 
equally. TransFew also generates a semantic representation 
of all the GO terms (labels) in the label space from their tex
tual description (definition) and their hierarchical relation
ships in the Gene Ontology graphs [e.g. the inheritance and 
composition relationships (i.e. similarity) between GO terms] 
using a graph convolutional neural network (GCN)-based 
auto-encoder and a biological natural language model 
(BioBert) (Lee et al. 2020), which facilitates the transfer of 
annotations from common GO terms to rare ones according 
to their relationships. TransFew then uses a joint feature label 
embedding technique based on the cross attention to inte
grate the label representations and sequence representations 
to accurately predict protein functions.

TransFew not only improves the overall accuracy of pro
tein function prediction, but also is robust against the low 
frequency of rare GO terms.

2 Methods
The overall architecture of TransFew is illustrated in Fig. 1. It 
has three components: (i) a query processor consisting of 
multiple MLPs to extract function-relevant sequence repre
sentations from a protein sequence (query), (ii) a label en
coder to extract label representations for all the GO terms 
(labels), and (iii) a joint feature-label embedding network to 
combine sequence and label representations to predict the 
function of a protein. One TransFew model was trained to 
predict the GO terms in each of the three GO function cate
gories [molecular function (MF), cellular component (CC), 
and biological process (BP)], respectively.

2.1 Query processor
The query processor is to generate the function-relevant se
quence representations for proteins. Protein function terms 
have very different annotation frequency in the labeled pro
tein function datasets. Here, the annotation frequency of a 

GO term is the number of proteins that are labeled to have it 
as function. Rare GO terms are the ones that only occur to be 
the function labels of a small number of proteins. Generating 
a simple representation for all the GO terms by one MLP re
gardless of their frequency allows the common GO terms to 
dominate the rare (low-frequency) GO terms, which can re
duce the accuracy of predicting them. Therefore, we parti
tioned GO terms into n groups for a Gene Ontology category 
(i.e. MF, CC, or BP) based on their annotation frequency, 
and designed n MLPs to collectively learn representations for 
proteins across all GO terms. These MLPs function as multi
ple experts, each generates a representation for an input pro
tein whose dimension is equal to the number of GO terms in 
one group. Like inception networks (Szegedy et al. 2016), the 
different number of output dimensions can facilitate the 
MLPs to learn different aspects of GO terms, but it is not 
guaranteed that which group of GO terms are learnt by 
which MLP. Instead, the concatenation of the representations 
of all the MLPs generates a full GO representation for the in
put protein whose dimension is equal to the total number of 
GO terms. Specifically, the GO terms of BP were partitioned 
into three groups and the GO terms of CC and MF into two 
groups. The statistics for the partitions is shown in 
Supplementary Table S1.

Each MLP (i.e. MLPi) takes as input the sequence features 
of a protein generated by a large pretrained protein language 
model, ESM2_t48 (Lin et al. 2022) from its sequence, and 
outputs a vector qi 2 RDjjGi jj , where jjGijj is the number of GO 
terms in a GO group Gi. ESM-2t48 (Lin et al. 2022) accepts 
the sequence of a protein as input and generates feature 
embeddings at multiple layers. Here, the per-residue embed
dings of the last layer (48th layers) are taken out and aver
aged by the mean aggregator to generate the embedding of 
the protein, whose dimension is 5120. For a protein sequence 
exceeding the length limit of ESM2_t48, i.e. 1022 residues, it 
is divided into chunks of length 1022 except the last chuck 
that may have fewer than 1022 residues, each of which is 
processed by ESM2_t48 separately. The embeddings for all 
the chunks are concatenated as the embedding of the full pro
tein sequence. In addition to using ESM-2t48 to generate in
put features for the MLP, we also tried to use multiple 
sequence alignments (MSAs) (Rao et al. 2021) and InterPro 
domain annotations (Yao et al. 2021, Kulmanov and 
Hoehndorf 2022, Paysan-Lafosse et al. 2023, Wang et al. 
2023) of proteins to generate input features for the MLPs. 
The details of generating MSAs and InterPro domain annota
tions are described in Supplementary Notes S1 and S2. 
However, according to the ablation study, adding them on 
top of the features based on ESM-2t48 does not improve pro
tein function prediction accuracy, and therefore they are not 
included into the final version of TransFew.

The detailed architecture of a MLP of generating the repre
sentation of a protein from its sequence features is depicted in  
Fig. 1B. The MLP has multiple blocks, each of which has a 
fully connected linear layer, followed by a batch normaliza
tion layer and a Gaussian Error Linear Unit (GELU). The in
put for each block except for the last one is added to its 
output via a skip connection, resulting in a residual network. 
The output of the last block is used as input for a sigmoid 
function to predict the probability of each GO term repre
sented as logit.

The entire query processor, along with all other compo
nents, is jointly trained. The output qi (a vector of predicted 
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logits whose dimension is equal to the number of GO terms 
in a group Gi) generated by each MLP for an input protein 
are combined to form the final semantic representation of the 
protein across all GO terms in a gene ontology (MF, CC, or 
BP). This integrated representation serves as the output of the 
query processor. The combination process involves employ
ing a scatter operation (Paszke et al. 2017), wherein the val
ues produced by each MLP are distributed within the query 
representation tensor to match the predefined order of the 
GO terms.

2.2 Label encoder
The label encoder in Fig. 1A is used to generate semantic rep
resentations for all the GO terms (labels) under consider
ation. Two types of label data, i.e. the relations between GO 
terms in a GO Graph and the definition of GO terms (the tex
tual descriptions) are used as input for the label encoder.

The relationships between GO terms (nodes) in a GO 
graph are represented by an adjacency matrix A, where each 
row encodes the relationships of a node. The entry Aij is set 
to 1 if node i is an ancestor of j or equal to j, and 0 otherwise. 
A encodes the hierarchical relationships between the 
GO terms.

For the definitions of the GO terms, we collected the tex
tual description of each GO term, which contains what the 
term represents as well as reference(s) to the original source 
of the information. The textual description of each GO term 
is used by a pre-trained biomedical language model, BioBert 
(Devlin et al. 2018, Lee et al. 2020), to generate an embed
ding for it. The dimension of the embedding (De) is 768, 
which is set by BioBERT. The embedding is considered the 
semantic features of each GO term.

The hierarchical relationships and the semantic embed
dings of the GO terms are integrated by a graph auto-encoder 
model (Kipf and Welling 2016) to generate the representation 
of all the GO terms (labels). The input for the model is a GO 
graph, in which the relationships between nodes (GO terms) 
are stored in the matrix A and the feature of each node is its 
semantic embedding generated from the textual description 
of its GO term. The model uses an encoder-decoder architec
ture, where the encoder is a two-layer graph convolutional 
network (GCN) (Kipf and Welling 2017) defined as: 

GCNðX;AÞ ¼ ~AReLUð~AXW0ÞW1

~A ¼ D − 1
2AD− 1

2

(1) 

W1 and W2 are the weight matrices, ~A is the symmetrically 
normalized form of the A, and X is the matrix of the semantic 
embeddings of all the GO terms. ReLU denotes the ReLU ac
tivation function. We use the inner product decoder to recon
struct A as Â from the embeddings Z outputted by the GCN 
model as follows: 

Z ¼ GCNðX;AÞ and Â ¼ σðZZ>Þ (2) 

where σð�Þ is the logistic sigmoid function. The graph auto- 
encoder model was pretrained to reconstruct the GO Graph, 
A, from A itself and the semantic embeddings of the GO 
terms, through the self-supervised learning. After the train
ing, the Z (Z 2 RDc×De ) extracted from the bottleneck layer 
of the GCN-based autoencoder is used as the label represen
tation, where Dc is the number of GO terms and De repre
sents the dimension of the label representation (in this work 

Figure 1. The overall architecture of TransFew. (A) The three components of TransFew: a query processor (top left) to generate sequence representation 
using multi-layer perceptrons (MLPs) and ESM2, a label encoder (top right) to extract label representations using Biobert (Lee et al. 2020) and a graph 
convolutional neural networks (GCN)-based auto-encoder (Kipf and Welling 2016), and a joint feature-label embedding network to combine sequence and 
label representations via the cross attention for a MLP to make final function prediction. (B) The detailed design of a typical MLP module used 
in TransFew.
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De ¼ 1024). It is worth noting that the label representation is 
independent of any protein.

In addition, we investigated two alternative encoder architec
tures, such as Graph Attention Networks (GAT) (Veli�ckovi�c 
et al. 2017) and Graph Transformer (TransformerConv) (Shi 
et al. 2020) to combine the features of the textual description 
and GO term relationships, but they did not perform better 
than the GCN-based auto-encoder (see Supplementary 
Note S4).

2.3 Joint feature-label embedding network
We developed a joint feature-label embedding network to 
fuse the sequence representation of a protein generated by the 
query processor with the label representation of all GO terms 
generated by the pretrained label encoder to predict the pro
tein’s associated GO terms (Fig. 1A). In contrast to prior 
approaches, such as the use of a bilinear function (Xu and 
Wang 2022) or a scoring function based on softmax and 1D 
convolutional networks (Cao and Shen 2021), we introduced 
a cross attention-based joint embedding model. This model 
facilitates the projection of the protein representation and the 
label representation into a shared embedding space, enhanc
ing protein function prediction accuracy.

Given the label representation Z 2 RDc×De , and the query 
protein representation q 2 RDc , TransFew converts the query 
representation q to u 2 RDm using a linear layer as follows: 
u¼W>

q q, and Wq 2 RDc×Dm , and constructs two memory 
components: key K 2 RDc×Dm and value V 2 RDc×Dm from Z, 
using two embedding matrices Wk 2 RDb×Dm and Wv 2

RDb×Dm respectively. The cross attention between the repre
sentation of a query protein q and the representation of all 
the GO term (gi 2 RDe ; i 2 f1;2; . . .Dcg) is computed as: 

Attentionðu;K;VÞ ¼ softmax
uK>
ffiffiffiffiffi
dk

p

 !

V (3) 

where dk ¼ Dm.
The representation of the query protein and the cross atten

tion are combined by a MLP with a residual connection to 
predict the probability of GO terms (y) for the query protein 
as follows: 

y ¼ sigmoidðW>ðoþuÞÞ (4) 

where W 2 RDc×Dm and o¼ Attentionðu;K;VÞ
The feature-label embedding network and the query pro

cessor of the model (Fig. 1A) were optimized by minimizing 
the binary cross-entropy loss between predictions and true 
labels during training, while the weights of the pretrained la
bel encoder were kept fixed. It is worth noting that the pro
tein function prediction problem is a multi-label classification 
problem, in which a protein may have multiple correct labels.

2.4 Datasets
We collected proteins from the UniProtKB/Swiss-Prot data 
repository that were released by November 2022 for training 
and validation. The proteins were split into the training data
set and test dataset according to the 90%–10% ratio. The 
functional annotations (GO terms) of the proteins were 
obtained from from UniProt, and the GO ontology graph as 
well as GO textual data were collected from the Gene 
Ontology Resource (Ashburner et al. 2000, Aleksander et al. 

2023). To get all the terms (labels) associated with a protein, 
we first retrieved its immediate GO terms provided in 
UniProt and then for each immediate GO term we traveled 
up the GO graph to retrieve all its ancestor GO terms. Only 
the GO terms with relatively strong evidence codes: EXP, 
IDA, IPI, IMP, IGI, IEP, TAS, IC, HTP, HDA, HMP, HGI, 
HEP are used as the function labels for each protein, follow
ing the criteria used in the Critical Assessment of Functional 
Annotation (CAFA) (Radivojac et al. 2013).

To create an independent test dataset, we obtained proteins 
in the UniProtKB/Swiss-Prot database whose function anno
tation were released in December 2023. This test dataset is 
called Test_all. Moreover, we used MMseqs (Steinegger and 
S€oding 2017) to filter out the sequences in Test_all that have 
>30% identity with the sequences in the training dataset to 
create a redundancy reduced dataset—Test_novel, which is 
used to test how well TransFew can generalize to new pro
teins that have little or no sequence similarity with the train
ing proteins.

The number of proteins in the training dataset, validation 
dataset, Test_all dataset, and Test_novel dataset for each 
gene ontology category (MF, CC, and BP) is reported in 
Supplementary Table S2.

3 Results and discussions
3.1 Benchmarking TransFew with baseline methods 
on the test datasets
We compared TransFew with six other methods [Naive, 
DiamondBLAST (Kulmanov and Hoehndorf 2020), Tale (Cao 
and Shen 2021), NetGO 3.0 (Yao et al. 2021, Wang et al. 
2023), DeepGO-SE (Kulmanov et al. 2023), and SPROF-GO 
(Yuan et al. 2023)] on the Test_all dataset in terms of multiple 
metrics of evaluating protein function prediction, including 
Fmax, area under the precision–recall curve (AUPR), weighted 
Fmax, and Smin of measuring the uncertain/missing information 
in function predictions (Clark and Radivojac 2013, Jiang et al. 
2016, Zhou et al. 2019, Paolis 2023, Piovesan et al. 2024) (see 
the detailed definition of the evaluation metrics and summary of 
the baseline methods in Supplementary Notes S5 and S6 
respectively).

The results of TransFew, Naive, DiamondBLAST, Tale, 
NetGO 3.0, SPROF-GO, and DeepGO-SE on the Test_all 
dataset are presented in Table 1A. TransFew performs best in 
Cellular Component and Molecular Function, and ranks sec
ond in Biological Process in terms of F_max. In terms of 
weighted F_max, TransFew leads in Molecular Function and 
Biological Process, and comes second in Cellular Component. 
Lastly, in terms of S_min, TransFew achieves the second-best 
performance in Cellular Component and ranks third in 
Molecular Function and Biological Process. The precision–re
call curves for the four methods across the three gene ontol
ogy categories (BP, MF, and CC) on the Test_all dataset are 
shown in Fig. 2. In terms of AUPR, TransFew performs better 
than Naive, DiamondBLAST but worse than the other deep 
learning/ensemble methods. The reason why TransFew has a 
lower AUPR score than the other deep learning methods is 
that its precision–recall curve covers a narrower range of re
call than theirs (see Fig. 2).

On the Test_novel dataset consisting of proteins that have 
≤30% sequence identity with the proteins in the training 
data, TransFew achieves the best performance in Cellular 
Component and Molecular Function categories in terms of 
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two metrics: F_max, and weighted F_max scores. For 
Biological Process, it ranks second in terms of weighted 
F_max, and third in terms of F_max. In terms of S_min, 
TransFew ranks second in Cellular Component and third in 
Molecular Function and Biological Process(Table 1B). 
Similar to the performance on the Test_all dataset, Transfew 
has a higher AUPR score than Naive and DiamondBLAST 
but a lower AUPR score than the other deep learning/ensem
ble methods. The performance of TransFew on Test_novel is 
only moderately lower than on Test_all in terms of different 
metrics, indicating that it generalizes well to new test proteins 
that have no or little sequence identity with the train
ing proteins.

It is worth noting that TransFew is a pure machine learning 
method, while other methods such as NetGO 3.0 and 
SPROF-GO combines machine learning predictions and 
homology-based function annotation transfer to make final 
prediction. The results show that the performance of a pure 
end-to-end machine learning method like TransFew is com
parable to ensemble methods based on both machine learning 
and homology transfer for protein function prediction.

3.2 Performance of predicting rare GO terms
We investigated how well TransFew predicts rare GO terms 
with low annotation frequency. GO terms with ≤100 annota
tions were grouped into 20 categories based on their number 
of annotations (frequency) in the training data, using an in
terval size of 5. Figure 3 shows the average AUC (area under 
ROC curve) scores of TransFew, Tale, NetGO 3.0, DeepGO- 
SE, and SPROF-GO for predicting GO terms in each group 
for BP, MF, and CC. For biological process, TransFew and 
Tale generally perform best for rare GO terms with ≤55 
annotations, while SPROF-GO has the highest average AUC 
scores for GO terms with ≥60 annotations. For molecular 

function, NetGO 3.0 performs best for very rare GO terms 
with ≤40 annotations, followed by TransFew and GO. For cel
lular component, the overall AUC scores of TransFew are more 
or less ranked in the middle for GO terms with ≤40 annota
tions. The Pearson’s correlation between the AUC scores of 
TransFew and the annotation frequency of the GO terms in 
BP, MF and CC is only 0.42, 0.37, and 0.45, respectively. The 
moderate correlation indicates its performance is robust with 
the respect to the annotation frequency of rare GO terms.

3.3 The contributions of different components and 
implementations of TransFew
We tested how different components or implementations of 
TransFew influenced its performance. MLP (Interpro), MLP 
(MSA), and MLP (ESM) denote the three implementations of 
using the Interpro domain features, the MSA features, and 
the sequence features generated by ESM2_t48 respectively to 
generate the sequence representation for function prediction, 
without using the label representation at all. TransFew stands 
for the final implementation that combines the sequence rep
resentation generated from the ESM2_t48 features and the la
bel representation to predict protein function. TransFew þ
MSA þ Interpro is the same as TransFew except that it uses 
ESM2_t48 features together with the MSA and Interpro fea
tures to generate the sequence representation. MLP 
(Interpro), MLP (MSA), and MLP (ESM) were trained on the 
GO terms that have at least 30 annotations, while TransFew 
and TransFew þ MSA þ Interpro were trained on the GO 
terms with at least one annotation. The results of the different 
implementations are shown in Table 2.

Among the three methods of using only sequence represen
tations to predict protein function, MLP (ESM) performs bet
ter than MLP (Interpro) and MLP (MSA) in terms of all the 
metrics for all three gene ontologies, indicating that the 

Table 1. The performance of TransFew, Naive, DiamondBLAST, Tale, NetGO 3.0, SPROF-GO, and DeepGO-SE, on the test datasets in the three GO 
categories (BP, MF, and CC): (A) The results on all the new proteins in Test_all. (B) The results on Test_novel comprised proteins that have ≤30% 
sequence identity with the proteins in the training dataset of TransFew.a

(A) On Test_all

Methods Fmax (") WFmax (") AUPR (") Smin (#)

CC MF BP CC MF BP CC MF BP CC MF BP

Naive 0.5528 0.4958 0.2558 0.3715 0.3400 0.2088 0.3216 0.1363 0.1100 9.3167 8.6241 22.2875
DiamondBLAST 0.5989 0.5496 0.3689 0.4864 0.4806 0.3275 0.0494 0.0388 0.0456 9.1097 9.7205 32.6331
Tale 0.6867 0.6215 0.4280 0.5559 0.5168 0.3711 0.5260 0.4291 0.3051 7.1850 6.9453 19.6918
NetGO 3.0 0.6885 0.6583 0.4716 0.5728 0.5730 0.4021 0.4969 0.5767 0.4101 6.8368 6.2940 19.2362
DeepGO-SE 0.6883 0.6227 0.4011 0.5334 0.5229 0.3569 0.5425 0.5336 0.3201 7.7345 6.9489 20.7057
SPROF-GO 0.7249 0.6612 0.4483 0.6125 0.5769 0.4022 0.6869 0.6197 0.4016 6.2503 6.2124 19.1805
TransFew 0.7264 0.6655 0.4489 0.6109 0.5860 0.4067 0.4546 0.3633 0.2442 6.6936 6.3848 19.3534

(B) On Test_novel

Methods Fmax (") WFmax (") AUPR (") Smin (#)

CC MF BP CC MF BP CC MF BP CC MF BP

Naive 0.5464 0.5033 0.2545 0.3735 0.3523 0.2062 0.3080 0.1429 0.1083 9.4576 8.7214 22.4676
DiamondBLAST 0.5591 0.5096 0.3437 0.4478 0.4412 0.3026 0.0456 0.0373 0.0431 9.0348 9.3545 29.7683
Tale 0.6707 0.5994 0.4223 0.5387 0.4831 0.3668 0.5039 0.4041 0.3010 7.4662 7.4161 19.5395
NetGO 3.0 0.6769 0.6414 0.4750 0.5611 0.5465 0.4022 0.4938 0.5563 0.4123 6.9270 6.6866 19.3370
DeepGO-SE 0.6811 0.6096 0.4024 0.5290 0.5037 0.3569 0.5317 0.5101 0.3191 7.9617 7.2411 20.8680
SPROF-GO 0.7130 0.6449 0.4493 0.6004 0.5527 0.3999 0.6774 0.5977 0.4057 6.4120 6.5325 19.4221
TransFew 0.7189 0.6476 0.4433 0.6024 0.5601 0.4013 0.4486 0.3513 0.2574 6.7652 6.8034 19.4462

a Bold font highlights the best result. TransFew was trained using all the GO terms with at least one annotation in the training dataset.
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ESM2_t48 features are better than the MSA features and the 
Interpro features for generating sequence representations for 
protein function prediction.

TransFew that combines the sequence representation gen
erated by ESM2_t48 and the label representation generated 
from the GO graph and the text description of GO terms per
forms better than MLP (ESM) without using the label repre
sentation in most situations, suggesting that integrating the 
sequence representation and the label representation can gen
erally improve protein function prediction.

The combination of TransFew with additional features 
from MSA and Interpro outperforms TransFew in only two 
cases in terms of the AUPR metric, suggesting the combina
tion does not improve the performance in this experiment. 

However, multiple studies (Kulmanov and Hoehndorf 2020, 
Yao et al. 2021, Wang et al. 2023, Yuan et al. 2023) have 
demonstrated that integrating features from diverse modali
ties typically enhances function prediction performance. We 
hypothesize that the decline in the performance in this experi
ment may stem from the addition of extra features not sub
stantially increasing relevant information but rather adding 
complexity to the model, potentially leading to overfitting 
and a decrease in the generalization performance. Indeed, 
Supplementary Note S3 reveals that even though TransFew þ
MSA þ Interpro fits the training data better than TransFew, 
it performs worse on the validation data. Therefore, we plan 
to explore more effective methods of integrating information 
from multiple modalities in the future.

Figure 2. The precision–recall curves of TransFew, Naive, DiamondBLAST, Tale, NetGO 3.0, SPROF-GO, and DeepGO-SE for the three ontologies (BP, 
MF, and CC) on the Test_all dataset, respectively. The circled dot highlights the point where each method achieves the highest Fmax.
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Finally, we compared the performance of TransFew of us
ing the label encoder with that of its other implementations 
that had the embedding of the label encoder replaced by a 
random matrix for the various GO partition groups in 
Supplementary Note S7. The results demonstrate that using 
the label encoder improves the prediction accuracy across 
the board.

4 Conclusion and future work
In this work, we present a new approach (TransFew) combining 
the information in the input space (the protein sequence space) 

and the output space (the function label space) to improve pro
tein function prediction, particularly the accuracy of predicting 
rare function terms (GO term labels with few annotations). In 
the input space, we use a large pretrained protein language 
model to generate features for a protein sequence, which are 
then mapped to the protein function space defined by both com
mon and rare GO terms to create a function-relevant represen
tation for the protein. Learning the unbiased representations of 
proteins in terms of both common and rare GO terms makes it 
possible to predict them on the equal footing. In the output 
space, we use a graph convolutional neural network-based 
auto-encoder to combine the textual definition of GO terms 

Figure 3. The average AUC score of five methods (TransFew, Tale, and NetGO 3.0, DeepGO-SE, and SPROF-GO) predicting relatively rare GO terms in 
each GO group within an interval of annotation frequency for the three gene ontologies (BP, MF, and CC). The X-axis represents the annotation frequency 
of the GO term groups. The Y-axis represents the average AUC scores.

Table 2. The performance of different components or implementations of TransFew on the Test_all dataset in the three GO categories (BP, MF, 
and CC).a

Methods Fmax (") WFmax (") AUPR (") Smin (#)

CC MF BP CC MF BP CC MF BP CC MF BP

Interpro 0.6753 0.6340 0.4283 0.5396 0.5424 0.3631 0.7485 0.6424 0.3880 7.0100 6.6078 19.7022
MSA 0.6931 0.6397 0.4167 0.5662 0.5542 0.3657 0.7689 0.6524 0.3769 6.8752 6.7176 19.8060
ESM 0.7113 0.6652 0.4578 0.6058 0.5769 0.4165 0.7960 0.6745 0.4344 6.5683 6.5698 19.0910
TransFew 0.7264 0.6655 0.4489 0.6109 0.5860 0.4067 0.7928 0.6871 0.4392 6.6935 6.3848 19.3534
TransFewþ 0.7065 0.6426 0.3732 0.5871 0.5519 0.3055 0.7982 0.7016 0.3388 6.9579 6.7165 20.4570

a TransFew is the final version of the method in this work. Interpro, MSA, ESM, and TransFewþ stand for MLP (Interpro), MLP (MSA), MLP (ESM), 
and TransFew þMSA þ Interpro, respectively. Bold numbers denote the best results.
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and the inheritance and composition relationships between GO 
terms in the GO graphs to generate the semantic representations 
for all the GO terms, capturing the similarity between GO terms 
to facilitate the transfer of annotation from common GO terms 
to rare ones.

The representations in the input space and the output space 
are integrated by a novel cross-attention mechanism to build 
the associations between the protein representation and the 
label representation, which are used to predict the final func
tion terms for the protein. TransFew not only performs better 
than two highly sophisticated protein function prediction 
methods on newly released test proteins, but also can predict 
the rare GO terms more accurately, demonstrating the ap
proach of representing and combining the data of GO terms 
and proteins is effective in predicting all kinds of GO terms.

Our experiment also demonstrates that the sequence features 
generated by a large protein language model (ESM2_t48) is suf
ficient to create a functional-relevant representation of protein 
sequences that is more useful for protein function prediction 
than the features generated from multiple sequence alignments 
(MSAs) and Interpro domain features. Even though this does 
not rule out the usefulness of MSAs and Interpro domain fea
tures, it does show that very large pretrained protein language 
models can effectively capture the evolutionary patterns in pro
tein sequences relevant to protein function prediction.

Because TransFew uses only a single protein sequence as in
put without the need of searching large protein sequence data
bases to generate multiple sequence alignments, it can predict 
protein function quickly, making it applicable to predicting the 
function of proteins in an entire proteome of a species.

Even though three modalities of data including protein 
sequences, textual description of GO terms, and hierarchical 
relationship between GO terms have been integrated by 
TransFew to predict protein function, other relevant modali
ties of protein data (Cao and Cheng 2016) such as protein 
structures, protein-protein interaction, hypothetical function 
annotations based on homology transfer, and the textual de
scription of proteins have not be explored in this work. In the 
future, we plan to add all these modalities into our approach, 
harnessing the combined power of diverse features to further 
enhance the accuracy and robustness of protein function pre
diction. One promising avenue is to leverage multi-modal 
language models for protein function prediction, as demon
strated in computer vision (Radford et al. 2021, Acosta et al. 
2022, Alayrac et al. 2022) and a recent bi-modal protein lan
guage model (Heinzinger et al. 2023). By adopting such an 
approach, we can potentially learn a comprehensive represen
tation of proteins encompassing protein sequence, structure, 
interaction, gene ontologies, and prior human knowledge to 
improve protein function prediction.

Supplementary data
Supplementary data are available at Bioinformatics 
Advances online.
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