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tions of the Bethe Ansatz equations. A conceptual explanation for the appearance of the Bethe Ansatz
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ture. In fact, solutions of the Bethe Ansatz equations are parameterized by an enhanced version of
opers called Miura opers; here, the opers appearing have only regular singularities. Moreover, this
geometric approach to the spectra of the Gaudin model provides a well-known example of the geo-
metric Langlands correspondence. Feigin, Frenkel, Rybnikov, and Toledano Laredo have introduced
an inhomogeneous version of the Gaudin model; this model incorporates an additional twist factor,
which is an element of the Lie algebra of G. They exhibited the Bethe Ansatz equations for this model
and gave an interpretation of the spectra in terms of opers with an irregular singularity. In this paper,
we consider a new geometric approach to the study of the spectra of the inhomogeneous Gaudin
model in terms of a further enhancement of opers called twisted Miura-Pliicker opers. This approach
involves a certain system of nonlinear differential equations called the gg-systemn, which were previ-
ously studied in [MV2] in the context of the Bethe Ansatz. We show that there is a close relationship
between solutions of the inhomogeneous Bethe Ansatz equations and polynomial solutions of the
gg-system and use this fact to construct a bijection between the set of solutions of the inhomogeneous
Bethe Ansatz equations and the set of nondegenerate twisted Miura-Pliicker opers. We further prove
that as long as certain combinatorial conditions are satisfied, nondegenerate twisted Miura-Pliicker
opers are in fact Miura opers.
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1. INTRODUCTION

The Bethe Ansatz is a classical approach to computing the spectra of various quantum inte-
grable systems, and in particular, spin chain models. This method is often very effective, but it is
less easy to understand conceptually the reason for this effectiveness. The Gaudin model is one
context in which such an explanation is known.

Let g be a simple complex Lie algebra with universal enveloping algebra U(g) and Langlands
dual algebra Lg. In the Gaudin model for g, one considers a family of mutually commuting ele-
ments in U(g)®" called Gaudin Hamiltonians, which depend on a collection of distinct complex
numbers z1, ..., zy. The Bethe Ansatz provides a method of constructing simultaneous eigenvec-
tors of the Gaudin Hamiltonians on modules such as V) = ®iV: 1 V,» where V), is the irreducible
highest-weight module corresponding to the dominant integral weight A\. One starts with the
unique (up to scalar) vector |0) € Vy of highest weight ) \;; it is a simultaneous eigenvector of
Gaudin Hamiltonians. Given a set of distinct complex numbers wy, . . . , wy, labeled by simple roots
ay, (defined in terms of fixed Cartan and Borel subalgebras h C b.), one then applies a certain or-
der m lowering operator with poles at the w;’s to [0). If } 7 A; — > a; is dominant, then this vector
is a highest weight vector in V) (and a simultaneous eigenvector of the Gaudin Hamiltonians) if
and only if the Bethe Ansatz equations are satisfied:

N oy o« .
(1.1) 27<A“0"“j> —27<0"“5’O"“j> 0, j=1,...,m

w; — z; wi —w
i=1 7 tos#y Y s

In a series of papers [FFR1,F1,F2], Frenkel and his collaborators introduced a geometric version
of this result. They showed that the spectra of the Gaudin model is encoded by certain connec-
tions with extra structure associated to “g called opers. The opers appearing here have regular
singularities at 21, ..., zy and oo and have trivial monodromy [FFR1, F2]. These opers also have
apparent singularities at the w;’s, and the Bethe Ansatz equations are precisely the conditions for
these singularities to be removable. Moreover, this approach allows one to give geometric mean-
ing to solutions of the Bethe Ansatz equations without assuming that \; — > ay; is dominant.
In fact, they correspond bijectively to enhanced versions of opers called (nondegenerate) Miura
opers. An important consequence of this geometric approach to the spectra of the Gaudin model
is that it provides a well-known example of the geometric Langlands correspondence [F1].

More recently, Feigin, Frenkel, Rybnikov, and Toledano Laredo have worked on an “inhomo-
geneous” version of the Gaudin model [FFTL, FFR2] which involves an extra “twist parameter”
X € b*. In these papers, the authors have given a similar geometric interpretation of the spectra in
terms of opers, but here, the regular singularity at oo is replaced by a double pole with “2-residue”
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—X. The Bethe Ansatz equations for this model are given by:

(1.2) iw_zw_< W), j=1
. T = w; —w, = 0k), J=1,...,m.

In this paper, we consider a new approach to the study of the spectra of the inhomogeneous
Gaudin model in terms of twisted Miura opers and a certain system of nonlinear differential equa-
tions called the gg-system. The gg-system has also appeared in previous work of Mukhin and
Varchenko on the Bethe Ansatz equations [MV1,MV2]. As we will see, there is a close relationship
between solutions of the inhomogeneous Bethe Ansatz equations (1.2) and polynomial solutions
of the gg-system. We will use this fact to construct a bijection between the set of solutions of the
inhomogeneous Bethe Ansatz equations and the set of “nondegenerate” twisted Miura opers.

Since we will be primarily concerned with opers, it will be convenient to switch the roles of g
and Lg. From now on, we consider the Gaudin model for g, which will correspond to appropriate
G-opers, where G is the simply connected group with Lie algebra g. The twist parameter may now
be viewed as an element Z € b.!

Let H be the maximal torus with Lie algebra b, and let B and B_ be two opposite Borel sub-
groups containing H. Roughly speaking, an oper is a triple (F¢, V, Fp_), where F¢ is a principal
G-bundle on P! endowed with a meromorphic connection V and Jp_ is a reduction of structure
of the bundle to B_ such that V satisfies a certain genericity condition with respect to Fp_. A
Miura oper is an oper together with an additional reduction of structure Fp_ to the opposite Borel
subgroup which is preserved by V. We now consider Miura opers whose underlying connection
has regular singularities away from infinity, is monodromy-free, and is “Z-twisted”. It turns out
that the set of twisted Miura opers with the same underlying oper is a subvariety of the flag man-
ifold called the Springer fiber over Z. Finally, given a Miura oper, we construct a family of Miura
GL(2)-opers parameterized by the fundamental weight. The underlying Miura oper is called a
Z-twisted Miura-Pliicker G-oper if the zero monodromy and Z-twistedness conditions hold on this
family of Miura GL(2)-opers and not necessarily on the G-oper itself.

In this paper, we show that solutions of the Z-twisted Bethe Ansatz equations for g are param-
eterized by nondegenerate Z-twisted Miura G-opers. In order to accomplish this, we introduce
a system of differential equations called the gg-system associated to G, the regular singularities
zj, and the twist parameter Z. This is a nonlinear system on a collection of rational functions
{¢%.(2),¢" () }iea, indexed by the set of simple roots A, which determine relations satisfied by
the Wronskians W (¢’ (z), ¢" (z)). We first construct a surjection from nondegenerate polynomial

solutions of the gg-system for Z to nondegenerate Z-twisted Miura-Pliicker opers (Corollary 5.9).

IFor much of the paper, we will in fact allow Z to be an element of a fixed Borel subalgebra b .
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(In fact, we give a bijection between these solutions and “Z-twisted Miura-Pliicker data” (The-
orem 5.7).) Next, we prove that there is a surjective map from these polynomial solutions to
solutions of the Bethe Ansatz equation (Theorem 5.11. We show that the fibers of these surjec-
tions coincide, thereby obtaining a one-to-one correspondence between nondegenerate Z-twisted
Miura-Pliicker opers and solutions of the Bethe Ansatz equations (Theorem 5.15).

We then introduce the crucial technical tool of Bicklund transformations: transformations on
twisted Miura-Pliicker opers associated to Weyl group elements. These transformations change
not only the Miura-Pliicker oper, but also the twist factor. These transformations were first in-
troduced in the context of gg-systems in [MV2]. We use Backlund transformations to show that,
as long as certain combinatorial conditions are satisfied, nondegenerate twisted Miura-Pliicker
opers are in fact Miura opers (Theorem 6.18). As a corollary, we obtain the following important
theorem (Theorem 6.19): under appropriate combinatorial hypotheses, there is a bijection between
nondegenerate Z-twisted Miura opers and solutions to the Bethe Ansatz equations.

Our approach to this problem was inspired by recent work of Frenkel, Koroteev, and two of the
authors on a g-deformation of the correspondence between opers and the spectra of the Gaudin
model [KSZ, FKSZ]. These papers relate solutions of the Bethe Ansatz for the XXZ-model to cer-
tain ¢-difference equation versions of opers called twisted Miura-Pliicker (G, ¢)-opers. The cor-
respondence goes through the intermediary of the “QQ-system”: a system of ¢-difference equa-
tions involving quantum Wronskians, which was introduced by Masoero, Raimondo, and Va-
leri [MRV1, MRV2] (see also [FH2]). However, we observe that our present results go beyond
what is known about the XXZ model. In particular, the results of [KSZ, FKSZ] are limited to the
case when the twist parameter is regular semisimple.

Acknowledgements. We are grateful to Edward Frenkel for his valuable comments. A.M.Z. is
partially supported by Simons Collaboration Grant 578501 and NSF grant DMS-2203823. D.S.S is
partially supported by Simons Collaboration Grant 637367.

2. (G-OPERS WITH REGULAR SINGULARITIES

2.1. Notation and group-theoretic background. Let G be a connected, simply connected, simple
algebraic group of rank r over C. We fix a Borel subgroup B_ with unipotent radical N_ =
[B_, B_] and a maximal torus H C B_. Let B be the opposite Borel subgroup containing H and
Ny = [By, By]. Let {ai,...,a;} be the set of positive simple roots for the pair H C B.. Let
{¢u,...,d,} be the corresponding coroots; the elements of the Cartan matrix of the Lie algebra g
of G are given by a;; = (a;, ;). The Lie algebra g has Chevalley generators {e;, fi, &;}i=1,..r, SO
that b_ = Lie(B_) is generated by the f;’s and the &;’s and by = Lie(B.) is generated by the e;’s
and the &;’s. Similarly the Lie algebra n_ = Lie(N_) is generated by the f;’s and n, = Lie(V;) is
generated by the e;’s. Let wy, . . . w, be the fundamental weights, defined by (w;, &;) = ¢;;.
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Let W = N(H)/H be the Weyl group of G. For each i, we let s; € W be the simple reflection
corresponding to a;. We also let wy be the longest element of W, so that By = wy(B-).

Recall that for any Borel subgroup B, the group G is partitioned into Bruhat cells BwB indexed
by elements of . Here, one chooses some maximal torus 7' C B and sets BwB = BnB, where n
is any lift of w € N(T')/T = W. Since we defined W in terms of H, it is not immediately clear that
this process makes sense. However, an argument involving the “abstract Cartan algebra” (see for
example [CG, §3.1.22]) shows that the Bruhat cells are well-defined. We refer the reader to §2.1 of
[FKSZ] for the details.

2.2. Meromorphic G-opers. We now define meromorphic G-opers. While the definitions below
may be extended easily to an arbitrary smooth curve, we will restrict ourselves to the case of PL.

Let g be a principal G-bundle on P! endowed with a connection V. This connection is auto-
matically flat. Let F5_ be a reduction of F¢ to the Borel subgroup B_. If V' is any connection
which preserves F_, then V — V' induces a well-defined one-form on P! with values in the asso-
ciated bundle (g/b_)g, . We denote this 1-form by V/JFp_.

Following [BD], we will define a G-oper as a G-connection (F¢, V) together with a reduction
JIp_ of the G-bundle to the Borel subgroup B_; this reduction is not preserved by the connection
but instead satisfies a special “transversality condition” defined in terms of the 1-form V/JFp_.

To define this transversality condition, let O € [n_,n_]*/b_ € g/b_ be the open B_-orbit
consisting of vectors stabilized by N_ and such that all of the simple root components with respect
to the adjoint action of B_/N_, are non-zero. Here, the orthogonal complement is taken with
respect to the Killing form.

Definition 2.1. A meromorphic G-oper on P! is a triple (F¢, V,Fp_), where F¢ is a principal G-
bundle on P! equipped with a meromorphic connection V and Jp_ is a reduction of g to B_
satisfying the following condition: there exists a Zariski open dense subset U C P! together with a
trivialization 15_ of Fp_ such that the restriction of the 1-form V/Fp_ to U, written as an element
of g/b_(z), belongs to O(z).

Note that this property does not depend on the choice of trivialization.

In terms of the particular trivialization ¢5_, the underlying connection of the G-oper can be
written concretely as

2.1) V=20, + Z ¢i(z)ei + b(z)

i=1

where ¢;(z) € C(z) and b(z) € b_(z) are regular on U and moreover ¢;(z) has no zeros in U.
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2.3. Miura opers. We will also need the notion of a Miura oper introduced in [F1,F2]. This is an
oper together with a reduction of the underlying G-bundle to the opposite Borel subgroup that is
preserved by the oper connection.

Definition 2.2. A Miura G-oper on P! is a quadruple (F¢,V,Fp_,Fp, ), where (F¢,V,Fp_) isa
meromorphic G-oper on P! and Fp, is a reduction of the G-bundle F¢; to B that is preserved by
the connection V.

Given a Miura G-oper, we refer to the G-oper obtained by forgetting 55, the underlying G-oper.

We next need to consider the relative position of the two reductions over any = € P!. This
relative position will be an element of the Weyl group. To define this, first note that the fiber F¢ ;.
of Fg at x is a G-torsor with reductions Fp_ , and Fp, , to B_ and B, respectively. Under this
isomorphism, Fp_, gets identified with ¢B_ C G and Jp, , with hB, for some g,h € G. The
quotient g~ 11 specifies an element of the double coset space B_\G/B.;. The Bruhat decomposition
gives a bijection between this spaces and the Weyl group, so we obtain a well-defined element of
G.

We say that Fp_ and Fp, have generic relative position at z € P! if the relative position is the
identity element of W. More concretely, this mean that the quotient g~'h belongs to the open
dense Bruhat cell B_B, C G.

The following result was proved in [F1, F2]. It will be convenient to give a different proof here.

Theorem 2.3. For any Miura G-oper on P!, there exists an open dense subset V. C P such that the
reductions Fp_ and Fp, are in generic relative position for all x € V.

Proof. Let U be a Zariski open dense subset on P! as in Definition 2.1. Choosing a trivialization
1g_ of T on U, we can write the connection V in the form (2.1). On the other hand, using the
B, -reduction Fp_, we can choose another trivialization of g on U such that the connection in
this gauge is preserved by V. In other words, there exists g(z) € G(z) such that

(2.2) 9(2)0:97"(2) + 9(2)(Q_ dil2)es +b(2))g ™' () € b1 (2)
=1

This means that the relative position of the two reductions is determined by g~ (z). It thus suffices
to show that g71(2) € B_(2)B,.(z) or equivalently,
9(2) € By (2)B—(2) = By(:)N_(2).

By the Bruhat decomposition, we know that ¢(z) € B4 (2)wN_(z) for some w € W, say g(z) =
by (z)wn_(z) for some by (z) € By(z),n_(z) € N_(z). Substituting this into (2.2) and simplifying
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gives
T T

23)  n-(2)2nT'(2) + n-(2)(Q_ dil2)ei + b(2))nZ (2) = Y dil2)ei +b(z) € wlbi(2)w

i=1 =1
where b(z) € b_(z2). It is well-known that w='b,w = h + (n_ Nw b w)) + (ny Nw~ b w). Since
the strictly upper triangular component of the expressionin (2.3)is Y\ ¢i(2)e;, we conclude that
#i(2)e; € w™b w for all i. This means that w preserves the set of simple roots, i.e., w = 1.
U

Corollary 2.4. For any Miura G-oper on P!, there exists a trivialization of the underlying G-bundle F¢
on an open dense subset of P* for which the oper connection has the form

(24) V=0,+ Zgi(z)di + Z qb,'(z)ei,
=1 i=1

where g;(z), pi(z) € C(z).

Proof. The previous theorem shows that w = 1 in (2.3), so there exists a gauge transformation
n_(z) which takes the explicit form of the connection V = 9, + > /_; ¢i(z)e; + b(z) into

(2.5) n_(z)d;n"" Z bi(2)e; + b(z Z di(2)e; + b(2) € by(2)

where b(z) € b_(2). This implies that b(z) € h(z), and the statement follows by decomposing b(z)
with respect to the simple coroots. 0
2.4. Opers and Miura opers with regular singularities. Let A;(z),...,A,(z) be a collection of

nonzero polynomials.

Definition 2.5. A G-oper with regular singularities determined by A1(z), ..., A.(z) is an oper on P!
whose connection (2.1) may be written in the form

(2.6) V= 8+ZA Jei + b(z b(z) € b_(z).

We will assume without loss of generality that the A;’s are monic, since this can always be
arranged by a constant gauge change by an element of H. Let {z},... ,z}'\,i} be the set of distinct
roots of the A;’s. To each z%, we associate the integral coweight \; via

(2.7) Ai(z) = [J (2 = 2o,

k=1
Definition 2.6. A Miura G-oper with regular singularities determined by the polynomials A1 (z), . .., A (2)
is a Miura G-oper whose underlying oper has regular singularities determined by the A;(z)’s.
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The following theorem is immediate from Corollary 2.4.

Theorem 2.7. For every Miura G-oper with reqular singularities determined by the polynomials Ay (z), . .., Ar(2),
the underlying connection can be written in the form:

(2.8) V=0.+Y M(2)ei+ Y gi(2)a;,
i=1 i=1
where g;(z) € C(z).

For the rest of the paper, all opers and Miura opers will have regular singularities with respect
to the fixed collection of monic polynomials A (z), ..., A, (2).

2.5. Z-twisted opers. We will primarily be interested in (Miura) opers whose underlying connec-
tion is gauge equivalent to a constant element of g.

Definition 2.8. A Z-twisted G-oper on P! is a G-oper that is equivalent to the constant element
Z € g C g(z) under the gauge action of G(z).

Concretely, if the matrix form of the oper connection in a particular trivialization is given by
V = 0. + A(z), then there exists g(z) € G(z) such that

2.9) A(2) = 9(2)0.97"(2) + 9(2) Zg() .

Remark 2.9. Note that for Z # 0, the constant connection 9, + Z has a double pole at co like the
opers with a double pole at co considered in [FFTL, FFR2]. We give a more detailed comparison
of our work with the results of [FFTL] below in Remark 5.16.

To define Z-twisted Miura opers, we will assume that Z € b,.. We introduce the notation

r r
(2.10) Z=2"1+Y cie;+n,  Z"=>Ga, G, €C, mengng.
i=1 i=1

Definition 2.10. A Z-twisted Miura G-oper is a Miura G-oper on P! that is equivalent to the constant
element Z € by C by (z) under the gauge action of B (z), i.e., there exists v(z) € By (z) such that
the matrix of the oper connection is given by

(2.11) A(z) = v(2)0,0 1 (2) +v(2) Zv(2) L.

For untwisted opers, there is a full flag variety G/B. of associated Miura opers. For twisted
opers, we must introduce certain closed subvarieties of the flag manifold of the form (G/B; ), =
{gB+ | g7'Zg € b.}; these varieties are called Springer fibers. Springer fibers play an impor-
tant role in representation theory. (See, for example, Chapter 3 of [CG].) For SL(n) (or GL(n)), a
Springer fiber may be viewed as the space of complete flags in C" preserved by a fixed endomor-
phism.
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Proposition 2.11. The map from Miura Z-twisted opers to Z-twisted opers is a fiber bundle with fiber
(G/B+)z.

Proof. Since the underlying connection of a Z-twisted oper is isomorphic to the connection 9, + Z,
a Miura structure on such an oper is equivalent to a B -reduction that is preserved by 0, + Z. This
is determined by a Borel subalgebra of g that contains Z. The flag variety may be identified with
the space of Borel subalgebras via gB + gb,g~!, and the condition Z € gb,g~! is equivalent to

9B € (G/By)z. O

2.6. The associated Cartan connection. Consider a Miura G-oper with regular singularities de-
termined by polynomials A;(z),...,A,(z). By Theorem 2.7, the underlying G-connection can be
written in the form (2.8). Since it preserves the B -bundle Jz, that is part of the data of the Miura
G-oper, it may be viewed as a meromorphic B, -connection on P'. Taking the quotient of F5, by
N, = [B4, B4] and using the fact that B/N, ~ H, we obtain an H-bundle Fp, /N, endowed
with an H-connection, which we denote by VH =0, + AH(2). According to formula (2.8), it is
given by the formula

(2.12) A (2) =3 gi(z)a.
i=1

We call V#(2) = 0, + A (z) the associated Cartan connection of the Miura oper.
Now, if our Miura oper is Z-twisted, then we also have A(z) = v(2)0.v"1(2) + v(2)Zv(z) 7},
where v(z) € B4 (z). Since v(z) can be written as

(2.13) v<z>=<Hyi<z>di> n(z),  n(z) € No(z), wi(2) € C(2)%,

the Cartan connection V¥ (z) = 9, + A" (2) has the form:

T

(2.14) AR (2) = (G = vi(2) T 0i(2)) i,

=1

with the ¢;’s defined in (2.10). We will refer to V¥ (2) as a Z-twisted Cartan connection. This formula
shows that V() is completely determined by Z%, i.e., the diagonal part of Z, and the rational
functions y;(z). Indeed, comparing this equation with (2.12) gives

(2.15) 9i(2) = G — yi(2) 71 0yi(2)

It is now easy to see that V() determines the y;(2)’s uniquely up to scalar.
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3. NONDEGENERATE MIURA-PLUCKER OPERS

Our main goal is to link Miura opers to solutions of a certain system of equations which we will
call the classical gg-system, which is in turn related to the system of Bethe Ansatz equations for
the Gaudin model. We accomplish this in two steps. First, we introduce the notion of a Z-twisted
Miura-Pliicker G-oper. We associate to a Miura G-oper a collection of Miura GL(2)-opers indexed
by the fundamental weights of G. A Z-twisted Miura-Pliicker oper is a Miura oper where the Z-
twistedness condition is replaced by a slightly weaker condition imposed on these GL(2)-opers.
Second, we will restrict attention to opers satisfying certain nondegeneracy conditions defined in
terms of the corresponding Cartan connection.

3.1. The associated Miura GL(2)-opers. In this section, we associate to a Miura G-oper with reg-
ular singularities a collection of Miura GL(2)-opers indexed by the fundamental weights.

Let V; be the irreducible representation of G with highest weight given by the fundamental
weight w;. Let L; C V; be the B, -stable line consisting of highest weight vectors. If we choose
a nonzero element v,, in L;, then the subspace of V; of weight w; — «; is one-dimensional and
is spanned by f; - v,,. Therefore, the two-dimensional subspace W; of V; spanned by the weight
vectors v,,, and f; - v,, is a B-invariant subspace of V;.

Now, let (T, V,JFp_,Tp, ) be a Miura G-oper with regular singularities determined by poly-
nomials A{(2),...,A.(z) as in Definition 2.6. Recall that Fp_ is a B, -reduction of a G-bundle Fg
on P! preserved by the G-connection V. Therefore for each i, the vector bundle

Vi=0p, xp, Vi=Fg xgV;
associated to V; contains a rank two subbundle
W; =3, xp, W;
associated to W; C V;, and W; in turn contains a line subbundle
Li=5Fp, xB, L

associated to L; C W;.

Denote by ¢;(V) the connection on the vector bundle V; (or equivalently, the GL(V;)-connection)
corresponding to the above Miura oper connection V. Since V preserves Fp, , we see that ¢;(V)
preserves the subbundles £; and W; of V;. Denote by V; the corresponding connection on the
rank 2 bundle W;.

Trivialize Fp, on a Zariski open subset of P! so that V has the form (2.8) with respect to this
trivialization. This trivializes the bundles V;, W;, and £; as well, so that the connection V;(z) can
be expressed in terms of a 2 x 2 matrix whose entries are in C(z).

A direct computation using formula (2.8) yields the following result.
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Lemma 3.1. We have

(3.1) Vi(z) =0, + )
0 —gi(2) = Xpri akigr(2)

Using the trivialization of W; in which V;(z) has this form, we can decompose W; as the direct

1
sum of two line subbundles. The first is £;, generated by the basis vector <0> . The second, which

we denote by L, is generated by the basis vector (?) . The subbundle £; is V;-invariant, whereas

V; satisfies the following GL(2)-oper condition with respect to Li.

Definition 3.2. A GL(2)-oper on P! is a triple (W, V, £), where W is a rank 2 bundle on P!, V :
W — W® K is a meromorphic connection on W, K is the canonical bundle on P!, and £ is a line
subbundle of W such that the induced map V : L— W/ Z) ® K is an isomorphism on a Zariski
open dense subset of PL.

A Miura GL(2)-oper on P! is a quadruple (W, V, L, L), where (W, V, Z) is a GL(2)-oper and £
is an V-invariant line subbundle of W.

Using this definition, one obtains an alternative definition of (Miura) SL(2)-opers: they are the
(Miura) GL(2)-opers defined by the above triples (resp. quadruples) satisfying the additional
property that in some trivialization on a Zariski-open dense subset of P, the trace of the matrix of
the connection is 0.

Our quadruple (W;,V, Ly, £;) is clearly a Miura GL(2)-oper. It is not clear whether it is an
SL(2)-oper because the trace of the matrix in (3.1) is not necessarily 0.

We now make the further assumption that our Miura G-oper (F¢,V,Fp_, Fp, ) with regular
singularities is Z-twisted (see Definition 2.10). Recall that this implies that the associated Cartan
connection V¥ (2) has the form (2.14):

(3.2) Vi(z) = Hyi(Z)é"' (- +2") Hyi(Z)_d’} yi(z) € C(z).

We claim that for Z-twisted Miura opers, there exists another trivialization of W; in which the
connection matrix of V; has constant (though not necessarily zero) trace. This will be a particularly
convenient gauge for V;.

To prove the claim, let A;(z) denote the matrix in (3.1), and apply the gauge transformation by
the diagonal matrix

1 0
u(z) = (0 I, yj(z)“ﬂ> .
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This gives
(3.3)

B G — yi(2) 1 0.ui(2) pi(2)

Vi(2) = u(2)Vi(2)u™ (2) = 0 + :

0 = Dz WG — Gi + i (2) 71 02i(2))
where
(3.4) pi(2) = Ai(2) [ [ we(z) .
k#i

Since a;; < 0 for i # j, pi(2) is a polynomial if all y;(z)’s are polynomials.
Let G; = SL(2) be the subgroup of G corresponding to the sl(2)-triple spanned by {e;, f;, &;}.
Note that the group G; preserves W;. Consider the Miura G;-oper (W;, @i, L;,L;) with £; =

S
G —vi(2) ' 0.ui(2) pi(2)

(3.5) @z’ =0, + gi&; + pi(2)e; = )
0 —Gi + yi(2) 1 0.i(2))

We can now express the connection Vi(z) as the sum of an SL(2)-connection and a constant diag-
onal matrix:

(3.6) Vi(z) = <8 > O_a”<'> +Vi(2)
i %G

0 0 3
(3.7) =0, + (0 S a Cj) +gi(2)a + pi(2)ei

This shows that in this gauge, the trace of the matrix of the connection is constant with value
= D 45iGj-

Thus, a Z-twisted Miura G-oper gives rise to a collection of meromorphic Miura SL(2)-opers
Vi(z) fori = 1,...,r. It should be noted that V;(z) has regular singularities in the sense of

Definition 2.5 if and only if p;(2) is a polynomial. For example, this holds for all 7 if all y;(z),j =
1,...,r, are polynomials. We will use this observation below.

3.2. Z-twisted Miura-Pliicker opers. Recall that a Z-twisted Miura G-opers is a Miura G-oper
whose underlying connection can be written in the form (2.11):

(3.8) V(z) = v(2)(0, + Z)v(2) 71, v(z) € By(2).
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We will now relax this condition by imposing a twistedness condition only on the associated Miura
GL(2)-opers V; (or equivalently, the Miura SL(2)-opers V;). More precisely, we will require the
existence of an upper triangular gauge transformation v(z) € B (z) such that (3.8) holds upon
restriction to W; for all <.

Definition 3.3. A Z-twisted Miura-Pliicker” G-oper is a meromorphic Miura G-oper on P! with
underlying connection V satisfying the following condition: there exists v(z) € B (z) such that
foralli = 1,...,r, the Miura GL(2)-opers V; associated to V by formula (3.1) can be written in
the form

(3.9) Vi(2) = v(2)(0: + Z)v(2)"Hw, = vi(2) (0 + ZiJvi(2) ",

where v;(z) = v(z)|w, and Z; = Z|w,.

In other words, a Miura G-oper is a Z-twisted Miura-Pliicker G-oper precisely when there is
a trivialization of Fp, in which all of the associated connections V; have the constant matrix
Z; € gl(2). Itis a Z-twisted Miura G-oper if V has the constant matrix Z in this gauge. Thus, every
Z-twisted Miura G-oper is automatically a Z-twisted Miura-Pliicker G-oper, but the converse is
not necessarily true if G # SL(2).

Note, however, that it follows from the above definition that the H-connection V# associated
to a Z-twisted Miura-Pliicker G-oper can be written in the same form (3.2) as the H-connection
associated to a Z-twisted Miura G-oper.

3.3. H-nondegeneracy. We now introduce the notion of H-nondegeneracy, the first of our two
nondegeneracy conditions for Z-twisted Miura-Pliicker opers. This condition actually applies to
arbitrary Miura opers with regular singularities. Recall from Theorem 2.7 that the underlying
connection can be represented in the form (2.8).

Definition 3.4. A Miura G-oper V of the form (2.8) is called H-nondegenerate if the corresponding
H-connection V¥ (2) can be written in the form (2.14), with the rational functions y;(z) satisfying
the following conditions:

(1) yi(z) has no multiple zeros or poles;
(2) for all i, the roots of A;(z) are distinct from the the zeros and poles of y;(z); and
(3) if i # j and a;; # 0, then the zeros and poles of y;(z) and y;(z) are distinct from each other.

3.4. Nondegenerate Z-twisted Miura SL(2)-opers. We now turn to the second nondegeneracy
condition. This condition applies to Z-twisted Miura-Pliicker G-opers. In this subsection, we give
the definition for G = SL(2). (Note that Z-twisted Miura-Pliicker SL(2)-opers are the same as

’The terminology arises from its relationshp to the Pliicker description of B -bundles as explained in Section 4.1 of
[FKSZ].
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Z-twisted Miura SL(2)-opers.) In the next subsection, we will give the definition for an arbitrary
simple, simply connected complex Lie group G.

Consider a Miura SL(2)-oper given by the formula (2.8), which for SL(2) becomes

_ . _ 9(z)  A2)
V=0,+g(k)a+Az)e=0,+ ( 0 —g(z)) .

The corresponding Cartan connection is given by

—y(z -1 Py
VH(z) = 0 + g(2)a = y(2)*(0: + ZM)y(2) " = 0. + (C y(2)~ 0:y(2) 0 ) |

0 _C +y(z)_1<9zy(z)

where y(z) is a rational function. Let us assume that V is H-nondegenerate, so that the zeros of
A(z) are distinct from the zeros and poles of y(z).

If we apply a gauge transformation by an element h(z)* € H|[z] to V, we obtain a new oper

connection

(3.10) V(z) = 0. 4 §(2)d + A(2)e,

where

(3.11) 9(2) = g(2) =1 (2):h(2),  A(z) = A(2)h(2)*.

It also has regular singularities, but for a different polynomial A(z), and V(z) may no longer be
H-nondegenerate. However, it turns out there is an essentially unique gauge transformation from
H{z] for which the resulting V(z)is H -nondegenerate and y(z) is a polynomial. This choice allows
us to fix the polynomial A(z) determining the regular singularities of our SL(2)-oper.

Lemma 3.5. (1) There is an H-nondegenerate SL(2)-oper V(z) in the H|z]-gauge class of V, say with
V1 (2) = 8,4§(z)a, for which the rational function (=) is a polynomial. This oper is unique up to
a scalar a € C* that leaves §(z) unchanged, but multiplies y(z) and A(z) by a and a? respectively.
(2) This SL(2)-oper V may also be characterized by the property that A(z) has maximal degree subject
to the constraint that it is H-nondegenerate.

Proof. Write y(z) = 1;;8, where P, P are relatively prime polynomials. For a nonzero polyno-

mial h(z) € C(z)*, the gauge transformation of V by h(z)® is given by formulas (3.10) and (3.11).
Pi(z)
Py (z)

ever, deg(h/P,) > 0, then 7(z) and A(z) would have a zero in common, so A(z) would not be

In order for y(z) = h(z) to be a polynomial, we need h(z) to be divisible by P(z). If, how-
H-nondegenerate. Hence, we must have h(z) = aP»(z) for some a € C*. Thus, h(z) is uniquely
defined by multiplication by a, which leaves §(z) unchanged, but multiplies 7(z) and A(z) by
and a? respectively.
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For the second statement, note that if i(z) is a polynomial for which the zeros of h(z)?A(z) are

distinct from the zeros and poles of h(z) ggzg

P5(z), we have deg(h) < deg(P%), so deg(h(z)zQA(z)) < deg(A). O

, we must have h|P,. If h(z) is not an associate of

This motivates the following definition.

Definition 3.6. A Z-twisted Miura SL(2)-oper is called nondegenerate if it is H-nondegenerate and
the rational function y(z) appearing in formula (2.14) is a polynomial.

3.5. Nondegenerate Z-twisted Miura-Pliicker G-opers. We now turn to the general case. Re-
call that to every Z!-twisted Miura-Pliicker G-oper V, we have associated a Miura SL(2)-oper
Vi(z),i=1,...,r, given by formula (3.5). (It is obtained from the Miura GL(2)-oper V; = V|,
using formulas (3.3) and (3.6)). It follows from the definition that if V is Z-twisted with Z given
by (2.10), then V; is (;c;-twisted.

Definition 3.7. Suppose that the rank of G is greater than 1. A Z-twisted Miura-Pliicker G-oper
V is called nondegenerate if it is H-nondegenerate and each (;@;-twisted Miura SL(2)-oper V;(z) is
nondegenerate.

It turns out that this simply means that in addition to V being H-nondegenerate, each y;(z)
from formula (2.14) is a polynomial.

Proposition 3.8. Let V be a Z-twisted Miura-Pliicker G-oper. The following statements are equivalent:

(1) V is nondegenerate.

(2) V is H-nondegenerate, and each V;(z) has reqular singularities, i.e. p;(z) given by formula (3.4)
is in Clz].

(3) Each y;(z) from formula (2.14) may be chosen to be a monic polynomial, and these polynomials
satisfy the conditions in Definition 3.4.

Proof. To prove that (2) implies (3), we need only show that if each p;(z) given by formula (3.4)
is in C[z], then the y;(z)’s are polynomials. Suppose y;(z) is not a polynomial, and choose j # ¢
such that a;; # 0. Then —a;; > 0, and so the denominator of y;(z) appears in the denominator of
pj(z). Moreover, since the poles of y;(z) are distinct from the zeros of A;(z) and the other y;(2)’s,
the poles of y;(z) give rise to poles of p;(z). But then @j (z) would not have regular singularities.

Next, assume (3). By Definition 3.4, V is H-nondegenerate. Since all the y;(z)’s are polynomials,
the same is true for the p;(z)’s. (Here, we are using the fact that the off-diagonal elements of the
Cartan matrix, a;; with ¢ # j, are less than or equal to 0.) Since p;(z) is a product of polynomials
whose roots are distinct from the roots of y;(z), we see that the Cartan connection associated to
V.i(z) is nondegenerate.

Finally, (2) is a trivial consequence of (1). O
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If we apply a gauge transformation by an element h(z) € H[z] to V, we get a new Z-twisted
Miura-Pliicker G-oper. However, the following proposition shows that it is only nondegenerate
if h(z) € H. As a consequence, the A;’s of a nondegenerate oper are determined up to scalar
multiples. If we further impose the condition that each y;(2) is a monic polynomial, then h(z) =1,
and this fixes the Aj’s.

Proposition 3.9. If V is a nondegenerate Z-twisted Miura-Pliicker G-oper and h(z) € H|z], then h(z)Vh(z)™!
is nondegenerate if and only if h(z) is a constant element of H.

Proof. Write h(z) = [] hi(2)%. Gauge transformation of V by h(z) induces a gauge transformation
of V; by h;(z). Since V; is nondegenerate, Lemma 3.5 implies that the new Miura SL(2)-oper is
nondegenerate if and only h; € C*. O

4. SL(2)-OPERS AND THE BETHE ANSATZ EQUATIONS

Before exploring the relationship between Miura G-opers and the Bethe Ansatz equations in
general, we briefly describe what happens for G = SL(2). These results are immediate corollaries
of the results in the following sections. However, in this case, one can give simpler proofs; see
[KSZ] for the details.

Let ZH = diag(¢,—(). A nondegenerate Z -twisted Miura SL(2)-oper can be represented in
matrix form as

¢ —y(2)10.y(2) A(2)
0 —C+y(2)t0y(2) )

where the polynomials y(z) and A(z) have no roots in common and y(z) is monic with no multiple

V(2) = 0.+ (¢ —y(2) '0.y(2))a + A(z)e = (

roots. This connection is gauge equivalent to 0. +{&+A(z)e via a gauge transformation by a matrix

of the form

q—(2) e
)

o(z) = yl(2)enrC
where q_(z), ¢+ (2) are relatively prime polynomials with ¢ (z) monic.

One can now show that y(z) = ¢4 (z) and the polynomials ¢ (z) and ¢_(z) satisfy the following
differential equation involving their Wronskian:

4+(2)9:q-(2) = ¢-(2)92¢+ (2) + 2C¢+ (2)q-(2) = A(2)

This is the SL(2)-version of a system of equations called the gg-system. In fact, there is a bijec-
tion between nondegenerate Z-twisted Miura opers together with a choice of the matrix v(z)
and nondegenerate polynomial solutions of the gg-system; here, a polynomial solution of the
qq-system is called nondegenerate if ¢ (z) is monic with no multiple roots and has no roots in
common with A(z).
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Nondegenerate solutions lead to solutions of the Bethe Ansatz equation for the inhomogeneous
Gaudin model. Indeed, let A(z) = []o_,(z — 2)% and ¢ (2) = [, (z — w;) with w; # w; if i # j
and w; # z. One can then show that

Mooy o
4.1) 20+ Y ——— =0, k=1,....n.
k=1

k
Wi 2k T Wi — Wk
In fact, there is a one-to-one correspondence between Z!-twisted Miura opers and solutions of
the Bethe Ansatz equation.

5. MIURA-PLUCKER OPERS, WRONSKIAN RELATIONS, AND THE BETHE ANSATZ EQUATIONS
FOR THE GAUDIN MODEL

We now return to the general situation, with G’ an arbitrary simple, simply connected complex
Lie group. We show that a Z-twisted Miura-Pliicker G-oper is also Z -twisted. We then establish a
one-to-one correspondence between the set of nondegenerate Z*-twisted Miura-Pliicker G-opers
and the set of solutions of a system of Bethe Ansatz equations associated to G. A key element of the
construction is an intermediate object between these two sets: solutions to a system of nonlinear
differential equations called the gg-system, which imposes relations on certain Wronskians indexed
by the simple roots.

5.1. Reduction to the semisimple case. Let V be a Z-twisted Miura-Pliicker oper for Z € b,. As
in (2.10), we write Z = ZH + 37| cie; + ny with ZH =377, (i € hand ny € [ng,ny].

We now show that a Z-twisted Miura-Pliicker oper is also Z -twisted.

Proposition 5.1. i) There exist an element u(z) € Ny (z) so that u(2)(0,+2Z)u(z) ™" = 0, +Z" +7. (2),
where TNLJ,_(Z) € [n+, Il+](2>.
it) Any Z-twisted Miura-Pliicker oper is ZH -twisted.

Proof. To prove the first statement, we will construct u(z) as a product of r elements corresponding

to the simple roots. Assume that (a;, Z) # 0, and set u;(z) = exp ( - (avciéH)ei) We obtain

(5.1) wi(2)(0, + Z)ui(z) "t =0, + Z1 + Z cjej+ ...,
=Lt

where the dots stand for terms in [n;,n;](z). Similarly, if (a;, Z7) = 0, set u;(2) = exp(zcie;),
which again leads to (5.1). Then u(z) = [[;_; ui(z), where the order of the u;(z)’s does not matter,
satisfies the desired conditions.
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Recall that we have v(z) € B, (z) such that V;(2) = v(2)(0. + Z)v(z) " |w, for all i. Set v¥(z) =
v(2)u(z)~! € By (z), with u(z) as in the first part. It follows that

Vi(2) = v(2)(9: + Z)v(2) " w,

(5.2) (

' = v(2)u(2) 71 (0: + ZMu(2)v(2) " lw, = i (2)(0: + Z{)wit(2) 7"
where v¥(2) = v(2)u1(2)|w, and Zf = ZH|y,. Thus any Z-twisted Miura-Pliicker oper is Z%-
twisted.

O

For the rest of the paper, we will restrict attention to opers with a semisimple twist. However,
we will retain the notation Z# for clarity.

5.2. Twisted Miura-Pliicker data and ¢g-systems. We now introduce a nonlinear system of dif-
ferential equations depending on the polynomials A;(z2),...,A,(z) and the semisimple element
ZH. As we will see, it may be viewed as a functional realization of the Bethe Ansatz equations.

Recall that the Wronskian of two rational functions ¢ (z) and ¢_(z) is given by
Wig+,4-)(2) = ¢+(2)924-(2) — ¢-(2)024+(2)-

Definition 5.2. The gg-system associated to g, the semisimple element Z H ¢ p, and the collection

of monic polynomials Ai(z), ..., A,(2) is the system of equations
(53) W(a aD) () + fai, 21 ()0 (2) = M) [ [ d(2)]
j#i
fori=1,...,r.

These gg-systems were previously studied in [MV2].

A polynomial solution {¢’, (z), ¢"_(z) }i=1,..., of (5.3) is called nondegenerate if each ¢’ (z) is mon-
icand the ¢’ (2)’s satisfy the conditions in Definition 3.4. Note that nondegeneracy only depends
on the ¢, (2)’s.

It is an immediate consequence of the definition that for nondegenerate polynomial solutions,
¢, (z) and ¢" (z) are relatively prime. Indeed, if w is a common root of ¢’ (z) and ¢" (z), then it is
a root of the left-hand side of the ith gg-equation. It follows that w is also a root of some factor on
the right-hand side, which contradicts nondegeneracy.

Remark 5.3. This system of equations (5.3) has also been considered in [MV1] in the context of
differential operators corresponding to Miura opers for Z = 0.

Remark 5.4. If g is not simply-laced, let g be the associated simply-laced Lie algebra, i.e., the Lie
algebra whose Dynkin diagram has the multiple bond replaced by a simple bond. (We will sys-
tematically use tilde superscripts to denote objects associated to this new Lie algebra.) We suppose
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further that g has a unique short simple root, hence is of type B,, or G>. In this case, we show that
a solution to the gg-system for g gives rise to a solution to the ¢g-system for g.

Let {¢%.(2), ¢"(2)} be a solution to the gg-system for g for fixed Z# and A;’s. We let k and ¢ be
the indices of the simple roots connected by the multiple bond, with k corresponding to the short
simple root. Note that the Cartan matrices of g and g only differs in the %, £ entry.

Fix a semisimple element ZH ¢ h by the equations (&;, Zg> = (1+6;(—are—1)){a;, Z7). Define
polynomials ¢, () and A;(z) by
—are(q (2)¢E ()~ Ay(2) i =k,
Aiz) = 4 (ki (2)) 7 () i=t,

Ai(z) otherwise.

~1 (qi(z))_ake L= k7
i(z) =9 . .
¢ (2) otherwise,
(Note that A, is no longer monic.)
It is now easy to check that the ¢’ (z)’s satisfy the gg-system for g given by
W(@,.q)(=) + (6, 2N, ()3 () = R [T [#)]
JF#i
The kth equation is just the original kth equation multiplied by —aye(q% (2)g* (2)) ¢, The left-
hand sides of the new and old /th equations coincide, and the additional factor in A,(z) ensures
that the same holds for the right-hand sides. Finally, suppose i # k, . Since 7 is not connected to
k, ax; = ap; = 0, ¢’ and ¢'. do not appear on the right-hand side of the ith equation, so the new
and old equations are identical. Note that this is where the construction fails if types C;, and Fj}.

We remark that this construction always leads to degenerate solutions of the gg-system for g.

Remark 5.5. The g-deformed version of the system (5.3) is known as a Q@Q-system [FH2]. It plays
a similar role in the study of the Bethe Ansatz equations for the XXZ model. It also arises in the
ODE/IM correspondence [MRV1, MRV2], in the representation theory of quantum groups [FH2],
and in enumerative geometry [KPSZ, KSZ, KZ2,KZ1].

In order to describe the relationship between solutions of the gg-system and Miura-Pliicker
opers, we need the notion of a Z H _twisted Miura-Pliicker datum. Recall that if V is a ZH-twisted
Miura-Pliicker oper, then by Theorem 2.7, it can be written in the form (2.8):

(5.4) V=0.4+> gi2)ai+ Y Ai(2)ei,  gi(2) € C(2)".
i=1 =1

Moreover, there exists v(z) € By(z) such that for all i = 1,...,r, the Miura GL(2)-opers V;
associated to V can be written in the form (3.9):

(5.5) Vi = vi(2) (0, + ZM)vi(2) 7L, i=1,...,r
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where v;(2) = v(2)|w, and ZH = ZH|yy,.

The element v(z) is not uniquely determined by the Miura-Pliicker oper. First, note that the sub-
group [Ny (2), N4 (z)] acts trivially on the representations ;. Next, it is obvious from (5.5) that the
constant maximal torus H fixes 0,+Z}". It follows that any element of the coset v(z) H[ N (z), N4 (2)]
also satisfies (5.5). We call such a coset a framing of the Miura-Pliicker oper.

Definition 5.6. A Z! -twisted Miura-Pliicker datum is a pair (V,v(z) H[N(z), N1 (z)]) consisting of
a ZH-twisted Miura-Pliicker oper together with a framing. The datum is called nondegenerate if
the underlying Miura-Pliicker oper is nondegenerate.

Theorem 5.7. There is a one-to-one correspondence between the set of nondegenerate Z -twisted Miura-
Pliicker data and the set of nondegenerate polynomial solutions of the qq-system (5.3).

Proof. Let (V,v(2)H[N4+(z), N+(2)]) be a nondegenerate Z-twisted Miura-Pliicker datum. We
will fix the representative of the framing coset by setting

ro 4l

(5.6) o) = [Jw=* [Le =0,
i=1 i=1
where ¢’ (2),¢" () are relatively prime polynomials with ¢’ (z) monic for each i = 1,...,r and

each y;(z) is a monic polynomial.
We now show that the ¢’ (z), ¢' (z)’s give a nondegenerate solution to the gg-system and in fact,
(5.7) yi(2) :qfi_(z), i=1,...,7

We first compute the matrix of v(z) and Z# acting on the two-dimensional subspace W; intro-
duced in Section 3.1. A short calculation shows that

vi(2) 0 e
5.8 P = ;o L
5.8) v(z)|w ( 0 3 '(2) J P Jl(z)) (0 ql
and
5.9 2y, = : ‘
59) Iw (0 —Cz-—Z#i“ﬁC)

We now apply (3.1) and (5.5) to relate the y;(z)’s and ¢',(2)’s. First, comparing the diagonal
entries on both sides of (5.5) gives formula (2.15):

(5.10) 9i(2) = G — y; " (2)0:3i(2).

Next, by comparing the upper triangular entries on both sides of (5.5), we obtain

(5.11) [az (Z;Ej) + (Z ajz’Cj> qz_(Z)] [yz(z)} ’ = Ai(2) H yj(z) %

i ¢ (2) i
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Multiplying through by ¢ (2)? gives

(12 [W(d(2).q (Zaﬂcj) ¢.(2)] [u)] = [ )] M) [T

JF
The nondegeneracy conditions for our oper imply that y;(z)|¢".(z). Write ¢’ (z) = y;(2)p(z). We
will show that p(z) has degree 0. Suppose that p(z) has a root ¢ with multiplicity m > 1. Note that
cis aroot of ¢’. of multiplicity either m or m + 1, depending on whether c is a (necessarily simple)
root of y;(z).

Now, rewrite the previous equation as

(5.13) ¢ (2)0:4"(2) = ¢'.(2)0:4" () + <Z ajiCj>q’;(z)qi(z) — p(2)%A4(2) H yj(z) "4
J J#i

Suppose that c is not a root of y;(z). Then c is a root of the left-hand side of (5.13) with multiplic-
ity m— 1. Since c is a zero of the three terms on the right-hand side have multiplicities > m, m, and
2m respectively, we have a contradiction. On the other hand, if ¢ is a root of y;(z), then ¢ is a root
of the left-hand side with multiplicity m while it is a root of the three terms on the right-hand side
with multiplicities > m + 1, m + 1, and 2m. Again, we have a contradiction, so p(z) is a constant.
Since ¢, (z) and y;(z) are monic, p(z) = 1 and ¢’ (2) = yi(2).

Dividing out by y;(2)? in (5.12), we see that the polynomials ¢’ (z),¢" (), i = 1,...,r, satisfy
the system of equations (5.3) and are nondegenerate. Thus, we obtain a map from the set of
nondegenerate Z-twisted Miura G-opers to the set of nondegenerate solutions of (5.3).

To show that this map is a bijection, we construct its inverse. Suppose that we are given a
nondegenerate solution {¢’ (z),¢" (z)}i=1,..., of the system (5.3). We then define V by formula
(5.4), where we set

gi(2) = G — d4(2) 710244 (2),

ie.
(5.14) V:aZ—FZ[Ci—Qi( )710:¢4(2) ]az—i—ZA
i=1
We also set
r q (=) ]
(5.15) H ¢ (z H 7, (2) “
J=1

Note that this means that we are setting y;(z) = ¢’ (z) for all i. Equations (5.5) are now satisfied
for all i. Indeed, the Wronskian equations imply that the off-diagonal part of (5.5) holds while
the diagonal part is automatic. Moreover, the nondegeneracy conditions on V are satisfied by
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Proposition 3.8. Therefore, (V,v(2)H[N4(z), N4 (z)]) defines a nondegenerate Z-twisted Miura-
Pliicker G-oper. This completes the proof. O]

Remark 5.8. The inverse map is defined even for degenerate solutions of the gg-system. Thus, a
polynomial solution of the gg-system gives rise to a Z-twisted Miura-Pliicker datum without the
assumption of nondegeneracy.

Corollary 5.9. There is a surjective map from the set of nondegenerate polynomial solutions of the qq-
system (5.3) to the set of nondegenerate ZH -twisted Miura-Pliicker opers whose fibers consist of all solutions
with fixed ¢, (2)'s foreachi = 1,...,r.

Proof. In the correspondence of the theorem, the Miura-Pliicker oper is defined entirely in terms
of the ¢’ (z)’s. The desired map is the composition of the inverse map with the map that forgets
the framing. O

In the next section, we will describe the fibers of this map explicitly.

5.3. The gg-system and the Bethe Ansatz equations. We now derive the equations determining
the zeros of a nondegenerate polynomial solution {¢’ (z),¢" (2)}i=1,..., of the gg-system. These
equations are precisely the Bethe Ansatz equations for the inhomogeneous Gaudin model that
were introduced in [FFTL, FFR2].

We begin by reformulating the gg-system. Multiplying both sides of (5.3) by ¢ (2)2e(®? )z
and recalling that a;; = 2, we see that the gg-system is equivalent to

(5.16) 0, [e<°‘i’ZH>Z <Z;E2>] Hq I G O‘“ZH>Z, i=1,...,7
+

Let {w}} be the roots of ¢’ (z). To derive the Bethe Ansatz equations, recall that a meromorphic
function f(z) with a double pole at w has residue 0 if and only if 9, log(f(2)(z — w)?)|,=w = 0. By
nondegeneracy, we can apply this remark to the right-hand side of (5.16) at w}, thereby obtaining
the system of equations

<a7,7 > + 0. 10g

l_|

H 0 (2) % (2 = wé)ﬂ

i=1,...,r; {= 1,...,deg(qi(z)).

These equations can be recast in a more familiar form by computing the logarithmic derivatives
explicitly. Recall from (2.7) that the roots of the A;(z)’s are denoted by zi,...,z} and the multi-
plicity of the root zj, in the A;(z)’s is determined by the dominant integral coweight \;. A simple

(5.17)

—opl
Z—’UJZ
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computation now gives the Bethe Ansatz equations
N; N
H {ai, Aj) aji
i, 2+ Y = Y s =,
(5.18) =T Gt We T W
i=1,...,r, £=1,...,deg(¢\ (2)).

Remark 5.10. These are the Bethe Ansatz equations corresponding to the representation ®§-V:1V;\j

and the coweight i = >~ A; — 3" deg ¢’ (2)&;. The \;’s are dominant, but we are not assuming that
1 is dominant.

Next, we show that the map from nondegenerate polynomial solutions of the gg-equations to
solutions of the Bethe Ansatz equations is surjective; moreover, the fibers are affine spaces of
dimension equal to the number of simple roots which kill Z#.

We start by considering some properties of the rational functions ¢;(z) = ¢*.(z)/¢'.(z). First, we
get an equivalent form of the ith gg-equations by dividing (5.3) by ¢ (2)*

(5.19) 0,0i(2) + (i, ZH>¢Z Hq —aj;

For convenience, we set & = (a;, Z).
Since e%7A;(z) (HJ qi(z)_“ﬂ) has a double pole at wi and residue 0, we obtain the partial
fraction decomposition

j —aj; i 52 )
5.20 Ai(z P (2)7Y | =p; by, — — |,
.20 @ (I | =n+ 3 (o

where p;(z) is a polynomial. If we write

(5.21) ¢i(z) =

with h;(2) a polynomial, then (5.19) can be expressed in terms of partial fraction decompositions
as

(5.22) D.hi(2) + Eha(2) —Z D &Ck ;= pile EDIL: < W) z—€w>
k k

In other words,

(5.23) ch = —bt and 0.hi(2) + &hi(z) = pi(2).

We will use these conditions to define a polynomial solution of the gg-systems associated to a
solution of the Bethe Ansatz equations. Fix such a solution, i.e., a collection of w}’s satisfying 5.18.
Notice that for this solution to make sense, wz is not a root of A; and if aj; # 0 and (i,¢) # (4,s),
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then w) # wi. Set ¢ (z) = [[,( — w}). We must show that there exist polynomials ¢ (z) which
extend the ¢', (z)’s to a solution of (5.3); this solution will automatically be nondegenerate.

In order to define ¢* (z), we will construct a rational function ¢;(z) whose poles are precisely the
roots of ¢’ (2) and set ¢ (z) = ¢;(2)¢’, (z). We define ¢;(z) via the partial fraction decomposition
(5.21), so that the gg-equations are satisfied if and only if 5.23 holds. Thus, after setting c}; = —b};,
we just need h;(z) to be a polynomial solution of the differential equation 0,h;(z)+&;hi(z) = pi(2).
If ¢ = 0, then h;(z) can be any indefinite integral of p;(2). If §; # 0, then there is a unique indefinite
integral of e%*p; () such that h;(z) = e~%% [* €%%p;(z) dx is a polynomial.

We thus obtain the following theorem, which was first proven in [MV2].

Theorem 5.11. (1) If {ay, ZHY % 0 for all i (for example, if Z* is reqular semisimple), then there is a
bijection between the solutions of the Bethe Ansatz equations (5.17) and the nondegenerate polyno-
mial solutions of the qq-system (5.3).

(2) If {oq, ZH) =0, for | =iy, ..., i) and is nonzero otherwise, then {q. (2) }i=1,.r and {q* (2) Yiziy ...ir,
are uniquely determined by the Bethe Ansatz equations, but each {q” (2)} for j = 1,...k is only
determined up to an arbitrary transformation ¢ (z) — q” (2) + ¢;q7 (2), where ¢; € C.

Remark 5.12. The map {¢',(z),q¢" (2)} — {¢'.(z)} taking polynomial solutions of the gg-system
to the “positive part” has fibers which are affine spaces of the dimension given in the theorem,
even when the solutions are degenerate. Indeed, choose ¢! (z),..., ¢ (z) for which there exists
a (not necessarily nondegenerate) polynomial solution of the gg-system. The possible ¢' (z)’s are
determined by integrating (5.16):

(524 i) = dh (e @27 [ elon e o) T o) o
J

Here, we must choose the integration constant so that ¢* (z) is a polynomial. By hypothesis, there
exists at least one such constant.

If (o, ZH) # 0 for all i (for example, if Z¥ is regular semisimple), then it is clear that only one
integration constant is possible, so the ¢ (z)’s are uniquely determined. However, if (o;, Z%) = 0,
then ¢’ (2) is only determined up to adding a constant multiple of ¢', (z):

529 =)ot [ A [ s,
J

where ¢; € Cis arbitrary.

Remark 5.13. The previous remark shows that the degrees of the ¢’ ’s are essentially determined
by the degrees of the qi’s and the A;’s. If (a;, Z HY £ 0, then it is obvious from the ith ggq-equation
that deg ¢’ = deg A; —deg g, — i aji deg ¢’,. On the other hand, if (a;, Z HY = 0, then it follows
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from the theorem that there is a solution with degq’ # degq’. In this case, degW (¢’ ,¢") =
deg q’% +degq’ —1,s0 deg q"i' =1+deg A —deg g} — >, ajideg qi. If this degree is greater than
deg ¢',, then every possible q" has this degree. If it is less than deg ¢’,, then every other possible ¢
has degree equal to deg ¢, .

An immediate consequence of this theorem is the algebraicity of the set of ¢',’s giving rise to
nondegenerate solutions of the gg-system. More precisely, fix nonnegative integers dy, . .., d,. Let
Qq, ....d, be the set of monic polynomials p, ... p, such that there exists a nondegenerate polyno-
mial solution of the gg-equations (for the given Z! and A;’s) satisfying qi = p; and deg p; = d; for
all 4.

Corollary 5.14. The set Qq, .. 4, is an affine variety.

This theorem states that there is a surjection from nondegenerate polynomial solutions of the
qg-system and solutions of the Bethe Ansatz equation whose fibers consist of all solutions with
fixed ¢, (z)’s. Combining this with Corollary 5.9 gives the following result:

Theorem 5.15. There is a one-to-one correspondence between nondegenerate Z* -twisted Miura-Pliicker
opers and solutions of the Bethe Ansatz equations (5.18).

Remark 5.16. Let LG be the adjoint group with Lie algebra L? that is Langlands dual to g. Theorem
6.7 of [FFTL] states the equivalence between the Miura L G-opers with Cartan connection of the
form (see equation 6.7 of [FFTL])

N )\Z T m o
gt z-3 TRy
1=

k=1 j=1

where {wf} satisfy the Bethe Ansatz equations, and the joint eigenvalues on Bethe vectors of
the Gaudin Hamiltonians corresponding to the Lie algebra g. Using a gauge transformation by
[T, (2 — 2)" € HY(z), one can transform the connection of those Miura opers to ours.

5.4. Regularity of the connection at the {w}}’s. The expression (5.14) for a nondegenerate Miura-
Pliicker oper appears to have singularities at the roots of the ¢, ’s. However, there exists a gauge in
wich the connection is in fact regular; in other words, the connection (5.14) has trivial monodromy
at {w}}’s. To show this, it will be convenient to describe the Bethe Ansatz equations in terms of
the Cartan connection V7 = 9, + A (z), with A (z) defined in (2.12):

=0,

—apt
z—we

<Z = L+ A @)+ 1ogA@-<z>)

(5.26)
i=1,...,r, £= 1,...,deg(qi(z)).



26 T.J. BRINSON, D.S. SAGE, AND AM. ZEITLIN

We now apply gauge change by g; ¢(2) = exp [WQ%)] to

The only terms in which z — wé appears in the denominator are those which involve &; and
fi- The former gives ﬁo’zi + (ay, A (2))c;, and since (a;, A (2)) has a simple pole at w} with
Z .
residue —1, this expression is regular at wy. The terms involving f; are
1 fi (az, AH(2)) f; _O:logAi +2(2 — wi) 7+ (i, AH(2))

Ai(2)(z — w}) Jfi= Ai(z — w))? C ANi(2)(z — wh) Ai(z — wh)

—0,( fi-

The residue term of this vanishes by the Bethe Ansatz equations (5.26), and we conclude that the
matrix of V in this gauge is manifestly regular at w}.

Thus, we have proved the following theorem:

Theorem 5.17. The nondegenerate Z-twisted Miura-Pliicker oper connections have trivial monodromy at
the {w}}s.

6. BACKLUND TRANSFORMATIONS

In this section, we show that nondegenerate Z-twisted Miura-Pliicker opers are in fact Z%-
twisted Miura opers. Thus, solutions of the Bethe Ansatz equations are in fact parameterized by
ZH twisted Miura opers. The proof relies on the important technical tool of Bicklund transforma-
tions: transformations on twisted Miura-Pliicker opers associated to elements of the Weyl group.
These transformations were first introduced in the context of gg-systems in [MV2], where they
were referred to as reproduction procedures. When Z# = 0, it was shown in [MV1] that these
reproduction procedures act on the differential operators underlying opers as in Proposition 6.1
below. If Z # 0, the Backliind transformations coincide with the exponential reproduction proce-
dure of [MV2]. Moreover, it was proved in [MV2, Theorem 6.7] that the population obtained from
the exponential reproduction procedure for regular semisimple Z can be identified with an orbit
of the Weyl group of g. For completeness, we will reprove some of the results of [MV2]. We will
then establish the full correspondence between gg-systems and Z-twisted Miura G-opers.

6.1. Simple Backlund transformations. Our goal is to define transformations which take a Z%I-
twisted Miura-Pliicker oper to a w(ZH)-twisted Miura-Pliicker oper, where w is an element of the
Weyl group. As a first step, we consider the case of a simple reflection s;.

Recall that a polynomial solution of the gg-system gives rise to a connection (5.14) defined in
terms of the q%’s and Z#. We now exhibit a gauge transformation which takes this connection
to another connection in the form (5.14), but with ¢ and Z¥ replaced by ¢* and s;(Z). This
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gauge transformation is by an element of N_(z), so it does not preserve the Miura-Pliicker oper
structure.

Proposition 6.1. Let {qi, i }i=1,...r be a polynomial solution of the qq-system (5.3), and let VV be the
connection of the corresponding Z-twisted Miura-Pliicker oper in the form (5.14). Let V") be the connection
obtained from ¥ via the gauge transformation by e#i(*)fi where

6.1) pi(z) = Aiz) ™! [az log (qi(z)> + (i, 21
44 (2)

Then V) is obtained by making the following substitutions in (5.14):

¢ (2) = ¢(2),  §#i,

6.2
©.2) q+(z)r—>qi_(z), Zr—>si(ZH):ZH—<a¢,ZH> ;.

Proof. A short computation shows that
6.3) VW = eril@fi 7 o=ri@fi =

0.+ A (2) = Mi(e)pu(=)ais + 30 A()en + fi (i) o, AT (2)) = (=) = (2 Ai(2) ),
k=1

where we remind that A% (z) = 3"7_,(¢; — 0. log ¢!, (2)) .

In this expression, the diagonal term is

H o gy s (‘Lqi(Z)d,_ B e ) D qui(Z)d,
7l s zJ: ¢(z) 7 aZlg(Qi(z)) =820 = =2 ’

as desired.

Thus the statement of the theorem is true if y; satisfies the Riccati equation:

Hil2) (2)Ai(2) = (o, AT (2
(6.4) Mi(z) +/~Lz( )Az( ) < i A ( )>

Setting h;(z) = Ai(2)pi(2), this equation is equivalent to

(65) 28 T hi(z) = (s, AT (2) + 0. log(Ai(2).

This identity now follows by taking the logarithmic derivative of (5.16):
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Z;(z) + hi(z) = 0, log hi(2) + 0. log (qi(z)) + (a, ZH>z =0, log <BZ [(qz_(z))@@vZH)Z])

i(%) q4(2) ¢4 ()

= 0.log [ Ai(2) |[[ ()~ elenZ2 | = 9. log(Ai(2)) + (i, A¥ (2)).
J

Remark 6.2. Note that p;(z) can be rewritten using the gg-system equations as:

CMLpdi ()7

o S ABrAE

6.2. General Backlund transformations. We would like to construct Backlund transformations
associated to an arbitrary element w of the Weyl group by taking a reduced expression for w and
composing simple Backlund transformations associated to the given simple reflections. However,
in general, it is not possible to compose Backlund transformations. The problem is that, even if one
starts with a nondegenerate solution of the gg-system, the connection V*) defined in Proposition
6.1 is not necessarily the underlying connection of a nondegenerate s;(Z*?)-twisted Miura-Pliicker
oper. It thus does not give rise to the necessary initial data for another Backlund transformation,
namely a solution of the gg-system for s;(Z*).

Definition 6.3. Let {qi (2), q (2)} be a polynomial solution of the gg-system for ZH.

(1) The solution is called i-composable if the polynomials ¢} (2), ..., ¢' " (2), ¢ (2), ¢ " (2), ..., q%
are the positive polynomials of a solution to the gg-system for s;(Z%).

(2) The solution is called i-generic if it is nondegenerate and if the collection of polynomials
ai(2),-.., qi_l(z), q (2), qfl(z), ...,y (#) satisfy the conditions in Definition 3.4.

We will also refer to a twisted Miura-Pliicker datum as i-composable or i-generic if it comes
from such a solution of the gg-system.

It is immediate from Proposition 6.1 and Theorem 5.7 that if {qi(z), 7 (2)} is i-composable,
then V() is the underlying connection of a s;(Z )-twisted Miura-Pliicker oper.

Remark 6.4. Assume that Qg, 4. is nonempty. While it is easy to see that i-genericity is a Zariski-
open condition on the variety Qg . 4., it is not clear that this open subset is nonempty. In other
words, ¢* (2) may have multiple roots or it may share a root with A;(z) or with qi(z) for j # i
such that aj; # 0. However, if (o;, ZT) = 0, the set of i-generic polynomial solutions is nonempty.
Indeed, if ¢* (2) does not satisfy the conditions in Definition 3.4, one can replace it by ¢’ (2) +
cq', (z) for an appropriate nonzero scalar c. In particular, when Z = 0, the set of nondegenerate
polynomial solutions of the gg-system that are i-generic for all ¢ is nonempty.
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Lemma 6.5. If{qi, q bi=1
In particular,

r s an i-generic polynomial solution of the qq-system, then it is i-composable.

-----

(1) The connection V¥ constructed in Proposition 6.1 is the underlying connection of a nondegenerate
s;(ZH)-twisted Miura-Pliicker oper.

(2) Any corresponding (necessarily nondegenerate) polynomial solution {(ﬁ,?f_ }i=1,..r of the qq-
system for s;(Z1) has Efﬁr =q¢' and Eﬂr = qi for j # i. Moreover, one may take ¢ = —qi.

Proof. We will show that the polynomials {@1} defined above give rise to a solution of the Bethe
Ansatz equations for s;(Z™). It will then follow from Theorem 5.11 that there exist polynomials ¢’
such that {&1, Zf, }j=1,...r is a nondegenerate polynomial solution of the gg-system; moreover, this
solution will correspond to a s;(Z)-twisted Miura-Pliicker datum with underlying connection
V(). We will show explicitly that one can take ¢*. = —¢’, .

First, note that (", —¢) = W(q}. ") and (ai, si(Z7))q" (2)(—d' (2)) = (e, Z7) g’ (2)g" (2).
It is now immediate that the ith equation of the gg-system for s;(Z*) is satisfied by the ¢’.’s and
¢" = —¢.. As in the proof of Theorem 5.11, this implies that the Bethe Ansatz equations (5.17)
involving the roots of (}ZF = ¢' are satisfied.

Next, rewrite the ith equation of the original gg-system as

67) 0.Joga(2) - 9:logla () + (27, 0) = DS T[]
- J#i

Evaluating this expression at a root wz of qi (2) for j # i and using nondegeneracy, one obtains

6.8) 0:10g(q"(2))| , + (@i, ) = 0:log(d}(2))] -

One gets the remaining Bethe Ansatz equations by substituting this into (5.17):

0= (e, Z >+810g[ Hq+ — g ( z—wj)Z]

—a
zZ=w,

(6.9) = <aj7 ZH> - az’j<au > + 0, log [ i —Qij H qt ak] Z B wz)Q]
ki

= (%’»&'(Z )) + 0. log [ Hq k(5 — wj)Q}

—ad
z=wy

Thus, the ith simple Backlund transformation may be viewed as taking an i-generic Miura-
Pliicker datum to a nondegenerate s;(Z)-twisted Miura-Pliicker oper.
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Definition 6.6. Let w = s;, ...s;, be a reduced decomposition of an element w of the Weyl group.

(1) A polynomial solution of the gg-system (5.3) for Z#! is called (i1, ... ,i)-composable if for
each ¢, 1 < ¢ < k, the connection V(i%)-(ix—t+1) comes from a polynomial solution of the
qg-system for s;, ., ...s;,(Z").

(2) The solution is called (i1, ... ,1ix)-generic) if it is nondegenerate and for each ¢, 1 < ¢ < k,
the connection V(*)-(—t+1) comes from a nondegenerate polynomial solution of the gg-
system for s;, ., ...s; (ZH).

(3) A ZH-twisted Miura-Pliicker oper is called (i1, . . ., iy )-composable (resp. (i1, ... ,iy)-generic)
if it arises from such a solution of the gg-system.

It is immediate that (i1, . .., i;)-genericity implies (i1, .. ., iy )-composability.

Remark 6.7. Note that in this definition, we only assume the existence of a sequence of transforma-
tions as described in Lemma 6.5 for a particular reduced decomposition of w. We do not assume
that such a sequence exists for other reduced decompositions of w.

We will need a technical result for (i; . . . i )-composable solutions of the gg-system, showing the
existence of an element of B_(z) which intertwines the action of V and s;, ... s;, (Z) on highest
weight vectors.

Proposition 6.8. Let w = s;, ...s;, be a reduced decomposition. Then, for each (i; ...ij)-composable
solution of the qq-system (5.3), there exists an element b_(z) € B_(z) of the form

b_(2) = eSO Cin(Afizgein ()i py(2),
where c;;(z) are non-zero rational functions and h(z) € H(z), such that
(6.10) b_(2)w(ZH)v = 0.b_(2)v + A(2)b_(2)v.
Here, A(z) is given by equation (5.14) and v is a highest weight vector in any irreducible finite-dimensional
representation of G.
Proof. Let V¥ be the w(Z)-twisted Miura-Pliicker oper obtained by iterating the Backlund trans-
formations defined in Proposition 6.1:
(6.11) VY = etit (2)fiy etk () fiy, Ve—mk(z)fik e M (Z)fil,

Let {(jﬁr }i=1,...r be the “plus” part of the corresponding solution to the gg-system. We claim that

(6.12) b_(2) = e Hu@fi | emni(@fy H [ﬁ (Z)} &
J

satisfies (6.10).
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Let V be an irreducible representation with highest weight A\, and let v € V' be a highest weight
vector. First observe that

0. (2) &

6.13) V% = w(Z% ) — :
( v=w(Z")v ; 2.

For brevity, write E(z) = ¢ #i i e7Hi(2)fi1 . We now compute:

} (G,A)

_ _j azcﬁ-(z)v'
(0 + AN (o = [[ [Z)] 7 @ + AN EEw+b-(2) | 3 =20 | v

= {(ﬁ (Z)} <dj7/\>E(Z)va +b_(2) Z Mdj
7 J T (2)

=b_(2) |w(ZH)w - Zr:azji(z)dj v| +b_(2)

j=1 Q+(Z

as desired.

6.3. ZH-twisted Miura-Pliicker opers with admissible combinatorics are 7/ -twisted Miura op-
ers. We now prove one of the main results of the paper, namely, that Z*-twisted Miura-Pliicker
opers satisfying certain combinatorial conditions are in fact nondegenerate Z* -twisted Miura op-
ers. We begin by outlining the argument.

The first step is to define a class of Z# -twisted Miura-Pliicker opers for which one can give an
explicit construction of an upper triangular matrix which diagonalizes the oper, thereby showing
that it is a Z!-twisted Miura oper. The desired condition will be called wq-genericity (or more
generally, wo-composability); it will be a special case of the genericity considered in Definition 6.6.

Next, we observe that the behavior of the gg-system and its iterates under Backlund transforma-
tions depend on certain underlying combinatorics: the set of roots killing Z%, the degrees of the
A;’s, and the degrees of the qi’s. This combinatorial data essentially determine the degrees of the
¢"’s and inductively, the degrees of the polynomials appearing as solutions of the new ¢g-systems
obtained after applying Backlund transformations. We will call this combinatorial data admissible
if there exists a wo-generic solution of the gg-system with the given combinatorics.

Finally, we show that twisted Miura-Pliicker opers with admissible combinatorics are in fact
Miura opers. To do this, we introduce formal variables associated to the given admissible combi-
natorics: for the coordinates of a certain affine variety determined by the set of roots, for the zeros
of the ¢, ’s and other ¢’ ’s that appear upon an appropriate iteration of Bicklund transformations,
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and for the zeros of the A;’s. We construct a ring R by adjoining these formal variables to C(z)
and taking a suitable localization. One can now define a gg-system {Q%,Q" } over R which has
the property that upon specializing the formal variables appropriately, one obtains an ordinary
qq-system with the given combinatorics. Moreover, {Qi, Q" } is wo-generic because it specializes
to an ordinary wo-generic gg-system. We can use this fact to deduce that Miura-Pliicker opers with
the given combinatorics are in fact Miura opers.

6.3.1. wo-composability and wo-genericity. We begin by describing a sufficient condition for a Z*-
twisted Miura-Pliicker oper to be a Z-twisted Miura oper. Let wy be the longest element of the
Weyl group. We call a solution of the gg-system (or the corresponding Miura-Pliicker oper) wp-
generic (resp. wo-decomposable) if there exists a reduced decomposition wy = s;, ... s;, such that
the solution (or oper) is (i1,...,is)-generic (resp. composable). (For any w € W, one defines
w-genericity and w-composability similarly.)

We will need the following well-known fact about the product of Bruhat cells (see e.g. [H,
Lemma 29.3.A)):

Lemma 6.9. i) If u,v € W satisfy {(u) + ¢(v) = £(uv), then B_uB_vB_ = B_uvB_.
ii) If w € W has a reduced decomposition w = s;, S;,, .. . S;,, then

e¥1®i etin®is | e%inCin ¢ B_wN_, e%fuetiafio  etinliv € BlwNy
if ai; # 0 forall j.

Theorem 6.10. Every wo-composable (resp. wo-generic) Z™-twisted Miura-Pliicker G-oper is a Z-
twisted Miura G-oper (resp. a nondegenerate ZH -twisted Miura G-oper).

Proof. Let
V=0.+A(z)=0.+Y [Q - qg(z)—lazqg(z)} ai+ Y Ail2)e
be'the wo-composable ZH -twisted Miul:al-Pliicker oper coming fromlzlwg—composable solution
{¢!.} of the gg-system. By Proposition 6.8, there exists an element b_(z) € B_(z) such that
b_(2)wo(ZM)v = (9, + A(2))b_(2)v,

where v is any highest weight vector in a finite-dimensional irreducible representation of G. More-
over, if wy = s;, ...s;, is a reduced expression for which the solution is (i1, ..., 4s)-composable,
then

b_(z) = eCilu .. eCiatinelinfir ()
with ¢;;(2) € C(2)* and h(z) € H(2).

By Lemma 6.9 and the fact that wy is an involution,

b—(2) = by (2)won(2),



OPERS ON THE PROJECTIVE LINE, WRONSKIAN RELATIONS, AND THE BETHE ANSATZ 33

for some b, (z) € B4(z) and n4(2) € N4(z), so if v is a highest weight vector in an irreducible
representation,

by (2)ZHwov = (9. + A(2))by (2)wov.
Therefore, if we set
(6.14) u(z) = Z% —b712)0:04(2) + b1 (2) A(2)bi(2) € bi(2),

then
u(z)wov = 0.

for any irreducible finite-dimensional representation of G with highest weight vector v. Thus,
u(z) is an element of b, (z) which fixes the lowest weight vector wyv of any irreducible finite-
dimensional representation of G. This means that u(z) = 0. Equation (6.14) then implies that A(z)
satisfies

(6.15) A(z) = by (2)(0. + ZTYby ()7

for some b (z) € By(z). Thus, we have proved that every wg-composable Z-twisted Miura-
Pliicker oper is a Z-twisted Miura oper. Equivalently, every wy-composable solution of the qq-
system gives rise to a Z -twisted Miura oper. By definition, if the original solution is in fact
wo-generic, then the corresponding Z-twisted Miura oper is nondegenerate. O

6.3.2. Admissible combinatorial data. Letdy,...,d, and Ny,..., N, be nonnegative integers, and let
U be a collection of roots. Set hy = {Y € h | B(Y) = 0 <= ( € ¥}, itis an affine cone.

Definition 6.11. The combinatorial datum (d = (di,...,d;),N = (Ny,...,N;), V) is called wo-
admissible (or simply admissible) if there exists a wo-generic solution of the ¢g-system with Zy € hy
and for all i, deg A; = N; and deg ¢, = d;.

Remark 6.12. One may similarly define w-admissibility. In this language, e-admissibility com-
binatorics simply means that there exists a nondegenerate polynomial solution with the given
combinatorics.

We now give a more explicit formulation of admissibility in the two opposite extremes Z# = 0
and ZH regular semisimple, i.e. ¥ equals @ (the set of all roots) or .

Proposition 6.13. The combinatorial datum (d, N, ®) is admissible if and only if there exists a nondegen-
erate polynomial solution of the qq-system with Z H —0and forall i, deg qi(z) =d; and deg A; = N;.

Proof. By induction, it suffices to show that for any nondegenerate solution and for any i, one can
modify ¢’ (z) so that the solution is i-generic. This was shown in Remark 6.4. O
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We now assume that Z¥ is regular semisimple. In this case, one can characterize admissibility
explicitly in terms of certain inequalities that must be satisfied by the d;’s and N;’s.

We first observe that a Backlund transformation induces a transformation on the set of d;’s.
Indeed, as we have seen in Remark 5.13, if Z¥ is regular semisimple, then deg ¢¢ = degA; —
degq’ — > i i deg ¢, Accordingly, the ith Backlund transformation takes &’/ d;z), where

; N; —d; — capide ifj =1
(6.16) dgz) _ Dki Gkidy if 5 =1
d; otherwise.
The following necessary condition for the existence of an (i1, . . . , iy )-composable solution of the

qq-system with fixed regular semisimple combinatorics is now immediate.

Lemma 6.14. If there exists an (i1, ..., iy )-composable polynomial solution with combinatorial datum
(d,N, @), then for 0 < s < and1<j<r,
(6.17) d;,ik)m(ikfw) <N, - Z i i)+ (in—si)

(5

It turns out that if g is simply-laced, then this necessary condition is in fact sufficient. Moreover,
one can find a generic solution with the given combinatorics. In order to prove this, we will
consider a limit of the gg-system, the infinite qq-system.

Let & = (a;, ZH). To take the limit of the ith gg-equation as &; goes to infinity, we need to rewrite

the equation. Since the right-hand side of the equation is monic, we have ¢* (2) = & " (z), where

@' (z) is monic. The ith gg-equation is thus equivalent to
(6.18) & W(ah,d)(2) + ¢ (2)a-(2) = M) [T | a)]

JFi
Upon taking the limit, the Wronskian term disappears.

Definition 6.15. The infinite qg-system associated to g and the collection of monic polynomials

Ai(2),...,Ar(2) is the system of equations
(6.19) =AM [de] T fri=1.r,
J#i

where the qi(z)’s (and hence the ¢' (2)’s) are assumed to be monic.

It is easier to understand the significance of the infinite ¢¢-system in the ¢g-deformed case [FKSZ].
The g¢-difference analog of the gg-system, known as the QQ-system, expresses the relations be-
tween the so-called Baxter Q-operators in the corresponding XXZ integrable model [FH1], [FH2],
acting on a tensor product H of finite-dimensional representations of the quantum group U, (g).

3By convention, the case s = 0 corresponds to the original d;’s.
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(This tensor product is the underlying Hilbert space of the XXZ model). The Baxter Q-operators
can be expressed as weighted half-traces Q. (z) = Try; [(Z ® I )R} in the so-called prefunda-

mental representations {V{};_y ., of U, (3+) (see [H]]) of the normalized universal R-matrix R €
U, (by)®U,(b_); here, the weight Z = [], (' is a deformation of the classical Z¥. The Q-operators

~

act on H through the second factor of the R-matrix, i.e., through U,(b_) C U,(g).

One can define the infinite version of such Baxter Q-operators by considering the limit as the
corresponding multiplicative weight parameters &; = [] j fj_aj " goes to zero. One can even write
an explicit formula expressing the expansion coefficients of the Q-operator in terms of their infinite
analogues and the generators of the quantum group. This was done explicitly in [FH1] and [PSZ]
in the case of g = s[(2). The latter reference, together with the subsequent works [KPSZ], [KZ2],
[KZ1], identified the infinite version of the QQ-system relations with the relations in the classical
equivariant K-theory ring on a certain quiver variety while the finite version gives the relations
in the quantum K-theory ring. The parameters ¢; are known as Kihler parameters.

In particular, these results for Baxter Q-operators imply that one can find solutions of the QQ-
system which are the deformations of solutions of its infinite analogue. Upon taking the limit
which reduces the XXZ model to Gaudin model (see e.g. Section 6 of [KSZ]), we see that this is
true for the ¢g-system as well.

For example, in the s[(2) case, the infinite ¢g-system is simply the single equation ¢ (z)g—(2) =

A(z). If we set A(z) = vazl (z — z;j), then a solution is obtained by dividing the z;’s into w1, ..., wq
and vy,...,vN_q and setting ¢3°(2) = Hizl(z — wy) and ¢ (z) = éV:_ld(z — vg). Then following

the discussed above g-deformed case, if A(z) has no repeated roots, then for large enough ¢, there
are deformations wi and v§ such that qi(z) = Hizl(z —uwt), ¢¢ (2) = é\;d(z - vg) are a solution
of the finite gg-system (for the same A(z)) with parameter £&. Moreover, given the initial choice of
q°(2), the solution is unique and is indeed given by a formula that allows one to view the z;’s as

free parameters.

Lemma 6.16. If A(z) has no repeated roots, then the finite solution qi (2),¢" (2) is nondegenerate for large

3

Proof. Since ¢3°(z) has no multiple roots and is relatively prime to ¢°°(z), the same holds for the
finite solutions for large £. For such &, suppose that qi(z) has a root w in common with A(z).
We see that 8Zqi(z)q€(z) vanishes at w, since every other term in the gg-equation vanishes. This
implies that w is either a root of ¢ (z)ora multiple root of qi(z), a contradiction. O

We can generalize this procedure to define generic solutions to the gg-system for simply-laced
g. Assume that d; < N; — Z#j ay;dy for all j. We can then choose Z;, W; C C such that
|Zj| = Nj, |Wj| = dj, the Zj’s are pairwise disjoint, Z; N W), = & unless aj; # 0, and W; C
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Hwewj(z —w), and ¢"®(z) = Hvevj(z — v) gives a solution of (6.19). Since g is simply-laced,
Aj(2) [Tk qﬁ’oo( z)~%i is multiplicity-free. One can now apply the results above to obtain unique

deformations qf;Z (2),¢"% () satisfying the ¢gg-equations. By the lemma, these are nondegener-
ate solutions for large Z*.

Suppose further that the system of ‘inec‘lualitie.s dﬁf) <Nj = X0z akjd,(j) is also satisfied. This
guarantees that we have a solution qi’oo’(z)(z), qfoo’(l)(z) to the infinite gg-system with the same
A;(z), with q”oo’(z)(z) = ¢*°(z) and ql,’oo’(l)(z) = qi’oo(z), and with qi’oo’(z)(z) = qioo(z) for j # i.
We again can deform this infinite solution to obtain a unique solution of the gg-equations for
s5;(Zf). By uniqueness, these finite solutions are the ith Backlund transformation of the previous
7.(0) 3,21 (i)
ust 27" 02), 17" 0 (2)
large Z7, we see that {¢’”" (2),¢"? (2)} is i-generic for large Z*.

solutions, i.e., they are just qﬂéz . Since these solutions are nondegenerate for

It is clear that we can iterate this process, so we obtain the following theorem:

Theorem 6.17. Suppose that g is simply-laced. Then, there exists an (i1, . . ., i,)-generic solution of the qq-
equations with combinatorial datum (d, N, @) if and only if the system of inequalities (6.17) are satisfied.
In particular, (d, N, @) is admissible if and only if the system of inequalities is satisfied for some reduced
decomposition of wy.

6.3.3. Removing the hypothesis of wo-genericity. We now show that the wop-genericity hypothesis in
Theorem 6.10 is unnecessary as long as the combinatorial datum is admissible.

Theorem 6.18. Every nondegenerate Z" -twisted Miura-Pliicker oper with admissible combinatorics is a
(nondegenerate) Z* -twisted Miura oper. In particular, this is the case when

(1) Zf = 0and there exists a nondegenerate polynomial solution of the qq-system with degrees (d, N),
and

(2) g is simply-laced, Z" is reqular semisimple, and the system of inequalities (6.17) is satisfied for
some reduced decomposition of wy.

Proof. Let V = 8, + A(z) be a nondegenerate Z" -twisted Miura-Pliicker oper with admissible
combinatorial datum (d, N, ¥) and with corresponding polynomials ¢’ (z)’s. We must show the
existence of v(z) € B, (z) such that A(z) = v(2)(9, + Z")v(2)~1. We will accomplish this by
considering a solution to the gg-system over a ring R defined in terms of certain formal variables.

Letwy = s, ... s;, be areduced decomposition for which there exists an (i1, . . . , ig)-generic solu-
tion of the gg-equations. We now introduce formal variables for the roots of various polynomials:
the A;(z)’s, the positive polynomials cji(z)’s one obtains by iterating Backlund transformations
along this reduced word, and the negative polynomials §** (z) corresponding to the simple reflec-
tion at each step. (All of these degrees are uniquely determined except for possibly the degrees
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of the §"*(z)’s. However, we can always choose the degree to be the generic one specified in Re-
mark 5.13 while maintaining nondegeneracy.) Thus, we have the formal variables

° {z};}forlgiérandlﬁkSNi}
o (Wit for0<s</-1,1<j<rand1<k<d "+ and

7:[757 (ie)“'(izf&l»l):ilfs (Z)

e {v;*"} with1 < j < rand k less than the generic degree of ¢

‘Let R be the ring Clhy] ® C(z)[{w]’}, {vff*s’s}, {zi}], localized at the (z — wff*s’s)’s, the (z —
VZ‘S’S)’S, the (w};’0 — z;'-)’s, and the (wfg’0 — wg’g)’s, and satisfying the Bethe equations (5.18). Set
Q' (2, {wfﬁ’0 ) =11,(z— wz’o). We view the @', ’s as the “plus” polynomials of a gg-system defined
over R (with the twist parameter given by a generic ZH = Y7 (;a; and the singularities given
by A; = [[(z — 2})’s). Note that this data specializes to the data for our original V.

By Theorem 5.11, we can complete the Qi’s to a solution {Qi, Q" } of this gg-equation over R.
This solution corresponds to the connection 9, + A(z, {w}}, {¢:}, {A;}), where

T

Al Wi} AGH (A = D |6 = Q1 (2) 1 0:Q ()| as + D Ai(=)e.
i=1

i=1
Again, our original connection V is a specialization of this connection.
We claim that the gg-system {Q,Q" } over R is wo-generic. To see this, it suffices to show that
some specialization of this gg-system is wo-generic. This exists by the definition of admissibility.

Note that in the definition of the ith Backlund transformation, u;’s (see (6.6)) is a rational func-
tion with ¢', ()¢’ (z) in the denominator. It follows that all the y;’s needed in iterating Backlund
transformations for {Q , Q" } lie in R. One can thus use Backlund transformations and the proce-
dure of Theorem 6.10 to construct a matrix U(z, {wt}, {¢;}, {Ai}) € B4 (R) satisfying the equation

6200 A(2) = Ul (Wi G (A (9 + 3 Giaa ) U= wh) £ (A ™

Let v(z) be the specialization of U(z, {wi},{¢:}, {A:}) at the data for our original V. We then
obtain A(z) = v(2)(0. + Z")v(z)~! as desired.
g

Theorem 6.19. There is a one-to-one correspondence between the set of nondegenerate Z -twisted Miura
G-opers with admissible combinatorial data and the set of solutions to the ZH -twisted Bethe Ansatz equa-
tions for L'g with the same combinatorial data.

Proof. This follows immediately from Theorems 5.15 and 6.18. O

Remark 6.20. In [FKSZ], the authors studied a difference equation version of the ¢g-system involv-
ing quantum Wronskians called the QQ-system. In that paper, it is shown that there is a bijection
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between twisted Miura-Pliicker (G, g)-opers (with regular semisimple twist parameter) and solu-
tions to the Bethe Ansatz equations for the XXZ model, and this correspondence goes through the
intermediary of polynomials solutions of the QQ-system. There is an analogue of wg-genericity
in this context, and as for ordinary opers, a wo-generic Miura-Pliicker g-oper is in fact a Miura
g-oper. The methods of this paper can be used to prove the g-oper analogue of Theorem 6.18: a
Miura-Pliicker g-opers with admissible combinatorics is a Miura g-oper.
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