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ABSTRACT. It is well-known that the spectra of the Gaudin model may be described in terms of solu-

tions of the Bethe Ansatz equations. A conceptual explanation for the appearance of the Bethe Ansatz

equations is provided by appropriate G-opers: G-connections on the projective line with extra struc-

ture. In fact, solutions of the Bethe Ansatz equations are parameterized by an enhanced version of

opers called Miura opers; here, the opers appearing have only regular singularities. Moreover, this

geometric approach to the spectra of the Gaudin model provides a well-known example of the geo-

metric Langlands correspondence. Feigin, Frenkel, Rybnikov, and Toledano Laredo have introduced

an inhomogeneous version of the Gaudin model; this model incorporates an additional twist factor,

which is an element of the Lie algebra of G. They exhibited the Bethe Ansatz equations for this model

and gave an interpretation of the spectra in terms of opers with an irregular singularity. In this paper,

we consider a new geometric approach to the study of the spectra of the inhomogeneous Gaudin

model in terms of a further enhancement of opers called twisted Miura-Plücker opers. This approach

involves a certain system of nonlinear differential equations called the qq-system, which were previ-

ously studied in [MV2] in the context of the Bethe Ansatz. We show that there is a close relationship

between solutions of the inhomogeneous Bethe Ansatz equations and polynomial solutions of the

qq-system and use this fact to construct a bijection between the set of solutions of the inhomogeneous

Bethe Ansatz equations and the set of nondegenerate twisted Miura-Plücker opers. We further prove

that as long as certain combinatorial conditions are satisfied, nondegenerate twisted Miura-Plücker

opers are in fact Miura opers.
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1. INTRODUCTION

The Bethe Ansatz is a classical approach to computing the spectra of various quantum inte-

grable systems, and in particular, spin chain models. This method is often very effective, but it is

less easy to understand conceptually the reason for this effectiveness. The Gaudin model is one

context in which such an explanation is known.

Let g be a simple complex Lie algebra with universal enveloping algebra U(g) and Langlands

dual algebra Lg. In the Gaudin model for g, one considers a family of mutually commuting ele-

ments in U(g)¹N called Gaudin Hamiltonians, which depend on a collection of distinct complex

numbers z1, . . . , zN . The Bethe Ansatz provides a method of constructing simultaneous eigenvec-

tors of the Gaudin Hamiltonians on modules such as Vλ =
⊗N

i=1 V¼i
, where V¼ is the irreducible

highest-weight module corresponding to the dominant integral weight ¼. One starts with the

unique (up to scalar) vector |0ð ∈ Vλ of highest weight
∑

¼i; it is a simultaneous eigenvector of

Gaudin Hamiltonians. Given a set of distinct complex numbers w1, . . . , wm labeled by simple roots

³kj (defined in terms of fixed Cartan and Borel subalgebras h ¢ b+), one then applies a certain or-

der m lowering operator with poles at the wj ’s to |0ð. If
∑

¼i−
∑

³kj is dominant, then this vector

is a highest weight vector in Vλ (and a simultaneous eigenvector of the Gaudin Hamiltonians) if

and only if the Bethe Ansatz equations are satisfied:

(1.1)
N∑

i=1

ï¼i, ³̌kj ð

wj − zi
−
∑

s ̸=j

ï³ks , ³̌kj ð

wj − ws
= 0, j = 1, . . . ,m.

In a series of papers [FFR1,F1,F2] , Frenkel and his collaborators introduced a geometric version

of this result. They showed that the spectra of the Gaudin model is encoded by certain connec-

tions with extra structure associated to Lg called opers. The opers appearing here have regular

singularities at z1, . . . , zN and ∞ and have trivial monodromy [FFR1, F2]. These opers also have

apparent singularities at the wj ’s, and the Bethe Ansatz equations are precisely the conditions for

these singularities to be removable. Moreover, this approach allows one to give geometric mean-

ing to solutions of the Bethe Ansatz equations without assuming that
∑

¼i −
∑

³kj is dominant.

In fact, they correspond bijectively to enhanced versions of opers called (nondegenerate) Miura

opers. An important consequence of this geometric approach to the spectra of the Gaudin model

is that it provides a well-known example of the geometric Langlands correspondence [F1].

More recently, Feigin, Frenkel, Rybnikov, and Toledano Laredo have worked on an “inhomo-

geneous” version of the Gaudin model [FFTL, FFR2] which involves an extra “twist parameter”

Ç ∈ h∗. In these papers, the authors have given a similar geometric interpretation of the spectra in

terms of opers, but here, the regular singularity at ∞ is replaced by a double pole with “2-residue”
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−Ç. The Bethe Ansatz equations for this model are given by:

(1.2)
N∑

i=1

ï¼i, ³̌kj ð

wj − zi
−
∑

s ̸=j

ï³ks , ³̌kj ð

wj − ws
= ïÇ, ³̌kj ð, j = 1, . . . ,m.

In this paper, we consider a new approach to the study of the spectra of the inhomogeneous

Gaudin model in terms of twisted Miura opers and a certain system of nonlinear differential equa-

tions called the qq-system. The qq-system has also appeared in previous work of Mukhin and

Varchenko on the Bethe Ansatz equations [MV1,MV2]. As we will see, there is a close relationship

between solutions of the inhomogeneous Bethe Ansatz equations (1.2) and polynomial solutions

of the qq-system. We will use this fact to construct a bijection between the set of solutions of the

inhomogeneous Bethe Ansatz equations and the set of “nondegenerate” twisted Miura opers.

Since we will be primarily concerned with opers, it will be convenient to switch the roles of g

and Lg. From now on, we consider the Gaudin model for Lg, which will correspond to appropriate

G-opers, where G is the simply connected group with Lie algebra g. The twist parameter may now

be viewed as an element Z ∈ h.1

Let H be the maximal torus with Lie algebra h, and let B+ and B− be two opposite Borel sub-

groups containing H . Roughly speaking, an oper is a triple (FG,∇,FB−
), where FG is a principal

G-bundle on P
1 endowed with a meromorphic connection ∇ and FB−

is a reduction of structure

of the bundle to B− such that ∇ satisfies a certain genericity condition with respect to FB−
. A

Miura oper is an oper together with an additional reduction of structure FB+ to the opposite Borel

subgroup which is preserved by ∇. We now consider Miura opers whose underlying connection

has regular singularities away from infinity, is monodromy-free, and is “Z-twisted”. It turns out

that the set of twisted Miura opers with the same underlying oper is a subvariety of the flag man-

ifold called the Springer fiber over Z. Finally, given a Miura oper, we construct a family of Miura

GL(2)-opers parameterized by the fundamental weight. The underlying Miura oper is called a

Z-twisted Miura-Plücker G-oper if the zero monodromy and Z-twistedness conditions hold on this

family of Miura GL(2)-opers and not necessarily on the G-oper itself.

In this paper, we show that solutions of the Z-twisted Bethe Ansatz equations for Lg are param-

eterized by nondegenerate Z-twisted Miura G-opers. In order to accomplish this, we introduce

a system of differential equations called the qq-system associated to G, the regular singularities

zj , and the twist parameter Z. This is a nonlinear system on a collection of rational functions

{qi+(z), q
i
−(z)}i∈∆, indexed by the set of simple roots ∆, which determine relations satisfied by

the Wronskians W (qi+(z), q
i
−(z)). We first construct a surjection from nondegenerate polynomial

solutions of the qq-system for Z to nondegenerate Z-twisted Miura-Plücker opers (Corollary 5.9).

1For much of the paper, we will in fact allow Z to be an element of a fixed Borel subalgebra b+.
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(In fact, we give a bijection between these solutions and “Z-twisted Miura-Plücker data” (The-

orem 5.7).) Next, we prove that there is a surjective map from these polynomial solutions to

solutions of the Bethe Ansatz equation (Theorem 5.11. We show that the fibers of these surjec-

tions coincide, thereby obtaining a one-to-one correspondence between nondegenerate Z-twisted

Miura-Plücker opers and solutions of the Bethe Ansatz equations (Theorem 5.15).

We then introduce the crucial technical tool of Bäcklund transformations: transformations on

twisted Miura-Plücker opers associated to Weyl group elements. These transformations change

not only the Miura-Plücker oper, but also the twist factor. These transformations were first in-

troduced in the context of qq-systems in [MV2]. We use Bäcklund transformations to show that,

as long as certain combinatorial conditions are satisfied, nondegenerate twisted Miura-Plücker

opers are in fact Miura opers (Theorem 6.18). As a corollary, we obtain the following important

theorem (Theorem 6.19): under appropriate combinatorial hypotheses, there is a bijection between

nondegenerate Z-twisted Miura opers and solutions to the Bethe Ansatz equations.

Our approach to this problem was inspired by recent work of Frenkel, Koroteev, and two of the

authors on a q-deformation of the correspondence between opers and the spectra of the Gaudin

model [KSZ, FKSZ]. These papers relate solutions of the Bethe Ansatz for the XXZ-model to cer-

tain q-difference equation versions of opers called twisted Miura-Plücker (G, q)-opers. The cor-

respondence goes through the intermediary of the “QQ-system”: a system of q-difference equa-

tions involving quantum Wronskians, which was introduced by Masoero, Raimondo, and Va-

leri [MRV1, MRV2] (see also [FH2]). However, we observe that our present results go beyond

what is known about the XXZ model. In particular, the results of [KSZ, FKSZ] are limited to the

case when the twist parameter is regular semisimple.

Acknowledgements. We are grateful to Edward Frenkel for his valuable comments. A.M.Z. is

partially supported by Simons Collaboration Grant 578501 and NSF grant DMS-2203823. D.S.S is

partially supported by Simons Collaboration Grant 637367.

2. G-OPERS WITH REGULAR SINGULARITIES

2.1. Notation and group-theoretic background. Let G be a connected, simply connected, simple

algebraic group of rank r over C. We fix a Borel subgroup B− with unipotent radical N− =

[B−, B−] and a maximal torus H ¢ B−. Let B+ be the opposite Borel subgroup containing H and

N+ = [B+, B+]. Let {³1, . . . , ³r} be the set of positive simple roots for the pair H ¢ B+. Let

{³̌1, . . . , ³̌r} be the corresponding coroots; the elements of the Cartan matrix of the Lie algebra g

of G are given by aij = ï³j , ³̌ið. The Lie algebra g has Chevalley generators {ei, fi, ³̌i}i=1,...,r, so

that b− = Lie(B−) is generated by the fi’s and the ³̌i’s and b+ = Lie(B+) is generated by the ei’s

and the ³̌i’s. Similarly the Lie algebra n− = Lie(N−) is generated by the fi’s and n+ = Lie(N+) is

generated by the ei’s. Let É1, . . . Ér be the fundamental weights, defined by ïÉi, ³̌jð = ¶ij .
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Let W = N(H)/H be the Weyl group of G. For each i, we let si ∈ W be the simple reflection

corresponding to ³i. We also let w0 be the longest element of W , so that B+ = w0(B−).

Recall that for any Borel subgroup B, the group G is partitioned into Bruhat cells BwB indexed

by elements of W . Here, one chooses some maximal torus T ¢ B and sets BwB = BnB, where n

is any lift of w ∈ N(T )/T ∼= W . Since we defined W in terms of H , it is not immediately clear that

this process makes sense. However, an argument involving the “abstract Cartan algebra” (see for

example [CG, §3.1.22]) shows that the Bruhat cells are well-defined. We refer the reader to §2.1 of

[FKSZ] for the details.

2.2. Meromorphic G-opers. We now define meromorphic G-opers. While the definitions below

may be extended easily to an arbitrary smooth curve, we will restrict ourselves to the case of P1.

Let FG be a principal G-bundle on P
1 endowed with a connection ∇. This connection is auto-

matically flat. Let FB−
be a reduction of FG to the Borel subgroup B−. If ∇′ is any connection

which preserves FB−
, then ∇−∇′ induces a well-defined one-form on P

1 with values in the asso-

ciated bundle (g/b−)FB−
. We denote this 1-form by ∇/FB−

.

Following [BD], we will define a G-oper as a G-connection (FG,∇) together with a reduction

FB−
of the G-bundle to the Borel subgroup B−; this reduction is not preserved by the connection

but instead satisfies a special “transversality condition” defined in terms of the 1-form ∇/FB−
.

To define this transversality condition, let O ∈ [n−, n−]
§/b− ∈ g/b− be the open B−-orbit

consisting of vectors stabilized by N− and such that all of the simple root components with respect

to the adjoint action of B−/N−, are non-zero. Here, the orthogonal complement is taken with

respect to the Killing form.

Definition 2.1. A meromorphic G-oper on P
1 is a triple (FG,∇,FB−

), where FG is a principal G-

bundle on P
1 equipped with a meromorphic connection ∇ and FB−

is a reduction of FG to B−

satisfying the following condition: there exists a Zariski open dense subset U ¢ P
1 together with a

trivialization ıB−
of FB−

such that the restriction of the 1-form ∇/FB−
to U , written as an element

of g/b−(z), belongs to O(z).

Note that this property does not depend on the choice of trivialization.

In terms of the particular trivialization ıB−
, the underlying connection of the G-oper can be

written concretely as

(2.1) ∇ = ∂z +
r∑

i=1

ϕi(z)ei + b(z)

where ϕi(z) ∈ C(z) and b(z) ∈ b−(z) are regular on U and moreover ϕi(z) has no zeros in U .
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2.3. Miura opers. We will also need the notion of a Miura oper introduced in [F1, F2]. This is an

oper together with a reduction of the underlying G-bundle to the opposite Borel subgroup that is

preserved by the oper connection.

Definition 2.2. A Miura G-oper on P
1 is a quadruple (FG,∇,FB−

,FB+), where (FG,∇,FB−
) is a

meromorphic G-oper on P
1 and FB+ is a reduction of the G-bundle FG to B+ that is preserved by

the connection ∇.

Given a Miura G-oper, we refer to the G-oper obtained by forgetting FB+ the underlying G-oper.

We next need to consider the relative position of the two reductions over any x ∈ P
1. This

relative position will be an element of the Weyl group. To define this, first note that the fiber FG,x

of FG at x is a G-torsor with reductions FB−,x and FB+,x to B− and B+ respectively. Under this

isomorphism, FB−,x gets identified with gB− ¢ G and FB+,x with hB+ for some g, h ∈ G. The

quotient g−1h specifies an element of the double coset space B−\G/B+. The Bruhat decomposition

gives a bijection between this spaces and the Weyl group, so we obtain a well-defined element of

G.

We say that FB−
and FB+ have generic relative position at x ∈ P

1 if the relative position is the

identity element of W . More concretely, this mean that the quotient g−1h belongs to the open

dense Bruhat cell B−B+ ¢ G.

The following result was proved in [F1, F2]. It will be convenient to give a different proof here.

Theorem 2.3. For any Miura G-oper on P
1, there exists an open dense subset V ¢ P

1 such that the

reductions FB−
and FB+ are in generic relative position for all x ∈ V .

Proof. Let U be a Zariski open dense subset on P
1 as in Definition 2.1. Choosing a trivialization

ıB−
of FG on U , we can write the connection ∇ in the form (2.1). On the other hand, using the

B+-reduction FB+ , we can choose another trivialization of FG on U such that the connection in

this gauge is preserved by ∇. In other words, there exists g(z) ∈ G(z) such that

(2.2) g(z)∂zg
−1(z) + g(z)(

r∑

i=1

ϕi(z)ei + b(z))g−1(z) ∈ b+(z)

This means that the relative position of the two reductions is determined by g−1(z). It thus suffices

to show that g−1(z) ∈ B−(z)B+(z) or equivalently,

g(z) ∈ B+(z)B−(z) = B+(z)N−(z).

By the Bruhat decomposition, we know that g(z) ∈ B+(z)wN−(z) for some w ∈ W , say g(z) =

b+(z)wn−(z) for some b+(z) ∈ B+(z), n−(z) ∈ N−(z). Substituting this into (2.2) and simplifying
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gives

(2.3) n−(z)∂zn
−1
− (z) + n−(z)(

r∑

i=1

ϕi(z)ei + b(z))n−1
− (z) =

r∑

i=1

ϕi(z)ei + b̃(z) ∈ w−1b+(z)w,

where b̃(z) ∈ b−(z). It is well-known that w−1b+w = h+ (n− ∩w−1b+w)) + (n+ ∩w−1b+w). Since

the strictly upper triangular component of the expression in (2.3) is
∑r

i=1 ϕi(z)ei, we conclude that

ϕi(z)ei ∈ w−1b+w for all i. This means that w preserves the set of simple roots, i.e., w = 1.

□

Corollary 2.4. For any Miura G-oper on P
1, there exists a trivialization of the underlying G-bundle FG

on an open dense subset of P1 for which the oper connection has the form

(2.4) ∇ = ∂z +
r∑

i=1

gi(z)³̌i +
r∑

i=1

ϕi(z)ei,

where gi(z), ϕi(z) ∈ C(z).

Proof. The previous theorem shows that w = 1 in (2.3), so there exists a gauge transformation

n−(z) which takes the explicit form of the connection ∇ = ∂z +
∑r

i=1 ϕi(z)ei + b(z) into

(2.5) n−(z)∂zn
−1
− (z) + n−(z)(

r∑

i=1

ϕi(z)ei + b(z))n−1
− (z) =

r∑

i=1

ϕi(z)ei + b̃(z) ∈ b+(z)

where b̃(z) ∈ b−(z). This implies that b̃(z) ∈ h(z), and the statement follows by decomposing b̃(z)

with respect to the simple coroots. □

2.4. Opers and Miura opers with regular singularities. Let Λ1(z), . . . ,Λr(z) be a collection of

nonzero polynomials.

Definition 2.5. A G-oper with regular singularities determined by Λ1(z), . . . ,Λr(z) is an oper on P
1

whose connection (2.1) may be written in the form

(2.6) ∇ = ∂z +
r∑

i=1

Λi(z)ei + b(z), b(z) ∈ b−(z).

We will assume without loss of generality that the Λi’s are monic, since this can always be

arranged by a constant gauge change by an element of H . Let {zi1, . . . , z
i
Ni
} be the set of distinct

roots of the Λi’s. To each zik, we associate the integral coweight ¼̌k via

(2.7) Λi(z) =

Ni∏

k=1

(z − zik)
ï³i,¼̌kð.

Definition 2.6. A Miura G-oper with regular singularities determined by the polynomials Λ1(z), . . . ,Λr(z)

is a Miura G-oper whose underlying oper has regular singularities determined by the Λi(z)’s.
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The following theorem is immediate from Corollary 2.4.

Theorem 2.7. For every Miura G-oper with regular singularities determined by the polynomials Λ1(z), . . . ,Λr(z),

the underlying connection can be written in the form:

(2.8) ∇ = ∂z +

r∑

i=1

Λi(z)ei +

r∑

i=1

gi(z)³̌i,

where gi(z) ∈ C(z).

For the rest of the paper, all opers and Miura opers will have regular singularities with respect

to the fixed collection of monic polynomials Λ1(z), . . . ,Λr(z).

2.5. Z-twisted opers. We will primarily be interested in (Miura) opers whose underlying connec-

tion is gauge equivalent to a constant element of g.

Definition 2.8. A Z-twisted G-oper on P
1 is a G-oper that is equivalent to the constant element

Z ∈ g ¢ g(z) under the gauge action of G(z).

Concretely, if the matrix form of the oper connection in a particular trivialization is given by

∇ = ∂z +A(z), then there exists g(z) ∈ G(z) such that

(2.9) A(z) = g(z)∂zg
−1(z) + g(z)Zg(z)−1.

Remark 2.9. Note that for Z ̸= 0, the constant connection ∂z + Z has a double pole at ∞ like the

opers with a double pole at ∞ considered in [FFTL, FFR2]. We give a more detailed comparison

of our work with the results of [FFTL] below in Remark 5.16.

To define Z-twisted Miura opers, we will assume that Z ∈ b+. We introduce the notation

(2.10) Z = ZH +

r∑

i=1

ciei + n, ZH =

r∑

i=1

·i³̌i, ·i, ci ∈ C, n ∈ [n+, n+].

Definition 2.10. A Z-twisted Miura G-oper is a Miura G-oper on P
1 that is equivalent to the constant

element Z ∈ b+ ¢ b+(z) under the gauge action of B+(z), i.e., there exists v(z) ∈ B+(z) such that

the matrix of the oper connection is given by

(2.11) A(z) = v(z)∂zv
−1(z) + v(z)Zv(z)−1.

For untwisted opers, there is a full flag variety G/B+ of associated Miura opers. For twisted

opers, we must introduce certain closed subvarieties of the flag manifold of the form (G/B+)Z =

{gB+ | g−1Zg ∈ b+}; these varieties are called Springer fibers. Springer fibers play an impor-

tant role in representation theory. (See, for example, Chapter 3 of [CG].) For SL(n) (or GL(n)), a

Springer fiber may be viewed as the space of complete flags in C
n preserved by a fixed endomor-

phism.
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Proposition 2.11. The map from Miura Z-twisted opers to Z-twisted opers is a fiber bundle with fiber

(G/B+)Z .

Proof. Since the underlying connection of a Z-twisted oper is isomorphic to the connection ∂z +Z,

a Miura structure on such an oper is equivalent to a B+-reduction that is preserved by ∂z+Z. This

is determined by a Borel subalgebra of g that contains Z. The flag variety may be identified with

the space of Borel subalgebras via gB 7→ gb+g
−1, and the condition Z ∈ gb+g

−1 is equivalent to

gB ∈ (G/B+)Z . □

2.6. The associated Cartan connection. Consider a Miura G-oper with regular singularities de-

termined by polynomials Λ1(z), . . . ,Λr(z). By Theorem 2.7, the underlying G-connection can be

written in the form (2.8). Since it preserves the B+-bundle FB+ that is part of the data of the Miura

G-oper, it may be viewed as a meromorphic B+-connection on P
1. Taking the quotient of FB+ by

N+ = [B+, B+] and using the fact that B/N+ ≃ H , we obtain an H-bundle FB+/N+ endowed

with an H-connection, which we denote by ∇H = ∂z + AH(z). According to formula (2.8), it is

given by the formula

(2.12) AH(z) =

r∑

i=1

gi(z)³̌i.

We call ∇H(z) = ∂z +AH(z) the associated Cartan connection of the Miura oper.

Now, if our Miura oper is Z-twisted, then we also have A(z) = v(z)∂zv
−1(z) + v(z)Zv(z)−1,

where v(z) ∈ B+(z). Since v(z) can be written as

(2.13) v(z) =

(
∏

i

yi(z)
³̌i

)
n(z), n(z) ∈ N+(z), yi(z) ∈ C(z)×,

the Cartan connection ∇H(z) = ∂z +AH(z) has the form:

(2.14) AH(z) =
r∑

i=1

(·i − yi(z)
−1∂zyi(z))³̌i,

with the ·i’s defined in (2.10). We will refer to ∇H(z) as a Z-twisted Cartan connection. This formula

shows that ∇H(z) is completely determined by ZH , i.e., the diagonal part of Z, and the rational

functions yi(z). Indeed, comparing this equation with (2.12) gives

(2.15) gi(z) = ·i − yi(z)
−1∂zyi(z)

It is now easy to see that ∇H(z) determines the yi(z)’s uniquely up to scalar.
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3. NONDEGENERATE MIURA-PLÜCKER OPERS

Our main goal is to link Miura opers to solutions of a certain system of equations which we will

call the classical qq-system, which is in turn related to the system of Bethe Ansatz equations for

the Gaudin model. We accomplish this in two steps. First, we introduce the notion of a Z-twisted

Miura-Plücker G-oper. We associate to a Miura G-oper a collection of Miura GL(2)-opers indexed

by the fundamental weights of G. A Z-twisted Miura-Plücker oper is a Miura oper where the Z-

twistedness condition is replaced by a slightly weaker condition imposed on these GL(2)-opers.

Second, we will restrict attention to opers satisfying certain nondegeneracy conditions defined in

terms of the corresponding Cartan connection.

3.1. The associated Miura GL(2)-opers. In this section, we associate to a Miura G-oper with reg-

ular singularities a collection of Miura GL(2)-opers indexed by the fundamental weights.

Let Vi be the irreducible representation of G with highest weight given by the fundamental

weight Éi. Let Li ¢ Vi be the B+-stable line consisting of highest weight vectors. If we choose

a nonzero element ¿Éi
in Li, then the subspace of Vi of weight Éi − ³i is one-dimensional and

is spanned by fi · ¿Éi
. Therefore, the two-dimensional subspace Wi of Vi spanned by the weight

vectors ¿Éi
and fi · ¿Éi

is a B+-invariant subspace of Vi.

Now, let (FG,∇,FB−
,FB+) be a Miura G-oper with regular singularities determined by poly-

nomials Λ1(z), . . . ,Λr(z) as in Definition 2.6. Recall that FB+ is a B+-reduction of a G-bundle FG

on P
1 preserved by the G-connection ∇. Therefore for each i, the vector bundle

Vi = FB+ ×B+ Vi = FG ×G Vi

associated to Vi contains a rank two subbundle

Wi = FB+ ×B+ Wi

associated to Wi ¢ Vi, and Wi in turn contains a line subbundle

Li = FB+ ×B+ Li

associated to Li ¢ Wi.

Denote by ϕi(∇) the connection on the vector bundle Vi (or equivalently, the GL(Vi)-connection)

corresponding to the above Miura oper connection ∇. Since ∇ preserves FB+ , we see that ϕi(∇)

preserves the subbundles Li and Wi of Vi. Denote by ∇i the corresponding connection on the

rank 2 bundle Wi.

Trivialize FB+ on a Zariski open subset of P1 so that ∇ has the form (2.8) with respect to this

trivialization. This trivializes the bundles Vi, Wi, and Li as well, so that the connection ∇i(z) can

be expressed in terms of a 2× 2 matrix whose entries are in C(z).

A direct computation using formula (2.8) yields the following result.
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Lemma 3.1. We have

(3.1) ∇i(z) = ∂z +



gi(z) Λi(z)

0 −gi(z)−
∑

k ̸=i akigk(z)


 ,

Using the trivialization of Wi in which ∇i(z) has this form, we can decompose Wi as the direct

sum of two line subbundles. The first is Li, generated by the basis vector

(
1

0

)
. The second, which

we denote by L̃i, is generated by the basis vector

(
0

1

)
. The subbundle Li is ∇i-invariant, whereas

∇i satisfies the following GL(2)-oper condition with respect to L̃i.

Definition 3.2. A GL(2)-oper on P
1 is a triple (W,∇, L̃), where W is a rank 2 bundle on P

1, ∇ :

W −→ W¹K is a meromorphic connection on W, K is the canonical bundle on P
1, and L̃ is a line

subbundle of W such that the induced map ∇̄ : L̃ −→ (W/L̃)¹K is an isomorphism on a Zariski

open dense subset of P1.

A Miura GL(2)-oper on P
1 is a quadruple (W,∇, L̃,L), where (W,∇, L̃) is a GL(2)-oper and L

is an ∇-invariant line subbundle of W.

Using this definition, one obtains an alternative definition of (Miura) SL(2)-opers: they are the

(Miura) GL(2)-opers defined by the above triples (resp. quadruples) satisfying the additional

property that in some trivialization on a Zariski-open dense subset of P1, the trace of the matrix of

the connection is 0.

Our quadruple (Wi,∇, L̃i,Li) is clearly a Miura GL(2)-oper. It is not clear whether it is an

SL(2)-oper because the trace of the matrix in (3.1) is not necessarily 0.

We now make the further assumption that our Miura G-oper (FG,∇,FB−
, FB+) with regular

singularities is Z-twisted (see Definition 2.10). Recall that this implies that the associated Cartan

connection ∇H(z) has the form (2.14):

(3.2) ∇H(z) =
∏

i

yi(z)
³̌i (∂z + ZH)

∏

i

yi(z)
−³̌i , yi(z) ∈ C(z).

We claim that for Z-twisted Miura opers, there exists another trivialization of Wi in which the

connection matrix of ∇i has constant (though not necessarily zero) trace. This will be a particularly

convenient gauge for ∇i.

To prove the claim, let Ai(z) denote the matrix in (3.1), and apply the gauge transformation by

the diagonal matrix

u(z) =

(
1 0

0
∏

j ̸=i yj(z)
aji

)
.
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This gives

(3.3)

∇̃i(z) = u(z)∇i(z)u
−1(z) = ∂z +



·i − yi(z)

−1∂zyi(z) Äi(z)

0 −
∑

k ̸=i aki·k − ·i + yi(z)
−1∂zyi(z))


 ,

where

(3.4) Äi(z) = Λi(z)
∏

k ̸=i

yk(z)
−aki .

Since aij f 0 for i ̸= j, Äi(z) is a polynomial if all yj(z)’s are polynomials.

Let Gi
∼= SL(2) be the subgroup of G corresponding to the sl(2)-triple spanned by {ei, fi, ³̌i}.

Note that the group Gi preserves Wi. Consider the Miura Gi-oper (Wi, ∇̂i, L̃i,Li) with L̃i =

span

{(
0

1

)}
, Li = span

{(
1

0

)}
,

(3.5) ∇̂i = ∂z + gi³̌i + Äi(z)ei =



·i − yi(z)

−1∂zyi(z) Äi(z)

0 −·i + yi(z)
−1∂zyi(z))


 ,

We can now express the connection ∇̃i(z) as the sum of an SL(2)-connection and a constant diag-

onal matrix:

∇̃i(z) =

(
0 0

0
∑

j ̸=i−aji·j

)
+ ∇̂i(z)(3.6)

= ∂z +

(
0 0

0
∑

j ̸=i−aji·j

)
+ gi(z)³̌i + Äi(z)ei.(3.7)

This shows that in this gauge, the trace of the matrix of the connection is constant with value

−
∑

j ̸=i aji·j .

Thus, a Z-twisted Miura G-oper gives rise to a collection of meromorphic Miura SL(2)-opers

∇̂i(z) for i = 1, . . . , r. It should be noted that ∇̂i(z) has regular singularities in the sense of

Definition 2.5 if and only if Äi(z) is a polynomial. For example, this holds for all i if all yj(z), j =

1, . . . , r, are polynomials. We will use this observation below.

3.2. Z-twisted Miura-Plücker opers. Recall that a Z-twisted Miura G-opers is a Miura G-oper

whose underlying connection can be written in the form (2.11):

(3.8) ∇(z) = v(z)(∂z + Z)v(z)−1, v(z) ∈ B+(z).
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We will now relax this condition by imposing a twistedness condition only on the associated Miura

GL(2)-opers ∇i (or equivalently, the Miura SL(2)-opers ∇̂i). More precisely, we will require the

existence of an upper triangular gauge transformation v(z) ∈ B+(z) such that (3.8) holds upon

restriction to Wi for all i.

Definition 3.3. A Z-twisted Miura-Plücker2 G-oper is a meromorphic Miura G-oper on P
1 with

underlying connection ∇ satisfying the following condition: there exists v(z) ∈ B+(z) such that

for all i = 1, . . . , r, the Miura GL(2)-opers ∇i associated to ∇ by formula (3.1) can be written in

the form

(3.9) ∇i(z) = v(z)(∂z + Z)v(z)−1|Wi
= vi(z)(∂z + Zi)vi(z)

−1,

where vi(z) = v(z)|Wi
and Zi = Z|Wi

.

In other words, a Miura G-oper is a Z-twisted Miura-Plücker G-oper precisely when there is

a trivialization of FB+ in which all of the associated connections ∇i have the constant matrix

Zi ∈ gl(2). It is a Z-twisted Miura G-oper if ∇ has the constant matrix Z in this gauge. Thus, every

Z-twisted Miura G-oper is automatically a Z-twisted Miura-Plücker G-oper, but the converse is

not necessarily true if G ̸= SL(2).

Note, however, that it follows from the above definition that the H-connection ∇H associated

to a Z-twisted Miura-Plücker G-oper can be written in the same form (3.2) as the H-connection

associated to a Z-twisted Miura G-oper.

3.3. H-nondegeneracy. We now introduce the notion of H-nondegeneracy, the first of our two

nondegeneracy conditions for Z-twisted Miura-Plücker opers. This condition actually applies to

arbitrary Miura opers with regular singularities. Recall from Theorem 2.7 that the underlying

connection can be represented in the form (2.8).

Definition 3.4. A Miura G-oper ∇ of the form (2.8) is called H-nondegenerate if the corresponding

H-connection ∇H(z) can be written in the form (2.14), with the rational functions yi(z) satisfying

the following conditions:

(1) yi(z) has no multiple zeros or poles;

(2) for all i, the roots of Λi(z) are distinct from the the zeros and poles of yi(z); and

(3) if i ̸= j and aij ̸= 0, then the zeros and poles of yi(z) and yj(z) are distinct from each other.

3.4. Nondegenerate Z-twisted Miura SL(2)-opers. We now turn to the second nondegeneracy

condition. This condition applies to Z-twisted Miura-Plücker G-opers. In this subsection, we give

the definition for G = SL(2). (Note that Z-twisted Miura-Plücker SL(2)-opers are the same as

2The terminology arises from its relationshp to the Plücker description of B+-bundles as explained in Section 4.1 of

[FKSZ].
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Z-twisted Miura SL(2)-opers.) In the next subsection, we will give the definition for an arbitrary

simple, simply connected complex Lie group G.

Consider a Miura SL(2)-oper given by the formula (2.8), which for SL(2) becomes

∇ = ∂z + g(z)³̌+ Λ(z)e = ∂z +

(
g(z) Λ(z)

0 −g(z)

)
.

The corresponding Cartan connection is given by

∇H(z) = ∂z + g(z)³̌ = y(z)³̌(∂z + ZH)y(z)−³̌ = ∂z +

(
· − y(z)−1∂zy(z) 0

0 −· + y(z)−1∂zy(z)

)
,

where y(z) is a rational function. Let us assume that ∇ is H-nondegenerate, so that the zeros of

Λ(z) are distinct from the zeros and poles of y(z).

If we apply a gauge transformation by an element h(z)³̌ ∈ H[z] to ∇, we obtain a new oper

connection

(3.10) ∇̃(z) = ∂z + g̃(z)³̌+ Λ̃(z)e,

where

(3.11) g̃(z) = g(z)− h−1(z)∂zh(z), Λ̃(z) = Λ(z)h(z)2.

It also has regular singularities, but for a different polynomial Λ̃(z), and ∇̃(z) may no longer be

H-nondegenerate. However, it turns out there is an essentially unique gauge transformation from

H[z] for which the resulting ∇̃(z) is H-nondegenerate and ỹ(z) is a polynomial. This choice allows

us to fix the polynomial Λ(z) determining the regular singularities of our SL(2)-oper.

Lemma 3.5. (1) There is an H-nondegenerate SL(2)-oper ∇̃(z) in the H[z]-gauge class of ∇, say with

∇̃H(z) = ∂z+g̃(z)³̌, for which the rational function ỹ(z) is a polynomial. This oper is unique up to

a scalar a ∈ C
× that leaves g̃(z) unchanged, but multiplies ỹ(z) and Λ̃(z) by a and a2 respectively.

(2) This SL(2)-oper ∇̃ may also be characterized by the property that Λ̃(z) has maximal degree subject

to the constraint that it is H-nondegenerate.

Proof. Write y(z) = P1(z)
P2(z)

, where P1, P2 are relatively prime polynomials. For a nonzero polyno-

mial h(z) ∈ C(z)×, the gauge transformation of ∇ by h(z)³̌ is given by formulas (3.10) and (3.11).

In order for ỹ(z) = h(z)P1(z)
P2(z)

to be a polynomial, we need h(z) to be divisible by P2(z). If, how-

ever, deg(h/P2) > 0, then ỹ(z) and Λ̃(z) would have a zero in common, so Ã(z) would not be

H-nondegenerate. Hence, we must have h(z) = aP2(z) for some a ∈ C
×. Thus, h(z) is uniquely

defined by multiplication by a, which leaves g̃(z) unchanged, but multiplies ỹ(z) and Λ̃(z) by a

and a2 respectively.
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For the second statement, note that if h(z) is a polynomial for which the zeros of h(z)2Λ(z) are

distinct from the zeros and poles of h(z)P1(z)
P2(z)

, we must have h|P2. If h(z) is not an associate of

P2(z), we have deg(h) < deg(P2), so deg(h(z)2Λ(z)) < deg(Λ̃). □

This motivates the following definition.

Definition 3.6. A Z-twisted Miura SL(2)-oper is called nondegenerate if it is H-nondegenerate and

the rational function y(z) appearing in formula (2.14) is a polynomial.

3.5. Nondegenerate Z-twisted Miura-Plücker G-opers. We now turn to the general case. Re-

call that to every ZH -twisted Miura-Plücker G-oper ∇, we have associated a Miura SL(2)-oper

∇̂i(z), i = 1, . . . , r, given by formula (3.5). (It is obtained from the Miura GL(2)-oper ∇i = ∇|Wi

using formulas (3.3) and (3.6)). It follows from the definition that if ∇ is Z-twisted with Z given

by (2.10), then ∇̂i is ·i³̌i-twisted.

Definition 3.7. Suppose that the rank of G is greater than 1. A Z-twisted Miura-Plücker G-oper

∇ is called nondegenerate if it is H-nondegenerate and each ·i³̌i-twisted Miura SL(2)-oper ∇̂i(z) is

nondegenerate.

It turns out that this simply means that in addition to ∇ being H-nondegenerate, each yi(z)

from formula (2.14) is a polynomial.

Proposition 3.8. Let ∇ be a Z-twisted Miura-Plücker G-oper. The following statements are equivalent:

(1) ∇ is nondegenerate.

(2) ∇ is H-nondegenerate, and each ∇̂i(z) has regular singularities, i.e. Äi(z) given by formula (3.4)

is in C[z].

(3) Each yi(z) from formula (2.14) may be chosen to be a monic polynomial, and these polynomials

satisfy the conditions in Definition 3.4.

Proof. To prove that (2) implies (3), we need only show that if each Äi(z) given by formula (3.4)

is in C[z], then the yi(z)’s are polynomials. Suppose yi(z) is not a polynomial, and choose j ̸= i

such that aij ̸= 0. Then −aij > 0, and so the denominator of yi(z) appears in the denominator of

Äj(z). Moreover, since the poles of yi(z) are distinct from the zeros of Λj(z) and the other yk(z)’s,

the poles of yi(z) give rise to poles of Äj(z). But then ∇̂j(z) would not have regular singularities.

Next, assume (3). By Definition 3.4, ∇ is H-nondegenerate. Since all the yi(z)’s are polynomials,

the same is true for the Äi(z)’s. (Here, we are using the fact that the off-diagonal elements of the

Cartan matrix, aij with i ̸= j, are less than or equal to 0.) Since Äi(z) is a product of polynomials

whose roots are distinct from the roots of yi(z), we see that the Cartan connection associated to

∇̂i(z) is nondegenerate.

Finally, (2) is a trivial consequence of (1). □
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If we apply a gauge transformation by an element h(z) ∈ H[z] to ∇, we get a new Z-twisted

Miura-Plücker G-oper. However, the following proposition shows that it is only nondegenerate

if h(z) ∈ H . As a consequence, the Λk’s of a nondegenerate oper are determined up to scalar

multiples. If we further impose the condition that each yi(z) is a monic polynomial, then h(z) = 1,

and this fixes the Λk’s.

Proposition 3.9. If ∇ is a nondegenerate Z-twisted Miura-Plücker G-oper and h(z) ∈ H[z], then h(z)∇h(z)−1

is nondegenerate if and only if h(z) is a constant element of H .

Proof. Write h(z) =
∏

hi(z)
³̌i . Gauge transformation of ∇ by h(z) induces a gauge transformation

of ∇i by hi(z). Since ∇i is nondegenerate, Lemma 3.5 implies that the new Miura SL(2)-oper is

nondegenerate if and only hi ∈ C
×. □

4. SL(2)-OPERS AND THE BETHE ANSATZ EQUATIONS

Before exploring the relationship between Miura G-opers and the Bethe Ansatz equations in

general, we briefly describe what happens for G = SL(2). These results are immediate corollaries

of the results in the following sections. However, in this case, one can give simpler proofs; see

[KSZ] for the details.

Let ZH = diag(·,−·). A nondegenerate ZH -twisted Miura SL(2)-oper can be represented in

matrix form as

∇(z) = ∂z + (· − y(z)−1∂zy(z))³̌+ Λ(z)e =

(
· − y(z)−1∂zy(z) Λ(z)

0 −· + y(z)−1∂zy(z)

)
,

where the polynomials y(z) and Λ(z) have no roots in common and y(z) is monic with no multiple

roots. This connection is gauge equivalent to ∂z+·³̌+Λ(z)e via a gauge transformation by a matrix

of the form

v(z) = y(z)³̌e
q−(z)

q+(z)
e
,

where q−(z), q+(z) are relatively prime polynomials with q+(z) monic.

One can now show that y(z) = q+(z) and the polynomials q+(z) and q−(z) satisfy the following

differential equation involving their Wronskian:

q+(z)∂zq−(z)− q−(z)∂zq+(z) + 2·q+(z)q−(z) = Λ(z)

This is the SL(2)-version of a system of equations called the qq-system. In fact, there is a bijec-

tion between nondegenerate ZH -twisted Miura opers together with a choice of the matrix v(z)

and nondegenerate polynomial solutions of the qq-system; here, a polynomial solution of the

qq-system is called nondegenerate if q+(z) is monic with no multiple roots and has no roots in

common with Λ(z).
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Nondegenerate solutions lead to solutions of the Bethe Ansatz equation for the inhomogeneous

Gaudin model. Indeed, let Λ(z) =
∏N

k=1(z − zk)
ℓi and q+(z) =

∏n
i=1(z − wi) with wi ̸= wj if i ̸= j

and wi ̸= zk. One can then show that

(4.1) 2· +

N∑

k=1

ℓk
wi − zk

−

n∑

k=1

2

wi − wk

= 0, k = 1, . . . , r.

In fact, there is a one-to-one correspondence between ZH -twisted Miura opers and solutions of

the Bethe Ansatz equation.

5. MIURA-PLÜCKER OPERS, WRONSKIAN RELATIONS, AND THE BETHE ANSATZ EQUATIONS

FOR THE GAUDIN MODEL

We now return to the general situation, with G an arbitrary simple, simply connected complex

Lie group. We show that a Z-twisted Miura-Plücker G-oper is also ZH -twisted. We then establish a

one-to-one correspondence between the set of nondegenerate ZH -twisted Miura-Plücker G-opers

and the set of solutions of a system of Bethe Ansatz equations associated to G. A key element of the

construction is an intermediate object between these two sets: solutions to a system of nonlinear

differential equations called the qq-system, which imposes relations on certain Wronskians indexed

by the simple roots.

5.1. Reduction to the semisimple case. Let ∇ be a Z-twisted Miura-Plücker oper for Z ∈ b+. As

in (2.10), we write Z = ZH +
∑r

i=1 ciei + n+ with ZH =
∑r

i=1 ·i³̌i ∈ h and n+ ∈ [n+, n+].

We now show that a Z-twisted Miura-Plücker oper is also ZH -twisted.

Proposition 5.1. i) There exist an element u(z) ∈ N+(z) so that u(z)(∂z+Z)u(z)−1 = ∂z+ZH+ñ+(z),

where ñ+(z) ∈ [n+, n+](z).

ii) Any Z-twisted Miura-Plücker oper is ZH -twisted.

Proof. To prove the first statement, we will construct u(z) as a product of r elements corresponding

to the simple roots. Assume that ï³i, Z
Hð ≠ 0, and set ui(z) = exp

(
− ci

ï³i,ZHð
ei

)
. We obtain

(5.1) ui(z)(∂z + Z)ui(z)
−1 = ∂z + ZH +

r∑

j=1,i ̸=j

cjej + . . . ,

where the dots stand for terms in [n+, n+](z). Similarly, if ï³i, Z
Hð = 0, set ui(z) = exp(zciei),

which again leads to (5.1). Then u(z) =
∏r

i=1 ui(z), where the order of the ui(z)’s does not matter,

satisfies the desired conditions.
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Recall that we have v(z) ∈ B+(z) such that ∇i(z) = v(z)(∂z + Z)v(z)−1|Wi
for all i. Set vu(z) =

v(z)u(z)−1 ∈ B+(z), with u(z) as in the first part. It follows that

(5.2)
∇i(z) = v(z)(∂z + Z)v(z)−1|Wi

= v(z)u(z)−1(∂z + ZH)u(z)v(z)−1|Wi
= vui (z)(∂z + ZH

i )vui (z)
−1.

where vui (z) = v(z)u−1(z)|Wi
and ZH

i = ZH |Wi
. Thus any Z-twisted Miura-Plücker oper is ZH -

twisted.

□

For the rest of the paper, we will restrict attention to opers with a semisimple twist. However,

we will retain the notation ZH for clarity.

5.2. Twisted Miura-Plücker data and qq-systems. We now introduce a nonlinear system of dif-

ferential equations depending on the polynomials Λ1(z), . . . ,Λr(z) and the semisimple element

ZH . As we will see, it may be viewed as a functional realization of the Bethe Ansatz equations.

Recall that the Wronskian of two rational functions q+(z) and q−(z) is given by

W (q+, q−)(z) = q+(z)∂zq−(z)− q−(z)∂zq+(z).

Definition 5.2. The qq-system associated to g, the semisimple element ZH ∈ h, and the collection

of monic polynomials Λ1(z), . . . ,Λr(z) is the system of equations

(5.3) W (qi+, q
i
−)(z) + ï³i, Z

Hðqi+(z)q
i
−(z) = Λi(z)

∏

j ̸=i

[
qj+(z)

]−aji

for i = 1, . . . , r.

These qq-systems were previously studied in [MV2].

A polynomial solution {qi+(z), q
i
−(z)}i=1,...,r of (5.3) is called nondegenerate if each qi+(z) is mon-

icand the qi+(z)’s satisfy the conditions in Definition 3.4. Note that nondegeneracy only depends

on the qi+(z)’s.

It is an immediate consequence of the definition that for nondegenerate polynomial solutions,

qi+(z) and qi−(z) are relatively prime. Indeed, if w is a common root of qi+(z) and qi−(z), then it is

a root of the left-hand side of the ith qq-equation. It follows that w is also a root of some factor on

the right-hand side, which contradicts nondegeneracy.

Remark 5.3. This system of equations (5.3) has also been considered in [MV1] in the context of

differential operators corresponding to Miura opers for Z = 0.

Remark 5.4. If g is not simply-laced, let g̃ be the associated simply-laced Lie algebra, i.e., the Lie

algebra whose Dynkin diagram has the multiple bond replaced by a simple bond. (We will sys-

tematically use tilde superscripts to denote objects associated to this new Lie algebra.) We suppose
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further that g has a unique short simple root, hence is of type Bn or G2. In this case, we show that

a solution to the qq-system for g gives rise to a solution to the qq-system for g̃.

Let {qi+(z), q
i
−(z)} be a solution to the qq-system for g for fixed ZH and Λi’s. We let k and ℓ be

the indices of the simple roots connected by the multiple bond, with k corresponding to the short

simple root. Note that the Cartan matrices of g and g̃ only differs in the k, ℓ entry.

Fix a semisimple element Z̃H̃ ∈ h̃ by the equations ï³̃i, Z̃
H̃ð = (1+¶ik(−akℓ−1))ï³i, Z

Hð. Define

polynomials q̃i±(z) and Λ̃i(z) by

q̃i±(z) =




(qk±(z))

−akℓ i = k,

qi±(z) otherwise,
Λ̃i(z) =





−akℓ(q
k
+(z)q

k
−(z))

−akℓ−1Λk(z) i = k,

(qk+(z))
−akℓ−1Λℓ(z) i = ℓ,

Λi(z) otherwise.

(Note that Λ̃k is no longer monic.)

It is now easy to check that the q̃i±(z)’s satisfy the qq-system for g̃ given by

W (q̃i+, q̃
i
−)(z) + ï³̃i, Z̃

H̃ðq̃i+(z)q̃
i
−(z) = Λ̃i(z)

∏

j ̸=i

[
q̃j+(z)

]−ãji
.

The kth equation is just the original kth equation multiplied by −akℓ(q
k
+(z)q

k
−(z))

−akℓ−1. The left-

hand sides of the new and old ℓth equations coincide, and the additional factor in Λ̃ℓ(z) ensures

that the same holds for the right-hand sides. Finally, suppose i ̸= k, ℓ. Since i is not connected to

k, ãki = aki = 0, qi+ and q̃i+ do not appear on the right-hand side of the ith equation, so the new

and old equations are identical. Note that this is where the construction fails if types Cn and F4.

We remark that this construction always leads to degenerate solutions of the qq-system for g̃.

Remark 5.5. The q-deformed version of the system (5.3) is known as a QQ-system [FH2]. It plays

a similar role in the study of the Bethe Ansatz equations for the XXZ model. It also arises in the

ODE/IM correspondence [MRV1, MRV2], in the representation theory of quantum groups [FH2],

and in enumerative geometry [KPSZ, KSZ, KZ2, KZ1].

In order to describe the relationship between solutions of the qq-system and Miura-Plücker

opers, we need the notion of a ZH -twisted Miura-Plücker datum. Recall that if ∇ is a ZH -twisted

Miura-Plücker oper, then by Theorem 2.7, it can be written in the form (2.8):

(5.4) ∇ = ∂z +
r∑

i=1

gi(z)³̌i +
r∑

i=1

Λi(z)ei, gi(z) ∈ C(z)×.

Moreover, there exists v(z) ∈ B+(z) such that for all i = 1, . . . , r, the Miura GL(2)-opers ∇i

associated to ∇ can be written in the form (3.9):

(5.5) ∇i = vi(z)(∂z + ZH
i )vi(z)

−1, i = 1, . . . , r,
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where vi(z) = v(z)|Wi
and ZH

i = ZH |Wi
.

The element v(z) is not uniquely determined by the Miura-Plücker oper. First, note that the sub-

group [N+(z), N+(z)] acts trivially on the representations Wi. Next, it is obvious from (5.5) that the

constant maximal torus H fixes ∂z+ZH
i . It follows that any element of the coset v(z)H[N+(z), N+(z)]

also satisfies (5.5). We call such a coset a framing of the Miura-Plücker oper.

Definition 5.6. A ZH -twisted Miura-Plücker datum is a pair (∇, v(z)H[N+(z), N+(z)]) consisting of

a ZH -twisted Miura-Plücker oper together with a framing. The datum is called nondegenerate if

the underlying Miura-Plücker oper is nondegenerate.

Theorem 5.7. There is a one-to-one correspondence between the set of nondegenerate ZH -twisted Miura-

Plücker data and the set of nondegenerate polynomial solutions of the qq-system (5.3).

Proof. Let (∇, v(z)H[N+(z), N+(z)]) be a nondegenerate ZH -twisted Miura-Plücker datum. We

will fix the representative of the framing coset by setting

(5.6) v(z) =
r∏

i=1

yi(z)
³̌i

r∏

i=1

e
−

qi
−

(z)

qi+(z)
ei
,

where qi+(z), q
i
−(z) are relatively prime polynomials with qi+(z) monic for each i = 1, . . . , r and

each yi(z) is a monic polynomial.

We now show that the qi+(z), q
i
−(z)’s give a nondegenerate solution to the qq-system and in fact,

(5.7) yi(z) = qi+(z), i = 1, . . . , r.

We first compute the matrix of v(z) and ZH acting on the two-dimensional subspace Wi intro-

duced in Section 3.1. A short calculation shows that

(5.8) v(z)|W i =

(
yi(z) 0

0 y−1
i (z)

∏
j ̸=i y

−aji
j (z)

)
1 −

qi
−
(z)

qi+(z)

0 1




and

(5.9) ZH |Wi
=

(
·i 0

0 −·i −
∑

j ̸=i aji·j

)
.

We now apply (3.1) and (5.5) to relate the yi(z)’s and qi±(z)’s. First, comparing the diagonal

entries on both sides of (5.5) gives formula (2.15):

(5.10) gi(z) = ·i − y−1
i (z)∂zyi(z).

Next, by comparing the upper triangular entries on both sides of (5.5), we obtain

(5.11)

[
∂z

(
qi−(z)

qi+(z)

)
+
(∑

j

aji·j

)qi−(z)
qi+(z)

][
yi(z)

]2
= Λi(z)

∏

j ̸=i

yj(z)
−aji .
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Multiplying through by qi+(z)
2 gives

(5.12)
[
W (qi+(z), q

i
−(z)) +

(∑

j

aji·j

)
qi−(z)q

i
+(z)

][
yi(z)

]2
=
[
qi+(z)

]2
Λi(z)

∏

j ̸=i

yj(z)
−aji .

The nondegeneracy conditions for our oper imply that yi(z)|q
i
+(z). Write qi+(z) = yi(z)p(z). We

will show that p(z) has degree 0. Suppose that p(z) has a root c with multiplicity m g 1. Note that

c is a root of qi+ of multiplicity either m or m+1, depending on whether c is a (necessarily simple)

root of yi(z).

Now, rewrite the previous equation as

(5.13) qi−(z)∂zq
i
+(z) = qi+(z)∂zq

i
−(z) +

(∑

j

aji·j

)
qi−(z)q

i
+(z)− p(z)2Λi(z)

∏

j ̸=i

yj(z)
−aji .

Suppose that c is not a root of yi(z). Then c is a root of the left-hand side of (5.13) with multiplic-

ity m−1. Since c is a zero of the three terms on the right-hand side have multiplicities g m, m, and

2m respectively, we have a contradiction. On the other hand, if c is a root of yi(z), then c is a root

of the left-hand side with multiplicity m while it is a root of the three terms on the right-hand side

with multiplicities g m+ 1, m+ 1, and 2m. Again, we have a contradiction, so p(z) is a constant.

Since qi+(z) and yi(z) are monic, p(z) = 1 and qi+(z) = yi(z).

Dividing out by yi(z)
2 in (5.12), we see that the polynomials qi+(z), q

i
−(z), i = 1, . . . , r, satisfy

the system of equations (5.3) and are nondegenerate. Thus, we obtain a map from the set of

nondegenerate Z-twisted Miura G-opers to the set of nondegenerate solutions of (5.3).

To show that this map is a bijection, we construct its inverse. Suppose that we are given a

nondegenerate solution {qi+(z), q
i
−(z)}i=1,...,r of the system (5.3). We then define ∇ by formula

(5.4), where we set

gi(z) = ·i − qi+(z)
−1∂zq

i
+(z),

i.e.

(5.14) ∇ = ∂z +
r∑

i=1

[
·i − qi+(z)

−1∂zq
i
+(z)

]
³̌i +

r∑

i=1

Λi(z)ei.

We also set

(5.15) v(z) =

r∏

i=1

qi+(z)
³̌i

r∏

j=1

e
−

q
j
−

(z)

q
j
+(z)

ei

.

Note that this means that we are setting yi(z) = qi+(z) for all i. Equations (5.5) are now satisfied

for all i. Indeed, the Wronskian equations imply that the off-diagonal part of (5.5) holds while

the diagonal part is automatic. Moreover, the nondegeneracy conditions on ∇ are satisfied by



22 T.J. BRINSON, D.S. SAGE, AND A.M. ZEITLIN

Proposition 3.8. Therefore, (∇, v(z)H[N+(z), N+(z)]) defines a nondegenerate ZH -twisted Miura-

Plücker G-oper. This completes the proof. □

Remark 5.8. The inverse map is defined even for degenerate solutions of the qq-system. Thus, a

polynomial solution of the qq-system gives rise to a ZH -twisted Miura-Plücker datum without the

assumption of nondegeneracy.

Corollary 5.9. There is a surjective map from the set of nondegenerate polynomial solutions of the qq-

system (5.3) to the set of nondegenerate ZH -twisted Miura-Plücker opers whose fibers consist of all solutions

with fixed qi+(z)’s for each i = 1, . . . , r.

Proof. In the correspondence of the theorem, the Miura-Plücker oper is defined entirely in terms

of the qi+(z)’s. The desired map is the composition of the inverse map with the map that forgets

the framing. □

In the next section, we will describe the fibers of this map explicitly.

5.3. The qq-system and the Bethe Ansatz equations. We now derive the equations determining

the zeros of a nondegenerate polynomial solution {qi+(z), q
i
−(z)}i=1,...,r of the qq-system. These

equations are precisely the Bethe Ansatz equations for the inhomogeneous Gaudin model that

were introduced in [FFTL, FFR2].

We begin by reformulating the qq-system. Multiplying both sides of (5.3) by qi+(z)
−2eï³i,Z

Hðz

and recalling that aii = 2, we see that the qq-system is equivalent to

(5.16) ∂z

[
eï³i,Z

Hðz

(
qi−(z)

qi+(z)

)]
= Λi(z)


∏

j

qj+(z)
−aji


 eï³i,Z

Hðz, i = 1, . . . , r.

Let {wi
ℓ} be the roots of qi+(z). To derive the Bethe Ansatz equations, recall that a meromorphic

function f(z) with a double pole at w has residue 0 if and only if ∂z log(f(z)(z − w)2)|z=w = 0. By

nondegeneracy, we can apply this remark to the right-hand side of (5.16) at wi
ℓ, thereby obtaining

the system of equations

(5.17)
ï³i, Z

Hð+ ∂z log
[
Λi(z)

∏

j

qj+(z)
−aji(z − wi

ℓ)
2
]∣∣∣∣∣

z=wi
ℓ

= 0,

i = 1, . . . , r; ℓ = 1, . . . , deg(qi+(z)).

These equations can be recast in a more familiar form by computing the logarithmic derivatives

explicitly. Recall from (2.7) that the roots of the Λj(z)’s are denoted by zi1, . . . , z
i
Ni

and the multi-

plicity of the root zk in the Λj(z)’s is determined by the dominant integral coweight ¼̌k. A simple
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computation now gives the Bethe Ansatz equations

(5.18)
ï³i, Z

Hð+

Ni∑

j=1

ï³i, ¼̌jð

wi
ℓ − zij

−
∑

(j,s) ̸=(i,ℓ)

aji

wi
ℓ − wj

s

= 0,

i = 1, . . . , r, ℓ = 1, . . . , deg(qi+(z)).

Remark 5.10. These are the Bethe Ansatz equations corresponding to the representation ¹N
j=1V¼̌j

and the coweight µ̌ =
∑

¼̌j −
∑

deg qi+(z)³̌i. The ¼̌i’s are dominant, but we are not assuming that

µ̌ is dominant.

Next, we show that the map from nondegenerate polynomial solutions of the qq-equations to

solutions of the Bethe Ansatz equations is surjective; moreover, the fibers are affine spaces of

dimension equal to the number of simple roots which kill ZH .

We start by considering some properties of the rational functions ϕi(z) = qi−(z)/q
i
+(z). First, we

get an equivalent form of the ith qq-equations by dividing (5.3) by qi+(z)
2:

(5.19) ∂zϕi(z) + ï³i, Z
Hðϕi(z) = Λi(z)


∏

j

qj+(z)
−aji


 .

For convenience, we set Ài = ï³i, Z
Hð.

Since eÀizΛi(z)
(∏

j q
j
+(z)

−aji

)
has a double pole at wi

k and residue 0, we obtain the partial

fraction decomposition

(5.20) Λi(z)


∏

j

qj+(z)
−aji


 = pi(z) +

∑
bik

(
1

(z − wi
k)

2
−

Ài
z − wi

k

)
,

where pi(z) is a polynomial. If we write

(5.21) ϕi(z) = hi(z) +
∑ cik

z − wi
k

,

with hi(z) a polynomial, then (5.19) can be expressed in terms of partial fraction decompositions

as

(5.22) ∂zhi(z) + Àihi(z)−
∑ cik

(z − wi
k)

2
+
∑ Àic

i
k

z − wi
k

= pi(z) +
∑

bik

(
1

(z − wi
k)

2
−

Ài
z − wi

k

)
.

In other words,

(5.23) cik = −bik and ∂zhi(z) + Àihi(z) = pi(z).

We will use these conditions to define a polynomial solution of the qq-systems associated to a

solution of the Bethe Ansatz equations. Fix such a solution, i.e., a collection of wi
ℓ’s satisfying 5.18.

Notice that for this solution to make sense, wi
ℓ is not a root of Λi and if aji ̸= 0 and (i, ℓ) ̸= (j, s),
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then wi
ℓ ̸= wj

s. Set qi+(z) =
∏

ℓ(z − wi
ℓ). We must show that there exist polynomials qi−(z) which

extend the qi+(z)’s to a solution of (5.3); this solution will automatically be nondegenerate.

In order to define qi−(z), we will construct a rational function ϕi(z) whose poles are precisely the

roots of qi+(z) and set qi−(z) = ϕi(z)q
i
+(z). We define ϕi(z) via the partial fraction decomposition

(5.21), so that the qq-equations are satisfied if and only if 5.23 holds. Thus, after setting cik = −bik,

we just need hi(z) to be a polynomial solution of the differential equation ∂zhi(z)+Àihi(z) = pi(z).

If Ài = 0, then hi(z) can be any indefinite integral of pi(z). If Ài ̸= 0, then there is a unique indefinite

integral of eÀizpi(z) such that hi(z) = e−Àiz
∫ z

eÀixpi(x) dx is a polynomial.

We thus obtain the following theorem, which was first proven in [MV2].

Theorem 5.11. (1) If ï³i, Z
Hð ≠ 0 for all i (for example, if ZH is regular semisimple), then there is a

bijection between the solutions of the Bethe Ansatz equations (5.17) and the nondegenerate polyno-

mial solutions of the qq-system (5.3).

(2) If ï³l, Z
Hð = 0, for l = i1, . . . , ik and is nonzero otherwise, then {qi+(z)}i=1,...,r and {qi−(z)}i ̸=i1,...,ik ,

are uniquely determined by the Bethe Ansatz equations, but each {q
ij
−(z)} for j = 1, . . . k is only

determined up to an arbitrary transformation q
ij
−(z) −→ q

ij
−(z) + cjq

ij
+(z), where cj ∈ C.

Remark 5.12. The map {qi+(z), q
i
−(z)} 7→ {qi+(z)} taking polynomial solutions of the qq-system

to the “positive part” has fibers which are affine spaces of the dimension given in the theorem,

even when the solutions are degenerate. Indeed, choose q1+(z), . . . , q
r
+(z) for which there exists

a (not necessarily nondegenerate) polynomial solution of the qq-system. The possible qi−(z)’s are

determined by integrating (5.16):

(5.24) qi−(z) = qi+(z)e
−ï³i,Z

Hðz

∫ z

eï³i,Z
HðxΛi(x)

∏

j

qj+(x)
−ajidx,

Here, we must choose the integration constant so that qi−(z) is a polynomial. By hypothesis, there

exists at least one such constant.

If ï³i, Z
Hð ̸= 0 for all i (for example, if ZH is regular semisimple), then it is clear that only one

integration constant is possible, so the qi−(z)’s are uniquely determined. However, if ï³i, Z
Hð = 0,

then qi−(z) is only determined up to adding a constant multiple of qi+(z):

(5.25) qi−(z) = qi+(z)

[
ci +

∫ z

Λi(x)
∏

j

qj+(x)
−ajidx

]
,

where ci ∈ C is arbitrary.

Remark 5.13. The previous remark shows that the degrees of the qi−’s are essentially determined

by the degrees of the qi+’s and the Λi’s. If ï³i, Z
Hð ≠ 0, then it is obvious from the ith qq-equation

that deg qi− = degΛi − deg qi+ −
∑

j ̸=i aji deg q
j
+. On the other hand, if ï³i, Z

Hð = 0, then it follows
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from the theorem that there is a solution with deg qi− ̸= deg qi+. In this case, degW (qi+, q
i
−) =

deg qi+ +deg qi− − 1, so deg qi− = 1+degΛi − deg qi+ −
∑

j ̸=i aji deg q
j
+. If this degree is greater than

deg qi+, then every possible qi− has this degree. If it is less than deg qi+, then every other possible qi−
has degree equal to deg qi+.

An immediate consequence of this theorem is the algebraicity of the set of qi+’s giving rise to

nondegenerate solutions of the qq-system. More precisely, fix nonnegative integers d1, . . . , dr. Let

Qd1,...,dr be the set of monic polynomials p1, . . . pr such that there exists a nondegenerate polyno-

mial solution of the qq-equations (for the given ZH and Λi’s) satisfying qi+ = pi and deg pi = di for

all i.

Corollary 5.14. The set Qd1,...,dr is an affine variety.

This theorem states that there is a surjection from nondegenerate polynomial solutions of the

qq-system and solutions of the Bethe Ansatz equation whose fibers consist of all solutions with

fixed qi+(z)’s. Combining this with Corollary 5.9 gives the following result:

Theorem 5.15. There is a one-to-one correspondence between nondegenerate ZH -twisted Miura-Plücker

opers and solutions of the Bethe Ansatz equations (5.18).

Remark 5.16. Let LG be the adjoint group with Lie algebra Lg that is Langlands dual to g. Theorem

6.7 of [FFTL] states the equivalence between the Miura LG-opers with Cartan connection of the

form (see equation 6.7 of [FFTL])

∂z + Z −
N∑

i=1

¼i

z − zi
+

r∑

k=1

m∑

j=1

³k

z − wk
j

,

where {wk
j } satisfy the Bethe Ansatz equations, and the joint eigenvalues on Bethe vectors of

the Gaudin Hamiltonians corresponding to the Lie algebra g. Using a gauge transformation by∏N
i=1(z − zi)

¼i ∈ HL(z), one can transform the connection of those Miura opers to ours.

5.4. Regularity of the connection at the {wi
ℓ}’s. The expression (5.14) for a nondegenerate Miura-

Plücker oper appears to have singularities at the roots of the qi+’s. However, there exists a gauge in

wich the connection is in fact regular; in other words, the connection (5.14) has trivial monodromy

at {wi
ℓ}’s. To show this, it will be convenient to describe the Bethe Ansatz equations in terms of

the Cartan connection ∇H = ∂z +AH(z), with AH(z) defined in (2.12):

(5.26)

(
2

z − wi
ℓ

+ ï³i, A
H(z)ð+ ∂z log Λi(z)

) ∣∣∣
z=wi

ℓ

= 0,

i = 1, . . . , r, ℓ = 1, . . . , deg(qi+(z)).
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We now apply gauge change by gi,ℓ(z) = exp
[

−fi
Λi(z)(z−wi

ℓ
)

]
to

∇ = ∂z +
r∑

i=1

Λi(z)ei +AH(z).

The only terms in which z − wi
ℓ appears in the denominator are those which involve ³̌i and

fi. The former gives 1
z−wi

ℓ

³̌i + ï³i, A
H(z)ð³̌i, and since ï³i, A

H(z)ð has a simple pole at wi
ℓ with

residue −1, this expression is regular at wi
ℓ. The terms involving fi are

−∂z(
1

Λi(z)(z − wi
ℓ)
)fi −

fi
Λi(z − wi

ℓ)
2
−

ï³i, A
H(z)ðfi

Λi(z)(z − wi
ℓ)

= −
∂z log Λi + 2(z − wi

ℓ)
−1 + ï³i, A

H(z)ð

Λi(z − wi
ℓ)

fi.

The residue term of this vanishes by the Bethe Ansatz equations (5.26), and we conclude that the

matrix of ∇ in this gauge is manifestly regular at wi
ℓ.

Thus, we have proved the following theorem:

Theorem 5.17. The nondegenerate Z-twisted Miura-Plücker oper connections have trivial monodromy at

the {wi
ℓ}’s.

6. BÄCKLUND TRANSFORMATIONS

In this section, we show that nondegenerate ZH -twisted Miura-Plücker opers are in fact ZH -

twisted Miura opers. Thus, solutions of the Bethe Ansatz equations are in fact parameterized by

ZH -twisted Miura opers. The proof relies on the important technical tool of Bäcklund transforma-

tions: transformations on twisted Miura-Plücker opers associated to elements of the Weyl group.

These transformations were first introduced in the context of qq-systems in [MV2], where they

were referred to as reproduction procedures. When ZH = 0, it was shown in [MV1] that these

reproduction procedures act on the differential operators underlying opers as in Proposition 6.1

below. If Z ̸= 0, the Backlünd transformations coincide with the exponential reproduction proce-

dure of [MV2]. Moreover, it was proved in [MV2, Theorem 6.7] that the population obtained from

the exponential reproduction procedure for regular semisimple Z can be identified with an orbit

of the Weyl group of g. For completeness, we will reprove some of the results of [MV2]. We will

then establish the full correspondence between qq-systems and Z-twisted Miura G-opers.

6.1. Simple Bäcklund transformations. Our goal is to define transformations which take a ZH -

twisted Miura-Plücker oper to a w(ZH)-twisted Miura-Plücker oper, where w is an element of the

Weyl group. As a first step, we consider the case of a simple reflection si.

Recall that a polynomial solution of the qq-system gives rise to a connection (5.14) defined in

terms of the qj+’s and ZH . We now exhibit a gauge transformation which takes this connection

to another connection in the form (5.14), but with qi+ and ZH replaced by qi− and si(Z
H). This
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gauge transformation is by an element of N−(z), so it does not preserve the Miura-Plücker oper

structure.

Proposition 6.1. Let {qj+, q
j
−}j=1,...,r be a polynomial solution of the qq-system (5.3), and let ∇ be the

connection of the corresponding Z-twisted Miura-Plücker oper in the form (5.14). Let ∇(i) be the connection

obtained from ∇ via the gauge transformation by eµi(z)fi , where

(6.1) µi(z) = Λi(z)
−1

[
∂z log

(
qi−(z)

qi+(z)

)
+ ï³i, Z

Hð

]

Then ∇(i) is obtained by making the following substitutions in (5.14):

(6.2)
qj+(z) 7→ qj+(z), j ̸= i,

qi+(z) 7→ qi−(z), Z 7→ si(Z
H) = ZH − ï³i, Z

Hð ³̌i.

Proof. A short computation shows that

(6.3) ∇(i) = eµi(z)fi ∇ e−µi(z)fi =

∂z +AH(z)− Λi(z)µi(z)³̌i +

r∑

k=1

Λk(z)ek + fi

(
µi(z)ï³i, A

H(z)ð − µ′
i(z)− µi(z)

2Λi(z)
)
,

where we remind that AH(z) =
∑r

i=1(·i − ∂z log q
i
+(z))³̌i.

In this expression, the diagonal term is

ZH − ï³i, Z
Hð ³̌i −

∑

j

∂zq
j
+(z)

qj+(z)
³̌j − ∂z log

(
qi−(z)

qi+(z)

)
³̌i = si(Z

H)−
∂zq

i
−(z)

qi−(z)
³̌i −

∑

j ̸=i

∂zq
j
+(z)

qj+(z)
³̌j

as desired.

Thus the statement of the theorem is true if µi satisfies the Riccati equation:

(6.4)
µ′
i(z)

µi(z)
+ µi(z)Λi(z) = ï³i, A

H(z)ð.

Setting hi(z) = Λi(z)µi(z), this equation is equivalent to

(6.5)
h′i(z)

hi(z)
+ hi(z) = ï³i, A

H(z)ð+ ∂z log(Λi(z)).

This identity now follows by taking the logarithmic derivative of (5.16):
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h′i(z)

hi(z)
+ hi(z) = ∂z log hi(z) + ∂z log

(
qi−(z)

qi+(z)

)
+ ï³i, Z

Hðz = ∂z log

(
∂z

[(
qi−(z)

qi+(z)

)
eï³i,Z

Hðz

])

= ∂z log


Λi(z)


∏

j

qj+(z)
−aji


 eï³i,Z

Hðz


 = ∂z log(Λi(z)) + ï³i, A

H(z)ð.

□

Remark 6.2. Note that µi(z) can be rewritten using the qq-system equations as:

(6.6) µi(z) =

∏
j ̸=i q

j
+(z)

−aji

qi+(z)q
i
−(z)

.

6.2. General Bäcklund transformations. We would like to construct Bäcklund transformations

associated to an arbitrary element w of the Weyl group by taking a reduced expression for w and

composing simple Bäcklund transformations associated to the given simple reflections. However,

in general, it is not possible to compose Bäcklund transformations. The problem is that, even if one

starts with a nondegenerate solution of the qq-system, the connection ∇(i) defined in Proposition

6.1 is not necessarily the underlying connection of a nondegenerate si(Z
H)-twisted Miura-Plücker

oper. It thus does not give rise to the necessary initial data for another Bäcklund transformation,

namely a solution of the qq-system for si(Z
H).

Definition 6.3. Let {qj+(z), q
j
−(z)} be a polynomial solution of the qq-system for ZH .

(1) The solution is called i-composable if the polynomials q1+(z), . . . , q
i−1
+ (z), qi−(z), q

i+1
+ (z), . . . , qr+(z)

are the positive polynomials of a solution to the qq-system for si(Z
H).

(2) The solution is called i-generic if it is nondegenerate and if the collection of polynomials

q1+(z), . . . , q
i−1
+ (z), qi−(z), q

i+1
+ (z), . . . , qr+(z) satisfy the conditions in Definition 3.4.

We will also refer to a twisted Miura-Plücker datum as i-composable or i-generic if it comes

from such a solution of the qq-system.

It is immediate from Proposition 6.1 and Theorem 5.7 that if {qj+(z), q
j
−(z)} is i-composable,

then ∇(i) is the underlying connection of a si(Z
H)-twisted Miura-Plücker oper.

Remark 6.4. Assume that Qd1,...,dr is nonempty. While it is easy to see that i-genericity is a Zariski-

open condition on the variety Qd1,...,dr , it is not clear that this open subset is nonempty. In other

words, qi−(z) may have multiple roots or it may share a root with Λi(z) or with qj+(z) for j ̸= i

such that aji ̸= 0. However, if ï³i, Z
Hð = 0, the set of i-generic polynomial solutions is nonempty.

Indeed, if qi−(z) does not satisfy the conditions in Definition 3.4, one can replace it by qi−(z) +

cqi+(z) for an appropriate nonzero scalar c. In particular, when Z = 0, the set of nondegenerate

polynomial solutions of the qq-system that are i-generic for all i is nonempty.
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Lemma 6.5. If {qj+, q
j
−}j=1,...,r is an i-generic polynomial solution of the qq-system, then it is i-composable.

In particular,

(1) The connection ∇(i) constructed in Proposition 6.1 is the underlying connection of a nondegenerate

si(Z
H)-twisted Miura-Plücker oper.

(2) Any corresponding (necessarily nondegenerate) polynomial solution {q̃j+, q̃
j
−}j=1,...,r of the qq-

system for si(Z
H) has q̃i+ = qi− and q̃j+ = qj+ for j ̸= i. Moreover, one may take q̃i− = −qi+.

Proof. We will show that the polynomials {q̃j+} defined above give rise to a solution of the Bethe

Ansatz equations for si(Z
H). It will then follow from Theorem 5.11 that there exist polynomials q̃j−

such that {q̃j+, q̃
j
−}j=1,...,r is a nondegenerate polynomial solution of the qq-system; moreover, this

solution will correspond to a si(Z
H)-twisted Miura-Plücker datum with underlying connection

∇(i). We will show explicitly that one can take q̃i− = −qi+.

First, note that W (qi−,−qi+) = W (qi+, q
i
−) and ï³i, si(Z

H)ðqi−(z)(−qi+(z)) = ï³i, Z
Hðqi+(z)q

i
−(z).

It is now immediate that the ith equation of the qq-system for si(Z
H) is satisfied by the q̃j+’s and

q̃i− = −qi+. As in the proof of Theorem 5.11, this implies that the Bethe Ansatz equations (5.17)

involving the roots of q̃i+ = qi− are satisfied.

Next, rewrite the ith equation of the original qq-system as

(6.7) ∂z log(q
i
−(z))− ∂z log(q

i
+(z)) + ïZH , ³ið =

Λi(z)

qi+(z)q
i
−(z)

∏

j ̸=i

[
qj+(z)

]−aji
.

Evaluating this expression at a root wj
ℓ of qj+(z) for j ̸= i and using nondegeneracy, one obtains

(6.8) ∂z log(q
i
−(z))

∣∣∣
w

j
ℓ

+ ï³i, Z
Hð = ∂z log(q

i
+(z))

∣∣∣
w

j
ℓ

.

One gets the remaining Bethe Ansatz equations by substituting this into (5.17):

(6.9)

0 = ï³j , Z
Hð+ ∂z log

[
Λj(z)

∏

k

qk+(z)
−akj (z − wj

ℓ)
2
]∣∣∣∣∣

z=w
j
ℓ

= ï³j , Z
Hð − aijï³i, Z

Hð+ ∂z log
[
Λj(z)q

i
−(z)

−aij
∏

k ̸=i

qk+(z)
−akj (z − wj

ℓ)
2
]∣∣∣∣∣

z=w
j
ℓ

= ï³j , si(Z
H)ð+ ∂z log

[
Λj(z)

∏

k

q̃k+(z)
−akj (z − wj

ℓ)
2
]∣∣∣∣∣

z=w
j
ℓ

.

□

Thus, the ith simple Bäcklund transformation may be viewed as taking an i-generic Miura-

Plücker datum to a nondegenerate si(Z
H)-twisted Miura-Plücker oper.



30 T.J. BRINSON, D.S. SAGE, AND A.M. ZEITLIN

Definition 6.6. Let w = si1 . . . sik be a reduced decomposition of an element w of the Weyl group.

(1) A polynomial solution of the qq-system (5.3) for ZH is called (i1, . . . , ik)-composable if for

each ℓ, 1 f ℓ f k, the connection ∇(ik)...(ik−ℓ+1) comes from a polynomial solution of the

qq-system for sik−ℓ+1
. . . sik(Z

H).

(2) The solution is called (i1, . . . , ik)-generic) if it is nondegenerate and for each ℓ, 1 f ℓ f k,

the connection ∇(ik)...(ik−ℓ+1) comes from a nondegenerate polynomial solution of the qq-

system for sik−ℓ+1
. . . sik(Z

H).

(3) A ZH -twisted Miura-Plücker oper is called (i1, . . . , ik)-composable (resp. (i1, . . . , ik)-generic)

if it arises from such a solution of the qq-system.

It is immediate that (i1, . . . , ik)-genericity implies (i1, . . . , ik)-composability.

Remark 6.7. Note that in this definition, we only assume the existence of a sequence of transforma-

tions as described in Lemma 6.5 for a particular reduced decomposition of w. We do not assume

that such a sequence exists for other reduced decompositions of w.

We will need a technical result for (i1 . . . ik)-composable solutions of the qq-system, showing the

existence of an element of B−(z) which intertwines the action of ∇ and si1 . . . sik(Z
H) on highest

weight vectors.

Proposition 6.8. Let w = si1 . . . sik be a reduced decomposition. Then, for each (i1 . . . ik)-composable

solution of the qq-system (5.3), there exists an element b−(z) ∈ B−(z) of the form

b−(z) = ecik (z)fik . . . eci2 (z)fi2eci1 (z)fi1h(z),

where cij (z) are non-zero rational functions and h(z) ∈ H(z), such that

(6.10) b−(z)w(Z
H)v = ∂zb−(z)v +A(z)b−(z)v.

Here, A(z) is given by equation (5.14) and v is a highest weight vector in any irreducible finite-dimensional

representation of G.

Proof. Let ∇w be the w(ZH)-twisted Miura-Plücker oper obtained by iterating the Bäcklund trans-

formations defined in Proposition 6.1:

(6.11) ∇w = eµi1
(z)fi1 . . . eµik

(z)fik∇e−µik
(z)fik . . . e−µi1

(z)fi1 .

Let {q̄i+}i=1,...,r be the “plus” part of the corresponding solution to the qq-system. We claim that

(6.12) b−(z) = e−µik
(z)fik . . . e−µi1

(z)fi1
∏

j

[
qj+(z)

]³̌j

satisfies (6.10).
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Let V be an irreducible representation with highest weight ¼, and let v ∈ V be a highest weight

vector. First observe that

(6.13) ∇wv = w(ZH)v −




r∑

j=1

∂z q̄
j
+(z)

q̄j+(z)
³̌j


 v.

For brevity, write E(z) = e−µik
(z)fik . . . e−µi1

(z)fi1 . We now compute:

(∂z +A(z))b−(z)v =
∏

j

[
q̄j+(z)

]ï³̌j ,¼ð
(∂z +A(z))E(z)v + b−(z)


∑

j

∂z q̄
j
+(z)

q̄j+(z)
³̌j


 v

=
∏

j

[
q̄j+(z)

]ï³̌j ,¼ð
E(z)∇wv + b−(z)


∑

j

∂z q̄
j
+(z)

q̄j+(z)
³̌j


 v

= b−(z)


w(ZH)v −




r∑

j=1

∂z q̄
j
+(z)

q̄j+(z)
³̌j


 v


+ b−(z)


∑

j

∂z q̄
j
+(z)

q̄j+(z)
³̌j


 v

= b−(z)w(Z
H)v,

as desired.

□

6.3. ZH -twisted Miura-Plücker opers with admissible combinatorics are ZH -twisted Miura op-

ers. We now prove one of the main results of the paper, namely, that ZH -twisted Miura-Plücker

opers satisfying certain combinatorial conditions are in fact nondegenerate ZH -twisted Miura op-

ers. We begin by outlining the argument.

The first step is to define a class of ZH -twisted Miura-Plücker opers for which one can give an

explicit construction of an upper triangular matrix which diagonalizes the oper, thereby showing

that it is a ZH -twisted Miura oper. The desired condition will be called w0-genericity (or more

generally, w0-composability); it will be a special case of the genericity considered in Definition 6.6.

Next, we observe that the behavior of the qq-system and its iterates under Bäcklund transforma-

tions depend on certain underlying combinatorics: the set of roots killing ZH , the degrees of the

Λi’s, and the degrees of the qi+’s. This combinatorial data essentially determine the degrees of the

qi−’s and inductively, the degrees of the polynomials appearing as solutions of the new qq-systems

obtained after applying Bäcklund transformations. We will call this combinatorial data admissible

if there exists a w0-generic solution of the qq-system with the given combinatorics.

Finally, we show that twisted Miura-Plücker opers with admissible combinatorics are in fact

Miura opers. To do this, we introduce formal variables associated to the given admissible combi-

natorics: for the coordinates of a certain affine variety determined by the set of roots, for the zeros

of the qi+’s and other q̃i±’s that appear upon an appropriate iteration of Bäcklund transformations,
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and for the zeros of the Λi’s. We construct a ring R by adjoining these formal variables to C(z)

and taking a suitable localization. One can now define a qq-system {Qi
+, Q

i
−} over R which has

the property that upon specializing the formal variables appropriately, one obtains an ordinary

qq-system with the given combinatorics. Moreover, {Qi
+, Q

i
−} is w0-generic because it specializes

to an ordinary w0-generic qq-system. We can use this fact to deduce that Miura-Plücker opers with

the given combinatorics are in fact Miura opers.

6.3.1. w0-composability and w0-genericity. We begin by describing a sufficient condition for a ZH -

twisted Miura-Plücker oper to be a ZH -twisted Miura oper. Let w0 be the longest element of the

Weyl group. We call a solution of the qq-system (or the corresponding Miura-Plücker oper) w0-

generic (resp. w0-decomposable) if there exists a reduced decomposition w0 = si1 . . . siℓ such that

the solution (or oper) is (i1, . . . , iℓ)-generic (resp. composable). (For any w ∈ W , one defines

w-genericity and w-composability similarly.)

We will need the following well-known fact about the product of Bruhat cells (see e.g. [H,

Lemma 29.3.A]):

Lemma 6.9. i) If u, v ∈ W satisfy ℓ(u) + ℓ(v) = ℓ(uv), then B−uB−vB− = B−uvB−.

ii) If w ∈ W has a reduced decomposition w = si1si2 . . . sik , then

eai1ei1eai2ei2 . . . eaikeik ∈ B−wN−, eai1fi1eai2fi2 . . . eaikfik ∈ B+wN+

if aij ̸= 0 for all j.

Theorem 6.10. Every w0-composable (resp. w0-generic) ZH -twisted Miura-Plücker G-oper is a ZH -

twisted Miura G-oper (resp. a nondegenerate ZH -twisted Miura G-oper).

Proof. Let

∇ = ∂z +A(z) = ∂z +

r∑

i=1

[
·i − qi+(z)

−1∂zq
i
+(z)

]
³̌i +

r∑

i=1

Λi(z)ei

be the w0-composable ZH -twisted Miura-Plücker oper coming from a w0-composable solution

{qj+} of the qq-system. By Proposition 6.8, there exists an element b−(z) ∈ B−(z) such that

b−(z)w0(Z
H)v = (∂z +A(z))b−(z)v,

where v is any highest weight vector in a finite-dimensional irreducible representation of G. More-

over, if w0 = si1 . . . siℓ is a reduced expression for which the solution is (i1, . . . , iℓ)-composable,

then

b−(z) = eciℓfiℓ . . . eci2fi2eci1fi1h(z)

with cij (z) ∈ C(z)× and h(z) ∈ H(z).

By Lemma 6.9 and the fact that w0 is an involution,

b−(z) = b+(z)w0n+(z),
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for some b+(z) ∈ B+(z) and n+(z) ∈ N+(z), so if v is a highest weight vector in an irreducible

representation,

b+(z)Z
Hw0v = (∂z +A(z))b+(z)w0v.

Therefore, if we set

(6.14) u(z) = ZH − b−1
+ (z)∂zb+(z) + b−1

+ (z)A(z)b+(z) ∈ b+(z),

then

u(z)w0v = 0.

for any irreducible finite-dimensional representation of G with highest weight vector v. Thus,

u(z) is an element of b+(z) which fixes the lowest weight vector w0v of any irreducible finite-

dimensional representation of G. This means that u(z) = 0. Equation (6.14) then implies that A(z)

satisfies

(6.15) A(z) = b+(z)(∂z + ZH)b+(z)
−1

for some b+(z) ∈ B+(z). Thus, we have proved that every w0-composable ZH -twisted Miura-

Plücker oper is a ZH -twisted Miura oper. Equivalently, every w0-composable solution of the qq-

system gives rise to a ZH -twisted Miura oper. By definition, if the original solution is in fact

w0-generic, then the corresponding ZH -twisted Miura oper is nondegenerate. □

6.3.2. Admissible combinatorial data. Let d1, . . . , dr and N1, . . . , Nr be nonnegative integers, and let

Ψ be a collection of roots. Set hΨ = {Y ∈ h | ´(Y ) = 0 ⇐⇒ ´ ∈ Ψ}; it is an affine cone.

Definition 6.11. The combinatorial datum (d = (d1, . . . , dr),N = (N1, . . . , Nr),Ψ) is called w0-

admissible (or simply admissible) if there exists a w0-generic solution of the qq-system with ZH ∈ hΨ

and for all i, deg Λi = Ni and deg qi+ = di.

Remark 6.12. One may similarly define w-admissibility. In this language, e-admissibility com-

binatorics simply means that there exists a nondegenerate polynomial solution with the given

combinatorics.

We now give a more explicit formulation of admissibility in the two opposite extremes ZH = 0

and ZH regular semisimple, i.e. Ψ equals Φ (the set of all roots) or ∅.

Proposition 6.13. The combinatorial datum (d,N,Φ) is admissible if and only if there exists a nondegen-

erate polynomial solution of the qq-system with ZH = 0 and for all i, deg qi+(z) = di and deg Λi = Ni.

Proof. By induction, it suffices to show that for any nondegenerate solution and for any i, one can

modify qi−(z) so that the solution is i-generic. This was shown in Remark 6.4. □
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We now assume that ZH is regular semisimple. In this case, one can characterize admissibility

explicitly in terms of certain inequalities that must be satisfied by the dj ’s and Nj ’s.

We first observe that a Bäcklund transformation induces a transformation on the set of dj ’s.

Indeed, as we have seen in Remark 5.13, if ZH is regular semisimple, then deg qi− = degΛi −

deg qi+ −
∑

j ̸=i aji deg q
j
+. Accordingly, the ith Bäcklund transformation takes dj 7→ d

(i)
j , where

(6.16) d
(i)
j =




Ni − di −

∑
k ̸=i akidk if j = i

dj otherwise.

The following necessary condition for the existence of an (i1, . . . , ik)-composable solution of the

qq-system with fixed regular semisimple combinatorics is now immediate.

Lemma 6.14. If there exists an (i1, . . . , ik)-composable polynomial solution with combinatorial datum

(d,N,∅), then for 0 f s f k3 and 1 f j f r,

(6.17) d
(ik)...(ik−s+1)
j f Nj −

∑

ℓ ̸=j

apjd
(ik)...(ik−s+1)
p .

It turns out that if g is simply-laced, then this necessary condition is in fact sufficient. Moreover,

one can find a generic solution with the given combinatorics. In order to prove this, we will

consider a limit of the qq-system, the infinite qq-system.

Let Ài = ï³i, Z
Hð. To take the limit of the ith qq-equation as Ài goes to infinity, we need to rewrite

the equation. Since the right-hand side of the equation is monic, we have qi−(z) = À−1
i q̄i−(z), where

q̄i−(z) is monic. The ith qq-equation is thus equivalent to

(6.18) À−1
i W (qi+, q̄

i
−)(z) + qi+(z)q̄

i
−(z) = Λi(z)

∏

j ̸=i

[
qj+(z)

]−aji

Upon taking the limit, the Wronskian term disappears.

Definition 6.15. The infinite qq-system associated to g and the collection of monic polynomials

Λ1(z), . . . ,Λr(z) is the system of equations

(6.19) qi+(z)q
i
−(z) = Λi(z)

∏

j ̸=i

[
qj+(z)

]−aji
for i = 1, . . . , r,

where the qj+(z)’s (and hence the qi−(z)’s) are assumed to be monic.

It is easier to understand the significance of the infinite qq-system in the q-deformed case [FKSZ].

The q-difference analog of the qq-system, known as the QQ-system, expresses the relations be-

tween the so-called Baxter Q-operators in the corresponding XXZ integrable model [FH1], [FH2],

acting on a tensor product H of finite-dimensional representations of the quantum group Uq(ĝ).

3By convention, the case s = 0 corresponds to the original dj ’s.
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(This tensor product is the underlying Hilbert space of the XXZ model). The Baxter Q-operators

can be expressed as weighted half-traces Qi
±(z) = TrV i

±

[
(Z ¹ I)R

]
in the so-called prefunda-

mental representations {V i
±}i=1,...,r of Uq (̂b+) (see [HJ]) of the normalized universal R-matrix R ∈

Uq (̂b+)¹̂Uq (̂b−); here, the weight Z =
∏

i ·̂
³̌i

i is a deformation of the classical ZH . The Q-operators

act on H through the second factor of the R-matrix, i.e., through Uq (̂b−) ¢ Uq(ĝ).

One can define the infinite version of such Baxter Q-operators by considering the limit as the

corresponding multiplicative weight parameters À̂i =
∏

j ·̂j
−aji

goes to zero. One can even write

an explicit formula expressing the expansion coefficients of the Q-operator in terms of their infinite

analogues and the generators of the quantum group. This was done explicitly in [FH1] and [PSZ]

in the case of g = sl(2). The latter reference, together with the subsequent works [KPSZ], [KZ2],

[KZ1], identified the infinite version of the QQ-system relations with the relations in the classical

equivariant K-theory ring on a certain quiver variety while the finite version gives the relations

in the quantum K-theory ring. The parameters À̂i are known as Kähler parameters.

In particular, these results for Baxter Q-operators imply that one can find solutions of the QQ-

system which are the deformations of solutions of its infinite analogue. Upon taking the limit

which reduces the XXZ model to Gaudin model (see e.g. Section 6 of [KSZ]), we see that this is

true for the qq-system as well.

For example, in the sl(2) case, the infinite qq-system is simply the single equation q+(z)q−(z) =

Λ(z). If we set Λ(z) =
∏N

j=1(z− zj), then a solution is obtained by dividing the zj ’s into w1, . . . , wd

and v1, . . . , vN−d and setting q∞+ (z) =
∏d

k=1(z − wk) and q∞− (z) =
∏N−d

ℓ=1 (z − vℓ). Then following

the discussed above q-deformed case, if Λ(z) has no repeated roots, then for large enough À, there

are deformations wÀ
k and vÀℓ such that qÀ+(z) =

∏d
k=1(z −wÀ

k), q
À
−(z) =

∏N−d
ℓ=1 (z − vÀℓ ) are a solution

of the finite qq-system (for the same Λ(z)) with parameter À. Moreover, given the initial choice of

q∞+ (z), the solution is unique and is indeed given by a formula that allows one to view the zj ’s as

free parameters.

Lemma 6.16. If Λ(z) has no repeated roots, then the finite solution qÀ+(z), q
À
−(z) is nondegenerate for large

À.

Proof. Since q∞+ (z) has no multiple roots and is relatively prime to q∞− (z), the same holds for the

finite solutions for large À. For such À, suppose that qÀ+(z) has a root w in common with Λ(z).

We see that ∂zq
À
+(z)q

À
−(z) vanishes at w, since every other term in the qq-equation vanishes. This

implies that w is either a root of qÀ−(z) or a multiple root of qÀ+(z), a contradiction. □

We can generalize this procedure to define generic solutions to the qq-system for simply-laced

g. Assume that dj f Nj −
∑

ℓ̸=j akjdk for all j. We can then choose Zj ,Wj ¢ C such that

|Zj | = Nj , |Wj | = dj , the Zj ’s are pairwise disjoint, Zj ∩ Wk = ∅ unless ajk ̸= 0, and Wj ¢

Zj ∪
⋃

akj<0Wk. Let Vj = Zj ∪
⋃

akj<0Wk \ Wj . Setting Λj(z) =
∏

a∈Zj
(z − a), qj,∞+ (z) =
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∏
w∈Wj

(z − w), and qj,∞− (z) =
∏

v∈Vj
(z − v) gives a solution of (6.19). Since g is simply-laced,

Λj(z)
∏

k ̸=j q
k,∞
+ (z)−akj is multiplicity-free. One can now apply the results above to obtain unique

deformations qi,Z
H

+ (z), qi,Z
H

− (z) satisfying the qq-equations. By the lemma, these are nondegener-

ate solutions for large ZH .

Suppose further that the system of inequalities d
(i)
j f Nj −

∑
ℓ ̸=j akjd

(i)
k is also satisfied. This

guarantees that we have a solution q
j,∞,(i)
+ (z), q

j,∞,(i)
− (z) to the infinite qq-system with the same

Λi(z), with q
i,∞,(i)
+ (z) = qj,∞− (z) and q

i,∞,(i)
− (z) = qj,∞+ (z), and with q

j,∞,(i)
+ (z) = qj,∞+ (z) for j ̸= i.

We again can deform this infinite solution to obtain a unique solution of the qq-equations for

si(Z
H). By uniqueness, these finite solutions are the ith Bäcklund transformation of the previous

solutions, i.e., they are just q
j,ZH ,(i)
± (z), q

j,ZH ,(i)
+ (z). Since these solutions are nondegenerate for

large ZH , we see that {qj,Z
H

+ (z), qj,Z
H

− (z)} is i-generic for large ZH .

It is clear that we can iterate this process, so we obtain the following theorem:

Theorem 6.17. Suppose that g is simply-laced. Then, there exists an (i1, . . . , ik)-generic solution of the qq-

equations with combinatorial datum (d,N,∅) if and only if the system of inequalities (6.17) are satisfied.

In particular, (d,N,∅) is admissible if and only if the system of inequalities is satisfied for some reduced

decomposition of w0.

6.3.3. Removing the hypothesis of w0-genericity. We now show that the w0-genericity hypothesis in

Theorem 6.10 is unnecessary as long as the combinatorial datum is admissible.

Theorem 6.18. Every nondegenerate ZH -twisted Miura-Plücker oper with admissible combinatorics is a

(nondegenerate) ZH -twisted Miura oper. In particular, this is the case when

(1) ZH = 0 and there exists a nondegenerate polynomial solution of the qq-system with degrees (d,N),

and

(2) g is simply-laced, ZH is regular semisimple, and the system of inequalities (6.17) is satisfied for

some reduced decomposition of w0.

Proof. Let ∇ = ∂z + A(z) be a nondegenerate ZH -twisted Miura-Plücker oper with admissible

combinatorial datum (d,N,Ψ) and with corresponding polynomials qi+(z)’s. We must show the

existence of v(z) ∈ B+(z) such that A(z) = v(z)(∂z + ZH)v(z)−1. We will accomplish this by

considering a solution to the qq-system over a ring R defined in terms of certain formal variables.

Let w0 = si1 . . . siℓ be a reduced decomposition for which there exists an (i1, . . . , iℓ)-generic solu-

tion of the qq-equations. We now introduce formal variables for the roots of various polynomials:

the Λi(z)’s, the positive polynomials q̃j+(z)’s one obtains by iterating Bäcklund transformations

along this reduced word, and the negative polynomials q̃is−(z) corresponding to the simple reflec-

tion at each step. (All of these degrees are uniquely determined except for possibly the degrees
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of the q̃is−(z)’s. However, we can always choose the degree to be the generic one specified in Re-

mark 5.13 while maintaining nondegeneracy.) Thus, we have the formal variables

• {zik} for 1 f i f r and 1 f k f Ni;

• {wj,s
k } for 0 f s f ℓ− 1, 1 f j f r, and 1 f k f d

(iℓ)...(iℓ−s+1)
j ; and

• {v
iℓ−s,s

k } with 1 f j f r and k less than the generic degree of q
(iℓ)...(iℓ−s+1),iℓ−s

− (z).

Let R be the ring C[hΨ] ¹ C(z)[{wj,s
k }, {v

iℓ−s,s

k }, {zik}], localized at the (z − w
iℓ−s,s

k )’s, the (z −

v
iℓ−s,s

k )’s, the (wi,0
k − z

i
j)’s, and the (wi,0

k − w
j,0
s )’s, and satisfying the Bethe equations (5.18). Set

Qi
+(z, {w

i,0
k }) =

∏
k(z−w

i,0
k ). We view the Qi

+’s as the “plus” polynomials of a qq-system defined

over R (with the twist parameter given by a generic ZH =
∑r

i=1 ζi³̌i and the singularities given

by Λi =
∏
(z − z

i
j)’s). Note that this data specializes to the data for our original ∇.

By Theorem 5.11, we can complete the Qi
+’s to a solution {Qi

+, Q
i
−} of this qq-equation over R.

This solution corresponds to the connection ∂z +A(z, {wi
k}, {ζi}, {Λi}), where

A(z, {wi
k}, {ζi}, {Λi}) =

r∑

i=1

[
ζi −Qi

+(z)
−1∂zQ

i
+(z)

]
³̌i +

r∑

i=1

Λi(z)ei.

Again, our original connection ∇ is a specialization of this connection.

We claim that the qq-system {Qi
+, Q

i
−} over R is w0-generic. To see this, it suffices to show that

some specialization of this qq-system is w0-generic. This exists by the definition of admissibility.

Note that in the definition of the ith Bäcklund transformation, µi’s (see (6.6)) is a rational func-

tion with qi+(z)q
i
−(z) in the denominator. It follows that all the µi’s needed in iterating Bäcklund

transformations for {Qi
+, Q

i
−} lie in R. One can thus use Bäcklund transformations and the proce-

dure of Theorem 6.10 to construct a matrix U(z, {wi
k}, {ζi}, {Λi}) ∈ B+(R) satisfying the equation

(6.20) A(z) = U(z, {wi
k}, {ζi}, {Λi})

(
∂z +

r∑

i=1

ζi³̌i

)
U(z, {wi

k}, {ζi}, {Λi})
−1.

Let v(z) be the specialization of U(z, {wi
k}, {ζi}, {Λi}) at the data for our original ∇. We then

obtain A(z) = v(z)(∂z + ZH)v(z)−1 as desired.

□

Theorem 6.19. There is a one-to-one correspondence between the set of nondegenerate ZH -twisted Miura

G-opers with admissible combinatorial data and the set of solutions to the ZH -twisted Bethe Ansatz equa-

tions for Lg with the same combinatorial data.

Proof. This follows immediately from Theorems 5.15 and 6.18. □

Remark 6.20. In [FKSZ], the authors studied a difference equation version of the qq-system involv-

ing quantum Wronskians called the QQ-system. In that paper, it is shown that there is a bijection
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between twisted Miura-Plücker (G, q)-opers (with regular semisimple twist parameter) and solu-

tions to the Bethe Ansatz equations for the XXZ model, and this correspondence goes through the

intermediary of polynomials solutions of the QQ-system. There is an analogue of w0-genericity

in this context, and as for ordinary opers, a w0-generic Miura-Plücker q-oper is in fact a Miura

q-oper. The methods of this paper can be used to prove the q-oper analogue of Theorem 6.18: a

Miura-Plücker q-opers with admissible combinatorics is a Miura q-oper.
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