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1 | INTRODUCTION

Ahhyun Lee |

Jianlin Cheng

Abstract

Predicting protein function from protein sequence, structure, interaction, and other
relevant information is important for generating hypotheses for biological experiments
and studying biological systems, and therefore has been a major challenge in protein
bioinformatics. Numerous computational methods had been developed to advance
protein function prediction gradually in the last two decades. Particularly, in the recent
years, leveraging the revolutionary advances in artificial intelligence (Al), more and
more deep learning methods have been developed to improve protein function predic-
tion at a faster pace. Here, we provide an in-depth review of the recent developments
of deep learning methods for protein function prediction. We summarize the signifi-
cant advances in the field, identify several remaining major challenges to be tackled,
and suggest some potential directions to explore. The data sources and evaluation met-
rics widely used in protein function prediction are also discussed to assist the machine
learning, Al, and bioinformatics communities to develop more cutting-edge methods to

advance protein function prediction.
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can only be applied to a small number of proteins. Therefore, making

precise protein function prediction computationally holds the key to

Proteins are essential molecules in all living organisms. Their role
encompasses structural support, biochemical catalysis, gene regula-
tion, enzymatic activities, and signal transduction [1, 2]. Determining
the functions of proteins is a key step to understand biological sys-
tems and modulate BPs, which plays an important role in biomedical
research and biotechnology development. Furthermore, proteins are
common targets in drug discovery [3-5] because many proteins are
implicated in diseases, and protein function information can facili-
tates the development of drugs targeting them. As the structure of
protein can be determined by experimental techniques such as x-ray
crystallography, the function of proteins can also be determined by
experimental techniques such as biochemical assays and enzymatic
analysis. However, the experimental techniques for protein function
determination are expensive, time-consuming, and labor-intensive and

address the need of function information for most proteins and has
become a critical challenge in bioinformatics.

Currently, hundreds of millions of protein sequences have been
generated through numerous genome and transcriptome sequencing
projects. However, less than 1% of them have experimentally deter-
mined protein function information. This presents a huge gap between
known protein sequences and their functions. Therefore, it is critical
to devise advanced computational methods to accurately predict pro-
tein function to fill the gap as the recent development of deep learning
methods has done for protein structure prediction and determination
[6-10].

A plethora of various computational methods have been devel-
oped to predict protein function, many of which had been reviewed
and assessed previously [11-13]. Recently, as Al is transforming many
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FIGURE 1 The general workflow of deep learning-based protein function prediction. One or multiple sources of data such as protein
sequences, protein structures (e.g., structures retrieved from the AlphaFoldDB [17] and the Protein Data Bank [PDB] [18]), protein-protein
interaction from the STRING database [19], protein family and domain information from the Interpro database [20], and the textual description of
proteins in the literature such as UniProt Knowledgebase (UniProtKB) [21] and GeneCards [22] are presented as input. The features are then
extracted from the input data, which are fed into deep learning models to predict protein function as output. Protein function are usually described
as GO [14] function terms. Therefore, protein function prediction is essentially a classification problem. Because one protein may have multiple
functions described by multiple GO termes, it is a multilabel classification problem.

scientific fields, cutting-edge prediction methods based on deep learn-
ing approaches have been thriving in the protein function prediction
field, leading to a significant improvement of prediction accuracy over
the previous generation of computational protein function predic-
tion methods. Therefore, there is a need of reviewing these latest
advances to facilitate the development of more deep learning methods
to address the remaining challenges in the field.

Here, we present a comprehensive overview of recent deep learning
methods developed to advance protein function prediction. Figure 1
illustrates a general workflow of deep learning-based prediction of
protein function defined by the gene ontology (GO) terms [14]. We
classify these methods roughly into four main categories based on
the input information used by them: (1) sequence-based methods of
using only protein sequence as input, (2) structure-based methods
of using protein structure as input, (3) interaction-based methods
of using protein-protein interaction (PPI) information as input, and
(4) integrative methods that use multiple sources of information as
input. It is worth noting that structure- or interaction-based meth-
ods often also use sequence information implicitly in addition to
using structure or interaction information, but they are not classi-
fied as integrative methods. Moreover, we also discuss the latest
few-shot learning [15, 16] paradigm that improves the prediction of
rarely annotated protein function terms associated with few proteins.
Table 1 lists the types, input features, neural network architectures,
and availability of 30 deep learning protein function prediction meth-
ods reviewed in this article. Furthermore, in addition to surveying
the deep learning methods, we discuss the data sources, standard
benchmarks (i.e., the Critical Assessment of Protein Function Anno-
tation (CAFA) [11]), and evaluation metrics widely used for protein

function prediction to assist the Al, machine machine learning, and

bioinformatics communities to find necessary resources to develop
more protein function prediction methods. Moreover, we identify sev-
eral major remaining challenges in protein function prediction and
envision that developing Large Language Models for Proteins (LLMPs),
akin to the Large Language Models (LLMs) used in natural language
processing (NLP), such as ChatGPT [15], can be a promising approach
to addressing the challenges. These topics are discussed in detail in

the sections below.

2 | SEQUENCE-BASED PROTEIN FUNCTION
PREDICTION

Sequence-based prediction methods use different kinds of deep learn-
ing architectures to take protein sequence information as input to
predict protein function. Several deep learning models that have
demonstrated effectiveness for dealing with sequential data are (1)
convolutional neural networks (CNNs) [23], (2) recurrent neural net-
works (RNNs) [24, 25], (3) deep neural networks (DNNs) [26, 27],
and (4) attention-based transformers [2, 28]. CNNs are effective
at identifying motifs (short conserved sequence patterns associated
with distinct protein functions), local patterns, and spatial relation-
ships in the protein sequences. RNNs, particularly, long short-term
memory networks (LSTMs) [29], can capture sequential dependence
between amino acids in protein sequences. DNNs also hold significance
in capturing the nonlinear relationships between protein function
and sequences through multiple neural network layers. Finally, the
attention mechanism and transformer architecture are well-suited for
sequence-based function prediction due to their ability to capture

long-range dependencies between amino acids in protein sequences.
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TABLE 1 Theclassification of 30 deep learning protein function prediction methods and their input features, architectures, and availability.
Sequence, structure, interaction, and domain refers to four types of typical input features: sequence-based features, structure-based features,
protein interaction-based features, and other features based on protein family and domain information. RNN stands for both standard recurrent
neural networks and advanced ones like gated recurrent unit (GRU) and long short-term memory (LSTM), CNN for convolutional neural networks,
and GNN for graph neural networks. Attention denotes the methods utilizing self-attention mechanisms, transformers, and techniques extracting
features from pretrained attention- or transformer-based architectures. DNN refers to deep neural networks that use multilayer perceptrons
(MLP) as a main part of the model architecture beyond using them in the final classification layer. Few-shot refers to methods specifically designed
to utilize deep learning models for predicting GO terms with few annotations. We also include a link to the GitHub repository or webpage of the
tool. For tools whose link we cannot find, we use NA.

Features Deep learning architecture Few-
Methods Sequence  Structure Interaction Domain Text DNN CNN GNN RNN Attention shot URL
ProLanGO 4 4 NA
FUTUSA v 4 GitHub
DeepGOPIlus v v Web
PFmulDL v v v GitHub
DEEPred v v GitHub
TALE 4 v v GitHub
TEMPROT 4 v v GitHub
SPROF-GO 4 4 v GitHubWeb
ATGO v v v Web
PANDA2 v v v Web
DeepFRI v v v v GitHubWeb
GAT-GO 4 4 4 4 v GitHub
TransFun 4 4 4 v GitHub
Struct2GO 4 4 4 v GitHub
Mashup v Web
deepNF v v GitHub
MELISSA 4 GitHub
NetQuilt 4 4 v GitHub
DeepGO v v v v GitHubWeb
STRING2GO v/ v GitHub
DeepGraphGO v v v GitHub
GRAPH2GO 4 4 v 4 GitHub
NetGO2 4 v v v Web
NetGO3 4 v 4 v Web
SDN2GO v v v v v GitHub
PFP-GO 4 4 v Web
MultiPredGO 4 4 4 v 4 GitHub
DeepGATGO 4 v v 4 v NA
ProTranslator v v v 4 v GitHub
DeepGOZero v v v GitHub
Sequence-based  Structure-based Interaction-based  Integrative Few-Shot
(I (I O ] O
Moreover, compared to CNNs, RNNs, and DNNs, transformers can be trained protein language models to extract representative embeddings
more interpretable because its attention mechanism can help identify from protein sequences for downstream protein function prediction
key features (e.g., residues) important for function prediction. Besides tasks. In the subsequent sections below, we discuss the specific meth-
directly applying transformer-based architectures to protein function ods that harness these deep learning models to address the intricacies

prediction, several methods [30-32] leverage transformer-based pre- of predicting protein function from sequences.
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https://github.com/Shen-Lab/TALE
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2.1 | RNN-based protein function prediction

ProLanGO [33] treats the protein function prediction problem as a lan-
guage translation problem and applies a RNN-based Neural Machine
Translation (NMT) model to tackle it. Protein sequences (input) and
GO terms (output) are regarded as two separate languages, ProLan
and Golan, respectively. Protein sequences are represented as a series
of k-mers (i.e., a substring or word of k amino acids). Protein words
are extracted based on the frequency of k-mers. GO function terms
are generally represented as a directed acyclic tree structure based
on their relationships, with each term uniquely identified by a seven-
digit number. ProLanGo allows capturing the hierarchical relationship
between GO terms and enables the sequence to function translation
through the depth-first search (DFS). Each GO term s assigned to a 26-
base Alphabet ID according to its order of being visited during the DFS
traversal. Given the Prolan and GOlan languages, an encoder-decoder
based on RNNs is trained to predict GOlan from Prolan. The encoder
is used to encode a ProLan sentence into fixed-length vectors, and the
decoder decodes the representation into a GOLan sentence. The net-
work is trained by maximizing the conditional probability of predicting

a GOLan sentence given a ProLan sentence.

2.2 | CNN-based protein function prediction

FUTUSA [34] has following four components: CNN-based embedding
layers, CNN-based feature extraction, dense layers, and a classifica-
tion layer. The embedding layers are used to convert protein sequences
to numerical vectors. To alleviate the limitations of one hot encoding
such as the inability to capture physiochemical properties of amino
acids, a one-dimensional CNN is employed to generate the amino
acid embedding vector, followed by another CNN to extract spatial
features, whose output is fed into dense layers to generate hidden fea-
tures. The hidden features are used by the final classification layer to
predict GO terms.

DeepGOPIlus [35] combines the function prediction from a CNN
network and the sequence similarity to improve prediction accuracy.
It uses one-dimensional CNN filters to learn similar patterns (motifs)
in sequences. An input sequence is transformed into a matrix repre-
sentation of dimension 21 x 2000 using a one-hot encoding strategy,
where a one-hot vector of 21 binary numbers is used to represent an
amino acid and the maximum number of amino acids to be represented
is 2000. The input is fed into a set of CNN layers with varying filter
sizes to generate features capturing sequence motifs of different size.
The features are pooled together and selected by a MaxPooling layer.
The output of the MaxPooling layer is forwarded to a fully connected
classification layer to predict GO terms. DeepGOPIlus is a general
sequence-based protein function prediction that can be applied to
proteins in any taxa or kingdom of species.

PFmulDL [36] integrates both a multikernel CNN and a gated
recurrent unit (GRU) to predict protein function. Like DeepGoPlus,

it employs a one-hot strategy to encode an input protein sequence.

Proteomics and Systems Biology

The encoding serves as input for a multikernel CNN model, which is
fine-tuned by a pretraining process. The output layer of the CNN is
used as input for the GRU to generate features, which are used as
input for a fully connected layer to predict GO terms. In order to pre-
vent issues such as gradient vanishing and overfitting, it uses transfer
learning (TL) to improve training, leading to the improved performance
of protein function prediction. Particularly, it enhances the prediction
accuracy for “rare GO terms (minority class)” without compromising

the performance for the “common GO terms (major classes).”

2.3 | DNN-based protein function prediction

DEEPred [37] employs a deep learning model organized as a stack of
multitask feed-forward DNNs. Each DNN is independently designed to
predict groups of 4 or 5 GO terms. The grouping is based on the lev-
els of GO terms in the GO graph, determined through the topological
sorting. Groups are carefully created to ensure that GO terms within
the same group have similar numbers of annotations, addressing the
variability in protein associations. This approach aims to enhance the
model’s accuracy and effectiveness in predicting GO terms for diverse

biological functions.

2.4 | Attention- and transformer-based protein
function prediction

TALE [30] uses a self-attention-based transformer to extract repre-
sentative features from protein sequence to improve protein function
prediction. It also leverage a zero-shot learning paradigm to jointly
embed sequence and hierarchical function labels into the latent space,
allowing a more cohesive representation of the relationships between
features and labels. This joint embedding facilitates TALE to generalize
well to novel sequences and unseen function by matching similarities
among function labels and sequences. Furthermore, TALE introduces a
new loss function to address the issue of hierarchical violation. This loss
function includes a hierarchical regularization term, which specifically
aims to prevent the predicted scores (probabilities) of child GO terms
from surpassing those of its ancestors. Additionally, TALE+, a method
that ensembles the top three TALE models and a sequence similarity-
based protein function prediction method based on DIAMOND [38],
was developed to improve the predictions made by TALE.

TEMPROT [39] is another sequence-based protein function predic-
tion method leveraging ProtBERT-BFD [40], a transformer language
model pretrained on the BFD dataset [8, 41, 42]. The pretrained
ProtBERT-BFD was first fine-tuned. The fine-tuning process employs
a sliding window technique, dividing sequences into 500 chunks to
accommodate ProtBERT-BFD’s length limitation of 512. After fine-
tuning, the backgone of ProtBERT-BFD is used to extract representa-
tive features from protein sequences. These features serve as an input
for ameta-classifier based on a multilayer perceptron (MLP) to predict-
ing protein function. Furthermore, TEMPROT+ combining TEMPROT
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and a sequence-similarity search tool, BLASTp [43], was developed to
improve the prediction performance.

SPROF-GO [44] is a sequence-based alignment-free protein func-
tion prediction method, which harnesses a pretrained protein language
model for efficient extraction of informative sequence embeddings,
while applying self-attention pooling to focus on crucial residues. Its
prediction has three main stages. First, the pretrained protein lan-
guage model ProtTrans [40] is used to efficiently extract the initial
sequence embedding matrix from sequences. The sequence embed-
ding matrix undergoes parallel processing by two MLPs to acquire an
attention vector and a more detailed hidden embedding matrix. The
hidden embeddings are then normalized to generate an embedding
vector, which is used as an input for an MLP to predict the probabilities
of GO terms. SPROF-GO also employs a hierarchical learning strat-
egy to guarantee the consistency among predictions. Furthermore, a
label diffusion algorithm is integrated in the test phase to exploit the
homology information of proteins with related functions.

ATGO [45] harnesses protein language models trained on extensive
sequences in an unsupervised fashion to predict protein function. The
strategy aims to address the limitations associated with imbalanced
annotated functional data. Specifically, ATGO uses the ESM-1b trans-
former [46] to extract multilayer feature embeddings from protein
sequences. A supervised triplet neural network was trained on these
extracted feature embeddings in order to maximize the difference
between positive and negative samples. To further enhance ATGO'’s
performance, a composite method, ATGO+ was also introduced. It
combines predictions from ATGO and the Sequence Alignment-Based
GO Prediction (SAGP).

PANDA2 [47] uses a Graph Neural Network (GNN) to model the GO
direct acyclic graph (DAG) representing the hierarchical structure of
GO terms. It also incorporates features produced by the transformer-
based protein language model ESM [46]. PANDAZ2 has three blocks
serving as fundamental building blocks for refining edge, node, and
global features. In the first two blocks, it sequentially updates edge
features, node features, and global features by integrating informa-
tion of all available features in the GNN. Furthermore, it employs a
fully connected layer to change the size of ESM features to the num-
ber of classes being considered. Then, it merges node features, the
output generated by fully connected layer, DIAMOND scores, and pri-
ority scores. This comprehensive combination of information is used
as input for the third GNN block. The node features of the third GNN
block are used by a sigmoid function to predict the probability of each
class (GO term). PANDA2 demonstrates the effectiveness of using a
GNN architecture for modeling the GO DAG topology and annotating

protein functions.

3 | STRUCTURE-BASED PROTEIN FUNCTION
PREDICTION

The sequence-based function prediction approach has been more com-
mon in protein function prediction than the approaches of using other

inputs due to the universal availability of protein sequence, even

though other data such as protein structure can provide additional
complementary information to improve protein function prediction.
Incorporating structure in function prediction provides additional
data for models to leverage and enhance their predictive accuracy.
For instance, molecular functions are largely determined by protein
structures, and proteins with similar structures can have different
sequences. BPs and to some extent cellular component (CC) usually
rely on multiple proteins and the way they interact. As such, incor-
porating multiple sources of information in the best possible way will
likely improve predictions in these respective domains. In this regard,
structure-based prediction methods can utilize structural information
to improve predictions, particularly for molecular functions.

With the recent development of high-accuracy protein structure
prediction tools such as AlphaFold2 [8, 17], protein structures have
become generally available and started to be used more and more
in protein function prediction. Most structure-based prediction meth-
ods use various GNNs such as Graph Convolutional Network (GCN)
and Graph Attention Network (GAT) to represent and process protein
structures. GNNs offer powerful capabilities for complex graph-related
tasks; however, they come with high computational requirements and
scalability issues that must be carefully considered. Libraries such as
PyTorch Geometric (PyG) [48] and Deep Graph Library (DGL) [49] pro-
vide optimized implementations and tools that significantly enhance
the feasibility of using these architectures.

DeepFRI [50] relies on a GCN [51] to integrate protein struc-
tures and sequence features extracted from a language model to
predict protein function. DeepFRI utilizes known protein structures
available in the PDB or homology-based structural models built by
SWISS-MODEL [52] as structural input. It uses a language model com-
prised of a long short-term memory (LSTM) network trained in a
self-supervised learning manner to extract residue-level features from
protein sequences, followed by the GCN layers merging the reside-
level features with the graph built from the contact maps calculated
from the input protein structure to generates protein-level feature
representations. The protein-level features are used to predict GO
terms in each of three function categories: CC, BP, and Molecular Func-
tion as well as the Enzyme Commission (EC) numbers, respectively.
DeepFRI also employs gradient-weighted Class Activation maps (grad-
CAMEs) to elevate the representation resolution from protein-level to
the region-level, which allows the detection of function-specific struc-
tural sites, facilitating the identification of crucial residues correlated
with specific functions.

Different from the GCN used by DeepFRI, GAT-GO [53] uses a GAT
to integrate both predicted protein structural information and protein
sequence embeddings for accurate protein function prediction. The
method uses RaptorX [54, 55] to predict protein structural information
(i.e., protein contact map) and ESM-1b to generate sequence embed-
dings. It first uses a one-dimensional CNN to take both sequential
features and residue-level sequence embeddings to create per-residue
feature embeddings. Then, the CNN-generated embeddings com-
bined with a RaptorX-predicted contact map are fed into GAT, which
produces an intermediate embedding that captures both sequential

and structural information. The representation constructed by GAT
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passes through a dense classifier to predict the probability of protein
function terms.

Different from DeepFRI and GAT-GO using earlier protein struc-
ture prediction methods to generate structural input, TransFun [31]
uses AlphaFold-predicted protein structures as input. It employs
a transformer-based protein language model and rotation- and
translation-equivariant graph neural networks (EGNNs) [56] to distill
information from both protein sequences and structures to predict
protein functions. Its prediction process has the following three main
stages: (1) building a protein graph from a predicted structure, (2)
generating the embeddings from a protein sequence, and (3) using
an EGNN model to predict protein functions. In the first stage, pro-
tein graphs are generated from protein structures collected from
AlphaFoldDB [8, 17] using a K-nearest neighbor (KNN) approach based
on the distance between carbon-alpha atoms in a protein structure.
In the second stage, per-residue and per-sequence embeddings for
proteins are generated from protein sequences by the ESM-1b [46]
pretrained language transformer model. In the final stage, both the
per-residue and per-sequence features are combined by the EGNNs to
predict protein function.

Struct2GO [57] is also a structure-based method that combines
sequence features with structural features obtained from Alphafold2-
predicted structures. It extracts a two-dimensional (2D) protein con-
tact map for an input protein from the three-dimensional (3D) protein
structure according to a distance threshold of 10 A between carbon-
alpha atoms. Additionally, Node2vec [58] algorithm is employed to
generate residue-level features for the protein. The contact map serves
as the adjacency matrix of the input graph, which are combined with
the node features, that is, the residue-level features, to generate a
graph representation of the protein. The representation is used by a
Graph Convolution Neural (GCN) network to generate hidden struc-
tural features. The feature generation is enhanced with a self-attention
mechanism and the integration of sum- and max-pooling techniques.
Additional sequence features are also extracted using the SeqVec [59].
Finally, the sequence features are fused with the structural features as
input for a final classifier to make function prediction.

4 | INTERACTION-BASED PROTEIN FUNCTION
PREDICTION

Due to the fact that proteins rarely function in isolation, PPl informa-
tion can be used to enhance protein function prediction. It is partic-
ularly useful for predicting GO terms describing biological processes
(BPs) that involve multiple proteins cooperating together. Protein func-
tion prediction methods relying on PPIs primarily focus on genome-
scale interaction networks, aggregating data from various sources to
gain insights into the functional organization of proteins. Some of
these methods emphasize the integration of heterogeneous informa-
tion from diverse interaction networks. A straightforward approach
for data integration is to process each network separately and then
combine the features generated from each of them. However, this

approach often encounters some challenges like increased dimension-
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ality, information loss, and noise accumulation from high-throughput
experiments. In this section, we discuss the diverse approaches of inte-
grating multiple heterogeneous networks to predict protein function.

Mashup [60] is an integrative framework designed to extract high-
quality and compact topological feature representations from one
or more interaction networks constructed from heterogeneous data
types. Although Mashup does not inherently use a deep learning
technique, it provides a method for extracting features from mul-
tiple heterogeneous networks, which are readily used by several
interaction-based deep learning methods [61, 62]. The method con-
sists of the following three main stages: a diffusion stage, an embedding
stage, and a learning stage. The diffusion stage involves applying a
localized network diffusion technique, specifically Random Walks with
Restart (RWR), to each individual network to obtain a matrix repre-
sentation capturing the interactions between nodes denoting proteins.
This captures information about topological structure and connectiv-
ity of nodes in each network. Next, the embedding phase focuses on
obtaining low-dimensional feature vectors that represent the topology
of each node, which is achieved by minimizing the difference between
observed diffusion states and parameterized multinomial logistic dis-
tributions across all networks. Finally, the learned representations are
used as input features for various downstream tasks including protein
function prediction.

Following a similar approach as Mashup, deepNF [61] integrates
diverse heterogeneous protein interaction networks using deep learn-
ing techniques. The process begins with the Random Walk with Restart
(RWR) algorithm to obtain high-quality vector representations of pro-
teinsin each network, capturing their structural information. A Positive
Pointwise Mutual Information (PPMI) function is then applied for
normalization, and this process is iterated for each network. The sub-
sequent stage focuses on creating a comprehensive representation
by integrating the multiple PPMI instances. To achieve this, deepNF
employs a Multimodal Data Autoencoder (MDA) network to encode
diverse PPMI instances into a representative matrix and reconstruct
it through a decoder. The encoder produces low-dimensional non-
linear embeddings for each network, and these representations are
concatenated. A common feature representation is computed using
multiple nonlinear functions. In the decoding phase, the process is
reversed to compute larger common representations from individ-
ual ones, followed by the reconstruction of PPMI matrices for each
network. The final step predicts protein functions based on the com-
prehensive representations obtained in the bottleneck layer of the
autoencoder network.

Similar to Mashup and deepNF, MELISSA [62] predicts functions
from multiple PPl networks. However, the integration of known func-
tional labels during the embedding process sets MELISSA apart from
the aforementioned methods. Its prediction unfolds in the following
five key steps: Biclustering, Graph Augmentation, Diffusion, Embed-
ding, and Learning. In the initial stage, MELISSA employs a biclustering
algorithm to simultaneously cluster proteins and functional labels.
This results in biclusters where proteins within clusters share similar
functional labels, and functional labels are rarely shared across clus-

ters. In the following step, the PPI graphs undergo augmentation by
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introducing auxiliary nodes, each representing a distinct cluster. Nodes
in the graph are then connected to their corresponding auxiliary nodes
using must-link constraints (positive weighted edges). Additionally,
pairwise cannot-link constraints (edges with negative weights) are
introduced between the auxiliary nodes. This augmentation transforms
the graphs into signed graphs, where auxiliary nodes encode functional
information. Nodes within the same cluster are drawn closer, while
nodes in different clusters are pushed apart. Following the augmenta-
tion stage, diffusion state matrices are generated for each augmented
graph using a generalization of the method applied in Mashup, by con-
sidering the signed nature of the edges. In the final step, MELISSA
follows Mashup’s approach to generate embeddings for each node.
These embeddings can be effectively utilized by existing function
prediction methods to predict function terms.

NetQuilt [63] is a method that integrates protein sequence and
PPI information from multiple species. The approach computes sim-
ilarity scores between proteins across species using a recurrence
equation derived from the IsoRank method of multispecies network
alignment [64]. A large symmetric similarity matrix is constructed,
where IsoRank similarity matrices of all species with themselves are
placed along the diagonal, resulting in a block-diagonal matrix. Inter-
species protein similarity matrices are placed on the off-diagonal. The
matrix then contains the information from all the individual protein
interaction networks as well as the links between them.

The matrix constructed, along with sequence-similarity information,
is used as input for a maxout neural network to predict protein func-
tion.

DeepGO [65] introduces an approach to predict protein function
based on protein sequences and known interactions. It integrates fea-
tures derived from sequences and PPI networks across various species
inthe STRING database. The combined sequence and PPI network fea-
tures undergo processing in a fully connected layer, and the resultant
output feeds into hierarchically structured neural networks to make
function prediction.

STRING2GO [66] employs a deep maxout neural network (DMNN)
to acquire functional representations by simultaneously encoding both
PPIs and functional annotation information. It uses two methods to
generate network embedding representations: (1) a network embed-
ding generation process similar to the one in mashup and (2) node2vec
of generating embeddings from the STRING network. After the gen-
eration of embeddings, DMNNSs are used to simultaneously learn and
encode representation information from both the PPl network and
protein functional annotations. The functional representations are
extracted from the outputs of the third hidden layer of DMNNs, which
is used by a support vector machine (SVM) to predict the probability of
GO terms.

5 | INTEGRATIVE PROTEIN FUNCTION
PREDICTION

In this section, we will delve into the methods of integrating multiple

sources of information to predict protein function.

DeepGraphGO [67] aims to tackle the limitation of protein
interaction-based methods that did not include sequence information.
It introduced a multispecies strategy to incorporate the data of all
species to train a single model. This approach significantly augments
the number of training samples, surpassing the capabilities of exist-
ing network-based methods using less data at the time. Binary input
protein features are generated through InterProScan, wherein each
element indicates the presence or absence of a protein domain, fam-
ily, or motif. These binary features are combined with protein network
graphs, where proteins serve as the nodes and PPIs form the edges
for functional protein annotation. DeepGraphGO prediction comprises
three primary steps. First, a fully connected layer is employed to
convert the binary features into a nonbinary vector with reduced
dimensions, serving as the initial feature representation. Next, updat-
ing the representation vector of each node and incorporating new
information from network interactions is achieved through a graph
CNN. Finally, a fully connected layer is utilized to predict probabilities
of GO terms.

Graph2GO [68] is a multimodal graph-based representation learn-
ing model that integrates heterogeneous information. This model
incorporates multiple types of protein interaction networks derived
from sequence similarity and PPI, along with protein features such
as amino acid sequence, subcellular location, and protein domains.
The Graph2GO pipeline is composed of two Variational Graph Auto-
Encoder (VGAE) [69] models for the PPI network and sequence
similarity network (SSN). These VGAE models extract representative
embeddings, which are subsequently used as input to a final fully
connected DNN classifier for the prediction of protein functions.

Three version of NetGO methods, NetGO, NetGO2, and NetGO3
are related to an early integrative method—GOlabeler [70], which
encompasses the following five distinct components: Naive prediction
(GO term frequency), BLAST-KNN (k-nearest neighbor using BLAST
results), LR-3mer (Logistic regression of the frequency of amino acid
trigrams), LR-InterPro (Logistic regression of InterPro features utiliz-
ing rich domain, family, and motif information), and LR-ProFET (Logistic
regression of ProFET features). The outputs of these components are
combined through learning to rank (LTR) to predict protein function.
NetGO [71] introduces a novel component, Net-KNN, incorporating
network information into the system. NetGO2 [72] further enhances
the system by incorporating two additional components, LR-Text and
Seq-RNN, while excluding the LR-ProFET component. For LR-Text,
corresponding text data about proteins are extracted from PubMed,
forming a document that is represented using sparse TF-IDF (term
frequency-inverse document frequency) and dense semantic represen-
tations generated by Doc2Vec [73]. Logistic regression is trained with
these text-based features. Meanwhile, Seq-RNN is employed to extract
deep representations of protein sequences, using a bi-directional long
short-term memory (BiLSTM), followed by a fully connected layer to
predict functions. NetGO3 [74] modifies the architecture by replacing
the Seq-RNN component with LR-ESM. LR-ESM generates embeddings
for each protein using ESM-1b [46].

SDN2GO [75] employs an integrated deep learning model combin-

ing protein sequence, protein domains, and PPl networks for protein
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function prediction. The model has four parts, a sequence submodel, a
domain submodel, a PPI-net submodel, and a weighted classifier. The
sequence submodel extracts features from sequence input, which is
represented as 2D 3-g-vector-matrix. The model uses one-dimensional
CNNs to extract in-depth high-dimensional features. The PPI-net sub-
model utilizes three-layer trapezoidal neural networks to generate the
features of PPl Network input. The domain submodel uses the sorted
protein domain information as an input for a sparse layer to gener-
ate intermediate features. The output of the Sparse layer represented
as 2D matrix enters one-dimensional CNNs to extract features. The
output features represented as vectors with same dimensions gener-
ated by all the three submodels are combined as input for the weighted
classifier to predict functions of protein.

PFP-GO [76] also integrates protein sequence, protein domain, and
PPI network information for protein function prediction. It first uses
the information separately to rank each individual GO term, and the
ranking determines which GO terms are associated with the target
proteins. In this method, mapping data from one source to another
becomes crucial as three complementary information sources are uti-
lized. It makes predictions in four steps. First, a PPl network for
target proteins is obtained. Second, only the level-2 neighborhood
graph for each target protein is taken into account, eliminating other
nonessential proteins. Thirdly, after acquiring refined PPl for each
target protein, GO terms are assigned to the target protein and its
neighbors using the sequence-, domain-, and interaction neighbor-
based approaches. Lastly, GO terms are ranked based on a function
enrichment score, and a consensus score is applied to select GO terms
for each target protein.

Like PFP-GO, MultiPredGO [77] predicts protein functions by
combining protein sequence, protein structure, and PPI network infor-
mation. Two individual deep learning models are used for feature
extraction from sequence and structure, and a pretrained knowledge
graph embedding method is used for PPl network. The sequenceis first
transformed into a trigram and then processed by an embedding layer.
Then, the embedding output passes through one-dimensional convo-
lutional layer for feature extraction. For the structure, a 3D structure
is retrieved from Protein Data Bank (PDB) if available, and converted
into four distinct 3D voxel representation. Then, an off-shelf resid-
ual network, ResNet-50 [78], is employed to extract features from
the structure. Lastly, extracted features from sequence and structure
are combined with PPl network information to obtain the final fea-
tures, which are processed by a neuro-symbolic hierarchical classifier
to make function prediction.

Finally, DeepGATGO [79] is an integrative function prediction
method leveraging a graph attention learning network (GATs) and a
contrastive learning [80, 81] approach to combine protein sequence
information and structural and semantic information of GO terms
to predict protein functions. It utilizes ESM-1b [46] pretrained lan-
guage model to extract feature embeddings from protein sequences.
The structural information of GO terms is extracted using GAT net-
work. The semantic information of GO terms is generated through
contrastive learning from embeddings created using their names and
textual descriptions by the BioBert [82] pretrained NLP model. The

Proteomics and Systems Biology

extracted semantic features and structural features of GO terms
are concatenated. The resulting concatenation output is then multi-
plied with the protein sequence features. The concatenated features
are used by a classification layer with the triplet loss and binary
cross-entropy loss to predict the functions of proteins.

6 | FEW-SHOT LEARNING-BASED PROTEIN
FUNCTION PREDICTION

One significant challenge in protein function prediction is to predict
GO terms that are associated with few proteins because they are
severely underrepresented or not present in the training data. For
instance, more than 20,000 GO terms have <100 annotated proteins
possessing them as function.

This mirrors the complexities of the few-shot/zero-shot problem,
where models must predict classes with minimal or no training exam-
ples. To tackle this, effective methods are developed to teach models
to recognize both seen and unseen classes without labeled samples of
the latter, leveraging knowledge transfer from seen to unseen classes.
These methods typically operate in two primary forms: Embedding-
based methods, which associate low-level features of seen classes with
semantic vectors, facilitating recognition of novel classes through sim-
ilarity measurements in the embedding space, and Generative-based
methods, which generate samples for unseen classes using data from
seen classes and semantic representations [16].

In the function prediction domain, most methods tackle this prob-
lem by using semantic information of GO terms [30]. That is given
the scarcity of labeled examples for rare GO terms, semantic informa-
tion is harnessed to establish meaningful relationships between rare
GO terms and common GO terms. Examples of semantic information
include leveraging the hierarchical relationships within the GO graph
and utilizing GO textual descriptions. Another way is to apply embed-
ding functions to associate features with labels, projecting both feature
and label embeddings into a common space and aligning similar GO
terms nearby.

TALE [30] jointly embeds sequence and hierarchical function labels
into a latent space, allowing it to generalize to novel/rare terms. Tale
focuses on terms that have at least one protein annotation and simul-
taneously embeds protein sequences and hierarchical function labels
using the attention mechanism.

ProTranslator [32] transfers function annotations with similar tex-
tual descriptions to annotate a novel function. Leveraging textual
descriptions, ProTranslator embeds GO functions using their textual
descriptions. The embedding is performed using PubMedBert [83], a
language model pretrained on PubMed abstracts and full-text arti-
cles. Proteins are embedded to generate the following three widely
used features: sequence features, textual description features, and
PPI-network features. Similar to deepGOPIus, the sequence features
are extracted using CNNs with multiple one-dimensional convolution
kernels. Textual descriptions are obtained from GeneCards [22]. The
PPI-network features are obtained from pretrained Mashup repre-

sentations calculated from PPl networks. Ultimately, GO terms and
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proteins are projected into the same low-dimensional space using a
bilinear layer.

DeepGOQOZero [84] improves predictions for rare GO classes with
limited or zero annotations using a model-theoretic approach (ELEm-
beddings [85]) to learn ontology embeddings. The ELEmbeddings
represent classes as n-balls and relations as vectors to embed ontology
semantics into a geometric model. It also uses Interpro domain anno-
tations to generate an embedding of size 1024 for each protein. The
protein embeddings and ontology embeddings are combined to predict
GO terms.

7 | DATA SOURCES, CRITICAL ASSESSMENT OF
PROTEIN FUNCTION ANNOTATION (CAFA), AND
EVALUATION METRICS

7.1 | Data sources

Curating high-quality training and test datasets is a key to develop
accurate deep learning methods for protein function prediction. Pro-
tein sequences and function labels are often sourced from the UniProt
Knowledgebase (UniProtKB) [21]. UniProtKB consists of two sections:
UniProtKB/Swiss-Prot (reviewed, manually annotated proteins) and
UniProtKB/TrEMBL (unreviewed, automatically annotated proteins).
The former contains protein sequences and function labels that have
been carefully, manually annotated, while the latter includes compu-
tationally analyzed records awaiting full manual annotation. To obtain
high-quality labels, the proteins in UniProtKB/Swiss-Prot are usually
used to create training and test datasets.

The structure for a protein can be directly predicted by pro-
tein structure prediction tools such as AlphaFold or collected from
PDB [18] and AlphafoldDB [17] if available. PPl networks are usu-
ally retrieved from the STRING database integrating huge amounts
of experimentally determined and predicted PPlIs. InterPro is a valu-
able source to obtain the family and function motif/site annotations
for proteins and domains, which can be used as input features for
protein function prediction. InterPro integrates the data from 13 mem-
ber databases, forming the InterPro consortium, including CATH [86,
87], CDD [88], HAMAP [89], MobiDB Lite [90], Panther [91], Pfam
[92], PIRSF [93], PRINTS [94], Prosite [95], SFLD [96], SMART [97],
SUPERFAMILY [98, 99], and NCBIfam. All the features for a protein
in Interpro can be obtained using the interproscan (a tool to scan
sequences against all InterPro’'s member databases) or downloaded
from the InterPro website. Finally, protein textual descriptions can be
gathered from UniProtKB and GeneCards.

7.2 | Critical assessment of function annotation
(CAFA)

Objectively and rigorously assessing the performance of different pro-
tein function prediction methods is important to advance the field.
The Critical Assessment of Function Annotation (CAFA) [12, 13], a

global, community-wide experiment held every few years to blindly
assess protein function prediction methods. It uses proteins whose
function annotations are not available as targets for participating
methods to predict their function. The prediction results are then
evaluated when the true function annotations of the targets become
available. Several CAFA experiments have been held, including the
inaugural challenge (CAFA1) taking place in 2010-2011 and the most
recent challenge, CAFA5, held in 2023. According to the first four
rounds of CAFA experiments (CAFA1-4), the performance of pro-
tein function prediction has gradually progressed over years. The
results of CAFA5 remain to be seen. CAFA employs a comprehensive
approach to collect benchmark datasets, focusing on the annotation
growth period between two time points, during which proteins acquire

experimental annotations.

EVALUATION METRICS

Evaluating protein function prediction using multiple complementary
metrics is important to assess the strength and weakness of function
prediction methods. A list of commonly used metrics for evaluating
GO term predictions including F-measure, weighted F-measure, and
semantic distance (S-score) [12, 13], are briefly discussed below.

The F-measure, based on the precision-recall curve whiles the
S-score is based on the remaining uncertainty/missing information
(RU-MI) curve, where S stands for semantic distance. The remaining
uncertainty of the true annotation of protein represents the informa-
tion that has not been provided or accounted for by the predicted
annotation. The misinformation represents a metric that measures the
level of misleading information linked to a predicted annotation.

The F-max is used to represent the maximum F-measure across all
decision thresholds, and the S-min represents the shortest semantic
distance across all thresholds.

AUPR stands for area under the precision-recall curve, which is also
a commonly used evaluation metric. Similarly, AUC measuring the area
under the receiver operating characteristic (ROC) curve is often used.
A ROC curve is a plot of the true positive rate (TPR) against the false

positive rate (FPR) across different cutoff values t.

* Precision
1 MY UfePl)AfeT)
pr(r) = —
mir) & 3, f € Pilx)
* Recall
) = 1 & 2 fEPT)IAfET)
T AT Tafem)
* Fqscore
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1) x pr(t) + re(t)
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* Maximum F, score
Fmax = max (F1(2)

where f is a term, P;(z) is the set of predictions, T; denotes the cor-
responding ground-truth, i represents the protein sequence under
consideration, and 7 is the decision threshold. m(z) is the number of
proteins sequences with at least one predicted score greater than or
equal to the decision threshold 7, I() is an indicator function, and n,
is the number of proteins in the test set for a particular test study.

* Information content (ic) of term f is computed as

1
10 = o8 5Py
* Weighted precision
wpr(z) = i m(z) Z ic(f I](f € Pi(t) A Ti(1))
P = & 7 X, idn - IF € i)

* Weighted recall

wrele) = i Zf ic(f) - I(f € Pi(z) A Ti(1))

ne & X ic(f) - Uf € Ti(z))

e

Here, Pr(f|P(f)) represents the probability that term f in the ontol-
ogy is associated with a protein given that all of its parents are
associated.

* Remaining uncertainty

= e Z 2,1l

I(f & Pi(r) Af € Ti)

* Missing information

he
mi(t) =

%l*—'

i=1

z:cf) I(f € Pi(c) Af & Ti)
f

Smin

Smin = Min \ru(7)2 + mi(t)2, 7
T

* Areaunder precision recall curve (AUPR)
1
AUPR = / Precision(R) dR
0
where Precision(R) represents the precision at a givenrecall level (R).
The CAFA-evaluator [100] is an open-source Python software

designed to assess the performance of function prediction meth-

ods. The tool evaluates the metrics discussed above. Additionally,
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it offers a Jupyter Notebook to generate average precision scores,
and precision-recall and remaining uncertainty-misinformation
curves.

8 | CHALLENGES AND FUTURE DIRECTION

As discussed in the previous sections, substantial advances in develop-
ing deep learning methods for protein function prediction have been
made by the community in the last several years. However, the accu-
racy of protein function still has not reached the high-accuracy level
of protein structure prediction that has made it an indispensable tool
for biomedical research. There are at least three major challenges
in protein function prediction that need to be addressed in order to
substantially improve its accuracy.

The first major challenge is to develop highly sophisticated deep
learning and Al methods to synergistically integrate multiple modal-
ities of input data (e.g., protein sequence, protein structure, protein
interaction, protein/domain family information, and biological textual
description) to improve protein function. Most existing integrative
methods [70, 72, 74-76] simply extract features from each data
modality and then concatenate them without letting modalities sys-
tematically interact with each other in the feature extraction process.
The techniques used by the LLMs such as ChatGPT-4 and Gemini [101]
to integrate multiple modality data such as text, image, video, and
voice through seamless cross-modality communication may be trans-
ferred to the protein function prediction field to integrate multiple
modalities of protein data. And it is time to develop multimodal LLMPs
as multimodality protein data such as sequences and structures are
ubiquitously available nowadays. However, this may introduce its own
challenges, such as increased model complexity and scalability issues.
It is crucial to consider these factors, especially in the context of large-
scale protein function prediction tasks, to ensure the methods remain
practical and feasible.

The second major challenge is how to more effectively leverage the
evolutionary information hidden in the hundreds of millions of protein
sequences better to improve protein function prediction. A promis-
ing direction is to develop more sophisticated LLMP sequences that
can be directly fine-tuned or promoted to predict protein function
[102]. The current application of LLMP such as ESM-1b is still in the
early stage and at a shallow level because the pretrained LLMP are
mostly used to generate features from sequences as input for pro-
tein function prediction. One way to deepen the application of LLMP
in protein function prediction is to directly fine tune the weights of
the pretrained LLMP component in the protein function prediction
system during the training of the system. Another way is to add func-
tion prediction into the designing and training of LLMPs in the first
place so that they are intrinsically built for protein function predic-
tion. For instance, a LLMP can be designed to predict masked or next
amino acids through self-supervised learning as well as function terms
through supervised learning. The LLMP can be mainly trained on mil-
lions of unlabeled protein sequences to predict masked or next amino

acids and auxilinarily trained to predict function terms of thousands
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of proteins with function labels at the same time as how a LLM for
NLP was trained to predict next (masked) tokens and classify sentences
simultaneously [103]. Readers may refer to this recent work [104] for
some detailed strategies for fine-tuning and training LLMPs for protein
function prediction.

The third major challenge is to improve the prediction accuracy for
rare GO terms with low frequency in protein function annotations or
novel GO terms that never occur before. Some rare GO terms are
highly specific GO terms that occur at the bottom level of the GO
graph, which are important for protein function annotation but very
hard to predict. As demonstrated by some zero- or few-shot prediction
methods such as TALE [30] and ProTranslator [32], zero- or few-shot
learning methods [105] used in NLP, computer vision, and image pro-
cessing may be transferred to the field of protein function prediction.
Particularly, we envision that the prompt engineering and in-context
learning [106] used with LLMs for NLP can also be used with LLMPs
to predict rare or novel GO terms, provided that LLMPs fine-tuned for
protein function prediction, akin to LLMs for NLP, are developed in the
field. Therefore, a user can use one or a few rare GO terms as examples
as prompts to guide the pretrained LLMPs to predict rare or novel GO
terms in any context as one uses prompts to instruct ChatGPT to learn
new concepts or skills.

In summary, we envision that developing next-generation sophisti-
cated LLMPs that can handle multiple modalities of protein data, be
fined tuned directly by function labels, or be customized by prompt-
based in-context learning for protein function prediction may be a
promising avenue for tackling some major challenges in protein func-
tion prediction, such as multimodality data integration, extracting
evolutionary information from millions of sequences, and predicting
rare/novel GO terms, to push the performance of protein function
prediction to the next level.
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