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Abstract

Motivation: As fewer than 1% of proteins have protein function information determined experimentally, computationally predicting the function of
proteins is critical for obtaining functional information for most proteins and has been a major challenge in protein bioinformatics. Despite the
significant progress made in protein function prediction by the community in the last decade, the general accuracy of protein function prediction is still
not high, particularly for rare function terms associated with few proteins in the protein function annotation database such as the UniProt.

Results: \We introduce TransFew, a new transformer model, to learn the representations of both protein sequences and function labels [Gene
Ontology (GO) terms] to predict the function of proteins. TransFew leverages a large pre-trained protein language model (ESM2-t48) to learn
function-relevant representations of proteins from raw protein sequences and uses a biological natural language model (BioBert) and a graph
convolutional neural network-based autoencoder to generate semantic representations of GO terms from their textual definition and hierarchical
relationships, which are combined together to predict protein function via the cross-attention. Integrating the protein sequence and label
representations not only enhances overall function prediction accuracy, but delivers a robust performance of predicting rare function terms with
limited annotations by facilitating annotation transfer between GO terms.

Availability and implementation: https://github.com/BioinfoMachineLearning/TransFew.

1 Introduction

Proteins are essential molecules that play critical functional
roles in biological systems. Their functions encompass cata-
lyzing biochemical reactions, serving as structural elements,
transducing cellular signals, defending against viruses, regu-
lating gene activities, among others. Elucidating protein func-
tions is crucial for gaining valuable insights into the
molecular intricacies of biological systems. However, experi-
mentally determining protein function is a time consuming
and laborious process. Currently, fewer than 1% known pro-
teins have function information determined experimentally
according to the statistics in UniProt Consortium (2019).
Therefore, it is important to develop computational methods
to predict protein function from sequence and other relevant
information.

In the realm of protein function prediction, there are two
common challenges: (i) effectively integrating diverse infor-
mation sources, such as protein sequence, protein-protein in-
teraction, structural features, domain features, and biological
texts, to accurately predict protein functions (Boadu et al.
2023), and (ii) accurately assigning rare or novel Gene
Ontology(GO) terms (labels) (Aleksander et al. 2023) with
few/no observations in labeled protein function datasets to
new proteins that may have the function. It is harder to

predict rare (low-frequency) GO terms than common GO
terms because the former is less represented than the latter in
the function datasets. But it is important to predict rare GO
terms because they are usually specific and highly informative
function classes that are more useful for generating biological
hypotheses than common ones. Moreover, a large portion of
all the GO terms are rather rare. Out of over 40 000 GO
terms in the three main Gene Ontology categories: Cellular
Component (CC), Molecular Function (MF), and Biological
Process (BP), around 20 000 terms each are assigned to fewer
than 100 proteins experimentally (Kulmanov and Hoehndorf
2022). Therefore, there is an urgent need to develop compu-
tational methods to predict rare function terms for proteins
whose function is described by them.

Predicting rare GO terms is analogous to the few-shot
learning problems (Sung et al. 2018) in various domains like
computer vision (Dhakal et al. 2023, Safavigerdini et al.
2023, Giri and Cheng 2024), and natural language process-
ing(NLP). For example, in the classification task of named
entity typing (Yuan and Downey 2018, Zhang et al. 2020) in
NLP, assigning rare entity types to entity names pose a simi-
lar challenge, due to the increasing size and granularity of en-
tity types. Two kinds of methods, i.e. embedding-based
methods and generative methods, have been proposed to
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tackle this challenge (Pourpanah et al. 2022). Embedding-
based methods focus on learning an embedding space
associating low-level features of highly annotated classes
with semantic information of both highly annotated classes
and rarely annotated classes to transfer knowledge from
highly annotated classes to rarely annotated ones with few
annotations. Generative methods generate features for rare
classes based on samples from adequately annotated classes,
converting the problem into the conventional supervised
learning. In the protein function prediction, the hierarchical
structure and textual descriptions of GO terms (classes/
labels) provides us with the vital semantic information to
transfer knowledge from the well-annotated classes to the
ones with few or no annotations (Cao and Shen 2021).

In this study, we introduce an embedding-based deep learn-
ing method called TransFew to predict protein functions
(Boadu et al. 2023), with an emphasis on improving the pre-
diction of protein function described by rare GO terms.
TransFew generates a function-relevant representations of a
single protein sequence in the sequence space using a pre-
trained protein language model [i.e. ESM2 (Lin et al. 2022,
Boadu et al. 2023)] and multi-layer perceptrons (MLP). The
sequence representation of a protein is generated by multiple
MLP modules with residual connections each designed to
predict functions for proteins in terms of a specific group of
GO terms with similar annotation frequency, which therefore
cover all the GO terms from rare ones to common ones
equally. TransFew also generates a semantic representation
of all the GO terms (labels) in the label space from their tex-
tual description (definition) and their hierarchical relation-
ships in the Gene Ontology graphs [e.g. the inheritance and
composition relationships (i.e. similarity) between GO terms]
using a graph convolutional neural network (GCN)-based
auto-encoder and a biological natural language model
(BioBert) (Lee et al. 2020), which facilitates the transfer of
annotations from common GO terms to rare ones according
to their relationships. TransFew then uses a joint feature label
embedding technique based on the cross attention to inte-
grate the label representations and sequence representations
to accurately predict protein functions.

TransFew not only improves the overall accuracy of pro-
tein function prediction, but also is robust against the low
frequency of rare GO terms.

2 Methods

The overall architecture of TransFew is illustrated in Fig. 1. It
has three components: (i) a query processor consisting of
multiple MLPs to extract function-relevant sequence repre-
sentations from a protein sequence (query), (ii) a label en-
coder to extract label representations for all the GO terms
(labels), and (iii) a joint feature-label embedding network to
combine sequence and label representations to predict the
function of a protein. One TransFew model was trained to
predict the GO terms in each of the three GO function cate-
gories [molecular function (MF), cellular component (CC),
and biological process (BP)], respectively.

2.1 Query processor

The query processor is to generate the function-relevant se-
quence representations for proteins. Protein function terms
have very different annotation frequency in the labeled pro-
tein function datasets. Here, the annotation frequency of a
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GO term is the number of proteins that are labeled to have it
as function. Rare GO terms are the ones that only occur to be
the function labels of a small number of proteins. Generating
a simple representation for all the GO terms by one MLP re-
gardless of their frequency allows the common GO terms to
dominate the rare (low-frequency) GO terms, which can re-
duce the accuracy of predicting them. Therefore, we parti-
tioned GO terms into # groups for a Gene Ontology category
(i.e. MF, CC, or BP) based on their annotation frequency,
and designed # MLPs to collectively learn representations for
proteins across all GO terms. These MLPs function as multi-
ple experts, each generates a representation for an input pro-
tein whose dimension is equal to the number of GO terms in
one group. Like inception networks (Szegedy et al. 2016), the
different number of output dimensions can facilitate the
MLPs to learn different aspects of GO terms, but it is not
guaranteed that which group of GO terms are learnt by
which MLP. Instead, the concatenation of the representations
of all the MLPs generates a full GO representation for the in-
put protein whose dimension is equal to the total number of
GO terms. Specifically, the GO terms of BP were partitioned
into three groups and the GO terms of CC and MF into two
groups. The statistics for the partitions is shown in
Supplementary Table S1.

Each MLP (i.e. MLP;) takes as input the sequence features
of a protein generated by a large pretrained protein language
model, ESM2_t48 (Lin er al. 2022) from its sequence, and
outputs a vector g; € RPIGI, where ||G;|| is the number of GO
terms in a GO group G;. ESM-2t48 (Lin et al. 2022) accepts
the sequence of a protein as input and generates feature
embeddings at multiple layers. Here, the per-residue embed-
dings of the last layer (48th layers) are taken out and aver-
aged by the mean aggregator to generate the embedding of
the protein, whose dimension is 5120. For a protein sequence
exceeding the length limit of ESM2_t48, i.e. 1022 residues, it
is divided into chunks of length 1022 except the last chuck
that may have fewer than 1022 residues, each of which is
processed by ESM2_t48 separately. The embeddings for all
the chunks are concatenated as the embedding of the full pro-
tein sequence. In addition to using ESM-2t48 to generate in-
put features for the MLP, we also tried to use multiple
sequence alignments (MSAs) (Rao et al. 2021) and InterPro
domain annotations (Yao et al. 2021, Kulmanov and
Hoehndorf 2022, Paysan-Lafosse et al. 2023, Wang et al.
2023) of proteins to generate input features for the MLPs.
The details of generating MSAs and InterPro domain annota-
tions are described in Supplementary Notes S1 and S2.
However, according to the ablation study, adding them on
top of the features based on ESM-2t48 does not improve pro-
tein function prediction accuracy, and therefore they are not
included into the final version of TransFew.

The detailed architecture of a MLP of generating the repre-
sentation of a protein from its sequence features is depicted in
Fig. 1B. The MLP has multiple blocks, each of which has a
fully connected linear layer, followed by a batch normaliza-
tion layer and a Gaussian Error Linear Unit (GELU). The in-
put for each block except for the last one is added to its
output via a skip connection, resulting in a residual network.
The output of the last block is used as input for a sigmoid
function to predict the probability of each GO term repre-
sented as logit.

The entire query processor, along with all other compo-
nents, is jointly trained. The output g; (a vector of predicted
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Figure 1. The overall architecture of TransFew. (A) The three components of TransFew: a query processor (top left) to generate sequence representation
using multi-layer perceptrons (MLPs) and ESM2, a label encoder (top right) to extract label representations using Biobert (Lee et al. 2020) and a graph
convolutional neural networks (GCN)-based auto-encoder (Kipf and Welling 2016), and a joint feature-label embedding network to combine sequence and
label representations via the cross attention for a MLP to make final function prediction. (B) The detailed design of a typical MLP module used

in TransFew.

logits whose dimension is equal to the number of GO terms
in a group G;) generated by each MLP for an input protein
are combined to form the final semantic representation of the
protein across all GO terms in a gene ontology (MF, CC, or
BP). This integrated representation serves as the output of the
query processor. The combination process involves employ-
ing a scatter operation (Paszke et al. 2017), wherein the val-
ues produced by each MLP are distributed within the query
representation tensor to match the predefined order of the
GO terms.

2.2 Label encoder

The label encoder in Fig. 1A is used to generate semantic rep-
resentations for all the GO terms (labels) under consider-
ation. Two types of label data, i.e. the relations between GO
terms in a GO Graph and the definition of GO terms (the tex-
tual descriptions) are used as input for the label encoder.

The relationships between GO terms (nodes) in a GO
graph are represented by an adjacency matrix A, where each
row encodes the relationships of a node. The entry A is set
to 1 if node i is an ancestor of j or equal to j, and 0 otherwise.
A encodes the hierarchical relationships between the
GO terms.

For the definitions of the GO terms, we collected the tex-
tual description of each GO term, which contains what the
term represents as well as reference(s) to the original source
of the information. The textual description of each GO term
is used by a pre-trained biomedical language model, BioBert
(Devlin et al. 2018, Lee et al. 2020), to generate an embed-
ding for it. The dimension of the embedding (D,) is 768,
which is set by BioBERT. The embedding is considered the
semantic features of each GO term.

The hierarchical relationships and the semantic embed-
dings of the GO terms are integrated by a graph auto-encoder
model (Kipf and Welling 2016) to generate the representation
of all the GO terms (labels). The input for the model is a GO
graph, in which the relationships between nodes (GO terms)
are stored in the matrix A and the feature of each node is its
semantic embedding generated from the textual description
of its GO term. The model uses an encoder-decoder architec-
ture, where the encoder is a two-layer graph convolutional
network (GCN) (Kipf and Welling 2017) defined as:

GCN(X,A) = AReLU(AXW,) W, )
A=D"iAD"?

W, and W, are the weight matrices, A is the symmetrically
normalized form of the A, and X is the matrix of the semantic
embeddings of all the GO terms. ReLU denotes the ReLU ac-
tivation function. We use the inner product decoder to recon-
struct A as A from the embeddings Z outputted by the GCN
model as follows:

7Z = GCN(X,A) and A =o(ZZ7) (2)

where o(-) is the logistic sigmoid function. The graph auto-
encoder model was pretrained to reconstruct the GO Graph,
A, from A itself and the semantic embeddings of the GO
terms, through the self-supervised learning. After the train-
ing, the Z (Z € RP-*P¢) extracted from the bottleneck layer
of the GCN-based autoencoder is used as the label represen-
tation, where D, is the number of GO terms and D, repre-
sents the dimension of the label representation (in this work
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D, = 1024). It is worth noting that the label representation is
independent of any protein.

In addition, we investigated two alternative encoder architec-
tures, such as Graph Attention Networks (GAT) (Velickovié
et al. 2017) and Graph Transformer (TransformerConv) (Shi
et al. 2020) to combine the features of the textual description
and GO term relationships, but they did not perform better
than the GCN-based auto-encoder (see Supplementary
Note 54).

2.3 Joint feature-label embedding network

We developed a joint feature-label embedding network to
fuse the sequence representation of a protein generated by the
query processor with the label representation of all GO terms
generated by the pretrained label encoder to predict the pro-
tein’s associated GO terms (Fig. 1A). In contrast to prior
approaches, such as the use of a bilinear function (Xu and
Wang 2022) or a scoring function based on softmax and 1D
convolutional networks (Cao and Shen 2021), we introduced
a cross attention-based joint embedding model. This model
facilitates the projection of the protein representation and the
label representation into a shared embedding space, enhanc-
ing protein function prediction accuracy.

Given the label representation Z € RP<*P¢ and the query
protein representation g € RP¢, TransFew converts the query
representation g to # € RP” using a linear layer as follows:
u= WqTq, and W, € RP<*Dn - and constructs two memory
components: key K € RP-*P» and value V € RP-*P from Z,
using two embedding matrices W; € RP»*P» and W, e
RP»XPm pespectively. The cross attention between the repre-
sentation of a query protein g and the representation of all
the GO term (g; € RP¢, i e {1,2,...D.}) is computed as:

‘ uKT
Attention(u, K, V) = softmax \% (3)

NZA

where d, = D,,,.

The representation of the query protein and the cross atten-
tion are combined by a MLP with a residual connection to
predict the probability of GO terms (y) for the query protein
as follows:

y = sigmoid(W' (o +u)) (4)

where W € RP<*Pr and o = Attention(u,K, V)

The feature-label embedding network and the query pro-
cessor of the model (Fig. 1A) were optimized by minimizing
the binary cross-entropy loss between predictions and true
labels during training, while the weights of the pretrained la-
bel encoder were kept fixed. It is worth noting that the pro-
tein function prediction problem is a multi-label classification
problem, in which a protein may have multiple correct labels.

2.4 Datasets

We collected proteins from the UniProtKB/Swiss-Prot data
repository that were released by November 2022 for training
and validation. The proteins were split into the training data-
set and test dataset according to the 90%-10% ratio. The
functional annotations (GO terms) of the proteins were
obtained from from UniProt, and the GO ontology graph as
well as GO textual data were collected from the Gene
Ontology Resource (Ashburner et al. 2000, Aleksander et al.
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2023). To get all the terms (labels) associated with a protein,
we first retrieved its immediate GO terms provided in
UniProt and then for each immediate GO term we traveled
up the GO graph to retrieve all its ancestor GO terms. Only
the GO terms with relatively strong evidence codes: EXP,
IDA, IPL, IMP, IGI, IEP, TAS, IC, HTP, HDA, HMP, HGI,
HEDP are used as the function labels for each protein, follow-
ing the criteria used in the Critical Assessment of Functional
Annotation (CAFA) (Radivojac et al. 2013).

To create an independent test dataset, we obtained proteins
in the UniProtKB/Swiss-Prot database whose function anno-
tation were released in December 2023. This test dataset is
called Test_all. Moreover, we used MMseqs (Steinegger and
Soding 2017) to filter out the sequences in Test_all that have
>30% identity with the sequences in the training dataset to
create a redundancy reduced dataset—Test_novel, which is
used to test how well TransFew can generalize to new pro-
teins that have little or no sequence similarity with the train-
ing proteins.

The number of proteins in the training dataset, validation
dataset, Test_all dataset, and Test_novel dataset for each
gene ontology category (MF, CC, and BP) is reported in
Supplementary Table S2.

3 Results and discussions
3.1 Benchmarking TransFew with baseline methods
on the test datasets

We compared TransFew with six other methods [Naive,
DiamondBLAST (Kulmanov and Hoehndorf 2020), Tale (Cao
and Shen 2021), NetGO 3.0 (Yao et al. 2021, Wang et al.
2023), DeepGO-SE (Kulmanov et al. 2023), and SPROF-GO
(Yuan et al. 2023)] on the Test_all dataset in terms of multiple
metrics of evaluating protein function prediction, including
F,..x, area under the precision—recall curve (AUPR), weighted
F,.ux, and S,,.;,, of measuring the uncertain/missing information
in function predictions (Clark and Radivojac 2013, Jiang et al.
2016, Zhou et al. 2019, Paolis 2023, Piovesan et al. 2024) (see
the detailed definition of the evaluation metrics and summary of
the baseline methods in Supplementary Notes S5 and S6
respectively).

The results of TransFew, Naive, DiamondBLAST, Tale,
NetGO 3.0, SPROF-GO, and DeepGO-SE on the Test_all
dataset are presented in Table 1A. TransFew performs best in
Cellular Component and Molecular Function, and ranks sec-
ond in Biological Process in terms of F_max. In terms of
weighted F_max, TransFew leads in Molecular Function and
Biological Process, and comes second in Cellular Component.
Lastly, in terms of S_min, TransFew achieves the second-best
performance in Cellular Component and ranks third in
Molecular Function and Biological Process. The precision—re-
call curves for the four methods across the three gene ontol-
ogy categories (BP, MF, and CC) on the Test_all dataset are
shown in Fig. 2. In terms of AUPR, TransFew performs better
than Naive, DiamondBLAST but worse than the other deep
learning/ensemble methods. The reason why TransFew has a
lower AUPR score than the other deep learning methods is
that its precision-recall curve covers a narrower range of re-
call than theirs (see Fig. 2).

On the Test_novel dataset consisting of proteins that have
<30% sequence identity with the proteins in the training
data, TransFew achieves the best performance in Cellular
Component and Molecular Function categories in terms of
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Table 1. The performance of TransFew, Naive, DiamondBLAST, Tale, NetGO 3.0, SPROF-GO, and DeepGO-SE, on the test datasets in the three GO
categories (BP, MF, and CC): (A) The results on all the new proteins in Test_all. (B) The results on Test_novel comprised proteins that have <30%
sequence identity with the proteins in the training dataset of TransFew.?
(A) On Test_all
Methods Fmax (T) WFmax (T) AUPR (T) Smin (l)

CC MF BP CC MF BP CC MF BP CC MF BP
Naive 0.5528 0.4958 0.2558 0.3715 0.3400 0.2088 0.3216 0.1363 0.1100 9.3167 8.6241  22.2875
DiamondBLAST  0.5989 0.5496 0.3689 0.4864 0.4806 0.3275 0.0494 0.0388 0.0456 9.1097 9.7205  32.6331
Tale 0.6867 0.6215 0.4280 0.5559 0.5168 0.3711 0.5260 0.4291 0.3051 7.1850 6.9453 19.6918
NetGO 3.0 0.6885 0.6583 0.4716 0.5728 0.5730 0.4021 0.4969 0.5767 0.4101 6.8368 6.2940 19.2362
DeepGO-SE 0.6883 0.6227 0.4011 0.5334 0.5229 0.3569 0.5425 0.5336 0.3201 7.7345 6.9489 20.7057
SPROF-GO 0.7249  0.6612 0.4483 0.6125 0.5769 0.4022 0.6869 0.6197 0.4016 6.2503 6.2124 19.1805
TransFew 0.7264 0.6655 0.4489 0.6109 0.5860 0.4067 0.4546 0.3633 0.2442 6.6936 6.3848 19.3534
(B) On Test_novel
Methods Frrax (1) WEFE pax (1) AUPR (1) Somin (1)

CC MF BP CC MF BP CC MF BP CC MF BP
Naive 0.5464 0.5033 0.2545 0.3735 0.3523 0.2062 0.3080 0.1429 0.1083 9.4576 8.7214 22.4676
DiamondBLAST  0.5591 0.5096 0.3437 0.4478 0.4412 0.3026 0.0456 0.0373 0.0431 9.0348 9.3545 29.7683
Tale 0.6707  0.5994 0.4223 0.5387 0.4831 0.3668 0.5039 0.4041 0.3010 7.4662 7.4161 19.5395
NetGO 3.0 0.6769 0.6414 0.4750 0.5611 0.5465 0.4022 0.4938 0.5563 0.4123 6.9270 6.6866 19.3370
DeepGO-SE 0.6811 0.6096 0.4024 0.5290 0.5037 0.3569 0.5317 0.5101 0.3191 79617 7.2411  20.8680
SPROF-GO 0.7130  0.6449 0.4493 0.6004 0.5527 0.3999 0.6774 0.5977 0.4057 6.4120 6.5325 19.4221
TransFew 0.7189 0.6476 0.4433 0.6024 0.5601 0.4013 0.4486 0.3513 0.2574 6.7652 6.8034 19.4462

* Bold font highlights the best result. TransFew was trained using all the GO terms with at least one annotation in the training dataset.

two metrics: F_max, and weighted F_max scores. For
Biological Process, it ranks second in terms of weighted
F_max, and third in terms of F_max. In terms of S_min,
TransFew ranks second in Cellular Component and third in
Molecular Function and Biological Process(Table 1B).
Similar to the performance on the Test_all dataset, Transfew
has a higher AUPR score than Naive and DiamondBLAST
but a lower AUPR score than the other deep learning/ensem-
ble methods. The performance of TransFew on Test_novel is
only moderately lower than on Test_all in terms of different
metrics, indicating that it generalizes well to new test proteins
that have no or little sequence identity with the train-
ing proteins.

It is worth noting that TransFew is a pure machine learning
method, while other methods such as NetGO 3.0 and
SPROF-GO combines machine learning predictions and
homology-based function annotation transfer to make final
prediction. The results show that the performance of a pure
end-to-end machine learning method like TransFew is com-
parable to ensemble methods based on both machine learning
and homology transfer for protein function prediction.

3.2 Performance of predicting rare GO terms

We investigated how well TransFew predicts rare GO terms
with low annotation frequency. GO terms with <100 annota-
tions were grouped into 20 categories based on their number
of annotations (frequency) in the training data, using an in-
terval size of 5. Figure 3 shows the average AUC (area under
ROC curve) scores of TransFew, Tale, NetGO 3.0, DeepGO-
SE, and SPROF-GO for predicting GO terms in each group
for BP, MF, and CC. For biological process, TransFew and
Tale generally perform best for rare GO terms with <55
annotations, while SPROF-GO has the highest average AUC
scores for GO terms with >60 annotations. For molecular

function, NetGO 3.0 performs best for very rare GO terms
with <40 annotations, followed by TransFew and GO. For cel-
lular component, the overall AUC scores of TransFew are more
or less ranked in the middle for GO terms with <40 annota-
tions. The Pearson’s correlation between the AUC scores of
TransFew and the annotation frequency of the GO terms in
BP, MF and CC is only 0.42, 0.37, and 0.45, respectively. The
moderate correlation indicates its performance is robust with
the respect to the annotation frequency of rare GO terms.

3.3 The contributions of different components and
implementations of TransFew

We tested how different components or implementations of
TransFew influenced its performance. MLP (Interpro), MLP
(MSA), and MLP (ESM) denote the three implementations of
using the Interpro domain features, the MSA features, and
the sequence features generated by ESM2_t48 respectively to
generate the sequence representation for function prediction,
without using the label representation at all. TransFew stands
for the final implementation that combines the sequence rep-
resentation generated from the ESM2_t48 features and the la-
bel representation to predict protein function. TransFew +
MSA + Interpro is the same as TransFew except that it uses
ESM2_t48 features together with the MSA and Interpro fea-
tures to generate the sequence representation. MLP
(Interpro), MLP (MSA), and MLP (ESM) were trained on the
GO terms that have at least 30 annotations, while TransFew
and TransFew + MSA + Interpro were trained on the GO
terms with at least one annotation. The results of the different
implementations are shown in Table 2.

Among the three methods of using only sequence represen-
tations to predict protein function, MLP (ESM) performs bet-
ter than MLP (Interpro) and MLP (MSA) in terms of all the
metrics for all three gene ontologies, indicating that the
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Figure 2. The precision-recall curves of TransFew, Naive, DiamondBLAST, Tale, NetGO 3.0, SPROF-GO, and DeepGO-SE for the three ontologies (BP,
MF, and CC) on the Test_all dataset, respectively. The circled dot highlights the point where each method achieves the highest Fax.

ESM2_t48 features are better than the MSA features and the
Interpro features for generating sequence representations for
protein function prediction.

TransFew that combines the sequence representation gen-
erated by ESM2_t48 and the label representation generated
from the GO graph and the text description of GO terms per-
forms better than MLP (ESM) without using the label repre-
sentation in most situations, suggesting that integrating the
sequence representation and the label representation can gen-
erally improve protein function prediction.

The combination of TransFew with additional features
from MSA and Interpro outperforms TransFew in only two
cases in terms of the AUPR metric, suggesting the combina-
tion does not improve the performance in this experiment.

However, multiple studies (Kulmanov and Hoehndorf 2020,
Yao et al. 2021, Wang et al. 2023, Yuan et al. 2023) have
demonstrated that integrating features from diverse modali-
ties typically enhances function prediction performance. We
hypothesize that the decline in the performance in this experi-
ment may stem from the addition of extra features not sub-
stantially increasing relevant information but rather adding
complexity to the model, potentially leading to overfitting
and a decrease in the generalization performance. Indeed,
Supplementary Note S3 reveals that even though TransFew +
MSA + Interpro fits the training data better than TransFew,
it performs worse on the validation data. Therefore, we plan
to explore more effective methods of integrating information
from multiple modalities in the future.
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Figure 3. The average AUC score of five methods (TransFew, Tale, and NetGO 3.0, DeepGO-SE, and SPROF-GO) predicting relatively rare GO terms in
each GO group within an interval of annotation frequency for the three gene ontologies (BP, MF, and CC). The X-axis represents the annotation frequency

of the GO term groups. The Y-axis represents the average AUC scores.

Table 2. The performance of different components or implementations of TransFew on the Test_all dataset in the three GO categories (BP, MF,

and CC).?
Methods Fmax (T) WFmax (T) AUPR (T) Smin (l)
CC MF BP CC MF BP CC MF BP CC MF BP

Interpro 0.6753  0.6340  0.4283  0.5396  0.5424  0.3631 0.7485  0.6424  0.3880  7.0100  6.6078 19.7022
MSA 0.6931  0.6397 0.4167 0.5662  0.5542 03657 0.7689  0.6524  0.3769  6.8752  6.7176  19.8060
ESM 0.7113  0.6652  0.4578  0.6058  0.5769 0.4165 0.7960 0.6745  0.4344  6.5683  6.5698  19.0910
TransFew 0.7264  0.6655  0.4489  0.6109 0.5860 0.4067 0.7928  0.6871 0.4392  6.6935  6.3848 19.3534
TransFew+  0.7065  0.6426  0.3732  0.5871  0.5519 03055 0.7982 0.7016  0.3388  6.9579  6.7165  20.4570

* TransFew is the final version of the method in this work. Interpro, MSA, ESM, and TransFew— stand for MLP (Interpro), MLP (MSA), MLP (ESM),

and TransFew + MSA + Interpro, respectively. Bold numbers denote the best results.

Finally, we compared the performance of TransFew of us-
ing the label encoder with that of its other implementations
that had the embedding of the label encoder replaced by a
random matrix for the various GO partition groups in
Supplementary Note S7. The results demonstrate that using
the label encoder improves the prediction accuracy across

the board.

4 Conclusion and future work

In this work, we present a new approach (TransFew) combining
the information in the input space (the protein sequence space)

and the output space (the function label space) to improve pro-
tein function prediction, particularly the accuracy of predicting
rare function terms (GO term labels with few annotations). In
the input space, we use a large pretrained protein language
model to generate features for a protein sequence, which are
then mapped to the protein function space defined by both com-
mon and rare GO terms to create a function-relevant represen-
tation for the protein. Learning the unbiased representations of
proteins in terms of both common and rare GO terms makes it
possible to predict them on the equal footing. In the output
space, we use a graph convolutional neural network-based
auto-encoder to combine the textual definition of GO terms
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and the inheritance and composition relationships between GO
terms in the GO graphs to generate the semantic representations
for all the GO terms, capturing the similarity between GO terms
to facilitate the transfer of annotation from common GO terms
to rare ones.

The representations in the input space and the output space
are integrated by a novel cross-attention mechanism to build
the associations between the protein representation and the
label representation, which are used to predict the final func-
tion terms for the protein. TransFew not only performs better
than two highly sophisticated protein function prediction
methods on newly released test proteins, but also can predict
the rare GO terms more accurately, demonstrating the ap-
proach of representing and combining the data of GO terms
and proteins is effective in predicting all kinds of GO terms.

Our experiment also demonstrates that the sequence features
generated by a large protein language model (ESM2_t48) is suf-
ficient to create a functional-relevant representation of protein
sequences that is more useful for protein function prediction
than the features generated from multiple sequence alignments
(MSAs) and Interpro domain features. Even though this does
not rule out the usefulness of MSAs and Interpro domain fea-
tures, it does show that very large pretrained protein language
models can effectively capture the evolutionary patterns in pro-
tein sequences relevant to protein function prediction.

Because TransFew uses only a single protein sequence as in-
put without the need of searching large protein sequence data-
bases to generate multiple sequence alignments, it can predict
protein function quickly, making it applicable to predicting the
function of proteins in an entire proteome of a species.

Even though three modalities of data including protein
sequences, textual description of GO terms, and hierarchical
relationship between GO terms have been integrated by
TransFew to predict protein function, other relevant modali-
ties of protein data (Cao and Cheng 2016) such as protein
structures, protein-protein interaction, hypothetical function
annotations based on homology transfer, and the textual de-
scription of proteins have not be explored in this work. In the
future, we plan to add all these modalities into our approach,
harnessing the combined power of diverse features to further
enhance the accuracy and robustness of protein function pre-
diction. One promising avenue is to leverage multi-modal
language models for protein function prediction, as demon-
strated in computer vision (Radford et al. 2021, Acosta et al.
2022, Alayrac et al. 2022) and a recent bi-modal protein lan-
guage model (Heinzinger et al. 2023). By adopting such an
approach, we can potentially learn a comprehensive represen-
tation of proteins encompassing protein sequence, structure,
interaction, gene ontologies, and prior human knowledge to
improve protein function prediction.

Supplementary data

Supplementary data are available at Bioinformatics
Advances online.
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