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Abstract. We give an effective bound on how much time orbits of a unipotent
group U on an arithmetic quotient G/! can stay near homogeneous subvarieties
of G/! corresponding to Q-subgroups of G. In particular, we show that if such
a U-orbit is moderately near a proper homogeneous subvariety of G/! for a long
time, it is very near a different homogeneous subvariety. Our work builds upon the
linearization method of Dani and Margulis.
Our motivation in developing these bounds is in order to prove quantitative density
statements about unipotent orbits, which we plan to pursue in a subsequent paper.
New qualitative implications of our effective bounds are also given.

1 Introduction

A basic challenge in homogeneous dynamics is the quantitative understanding
of behavior of orbits, in particular of unipotent orbits. In this paper, we give a
sharper form of the Dani–Margulis linearization method [17], that allows to control
the amount of time a unipotent trajectory spends near invariant subvarieties of a
homogeneous space; related techniques were also considered by Shah in [46].

One important use of this technique is to be able to relate the behavior of indi-
vidual unipotent (or unipotent-like, see, e.g., [20]) orbits with Ratner’s landmark
measure classification result [42]. This result says that any measure invariant and
ergodic under a connected unipotent group U on a homogeneous space G/! has to
be in one of countably many families; for the cases of G/! and unipotent group U

we will consider, the group U acts ergodically on G/! with respect to the uniform
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measure on G/!, hence this uniform measure is one of the countably many pos-
sibilities. All other ergodic measures will be supported on proper homogeneous
subvarieties of G/!. If one is able to show, using linearization or a different
technique, that a given collection of orbits under consideration of increasing size
do not spend much time next to any one of these countably many families of not
fully supported invariant measures, then one is able to conclude using the mea-
sure classification that this collection of orbits tends to become equidistributed
in G/!. We note that for the special case when one looks at a single orbit of a
one-parameter unipotent group Ratner was able to establish such an avoidance by
a different argument in [41].

However, the linearization technique of [17] is interesting in its own sake,
and in fact originated in work of Dani and Margulis before the proof of mea-
sure classification such as [15] in order to give a purely topological proof of the
Raghunathan Conjecture for the action of a generic one-parameter unipotent group
on SL3(R)/SL3(Z). Notably, unlike the techniques of Ratner used to prove the
measure classification result in [42, 43] or the techniques used to give a related but
different proof of this result by Margulis and Tomanov in [35], which in particular
rely on results such as the pointwise ergodic theorem and Luzin’s theorem which
are hard to make effective, the linearization technique relies essentially only on the
polynomial nature of the action: not only are the elements of the unipotent group
(considered as a subgroup of some SLN) polynomial, but the same holds for any
linear representation of G.

In a subsequent paperwe plan to make essential use of the results of this paper in
order to provide a fully effective orbit closure classification theorem for unipotent
flows on arithmetic homogenous spaces (albeit with very slow rates). We provide
some other applications of independent interest here.

Somewhat surprisingly, many of the most striking applications of the theory
of unipotent flows to number theory require working in the S-arithmetic context,
i.e., for products of real and p-adic groups (here we prefer to use " for the set of
places instead of the more traditional S, so we refer to this case as the "-arithmetic
case). Ratner’s measure classification result was generalized to this context by
Ratner [43] and by Margulis and Tomanov [35]; the linearization techniques of
Dani and Margulis were adapted to this context by Tomanov and by Gorodnik
and Oh in [50, 25]. With a view to potential applications, our paper is written
for "-arithmetic quotients. For simplicity we state here in the introduction the
main results in the special case where we consider the action of a one-parameter
unipotent group and consider only real algebraic groups, deferring stating the
slightly more technical general statements to §3. We emphasize that in order to
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get a fully explicit and effective result, we assume that the lattice is arithmetic.
By the Margulis Arithmeticity Theorem this assumption automatically holds for a
large class of groups G, and in any case arithmetic quotients are the only type of
quotients G/! that seem to appear in number theoretic applications.

The non-divergence result of Margulis [32], which were sharpened by Dani
in [13], are effective and have been given a very explicit and effective form by
Kleinbock and Margulis in [29]. The technique of linearization is related, but
we are not aware of an effective treatment of the main results in [17], and doing
so in this paper relies on employing an effective Nullstellensatz by Masser and
Wüstholz [36, Thm. IV] as well as some local non-vanishing theorems related
to Lojasiewicz inequality by Brownawell and Greenberg [11, 23, 24]. Moreover,
since we are not content with analyzing what happens in the limit, we need to be
able to analyze trajectories that are somewhat near a subvariety for a long time,
which is an issue that has not been discussed in previous works on the linearization
method.

Let G be a connectedQ-group and put G = G(R). We assume ! is an arithmetic
lattice in G. More specifically, fix an embedding ι : G → SLN, defined over Q
so that ι(!) ⊂ SLN(Z). Using ι, we identify G with ι(G) ⊂ SLN and hence
G ⊂ SLN(R). Note that using the restriction of scalars from number fields to Q,
our results are applicable also in the case of groups defined over a general number
field.

Let U = {u(t) : t ∈ R} ⊂ G be a one parameter unipotent subgroup of G, and
put X = G/!.

Define the following family

H = {H ⊂ G : H is a connected Q-subgroup and R(H) = Ru(H)}

where R(H) (resp. Ru(H)) denotes the solvable (resp. unipotent) radical of H.
Alternatively, H ∈ H if and only if H is a connectedQ-subgroupwhich is generated
by unipotent subgroups over the algebraic closure of Q. By a theorem of Borel
and Harish-Chandra, H(R) ∩ ! is a lattice in H(R) for any H ∈ H.

Our standing assumption is that G ∈ H and
that U is not contained in H(R) for any proper normal H ! G.

For any H ∈ H put H = H(R), we also write H ∈ H. Define

NG(U,H) := {g ∈ G : Ug ⊂ gH}.

Note that NG(U,H) is an R-subvariety of G. Moreover, if H !G and U ⊂ H, then
NG(U,H) = G.
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Put

S(U) =
( ⋃

H∈H
H %=G

NG(U,H)
)
/! and G(U) = X \ S(U).

Following Dani and Margulis, [17], points in S(U) are called singular with
respect to U, and points in G(U) are called generic with respect to U—these are,
a priori, different from the measure theoretically generic points in the sense of
Furstenberg for the action of U on X equipped with the G-invariant probability
measure (see, e.g., [22, p. 98] for a definition); however, any measure theoretically
generic point is generic in this explicit sense as well. In the early 1990’s Ratner
proved the remarkable result [41], previously conjectured by Raghunathan, that
for every x ∈ G(U) we have Ux = X. Prior to Ratner’s proof of the general case of
Raghunathan’s Conjecture in [41], important cases of Raghunathan’s Conjecture
were proven in [33, 14, 15].

Roughly speaking our main theorems guarantee that unless there is an explicit
obstruction, most points on a unipotent orbit are generic. We begin with the
following statement which follows from our main effective theorems in this paper.

1.1 Theorem. Let η > 0. Let {Hi : 1 ≤ i ≤ r} ⊂ H be a finite subset

consisting of proper subgroups, and for each 1 ≤ i ≤ r let Ci ⊂ NG(U,Hi) be a

compact subset. There exists an open set O = O(η, {Hi}, {Ci}) so that X \ O is

compact and disjoint from
⋃

i Ci!/!, and so that for every x ∈ G(U) there exists

some T0 = T0(η, {Hi}, {Ci}, x) so that for all T ≥ T0 we have

|{t ∈ [−T,T] : u(t)x ∈ O}| < ηT

We note that this theorem can also be deduced by combining Ratner’s measure
classification theorem, [42], and results in [17]; however this would only give a
non-effective proof of the above statement. Without appealing to [42] and only
utilizing statements in [17] (where the proof is essentially effective), one does not
get uniformity as in Theorem 1.1: indeed, from the argument in [17] the set O
above will depend on the initial point x. This distinction is similar to the difference
between the non-divergence statement given by Dani in [13] and the dependence
on the base point in Margulis’ [32].

1.2 Effective versions of linearization. The main theorems in this paper
yield amore precise and effective information about the compact setX\O appearing
above, with a polynomial dependence on the relevant parameters. We need some
preliminary notation before we can state our main results.



QUANTITATIVE BEHAVIOR OF UNIPOTENT FLOWS 5

Let ‖ ‖∞ (or simply ‖ ‖) denote the max norm on slN(R) with respect to the
standard basis; this induces a family of norms on ∧slN(R), which we continue to
denote by ‖ ‖∞ (or simply ‖ ‖). We also let ‖ ‖ be a norm on SLN(R) fixed once
and for all. For every g ∈ SLN(R), in particular for any g ∈ G, we let

|g| = max{‖g‖, ‖g−1‖}.

Let g = Lie(G) and put g(Z) := g ∩ slN(Z).
For every η > 0, we define

Xη = {g! ∈ X : min
0%=v∈g(Z)

‖ Ad(g)v‖ ≥ η}.

For every η > 0 the space Xη is compact (see §2.7 and Lemma 2.8), and
⋃

η>0

Xη = G/!.

Recall that U is a one parameter unipotent subgroup of G. Fix a z ∈ g with
‖z‖ = 1 so that

(1.1) U = {u(t) = exp(tz) : t ∈ R}.

Let H ∈ H be a nontrivial proper subgroup of G and put

ρH := ∧dim H Ad and VH := ∧dim Hg.

The representation ρH is defined over Q.

Let vH be a primitive integral vector in ∧dim HLie(G) corresponding to the
Lie algebra of H, i.e., we fix a Z-basis for Lie(H) ∩ slN(Z), and let vH be the
corresponding wedge product.

We also view vH as an element in ∧dim Hg; in order to put an emphasis on the
local nature of this vector, we will denote it by vH. Define

ηH(g) := ρH(g)vH for every g ∈ G.

With this notation, for an element H ∈ H, we have

NG(U,H) = {g ∈ G : z ∧ ηH(g) = 0}.

Note that NG(U,H) is a variety and could change drastically under small perturba-
tions of U. However, effective notions must be stable under small perturbations.
We will use the above finite-dimensional representations to give an effective notion
of generic points. The integer vector vH also allows us to give a notion of arithmetic
complexity for subgroups in H by defining the height of the group H to be

(1.2) ht(H) := ‖vH‖∞.
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Thus the height of a Q-group H is given by the height of the corresponding point
in the Grassmanian of Lie(G); cf. [4, §1.5].

The following definition will play a crucial role in this paper.

1.3 Definition. Let ε : R+ → (0, 1) be a monotone decreasing function, and
let t ∈ R+. Let z be as in (1.1). A point g! is called (ε, t)-Diophantine for the
action of U if for all H ∈ H with {e} %= H %= G

(1.3) ‖z ∧ ηH(g)‖ ≥ ε(‖ηH(g)‖) if ‖ηH(g)‖ < et.

A point is ε-Diophantine if it is (ε, t)-Diophantine for all t > 0.

Note that this is a condition on the pair (U, g!). Unless U < H(R) for some
(proper) H ! G, the set G(U) is non-empty, and moreover any x ∈ G(U) is ε-
Diophantine for some ε as above. In most interesting examples the singular
set S(U) is a dense subset of X. Therefore, G(U) is usually a Gδ-set without any
interior points. For any t ∈ R+, on the other hand, the set of (ε, t)-Diophantine
points in Definition 1.3 is a nice closed set with interior points (indeed, is the
closure of its interior points).

We can now state ourmain theorem (in slightly simplified form, seeTheorem3.2
below for the full version with all the features):

1.4 Theorem. There are constants A,D > 1 depending only on N, and E1 > 1
depending on N, G and !, so that the following holds. Let g ∈ G, t > 0, k ≥ 1,

and 0 < η < 1/2. Assume ε : R+ → (0, 1) satisfies for any s > 0 that

ε(s) ≤ ηAs−A/E1.

Then at least one of the following three possibilities holds.

(1) |{ξ ∈ [−1, 1] : u(ekξ)g! %∈ Xη or

u(ekξ)g! is not (ε, t)-Diophantine}| < E1η
1/D.

(2) There exist a nontrivial proper subgroup H ∈ H of

ht(H) ≤ E1(|g|A + eAt)η−A

so that the following hold for all ξ ∈ [−1, 1]:

‖ηH(u(ekξ)g)‖ ≤ E1(|g|A + eAt) η−A,

‖z ∧ ηH(u(ekξ)g)‖ ≤ E1e
−k/D(|g|A + eAt) η−A,

where z is as in (1.1).
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(3) There exist a nontrivial proper normal subgroup H ! G of

ht(H) ≤ E1e
Atη−A

so that

‖z ∧ vH‖ ≤ ε(ht(H)1/Aη/E1)
1/A.

Similar to [17], the proof of Theorem 1.4, and its "-arithmetic analogue, relies
on the polynomial like behavior of the unipotent orbits. However, in addition to
being polynomially effective, our results here also differ from [17] in the following
sense. They provide a compact subset of G(U) which is independent of the base
point and to which a unipotent orbit returns unless there is an algebraic obstruction;
this uniformity is used essentially in Theorem 1.1 and Theorem 1.5. Regarding
non-divergence properties of unipotent orbits, such uniformity is well known and
is due to Dani (see [13, 16]), but in this context it is new.

These features have been made possible using two main ingredients. First is the
use of an effective notion of a generic point, Definition 1.3. The second ingredient
is the use of a group MH, see §4.7, to control the speed of unipotent orbits in the
representation space VH ; this group does not feature in the analysis in [17].

Using Theorem 1.4 one can give a topological analogue of a result of Mozes
and Shah [39]. To deal with groups with infinitely many normal Q-subgroups we
need the following definition:

For any T > 0, put

σ(T) = min({1} ∪ {‖z ∧ vH‖ : H ∈ H, H ! G, ht(H) ≤ T, {1} %= H %= G}).

1.5 Theorem. There exists some D > 1 depending on N and E1 > 0 depend-

ing on N, G, and ! so that the following holds. Let 0 < η < 1/2.

Let {xm} be a sequence of points in X, and let Tm → ∞ be a sequence of real

numbers. For each m let Im ⊂ [−Tm,Tm] be a measurable set with measure > ηTm.

Let

Y =
⋂

k≥1

⋃

m≥k

{u(t)xm : t ∈ Im}.

Then exactly one of the following holds.

(1) Y contains an ε-Diophantine point for

ε(s) = (ηs−1σ(EA
1 η−AsA)/2E1)

A.

(2) There exists a countable (or finite) collection

F = {(Hi,Li) : i ∈ I} ⊂ H × R+
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so that if

Yi = {g ∈ N(U,Hi) : ‖ηHi
(g)‖ ≤ Li}!/!

then

(a) Y ⊂ ⋃
i∈I Yi

(b) for any β > 0

#{i ∈ I : Y ∩ Xβ ∩ Yi %= ∅} < ∞.

As we shall see in Corollary 4.10.1 below, for any H ∈ H and L > 0 the set

Y = {g ∈ N(U,H) : ‖ηH(g)‖ ≤ L}!/!

is a closed (though in general not compact) subset ofX. For instance, forG=SL2(R)
and ! = SL2(Z), if we take H to be the stabilizer of the vector ( 0

1 ) ∈ Z2,
U = H = H(R) and define Y as above, then Y is the union of all periodic U-orbits
of period ≤ L.

Theorem 1.5 is related to [17, Thm. 4]. Specifically in that paper it is proved
that if one assumes that sequence {xm} converges to a point in G(U), then a less
precise form of (1) of Theorem 1.5, namely that Y contains a point in G(U), holds.

1.6 Friendly measures. In this section we discuss generalizations of The-
orem 1.5 to the class of friendly measures which were studied in [28].

Let (Y, d) be a σ-compact metric space; for every y ∈ Y and r > 0, let B(y, r)
denote the open ball of radius r centered at y. Let µ be a locally finite Borel
measure on Y . If A > 0 and O ⊂ Y is an open subset, the measure µ is called
A-Federer on O if for all y ∈ supp(µ) ∩ O one has

µ(B(y, 3r))
µ(B(y, r))

< A

whenever B(y, 3r) ⊂ O.

Let Y = R be equipped with the standard metric. Given a point a ∈ R and δ > 0,
we let Iδ(a) = (a − δ, a + δ). Given c,α > 0 and an open subset O ⊂ R, we say µ

is (c,α)-absolutely decaying on O if for every non-empty open interval J ⊂ O

centered in supp(µ), every point a ∈ R, and every δ > 0 we have

(1.4) µ(J ∩ Iδ(a)) < c
(δ

r

)α
µ(J)

where J has length 2r, see [28, Lemma 2.2].

We will say a measure µ on R is uniformly friendly if µ is A-Federer and
(c,α)-absolutely decaying for some A, c,α > 0.
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Let the notation be as in §1.2; in particular,

U = {u(t) = exp(tz) : t ∈ R}

for some nilpotent element z ∈ g with ‖z‖ = 1.

1.7 Theorem. Let µ be a uniformly friendly measure on R. There exists some

D > 1 depending on N and µ, and E1 > 0 depending on N, G, !, and µ so that

the following holds.

Let 0 < η < 1/2. Let {xm} be a sequence of points in X, 0 < η < 1/2, and

let km → ∞ be a sequence of real numbers. For each m let Im ⊂ [−1, 1] be a

measurable set with µ(Im) > η µ([−1, 1]). Let

Y =
⋂

,≥1

⋃

m≥,

{u(ekmt)xm : t ∈ Im}.

Then exactly one of the following holds:

(1) Y contains an ε-Diophantine point for

ε(s) = (ηs−1σ(EA
1 η−AsA)/2E1)

A.

(2) There exists a countable (or finite) collection

F = {(Hi,Li) : i ∈ I} ⊂ H × R+

so that if

Yi = {g ∈ N(U,H) : ‖ηHi
(g)‖ ≤ Li}!/!,

then

(a) Y ⊂ ⋃
i∈I Yi,

(b) for any β > 0
#{i ∈ I : Y ∩ Xβ ∩ Yi %= ∅} < ∞.

See §9 for a more detailed discussion of this generalization.

Acknowledgements. We would like to thank M. Einsiedler, H. Oh, and
A. Wieser for their helpful comments on earlier drafts of this paper.

2 Notation

2.1 Let S = {∞} ∪ {p : p is a prime} denote the set of places of Q. We let
Sf = S \ {∞} denote the set of finite places in S. For every v ∈ S let Qv be the
completion of Q at v ; we often write R for Q∞.
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For every p ∈ Sf , we let Cp be the completion of the algebraic closure, Qp,
of Qp with respect to the p-adic norm. The field Cp is a complete and algebraically
closed field.

Given a finite subset " ⊂ S, we put "f := " \ {∞}; also set Q" =
∏

v∈" Qv .
Given an element r ∈ Q", we put |r|" = maxv∈" |r|v .

For any p ∈ Sf , let Zp denote the ring of p-adic integers in Qp. The ring of
"-integers in Q is as usual denoted by Z".

Given a Q-variety Y, we put Yv = Y(Qv); given a finite subset " ⊂ S, we also
write Y", or simply Y if there is no confusion, for

∏
" Yv .

For any Q-variety Y, we denote by dim Y the dimension in the algebro-
geometric sense. In particular dim G is the dimension of G as an algebraic group.
Note that dimQv Yv , the dimension of Yv as a Qv -manifold, equals dim Y; see,
e.g., [34, Ch. I, §2.5]. We also put

dimY" :=
∑

"

dimQp
Yp = (#") dimY.

Given a Q-group, H, we denote by Lie(H) the Lie algebra of H. We will use
lower case gothic letters to denote the Lie algebra of H over various local fields,
e.g., hp = Lie(H(Qp)); similarly, we write h", or simply h, for ⊕"hp.

The space h" is a Q"-module; and the notation rw for r ∈ Q" and w ∈ h" in
the sequel refers to this module structure.

Given a natural number m ≤ dim(Lie(H)), we write ∧mh or ∧mh" to denote
⊕"(∧mhv).

For any (compact) subset K ⊂ Qm
v and any δ > 0, we let Nδ(K) denote the

δ-neighborhood of K. Also let |K| denote the Haar measure of K.
Let H be a Q"-group and put H = H(Q"). Given a subset B ⊂ H, we define

ZH(B) = {g ∈ H : gb = bg for all b ∈ B}.

Given two subsets B1,B2 ⊂ H, we define

NH(B1,B2) = {g ∈ H : g−1B1g ⊂ B2},

and put NH(B) := NH(B,B) for any B ⊂ H.

2.2 For any place v ∈ S, let ‖ ‖v denote the max norm, with respect to the
standard basis, on slN(Qv) and on ∧slN(Qv). Given a finite subset " ⊂ S, the norm
‖ ‖" (or simply ‖ ‖) is defined by

‖ ‖" = max
v∈"

‖ ‖v.
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We let d denote the induced metric on the exterior algebra ∧slN(Q") induced
from ‖ ‖.

We also fix norms, which we continue to denote by ‖ ‖v , on SLN(Qv) for all v;
and put ‖ ‖ = max" ‖‖v . For every g ∈ SLN(Q"), in particular for every g ∈ G,
we set

(2.1) |g| := max{‖g‖, ‖g−1‖}.

Note that

(2.2) |g| = |g−1| and |g1g2| / |g1||g2|.

Fix A1 and A2 both depending only on N so that

(2.3) ‖ ∧r Ad(g)z‖ ≤ A2|g|A1‖z‖ for all z ∈ slN(Q") and 1 ≤ r ≤ N2.

2.3 Let W ⊂ slN be a rational subspace, then ∧dim WW defines a rational line
in ∧dim WslN . This line is diagonally embedded in ∧dim WslN(Q"), and we do not
distinguish between this diagonal embedding and the line.

Fix a Z-basis for W(R) ∩ slN(Z). Let vW denote the corresponding primitive
integral vector on ∧dim WW, and define

ht(W) = ‖vW‖.

Note that we used the max norm in the above definition, in particular, we have:
ht(W) is an integer.

Alternatively, ht(W) may be defined as follows. Let {e1, . . . , edim W} be a
Q-basis for W. Then

ht(W) =
∏

v∈S
‖e1 ∧ · · · ∧ edim W‖v.

In view of the product formula, the above is independent of our choice of the
rational basis for W, see [4, §1.5].

Given a Q-subgroup H of SLN , we put vH := vLie(H) and define

(2.4) ht(H) := ht(Lie(H)) = ‖vH‖.

2.4 For the rest of this paper, fix a finite subset " ⊂ S containing ∞.
The exponents in this paper are denoted by A with numerical indices. These

constants depend only on N. The understanding is that A· > 1.
Similarly, the constants C,D, and F in the sequel depend only on N, and are

implicitly assumed to be > 1.
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We use the notation T / R to denoteT ≤ cR where the multiplicative constant c
is allowed to depend on N, the number of places #", and polynomially on the finite
primes in " and on ht(G). Similarly we define T 0 R.

It will also be convenient to use - to denote a constant. More precisely, we
write T / R- if T ≤ cRA or T ≤ cRα where c is allowed to depend on N, #",
polynomially on the finite primes in " and ht(G), and the exponent is either a “big
enough” constant or a “small enough” constant depending only on N; hopefully
the context will make it clear if the exponent needs to be large or small.

2.5 For all v ∈ ", let ‖ ‖v denote the max norm with respect to the standard
basis on Qm

v ; we put ‖z‖ = ‖z‖" = max ‖zv‖v for all z = (zv) ∈ Qm
".

Define

(2.5) c(z) =
∏

v∈"

‖z‖v for all z ∈ Qm
".

Note that c(rz) = c(z) for all r ∈ Z×
" and all z ∈ Qm

".

2.6 Lemma. There exists A3 and some Cm," ≥ 1 so that the following holds.

Let z ∈ Qm
" be a vector so that c(z) %= 0.

(1) There exists some r0 ∈ Z×
" so that

C−1
m,"‖r0z‖" ≤ ‖r0z‖v ≤ Cm,"‖r0z‖"

for all v ∈ ", in particular, we have

(2.6) min
r∈Z×

"

‖rz‖" ≤ Cm,"‖r0z‖" ≤ Cm,"c(r0z)1/#".

(2) Let ‖z‖" = 1, and let T > 0. Then

(2.7) #{r ∈ Z×
" : ‖rz‖" ≤ T} ≤ Cm,"

(
log

T

c(z)

)A3

.

Proof. The claim in part (1) is proved in [30, Lemma 8.6].
We now turn to the proof of part (2). Let , = #" and for every a > 0 put

Ea =
{

(w1, . . . , w,) ∈ R,
+ :

∏
wi = a

}
.

Note that Ea is invariant under multiplication by positive diagonal matrices
in SL,(R).

Let D" denote the group of positive diagonal matrices in SL,(Q) whose en-
tries are in Z". Let a = c(z). Then (|z|v) ∈ Ea , and for every r ∈ Z×

" we
have Diag(|r|v) ∈ D".
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Let ‖ ‖op denote the operator norm on SL,(R) and let ‖ ‖m denote the max
norm on R,. We have

(2.8) #{A ∈ D" : ‖A‖op ≤ S} /m," (log S)-.

Further, if w = (w1, . . . , w,) ∈ Ea is so that |wi| /m," ‖w‖m /m," |wi| for all i,
then ‖A‖op‖w‖m /m," ‖wA‖m /m," ‖A‖op‖w‖m.

Hence, the claim follows from (2.8) if we replace z by r0z so that

‖r0z‖" /m," ‖r0z‖v /m," ‖r0z‖"

for all v ∈ ". "
Similar to (2.5), we define c(w) =

∏ ‖w‖v for all w ∈ ∧slN(Q").

2.7 Let G be a connectedQ-group of classH. Fix an embedding ι : G → SLN

defined over Q. Put G = G" and g = g".

We identify G with ι(G)⊂SLN , hence, G⊂SLN(Q"). Let g(Z") :=g∩slN(Z"),
then [g(Z"), g(Z")] ⊂ g(Z").

We fix a Z-basis, BG = {z1, . . . , zd}, for g ∩ SLN(Z) so that c(zi)/ ht(G)- for
all 1 ≤ i ≤ d. Using this basis, we identify Lie(G) with a d-dimensional vector
space with a Q-structure. We also identify the Z-span of BG with Zd; hence we
get a representation Ad : G → SLd.

Let ! ⊂ G ∩ SLN(Z") be a lattice. Then ! fixes g(Z"), which implies that
Ad(!) ⊂ SLd(Z")—recall that we are using BG to define Ad over the ring Z" (and
not just as a Q-representation).

Let X := G/!. For any η > 0, set

(2.9) Xη := {g! ∈ X : min
0%=v∈g(Z")

c(gv) ≥ η}

where here and in what follows we often simply write gv for Ad(g)v ; similarly,
for w ∈ ∧g, we simply write gw to denote the corresponding wedge power of the
adjoint representation.

For any η > 0, the set Xη is a compact subset of G/!, and G/! =
⋃

η>0 Xη.
We will need a quantitative version of the former statement:

2.8 Lemma. There exist some EG (depending on the geometry of G/!) and F

(depending only on N) so that the following holds. Let g ∈ G be so that g! ∈ Xη.

There exists some γ ∈ ! so that

|gγ| ≤ EGη−F.
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Remark. For a point g! to be Xη essentially means that the local injectivity
radius for G/! at g! is 0 η-. Thus Lemma 2.8 can be viewed as an estimate of
the diameter of the part of G/! which has injectivity radius greater than η-. In
particular, for G/! compact, F is essentially meaningless, and EG is the diameter of
the smallest norm ball in G needed to cover G/!; see [37, Thm. 1.7 and Thm. 6.9]
for more explicit estimates.

For future convenience, we set ẼG = ht(G) · EG. In the proof of this lemma
implicit constants are allowed to depend on G and ! where indicated.

Proof. By [37, Prop. 3.1] there exists a Levi subgroup L so that ht(L) is
bounded by ht(G)-, in particular, L ∩ ! is a lattice in L.1

For any g ∈ G, define

αg(g) := max{c(Ad(g)z)−1 : 0 %= z ∈ g(Z")};

define similarly αl for any g ∈ L = L(Q").

Let g ∈ G and write g = g0gu where g0 ∈ L and gu ∈ Ru(G). Then

αl(g
0) ≤ αg(g

0)

and by [37, Lemmas 4.4 and 6.8] we have αg(g0) /G,! αg(g)-. It follows from
reduction theory for L ([40, Thm. 4.8] and [40, Thm. 4.17]) that there exists some
γ0 ∈ L ∩ ! so that

|g0γ0| /G,! αl(g
0)-,

and combining the above we get |g0γ0| / αg(g)-. Moreover, γ−1
0 guγ0 ∈ Ru(G)

and ht(Ru(G)) / 1, see Lemma 4.2. Therefore, there exists some γ1 ∈ Ru(G) ∩ !

so that

|γ−1
0 guγ0γ1| /G,! 1,

see, e.g., [37, Lemma 5.6].

Put γ = γ0γ1. Then

|gγ| = |g0guγ0γ1|
/G,!|g0γ0||γ−1

0 guγ0γ1| /G,! αg(g)-,

as was claimed. "

1Note that without the estimate on the height, the existence of a Levi subgroup so that L ∩ ! is a
lattice in L is a theorem of Mostow [38].
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2.9 Let U =
∏

v∈" Uv ⊂ G where for all v ∈ " we have Uv is a (possibly
trivial) unipotent subgroup of G. We will refer to such groups as a Q"-unipotent
subgroup of G. Define

(2.10) "′ = {v ∈ " : Uv %= {e}}.

Let u (resp. uv ) denote the Lie algebra of U (resp. Uv ). The exponential map
defines an isomorphism of Q"-varieties from u onto U. We fix once and for all a
basis BU for u consisting of elements which are nontrivial at only one place.

For δ > 0, let

Bu(0, δ) =
{ ∑

z∈BU

rz z : |rz|" ≤ δ

}

where rz ∈ Q" and |r|" := max" |rv |v ; put

BU(e) := exp(Bu(0, 1)).

Thus BU(e) is a product of neighborhoods of 1 in Uv for v ∈ ". A subset B ⊂ BU(e)
will be called a ball if it is the image, under the exponential map, of a norm ball
in u.

Let λ : u → u be a Q"-diagonalizable expanding linear map, and for all k ∈ N
let λk : u → u denote the k-fold composition of λ with itself, i.e., λk = λ ◦ · · · ◦ λ,
k-times. We will throughout make the assumption that for some fixed κ > 0 and
all k ≥ 1

(2.11) exp(λk−κ(Bu(0, 1))) · exp(λk−1(Bu(0, 1))) ⊂ exp(λk(Bu(0, 1))).

We now explicate two examples of λ which satisfy the required conditions.
One may take λ to be an expanding automorphism of the Lie algebra u as Margulis
and Tomanov did in [35]; more explicitly, we may embed G in a larger group in
which one can find an element h so that λ = Ad(h) expands u.

The following is an alternative construction for a λ which satisfies the required
assumptions: Let v ∈ ", and consider the lower central series for uv . That is:

uv = uv,0 ⊃ uv,1 ⊃ · · · ⊃ uv,nv = {0}

where uv,i+1 = [uv , uv,i] for all 0 ≤ i < nv .
For each i, let ui

v denote an orthogonal complement of uv,i+1 in uv,i.2 In
particular, we have

uv,i = uv,i+1 ⊕ ui
v .

2Recall that for a finite prime p, a set of unit vectors in Qm
p is called orthonormal if it can be extended

to a Zp-basis for Zm
p .
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Fixing an orthonormal basis of ui
v for all 0 ≤ i < nv , we obtain an orthonormal

basis of uv . Let ap = p−3 if p is a finite prime and a∞ = e3. For each k ∈ N, define
λk : uv → uv by

λk(z) = a(i+1)k
v z for all z ∈ ui

v .

We leave the verification that this example does indeed satisfy (2.11) to the reader.
Abusing the notation, for an element u = exp(z) ∈ U we set λ(u) := exp(λ(z));

that is: λ and λk are also considered as functions on U.
In this paper, we assume that a linear expanding map λ satisfying (2.11) is fixed;

moreover, we assume that the parameters κ, |λ1(BU (e))|
|BU (e))| , etc. depend only on N and

polynomially on ht(G). For instance, the examples above satisfy these properties,
and the reader may take λ to be one of these examples.

However, if for some reason, the reader is keen on taking some particularly wild
expanding linear map λ satisfying (2.11), the only adverse effect would be that the
implicit multiplicative constants need to be allowed to depend polynomially on the
parameters of λ.

3 Statements of the main theorems: "-arithmetic

Let G ⊂ SLN be a Q-group. Recall the family

H = {H ⊂ G : H is a connected Q-subgroup and R(H) = Ru(H)},

where R(H) (resp. Ru(H)) denotes the solvable (resp. unipotent) radical of H. We
always assume that G ∈ H. Recall also our notation Gv = G(Qv) for all v ∈ ",

and G =
∏

v∈" Gv .
Let H ∈ H be a proper subgroup and put

ρH := ⊕"(∧dim H Ad) and VH := ∧dim Hg = ⊕"(∧dim Hgv).

We shall identify between the representation ρH of G and the Q-representaiton
∧dim H Ad of G.

Let vH be a primitive integral vector in ∧dim HLie(G) corresponding to the Lie
algebra of H. Recall from (2.4) that

(3.1) ht(H) = ‖vH‖" = ‖vH‖.

The vector vH is diagonally embedded inVH (which is a product of local factors);
in order to put an emphasis on the local nature of this diagonally embedded vector,
we will denote it by vH. Define

ηH(g) := ρH(g)vH for every g ∈ G.
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Throughout, U =
∏

v∈" Uv ⊂ G is a Q"-unipotent subgroup. We will use the
notation from §2.9. In particular, BU is an orthonormal basis for u, and

BU(e) = exp
({ ∑

z∈BU

rzz : |rz|" ≤ 1
})

.

Recall also from §2.9 the notion of an admissible expanding map λk : U → U for
all k ∈ N.

The following is a "-arithmetic version of Definition 1.3, and plays a crucial
role in this paper.

3.1 Definition. Let ε : R+ → (0, 1) be a monotone decreasing function,
t ∈ R+, and F ⊂ H a subcollection that is !-invariant with respect to conjugation.
A point g! is called (ε, t,F)-Diophantine for the action of U if for all H ∈ F

with {e} %= H %= G and c(ηH(g)) < et

(3.2) max
z∈BU

‖z ∧ ηH(g)‖ ≥ ε(c(ηH(g))).

A point is (ε, t)-Diophantine if it is (ε, t,H)-Diophantine. A point is ε-Dio-
phantine if it is (ε, t)-Diophantine for all t > 0.

Note that if there exists some nontrivial H ! G so that U ⊂ H(Q"), then for
any ε : R+ → (0, 1) the set of ε-Diophantine points is empty.

We now state the main result of this paper.

3.2 Theorem. There exist constants A and D depending only on N, and

constants E depending on N, #" and polynomially on ht(G) and the primes in ",

and E1 depending in addition also (polynomially) on EG, so that the following

holds. Let g ∈ G, t > 0, k ≥ 1, and 0 < η < 1/2. Assume ε : R+ → (0, 1) satisfies

for any s ∈ R+ that

(3.3) ε(s) ≤ ηAs−A/E1.

Then at least one of the following three possibilities holds.

(1) |{u ∈ BU(e) : λk(u)g! %∈Xη or λk(u)g! is not (ε, t)-Diophantine}| < E1η1/D.

(2) There exists a nontrivial proper subgroup H ∈ H with

ht(H) ≤ (E|g|A + E1e
At)η−A

so that the following hold for all u ∈ BU(e):

c(ηH(λk(u)g)) ≤ (E|g|A + E1e
At)η−A,

max
z∈BU

‖z ∧ ηH(λk(u)g)‖ ≤ e−k/D(E|g|A + E1e
At)η−A.
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(3) There exists a nontrivial proper normal subgroup H ! G with

ht(H) ≤ E1(e
tη−1)A

so that

max
z∈BU

‖z ∧ vH‖ ≤ ε(ht(H)1/Aη/E1)
1/A.

Of course if G is Q-simple, possibility (3) cannot hold. A typical example
where there are infinitely many normal subgroups is

G = SLn ! ((Ga)
n × (Ga)

n)

with Ga denoting the one-dimensional additive group (the simplest possible alge-
braic group!). The group G is a perfect group, and for any l, k ∈ Z the subgroup

Hl,k = {(g, lv, kv) : g ∈ SLn, v ∈ Gn
a}

is a normal subgroup of G.

We note the following interesting corollary of Theorem 3.2. For simplicity we
state it in the case where G has only finitely many normal Q-subgroups (it is fairly
easy to adjust the statement and the proof to accommodate general G, but they
become a bit messier). Results of a similar flavor were given by Lindenstrauss and
Margulis in [31, Prop. 4.4].

3.3 Corollary. Let G,G,!,U be as above, with G having only finitely many

normal Q-subgroups, and U %⊂ H(Q") for all H ! G. There are A4,A5 depend-

ing only on N and ε1, ε2 depending on N, #" and polynomially on ht(G), the

primes in ", and EG, and t0 that depend in addition also on U and how far

it is from lying in any H ! G, so that if ε(s) = ε1ηA4s−A4 then if t > t0, and

if t′, k ≥ A5(t + log(1/η) + log(1/ε2)), then for any (ε, t′)-Diophantine g! ∈ Xη,

∣∣∣∣

{
u ∈ BU(e) :

λk(u)g! %∈ Xη or

λk(u)g! is not (ε, t)-Diophantine

}∣∣∣∣ < E1η
1/D.

Proof of Corollary 3.3 assuming Theorem 3.2.
Assuming that the constants in Corollary 3.3 were appropriately chosen, ε

satisfies (3.3) and we may apply Theorem 3.2.

If (1) of that theorem holds there is nothing to prove. Otherwise either (2) or (3)
of that theorem holds. (3) is ruled out by our assumption that U %⊂ H(Q") for all
H ! G if t0 is large enough.
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Suppose then we are in case (2). As g! ∈ Xη it follows that there is a nontrivial
subgroup H ∈ H for which in particular3

(3.4)
c(ηH(g)) ≤ 2E1e

Atη−A,

max
z∈BU

‖z ∧ ηH((u)g)‖ ≤ 2E1e
−k/DeAtη−A.

Choose A5, ε2 so that in particular t′ > log(2E1e
Atη−A). Then since g! is (ε, t′)-

Diophantine

max
z∈BU

‖z ∧ ηH((u)g)‖ ≥ ε1η
A4 (2E1e

Atη−A)−A4 0 η2AA4e−AA4t.

But this contradicts (3.4) if k ≥ A5(t + log(1/η) + log(1/ε2)) for sufficiently
large A5. "

4 The family H and the Diophantine condition

4.1 Recall the family

H = {H ⊂ G : H is a connected Q-subgroup and R(H) = Ru(H)}

where R(H) (resp. Ru(H)) denotes the solvable (resp. unipotent) radical of H.
For any subgroup H ∈ H, we put H = H(Q"). Sometimes we write H ∈ H.

4.2 Lemma. There exists some A6 so that the following holds. Let L ⊂ SLN

be a connected algebraic group defined over Q. Then

ht([L, L])/ht(L)A6; ht(R(L))/ht(L)A6 ; and ht(Ru(L))/ ht(L)A6.

Proof. Let B be a Z-basis for Lie(L) ∩ SLN(Z) so that ‖z‖ / ht(L)- for all
z ∈ B. Then {[z, z ′] : z, z ′ ∈ B} generates [Lie(L),Lie(L)]. Hence,

ht([Lie(L),Lie(L)])/ht(L)-.

It remains to bound ht(Ru(L)). To that end, first note that

R(Lie(L)) = {z ∈ Lie(L) : kL(z, [w, w ′]) = 0,∀w, w ′ ∈ Lie(L)}

where kL is the killing form of Lie(L). Therefore, ht(R(Lie(L)))/ht(L)-.
Now let B′ be a Z-basis for R(Lie(L)) ∩ SLN(Z) so that ‖z‖/ht(L)- for all

z ∈ B′. Then

Ru(Lie(L)) = {z ∈ R(Lie(L)) : tr(w1 · · · wsz) = 0,∀1 ≤ s ≤ N, wi ∈ B′}.

Hence, ht(Ru(Lie(L)))/ht(L)-. "
3Possibly for a slightly larger A than in the theorem.
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4.3 Algebraic properties of subgroups in class H. A quantitative no-
tion of a point satisfying a Diophantine condition was given in Definition 3.1. This
definition is formulated in terms of certain representations whose constructions
and basic properties we now recall.

Let H∈H be a proper subgroup. Recall that g=⊕" gv where gv =Lie(Gv). Put

ρH := ∧dim H Ad and VH := ⊕" ∧dim H gv .

The representation ρH is defined over Q.
Let vH be a primitive integral vector in ∧dim HLie(G) (or ∧dim HslN) correspond-

ing to the Lie algebra of H, see §2.3. We embed vH diagonally in VH and denote
this vector by vH. Let ηH : G → VH denote the orbit map, that is

ηH(g) = ρH(g)vH for all g ∈ G.

Note that ρH and VH depend only on dim H, however, vH (similarly vH) uniquely
determines Lie(H) and hence H.

4.4 Lemma. (1) NG(H) = {g ∈ G : ρH(g)vH = (χH(gp))v∈"vH}, where χH

is a rational character.

(2) The orbit ηH(!) is discrete and closed in VH.

Proof. Property (1) is a consequences of the definition.
In light of our assumption that ! is arithmetic, property (2) also follows from

the definitions. We note, however, that this qualitative result does not require
arithmeticity of !, see [17, Thm. 3.4]. "

4.5 Lemma. There exists some constant A7 so that the following holds.

(4.1) #{H ∈ H : ht(H) ≤ T} / TA7 .

Proof. This follows from the definitions of vH and ht(H). "

4.6 Lemma. There exists some A8 > 0 so that the following holds. Given any

Q-group L ⊂ G, there exists a normal subgroup LH ⊂ L which is maximal among

all subgroups of L which belong to class H; moreover,

(4.2) ht(LH) / ht(L)A8.

Proof. Since L/Ru(L) is a reductive group and unipotent subgroups in L map
to unipotent subgroups in L/Ru(L), we have

(4.3) Lie(LH) = [Lie(L),Lie(L)] + Lie(Ru(L));

in particular, LH exists.
By Lemma 4.2 we have ht([L, L])/ht(L)- and ht(Ru(L))/ht(L)-. The claim

thus follows from (4.3). "
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4.7 Let
LH = {g ∈ G : ∧dim H Ad(g)vH = vH}.

Then LH is a Q-group. The subgroup LH is not necessarily in H. Define

MH := LH
H ;

see (4.2) for the notation.
Put LH = LH(Q") and MH = MH(Q"). Note that

LH = {g ∈ G : ρH(g)vH = vH}.

We will simply denote these groups by L, L, M, and M when there is no
confusion.

4.8 Lemma. There exist A9 with the following property. For any H ∈ H we

have

(4.4) ht(LH) / ht(H)A9 and ht(MH) / ht(H)A9.

Proof. Since MH := LH
H , the second inequality is a consequence of the first

inequality and (4.2).
Recall now that

Lie(LH) = {z ∈ Lie(G) : ∧dim H ad(z)vH = 0},

and that vH is an integral vector with ‖vH‖ = ht(H).
The first inequality thus follows, and the proof is complete. "

4.9 Lemma. (1) For any γ ∈ ! and any H ∈ H, we have

1 ≤ ht(γHγ−1) = c(ηH(γ)).

(2) Let r > 1 and suppose γ ∈ ! is so that c(ηH(γ)) ≤ r. Then

(a) ht(γLHγ−1) / r-;
(b) ht(γMHγ−1) / r-.

Proof. Recall that Ad(!) ⊂ SLd(Z"). Recall that vH is primitive, in particular,
‖ηH(γ)‖p = 1 for all p %∈ ". Part (1) of the lemma thus follows from the definition
of ht(γHγ−1).

To see parts (2)a and (2)b, note that

γLHγ−1 = LγHγ−1 and γMHγ−1 = MγHγ−1 .

Hence, the claim follows from part (1) and (4.4). "
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Let H ∈ H. For any g ∈ G and any r > 1, put

(4.5) mH(g, r) := 5log(RH(g, r))6,

where RH(g, r) := max{c(ηMH
(gγ)) : γ ∈ !, c(ηH(γ)) ≤ r}.

4.9.1 Corollary. (1) RH(g, r) / |g|-r-.

(2) #(ηH(!) ∩ BVH
(vH, r)) / r-.

Proof. We first prove part (1). For any γ ∈ ! so that c(ηH(γ)) ≤ r, we have
ht(γMHγ−1) / r-, see Lemma 4.9(2)(b). Moreover, by Lemma 4.9(1), we have

1 ≤ ht(γMHγ−1) = c(ηMH
(γ)).

Using (2.3) to control the effect of g, the above implies the claim in part (1).
The second claim follows from the fact that Ad(!) ⊂ SLd(Z"). "

4.10 Lemma. Let H ∈ H. Assume there exist an L > 0, a sequence ,n → 0,

and a sequence gn! → g! satisfying the following:

(1) c(ηH(gn)) ≤ L for all n, and

(2) maxz∈BU
‖z ∧ ηH(gn)‖ ≤ ,n for all n.

Then g ∈ {g′ ∈ NG(U,H) : c(ηH(g′)) ≤ L}!.

Proof. In view of our assumption, there exists a sequence {γn} so that

gnγ
−1
n → g.

Hence, using the assumption in (1), we get that

(4.6) c(ηH(gnγ
−1
n γn)) = c(ηH(gn)) ≤ L.

Moreover, since gnγ−1
n → g, we have |gnγ−1

n | ≤ 1+ |g| for all large enough n. This
and the above imply that for some constant A′ depending only on N, we have

c(ηH(γn)) = ht(γnHγ−1
n ) ≤ L(2 + |g|)A′

for all large enough n.
Using (4.1) and passing to a subsequence, we assume that γnHγ−1

n = γHγ−1 for
all n, or equivalently that ηH(γn) = ηH(γ). Then for any z ∈ BU

z ∧ ηγHγ−1 (gnγ
−1
n ) = z ∧ ηH(gnγ

−1
n γn)

= z ∧ ηH(gn).



QUANTITATIVE BEHAVIOR OF UNIPOTENT FLOWS 23

This computation and the assumption in (2) now imply that

‖z ∧ ηγHγ−1 (gγ−1
n )‖ ≤ ,n for all z ∈ BU .

Passing to the limit, we get that z ∧ ηγHγ−1 (g) = 0 for all z ∈ BU . That is

(4.7) z ∧ ηH(gγ) = 0 for all z ∈ BU.

Similarly, using the fact that ηH(γn) = ηH(γ) for all n and passing to the limit
in (4.6) we get that

(4.8) c(ηH(gγ)) ≤ L.

In view of (4.7) and (4.8) we obtain

gγ ∈ {g′ ∈ NG(U,H) : c(ηH(g′)) ≤ L},

as we claimed.

4.10.1 Corollary. Let H ∈ H and let L > 0. The set

{g ∈ NG(U,H) : c(ηH(g)) ≤ L}!/!

is a closed subset of G/!.

Proof. Recall that NG(U,H) = {g ∈ G : z ∧ ηH(gγ) = 0 for all z ∈ BU}. The
claim thus follows from Lemma 4.10. "

4.11 Theorems A and B below will be used in the proof of Lemma 4.12. We
begin by recalling an effective versions of Hilbert’s Nullstellensatz theorem; the
statement presented here is due to D. Masser, G. Wüstholz, [36, Thm. IV]; see
also [45, 26] and references there.

Theorem (Effective Nullstellensatz). Assume f, f1, . . . , fn ∈Z[t1, . . . , tm] have

total degree at most D0 and logarithmic height at most h. Suppose f vanishes at

all the common zeros (if any) of {fi} in Cm.

Put M = 2m−1. Then there exist

• some b ∈ N with b / (8D0)2M,

• q1, . . . , qn ∈ Z[t1, . . . , tm] of total degree at most (8D0)2M+1 and logarithmic

height at most (8D0)4M−1(h + 8D0 log(8D0)), and

• some a ∈ Z with log |a| ≤ (8D0)4M−1(h + 8D0 log(8D0))
so that

af b =
∑

i

qifi.
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We need the following theorem of W. Brownawell which can be thought of as
a local version of the above theorem.

Theorem A (cf. [11]). Let f1, . . . , fn ∈ Z[t1, . . . , tm] have total degree at

most D0 and logarithmic height at most h. If f1, . . . , fn have no common zero

within 0 < b ≤ 1 of some w ∈ Cm, then

max{|fj(w)| : 1 ≤ j ≤ n} ≥ C1 e−A10h
(‖w‖2

b

)−A10

where C1 and A10 are explicit constants depending only on n,m, and D0.

In the p-adic setting, we have the following theorem. This theorem is proved
by M. Greenberg; we reconstruct Greenberg’s proof in Appendix Appendix A to
make the dependence on the height of the polynomials in question explicit.

Theorem B (cf. [23] and [24]). Let f1, . . . , fn ∈ Z[t1, . . . , tm] have total

degree at most D0 and logarithmic height at most h. There exists A11 depending

only on m, n, and D0 so that the following holds.

Suppose w1, . . . , wm ∈ Zp and C2 > 2A11h are such that

fj(w1, . . . , wm) ≡ 0 (mod pC2 ) for all j.

Then, there exist y1, . . . , ym ∈ Zp such that

yi ≡ wi

(
mod p5 C2−A11h

A11
6)

and fj(y1, . . . , ym) = 0 for all j.

The following lemma is a crucial ingredient for our inductive argument in the
proof of Theorem 3.2.

4.12 Lemma. There exist A12, A13, and C0 where C0 depends on N, the

number of places #", and polynomially on the finite primes in " and on ht(G) so

that the following holds.

Let r > 1, ε > 1, and g ∈ Gbe fixed. Suppose H1, H2 < G are twoQ-subgroups

of class-H with c(ηHi
(g)) ≤ r for i = 1, 2. Assume that

(4.9) max
z∈BU

‖z ∧ ηHi
(g)‖ ≤ ε for i = 1, 2.

Let H1,2 :=
(
H1 ∩ H2

)H
. Then if ε ≤ C0|g|−A12r−A12 , the group H1,2 is not trivial,

ht(H1,2) / |g|-r-, and

(4.10) max
z∈BU

‖z ∧ ηH1,2 (g)‖ / |g|A13rA13ε1/A13 .
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Proof. First note that (4.9) and (2.3) imply the following:

‖ Ad(g−1)z ∧ vHi
‖/|g|-ε for i = 1, 2 and all z ∈ BU.

Rewriting this at the level of the Lie algebra, we have

(4.11) d(Ad(g−1)z, hi) / |g|-r-ε for i = 1, 2 and all z ∈ BU,

where hi denotes the Lie algebra of Hi = Hi(Q").
Now (2.3) and c(ηHi

(g)) ≤ r imply

ht(Hi) = c(vHi
)/r|g|- for i = 1, 2.

Therefore, ht(H1 ∩ H2) / ht(H1) · ht(H2) and hence by (4.2) we have

ht(H1,2) / |g|-r-.

As h1 and h2 are rational subspaces of g with height / |g|-r-, the esti-
mates (4.11) thus imply that

(4.12) d(Ad(g−1)z, h1 ∩ h2) / |g|-r-ε for all z ∈ BU,;

see, e.g., [18, §13.4].
For every finite place p ∈ " let 3p = Qp, and let 3∞ = C. Set 3" =

∏
" 3p.

Let N denote the cone of ad-nilpotent elements in g ⊗ 3". Then

(4.13) Ad(g−1)z ∈ N.

There are n,m 0 1 so that the subspace h1 ∩ h2 and the cone N are Q-varieties
defined by

{fsp,j : 1 ≤ j ≤ n} ⊂ Z[t1, . . . , tm] and {fcn,j : 1 ≤ j ≤ n} ⊂ Z[t1, . . . , tm],

respectively;4 further, the logarithmic heights h of these polynomials are bounded
by

B0 + log r

for some B0 depending on N, the number of places #", and polynomially on the
finite primes in " and on ht(G).

In particular, conditions of Theorems A and B are satisfied for {fsp,j} ∪ {fcn,j}.
In view of Theorems A and B, thus, (4.12) and (4.13) imply the following estimate:

d(Ad(g−1)z,N ∩ ((h1 ∩ h2) ⊗ 3")) / |g|-r-ε-.

4The subscript sp stands for subspace and cp stands for cone.
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Let h1,2 = Lie(H1,2). By the definition of the family H, see §4.1, we have h1,2

contains the Lie algebra generated by N ∩ ((h1 ∩ h2) ⊗ 3"). Therefore, the above
estimate implies that

(4.14) d(Ad(g−1)z, h1,2 ⊗ 3") / |g|-r-ε- for all z ∈ BU.

Now since Ad(g−1)z ∈ g, we get the following from (4.14):

(4.15) d(Ad(g−1)z, h1,2) / |g|-r-ε- for all z ∈ BU .

Equation (4.15) implies h1,2 %= {0} so long as the right-hand side of (4.15) is a
sufficiently high power of |g|−1; this is satisfied if ε / |g|-r-. Equation (4.10) is
now an immediate consequence of (4.15). "

5 Non-divergence of unipotent flows inSLN(Q")/SLN(Z")
with an application to almost invariant Lie algebras

In this section we recall the basic non-divergence results regarding the action of
unipotent groups on SLN(Q")/SLN(Z"), and deduce some important corollaries
that will play a central role in the following sections. The basic reference for this
section is the paper [30] by Kleinbock and Tomanov, which can be viewed as a "-
arithmetic adaptation of [29] by Kleinbock and Margulis (which itself relies on the
non-divergence result of Margulis [32], perhaps the first general result regarding
dynamics of unipotent groups on arithmetic quotients, and Dani [13]).

Some of the implicit multiplicative constants in this section satisfy a stricter
requirement, i.e., they depend on N, #", and polynomially on the finite primes
in ", but not on ht(G). We will explicate these by an index, i.e., we write /N,"

or 0N," for these implicit multiplicative constants.

5.1 Let GL1
N(Q") denote the group

GL1
N(Q") =

{
(gv) ∈ GL(Q") :

∏

v∈"

det(gv) = 1
}

.

Then we can identify GL1
N(Q")/GL(Z") with the space of discrete Z"-

modules in QN
" of covolume 1, and there is a natural injective proper map from

SLN(Q")/SLN(Z") to GL1
N(Q")/GL(Z") obtained by assigning to (gv)v∈" theQ"-

module spanned by the elements in QN
" formed by taking the ith column of all gv

for i = 1, . . . , N. In view of this, we will view SLN(Q")/SLN(Z") as embedded
in GL1

N(Q")/GL(Z").
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Let !1 = GLN(Z") and G1 = GL1
N(Q"). For x = g!1/!1 ∈ G1/!1, let

α(x) = max{1/c(z) : z ∈ gZN
" \ {0}};

this function is a proper map from G1/!1 to R+ (as well as from the quo-
tient space SLN(Q")/SLN(Z") to R+) and any compact subset of G1/!1 is con-
tained in the compact subset of the form {x : α(x) < M} for some M > 0.
Let 4 be a Z"-submodule of rank k in a discrete Z"-module gZN

", say generated
over Z" by v1, . . . , vk ∈ QN

". Then while v1, . . . , vk are not uniquely defined, the
wedge v1 ∧ · · · ∧ vk in ∧kQN

" is, and we define c(4) = c(v1 ∧ · · · ∧ vk). A Z"-
submodule 4 of gZN

" is said to be primitive in gZN
" if it is maximal with respect

to finite-index extensions, i.e., it is not a proper Z"-submodule of finite index in
any Z"-submodule of gZN

".

The results of [30] are more general in that they deal with general “(c,α)-good”
maps from a convex B in a product of parameter spaces over Qv for v in some
subset of " to G1/!1, but the basic non-divergence estimate of the paper [30,
Thm. 9.4] gives the following:

5.2 Theorem (cf. [30]). Let U =
∏

v∈" Uv be aQ"-unipotent subgroup, BU(e)
an open ball in U and λk as in §2.9. Let g ∈ GL1

N(Q") and assume that for every

primitive Z"-submodule 4 of gZN
" of rank 1 ≤ k ≤ N − 1

(5.1) max
u∈BU (e)

c(λk(u)4) ≥ η.

Then

|{u ∈ BU(e) : α(λk(u)g!1) > ε−1}| < E
( ε

η

)1/D
|BU(e)|,

with D depending only on N and E depending on N, #", and polynomially on finite

primes in ".

In fact, the basic inductive argument used to prove Theorem 5.2, specifically
[30, Thm. 6.1] can be used to provide a more precise result that would be important
for us in the sequel. This result does not seem to appear in the literature. One can
view Kleinbock’s [27, Thm. 0.2] as a step in this direction, and a result very close
to what we give below can be found in a draft by Breuillard and de Saxce [10].

For g!1 ∈ G1/!1 and 1 ≤ i ≤ N − 1 let

αi(g!1) = 1/min
{

c(4) : 4 is a primitive Z"-submodule of gZN
" of rank i

}
.

5.3 Theorem. With the notations of Theorem 5.2 (but without the assump-

tion (5.1)), there are 0 = k0 < k1 < k2 < · · · < k, < k,+1 = N, and primitive
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Z"-submodules 4k1 < 4k2 < · · · < 4k, of gZN
" of rank corresponding to their

index so that if η(k0), . . . , η(k,+1) ∈ (0, 1] is defined by

(5.2)
η(0) = η(N) = 1,

η(ki) = max
u∈BU (e)

c(λk(u)4ki
) for 1 ≤ i ≤ ,,

then η(•) can be extended to a function [1,N]→ (0, 1] so that − log η : [1,N]→R+

is concave and linear on each interval [k0, k1], . . . , [k,, k,+1] and

∣∣∣
{
u ∈ BU(e) : ∃i s.t.

αi(λk(u)g!1)−1

η(i)
< εi

}∣∣∣ < Eε1/D|BU(e)|,

with D depending only on N and E depending on N, #", and polynomially on finite

primes in ". Moreover, given a primitive Z"-submodule 4̃ < gZN
", we can choose

4k1 < 4k2 < · · · < 4k, so that

η(rk(4̃)) ≤ max
u∈BU (e)

c(λk(u)4̃).

Note that it easily follows from the "-arithmetic version of Minkowski’s second
theorem, [4, §C.2, specifically Thm. C.2.11], that under the assumption (5.2) for
any u ∈ BU(e) one can complete the partial flag 4k1 < 4k2 < · · · < 4k, of
submodules of gZN

"to a full flag of primitive Z"-modules 41 < · · · < 4N−1 so
that if ki < r < ki+1 and τ = (ki+1 − r)/(ki+1 − ki) then

(5.3)
c(λk(u)4r) < Ac(λk(u)4ki

)τc(λk(u)4ki+1)
1−τ

≤ Aη(ki)
τη(ki+1)

1−τ = Aη(r),

with A depending only on N and ". Hence for all u ∈ BU(e)

αr(λk(u)g!1)−1

η(r)
< A.

Proof. Consider the (finite) collection of all primitiveZ"-submodules4<gZN
"

so that

(5.4) max
u∈BU (e)

c(λk(u)4) < 1,

and for each such 4, let
η4 = max

u∈BU (e)
c(λk(u)4).

Fromall the possible partialflags of primitiveZ"-submodules4k1 <4k2< · · ·<4k,

with all 4ki
in this subcollection, choose one for which the convex hull of the pairs

of points

(5.5) {(0, 0), (k1,− logη4k1
), . . . , (k1,− log η4k,

), (N, 0)}
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is maximal (with respect to the usual partial order by inclusion on subsets of R2).
There could be more than one possible choice, but any one of these choices
would be good enough for us, and if 4̃ satisfies (5.4) we can choose such a
4k1 < 4k2 < · · · < 4k, so that the convex hull of the points in (5.5) contains the
point (rk(4̃),− logη4̃).

Fix the choice of primitive Z"-submodules 4k1 < 4k2 < · · · < 4k, and
let η : [0,N] → R+ be as in the statement of the theorem. Then the graph
of − log η(•) forms the upper half of the boundary of the convex hull of the set
in (5.5), and η(rk(4̃)) ≤ η4̃.

By the choice of the 4ki
and definition of η(•), it follows that for any

1 ≤ r ≤ N − 1 and any Z"-primitive submodule 4 of rank r of gZN
" compat-

ible with 4k1 < 4k2 < · · · < 4k, ,

max
u∈BU (e)

c(λk(u)4) ≥ η(r).

Applying [30, Thm. 6.1] similarly to the way it is used to prove [30, Thm. 9.3],
but with the poset used in [30, Thm. 6.1] being the collection of Z"-submodules of
gZN

" compatible with the chosen partial flag 4k1 < 4k2 < · · · < 4k, one obtains
that outside a subset C ⊂ BU(e) of measure |C| /N," ε- we can find for every
u ∈ BU(e)\C a completion 41 < · · · < 4N−1 (depending on u) of the fixed partial
flag 4k1 < · · · < 4k, so that for every i

(5.6) εη(i) ≤ c(λk(u)4i) ≤ A′η(i),

with A′ depending only on N and ". To be precise, we apply a variant of [30,
Thm. 6.1] where the marking equations (M1) and (M2) on [30, p. 540] for a partial
flag Gu (compatible with our fixed flag 4k1 < · · · < 4k,) are replaced by (in the
notations of this paper)

(M1) η(rk4) ≥ c(λk(u)4) ≥ εη(rk4) for every 4 ∈ Gu

(M2) c(λk(u)4) ≥ η(rk4) for every 4 compatible with Gu and 4k1 < · · · < 4k,

but not in Gu.

The argument of [30, Thm. 6.1] would give us that for u outside the set C as above
there exists a partial flag Gu for which (M1), (M2) hold. Subsequently apply-
ing Minkowski’s 2nd theorem (cf. note following the statement of Theorem 5.3,
particularly (5.3)) we can complete the flag Gu to a full flag so that (5.6) holds.

Such a marking was used in [30] (and [29]) to show that there is no primitive
v ∈ λk(u)gZN

" with small c(v), i.e., to control α(g!1) = α1(g!1), but in fact can be
used to show αi(λk(u)g!1) /N," ε−iη(i)−1, as we now show.
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The proof is by induction on the rank of the submodule 4 < gZN
", and all im-

plicit constants may depend on the step in the induction. Note that since − logη(i)
is a concave function,

(5.7)
η(i)

η(i − 1)
≤ η(i + 1)

η(i)
for all 1 ≤ i ≤ N − 1.

We also recall the following important inequality for any primitive 4,4′ < gZN
"

and any u ∈ U,

(5.8) c(u4) c(u4′) ≥ c(u4 ∩ u4′) c(u4′ + u4)/A,

with A depending only on N,".

We start induction with rank one primitive submodules Z"v < gZN
". Let i be

such that v ∈ 4i+1 but not in 4i (where for this purpose we take 40 = {0} and
4N = gZN

"). Then by (5.8) and (5.7),

c(λk(u)Z"v) ≥ c(λk(u)4i+1)
Ac(λk(u)4i)

≥ εη(i + 1)
AA′η(i)

≥ εη(1)
AA′ .

Consider now a rank-r primitive submodule 4 < gZN
", let i be such that

4 < 4i+1 and i is minimal such (clearly, i +1 ≥ r). Applying (5.8) once again, we
obtain

c(λk(u)4) c(λk(u)4i) ≥ c(λk(u)(4i ∩ 4)) c(λk(u)4i+1)/A.

By induction c(λk(u)(4i ∩ 4)) 0N," εr−1η(r − 1) hence

c(λk(u)4) 0N," εr−1η(r − 1)
c(λk(u)4i+1)
c(λk(u)4i)

0N," εrη(r − 1)
η(i + 1)

η(i)

0N," εrη(r − 1)
η(r)

η(r − 1)
= εrη(r),

and we are done. "
A key ingredient in the works of Margulis, Dani, Kleinbock–Margulis, and

Kleinbock–Tomanov quoted above is an estimate on the size of the set where a
polynomial function is small. The result needed, at least for the real case (i.e.,
" = {∞}) is known as Remez inequality, and is used in [29] and [30] to verify
the “(C,α)-good” property. Since we will also use it in the sequel, we quote it
below (in a slightly sharper form, though this is not relevant to us; cf., e.g., [29,
Prop. 3.2]).
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5.4 Lemma. Let F be a local field with absolute value | |. Let B be a compact

convex subset of F r, and let f ∈ F [t1, · · · , tr] be a nonzero polynomial of degree d.

Then for any δ > 0 we have

(5.9)
∣∣∣
{
z ∈ B : |f (z)| < δ sup

z∈B
|f (z)|

}∣∣∣ ≤ cδ1/d|B|,

where |K| denotes the Haar measure of K for any subset K ⊂ F r, with c depending

only on d and r.

See [12] for a proof for k = R; the general case is essentially identical.

Sketch of proof. Let δ′ = δ supz∈B |f (z)|. For r = 1 this follows from
Lagrange’s interpolation formula. For higher dimension, let x ∈ B be such that
f (x) = supz∈B |f (z)|. Then there is a line , through x where

|{z ∈ B : |f (z)| < δ′} ∩ ,|
|B ∩ ,| > c1

|{z ∈ B : |f (z)| < δ′}|
|B| .

Since x ∈ , by the choice of x we have

sup
z∈B

|f (z)| = sup
z∈B∩,

|f (z)|;

now apply the one dimensional result. "

5.5 Lemma. Let "′ ⊂ ". For all positive integers r and d, there exists explicit

constant c = c(r, d,"′) with the following property. For every v ∈ "′ and every

1 ≤ j ≤ r′
v let fv,j ∈ Qv [t1, · · · , trv ] be a nonzero polynomial of degree ≤ d. Define

fv(t1, · · · , trv ) = ‖(fv,1(t), . . . , fv,r′
v
(t))‖v = max{|fv,j(t)|v : 1 ≤ j ≤ r′

v }.

Let B =
∏

v∈"′ Bv where Bv is a convex set in Qrv
v for each v , and set

F(tvi : v ∈ "′, 1 ≤ i ≤ rv) =
∏

v∈"′
fv(t1, · · · , trv ).

Then for any δ > 0 we have

∣∣∣
{
z ∈ B : F(z) < δ sup

z∈B
F(z)

}∣∣∣ ≤ c| log δ|#"′−1δ1/d|B|.

Similarly, if we put F(tvi) = max"′ fv(tvi), then

∣∣∣
{
z ∈ B : F(z) < δ sup

z∈B
F(z)

}∣∣∣ ≤ cδ1/d|B|.
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Proof. We first prove the first claim. Hence, let F =
∏

v∈"′ fv be as in that
statement; note that maxF =

∏
max fv . Moreover, (5.9) holds true for fv in place

of |f |; see, e.g., [30, Lemma 3.1].

Note also that it suffices to prove the lemma for δ = 2−m where m is a non-
negative integer. For all non-negative integers m′ and any v ∈ "′, put

Bfv ,m′
v =

{
z ∈ Bv : fv(z) ≤ 2−m′

max
Bv

fv

}
.

Then we have

{
z ∈ B : F(z) < 2−m sup

z∈B
F(z)

}
=
⋃∏

"′
Bfv ,mv

v

where the union is taken over all partitions m =
∑

"′ mv with mv non-negative
integer for all v ∈ ".

Now by (5.9) applied for fv implies that |Bfv ,mv
v | ≤ C2−mv /d|Bv | for all v ∈ "′

and mv . The claim follows from this as the number partitions m =
∑

"′ mv

is ≤ m#"′−1.

To see the second claim, let v be so that maxBv fv = maxF. The claim then
follows from the fact that (5.9) holds for fv . "

Note that replacing 1
d

with 1
d

− ε, for a small enough ε depending only on d

and the constant c by a bigger constant depending on "′ if necessary, we have the
following. There exists some α = α(d) so that for all F as in Lemma 5.5 we have

(5.10)
∣∣∣
{
z ∈ B : F(z) < δ sup

z∈B
F(z)

}∣∣∣ ≤ cδα|B|

where c = c(r, d,"′).

In the sequel, we will deal with functions defined on U of the form
u "→ c(ηH(λk(u)g)) and u "→ ‖z ∧ ηH(λk(u)g)‖, see §4 for the notation. We
let α be so that (5.10) holds true for all of these functions; note that α depends only
on N.

5.6 Lemma. There exists some A14 so that the following holds. Let H ∈ H

and g ∈ G. Put εg = max{‖z ∧ ηMH
(g)‖ : z ∈ BU}. Assume εg > 0, i.e. that g−1Ug

does not normalize H. Then

|{u ∈ BU(e) : c(ηH(λk(u)g)) ≤ R}| / (R|g| ht(H)/εg)
A14e−k/A14 .

We need the following lemma for the proof of Lemma 5.6.
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5.7 Lemma. There exists some A15 so that the following holds. Let the

notation and assumptions be as in Lemma 5.6. Moreover, let DerρH denote the

derivative of ρH. Then

max{‖DerρH(z)ηH(g)‖ : z ∈ BU} 0 δ

where δ = (εg ht(H)−1|g|−1)A15 .

Proof. Let b > 0 and assume that max{‖DerρH(z)ηH(g)‖ : z ∈ BU} ≤ b.

Using (2.3), then we have

(5.11) max{‖DerρH(Ad(g−1)z)vH‖ : z ∈ BU} / |g|-b.

Recall from the definition of LH that

Lie(LH) = {w ∈ g : DerρH(w)vH = 0}.

That is: Lie(LH) is the kernel of the linear map w "→ DerρH(w)vH from g to VH .
The vector vH is an integral vector of size ht(H). Therefore, the map

w "→ DerρH(w)vH

can be realized by an integral matrix whose entries are bounded by ht(H)-.
Now by (5.11), for all z ∈ u with ‖z‖ = 1 the vector Ad(g−1)z almost belongs

to the kernel of this map; in view of the above bound we get that

(5.12) d(Ad(g−1)z,Lie(LH)) / |g|- ht(H)-b-,

see, e.g., [18, §13.4].
Recall that u is a nilpotent Lie algebra and MH = LH

H . Hence, arguing as in
the proof of Lemma 4.12, i.e., using Theorems A and B, we get the following
from (5.12):

d(Ad(g−1)z,Lie(MH)) / |g|- ht(H)-b- for all z ∈ BU .

The above estimate thus implies that

‖z ∧ ηMH
(g)‖ / |g|-r-b- for all z ∈ BU,

as we wanted to show. "

Proof of Lemma 5.6. In view of Lemma 5.5, it suffices to prove that

(5.13) max{c(ηH(λk(u)g)) : u ∈ B} 0
( εg

ht(H)|g|
)-

e-k.



34 E. LINDENSTRAUSS, G. MARGULIS, A. MOHAMMADI AND N. SHAH

To see this, for any z ∈ BU define

fz (t) = ρH(exp(tz))ηH(g).

Then fz is a polynomial map from Qv into VH. Let us write fz = cz,0 + f̂z where
cz,0 ∈ VH and f̂z(0) = 0.

Let δ be as in the previous lemma. By the conclusion of that lemma, there
exists some z0 ∈ BU so that

(5.14) max{|c|v : c is a coefficient of f̂z0} 0 δ-.

For any nonzero T ∈ Qv , define the renormalized polynomial

f̂z0,T (t) := 1
T
f̂z0 (Tt).

Then by (5.14), we have sup|t|v≤1 ‖f̂z0,T (t)‖ 0 δ-.

Hence, there exists some v ∈ " so that

max{uv ∈ BUw(e) : ‖ηH(λk(uv)g)‖v } 0 δ-e-k;

we also used the fact that for all w ∈ " we have ‖ηH(g)‖w 0 |g|−- ht(H)−-; this
lower bound follows as vH is an integral vector whose ∞-norm is ht(H).

Altogether, we get that

max{c(ηH(λk(u)g) : u ∈ BU(e)}
≥ max{‖ηH(λk(uv)g‖v

∏

w%=v

‖ηH(g)‖w : uv ∈ BUv (e)}

≥ δ-|g|−- ht(H)−-e-k;

this completes the proof of (5.13) and hence the lemma. "

5.8 Proposition. There is a constant D′ depending only on N so that the

following holds. Let H ∈ H and r > 1. Suppose that k > 1 and

(5.15) c(ηH(λk(u)g)) < r for all u ∈ BU(e).

Then

c(ηMH
(λk(u)g)) / r-|g|- for all u ∈ BU(e),

moreover, for all u ∈ BU(e) and z ∈ BU we have

‖z ∧ ηMH
(λk(u)g)‖ / r-|g|-e−k/D′

.
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Proof. Let l = dim(H). Recall that vH denotes the integer vector corresponding
to Lie(H) in ∧lg ⊂ ∧lslN(Q") — here and in what follows we view ∧rg as a rational
subspace of ∧rslN(Q") of height / 1 (recall from §2.4 that the implicit constants
for / and 0 are allowed to depend polynomialy on ht(G)).

In the notations of §2.9, let B = BU(e) and set

ϑ = 0.1
|B|

|λ1(B)| .

For any primitive Z"-submodule 4 of gZN
", it holds that c(4) 0 |g|−rk4, hence by

Theorem 5.2 there exists a subset Bg ⊂ λk(B) with

|λk(B) \ Bg| < ϑ|λk(B)|

so that
α(ug!) / |g|- for all u ∈ Bg.

This implies that for every u ∈ Bg there exists some γu ∈ SLN(Z") so that

(5.16) |ugγ−1
u | / |g|-.

Now (5.16) and (5.15) imply that

(5.17) c(γuvH) / |ugγ−1
u |- · c(ugvH) / |g|-r.

Applying a similar argument to the integral vector w ∈ ∧dim GslN(Q") correspond-
ing to ∧dim GLie(G) and using the fact that

w = ugw = ugγ−1
u γuw,

we have that Ad(γu)g is a rational subspace of slN(Q") of height / |g|-.
Define L′ = {g ∈ SLN(Q") : gvH = vH}. It follows from (5.15) applied with

u = e that c(vH) / |g|-r; hence, ht(L′) / |g|-r.
Moreover, the definitions imply that LH = G ∩ L′ and that MH = LH

H , see §4.7.
Further, in view of (4.4) we have ht(MH) / |g|-r-.

Similarly, for each u ∈ Bg define

L′
u = {g ∈ SLN(Q") : gγuvH = γuvH} = γuL′γ−1

u ;

then ht(L′
u) / |g|-r. Put Lu = γuLHγ−1

u , and let Mu = LH
u = γuMHγ−1

u . Then
ht(Mu) = c(γuvMH

) / |g|-r-.
For every u ∈ Bg we have

(5.18) c(ηMH
(ug)) / |ugγ−1

u |-c(γuvMH
) / |g|-r-.
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Since u "→ ηMH
(ugγ) is a polynomial, the estimate in (5.18) and Lemma 5.5 imply

that

(5.19) c(ηMH
(λk(u)g)) / |g|-r- for all u ∈ B.

In particular, the first claim in the proposition holds.
We now turn to the proof of the second claim. Let u ∈ Bg ∩ λk−1(B). By the

choice of ϑ, this set has measure ≥ 0.9|λk−1(B)|, in particular is non-empty. Let
γu ∈ SLN(Z") be as in (5.16).

By (2.11), λk−κ(B)λk−1(B) ⊂ λk(B); hence by (5.15) we have

c(ηH(λk−κ(v)ug)) < r for all v ∈ B.

Therefore, by Lemma 5.6 for every u ∈ Bg ∩ λk−1(B),

max{‖z ∧ ηMH
(ug)‖ : z ∈ BU} / r|ugγ−1

u | · ht(γuHγ−1
u )e−k/A14

2
.

For u ∈ Bg, |ugγ−1
u | / |g|- and ht(γuHγ−1

u ) = c(γuvH) / |g|-r hence for
u ∈ Bg ∩ λk−1(B)

max{‖z ∧ ηMH
(ug)‖ : z ∈ BU} / |g|-r-e−k/-.

Since u "→ z ∧ ηMH
(λk−1(u)g) is a polynomial, the above estimate together with

Lemma 5.5 implies that

max{‖z ∧ ηMH
(λk(u)g)‖ : z ∈ BU} / |g|-r-e−k/- for all u ∈ B.

This finishes the proof of the second claim and the proposition. "

6 Non-divergence of unipotent flows for general alge-
braic groups

Consider now G a Q-group of class-H and G = G(Q") as in §2. Let d = dim G.
Recall that g(Z") = g∩slN(Z"), see §2.7. Let U =

∏
v∈" Uv ⊂ G be aQ"-unipotent

group as in §2.9. By assumption G is equipped with an embedding ι : G → SLN ,
and a lattice ! commensurable to G ∩ SLN(Z"). Taking a finite index subgroup
if necessary, we assume that ! < G ∩ SLN(Z"), and that Ad(!) preserves g(Z").
Hence we get a finite to one map

G/! → SLN(Q")/SLN(Z"),

or using the adjoint representation a different map

G/! → SLd(Q")/SLd(Z").
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This latter map is in general not finite to one, but has compact fibers, since if CG

denotes the connected component of the center of G (necessarily a unipotent group
as G is of class-H) the fibers would be a finite-to-one extension of the compact
space CG(Q")/CG(Z"). Thereforewe may apply Theorem5.2 to the image of G/!

to either of these quotient spaces to deduce that for every g ∈ G and δ > 0, there is a
compact K ⊂ G/! so that for every k for all u ∈ BU(e) outside a set of measure < δ

we have that λk(u)g! ∈ K.

Theorem 5.2 gives more: it also says that for a compact set K that does not
depend on the point g!, if λk(u)g! %∈ K for a large set of u ∈ BU(e) then there
would be a Z"-submodule in gSLN(Z") which is not changed much by the action
of U, at least not when we act by λk(BU(e)), and Theorem 5.3 gives somewhat
finer information. However both of these theorems relate the properties of U orbits
in G/! to the structure of the ambient SL•(Q")/SL•(Z") and not some intrinsic
algebraic structure of G/!.

In [16] Dani and Margulis prove (in the real case) that given a one-parameter
unipotent subgroup ut of G and δ > 0, one can find a (fixed) compact subset
K ⊂ G/! so that if a trajectory of the one-parameter unipotent group ut starting
from g! does not eventually spend 1−δ of its time in K, then there is aQ-parabolic
subgroup P < G so that g ∈ P(Q"). This information is intrinsic for G/!.

The purpose of this section is to provide an effective version of [16], where the
existence of many u ∈ BU(e) for which λk(u)g! is outside a suitable fixed compact
region is used to imply some Diophantine conditions at appropriate scale for g!.
We note that in addition to [16], understanding intrinsically behavior of orbits near
the cusp in arithmetic quotients G/!, this time for certain diagonalizable groups,
was studied by Tomanov and Weiss in [51].

Recall from §2.7 the definition

Xη =
{
g! ∈ X : min

0%=z∈g(Z")
c(Ad(g)z) ≥ η

}
.

It follows from the discussion at the beginning of this section that for any η > 0,
the set Xη is a compact subset of G/!.

6.1 Lemma. There exists some 0 < κ(N,") < 1 with the following property.

Let w ∈ g(Z") and suppose that there exists some g ∈ G so that

c(Ad(g)w) ≤ κ(N,").

Then w is a nilpotent element.
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Proof. Let σ̄(w) =
∏

σ where the product is taken over all the nonzero
eigenvalues of w ; if the product is empty, i.e., w is nilpotent, put σ̄(w) = 0.
Then σ̄(w) ∈ Q—indeed σ̄(w) is invariant under the Galois group of the splitting
field of w . Further, since w ∈ g(Z"), the product formula implies that either
c(σ̄(w)) ≥ 1 or σ̄(w) = 0.

Let κ > 0 and assume that c(Ad(g)w) ≤ κ for some g ∈ G. Using Lemma 2.6,
there exist some r ∈ Z×

" and a constant A = A(N,") so that

A−1c(Ad(g)w)1/#" ≤ ‖r Ad(g)w‖v ≤ Ac(Ad(g)w)1/#"

for all v ∈ ". Therefore, all the eigenvalues of r Ad(g)w have v -norm /N," κ-/#".
Since c(r) = 1 and Ad(g)w has the same eigenvalues as w , we get that

c(σ̄(w)) ≥ 1 cannot hold for small enough κ; hence, w is nilpotent. "

6.2 Lemma. There exists some κ′(N,") with the following property. Let

V ⊂ g be a nonzero rational subspace, and let v ∈ ∧g(Z") be a primitive integral

vector corresponding to V. Assume that there is some g ∈ G so that

max
u∈BU (e)

c(λk(u)gv) ≤ ρ < κ′(N,").

Then there exists a unipotent Q-group W < G so that

(6.1) max
u∈BU (e)

c(λk(u)gvW) / ρdim(W)/ dim(V)

where vW∈∧dim(W)g(Z") is the primitive integer vector corresponding to Was in §2.3.

Proof. Let d = dim(G). We apply Theorem 5.3 on the image of G/! in
SLd(Q")/SLd(Z") obtained via Ad, with 4̃ the Z"-submodule of Ad(g)g(Z")
corresponding to V (or more precisely gV(Q)); let r denote the dimension of the
Q-subspace V (equivalently, r = rk(4̃)).

Let η(•) and 4k1 < 4k2 < · · · < 4k, be as in that theorem. Then η(r) ≤ ρ,
hence by concavity of − log η(•) we have that η(1) ≤ ρ1/r. Let s be maximal so
that η(s)

η(s−1) ≤ ρ1/r; clearly 1 ≤ r ≤ d − 1, and because − logη(•) changes its slope
at s this implies that there is some 1 ≤ j ≤ , for which kj = rk(4kj

) = s.
We claim that (assuming κ′(N,") is small enough) the rational subspace of g

corresponding to rk(4kj
) is the Lie algebra of a unipotent Q-subgroup W < G. Let

us denote by vW the vector in ∧rk(4kj
)g(Z") corresponding to this rational subspace.

By the choice of 4kj
, we have

c(λk(u)gvW) ≡ c(λk(u)4kj
) = η(s) ≤ ρs/r

for all u ∈ BU(e); so (6.1) is satisfied.
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It remains to show that 4kj
does indeed correspond to a rational nilpotent Lie

algebra. Fix an ε > 0 (depending only on N) so that for a set of u ∈ BU(e) of
size ≥ 0.5|BU(e)| we can find a completion 41 < · · · < 4N−1 (depending on u) of
the fixed partial flag 4k1 < · · · < 4k, so that for every i

(6.2) εη(i) ≤ c(λk(u)4i) /N," η(i).

Indeed, we will only use the existence of one such u.
Using (5.8), we can deduce from (6.2) that for every v ∈ λk(u)4i+1 which is

not in λk(u)4i

c(v) 0 c(λk(u)4i+1)
c(λk(u)4i)

0 η(i + 1)
η(i)

(since ε depends only on N, we absorbed it in the implicit constant).
Moreover, by induction one easily shows that we can pick vi ∈ λk(u)4i (in par-

ticular, vi ∈Ad(λk(u)g)g(Z")) so that v1, . . . , vi generateλk(u)4i and c(vi) / η(i)
η(i−1) .

We conclude that there is some A depending only on N and " so that if
v ∈ λk(u)4i but not in λk(u)4i−1 then c(v) ≥ η(i)

Aη(i−1) and c(vi) ≤ Aη(i)
η(i−1) .

Recall that for i ≤ s we have that η(i)
η(i−1) ≤ ρ1/r. As c([z, z′]) / c(z)c(z′), it

follows that if κ′(N,") (hence also ρ) is small enough, for i < i′ ≤ s we have
that c([vi, vi′]) is so small it forces [vi, vi′] to belong to 4i−1.

It follows that 4kj
is closed under [·, ·]. Since by Lemma 6.1 if κ′(N,") is

small enough, all the vi for i ≤ s = kj are nilpotent, it follows that all v ∈ 4kj
are

nilpotent. Hence 4kj
corresponds to the Lie algebra of a unipotent Q-subgroup

of G. "

6.3 Theorem. There exists a constant F depending on N and a constant E

depending on N, #" and polynomialy on ht(G) and the primes in " so that for any

g ∈ G, k ≥ 1, and any 0 < η ≤ 1/2 at least one of the following holds:

(1)
|{u ∈ BU(e) : λk(u)g! %∈ Xη}| ≤ Eη1/F.

(2) There exists a unipotent Q-subgroup W of height ht(W) ≤ E|g|Fη1/F so that

(6.3) c(ηW(λk(u)g)) ≤ Eη1/F for all u ∈ BU(e).

Moreover, if we put M = MW, then M %= G,

ht(M) ≤ E|g|Fη1/F,

and we have:

(a) For all u ∈ BU(e) we have

c(ηM(λk(u)g)) ≤ E|g|Fη1/F.
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(b) For all u ∈ BU(e) we have

max
z∈BU

‖z ∧ ηM(λk(u)g)‖ ≤ E|g|Fη1/Fe−k/F.

Proof. We may assume η < κ′(N,") with κ′(N,") as in Lemma 6.2 since
otherwise, for a sufficiently large implicit constant, alternative (1) in the statement
of this theorem becomes vacuous.

Apply Theorem 5.2. Then either alternative (1) in the theorem holds, or there
exists some primitive integral vector v ∈ ∧rg(Z") so that

max
u∈BU (e)

c(λk(u)gv) ≤ η.

By Lemma 6.2, we conclude that there is some unipotent Q-group W < G so
that

(6.4) max
u∈BU(e)

c(λk(u)gvW) / ηdim(W)/r.

Applying (6.4) with u = e we get that ht(W) / |g|-ηdim(W)/r. Let M be as in
(2) in the statement of this theorem. Then ht(M) / ht(W)- / |g|-η-, see (4.2).
Moreover, if η is small enough, then (6.4) (say for u = e) implies that

c(gvW) < 1/2.

As c(vW) ≥ 1 this means that g does not fix vW and so (since G is of class-H, hence
fixes vH for any normal subgroup H ! G) the group W is not a normal subgroup
of G. In particular, M %= G.

Applying Proposition 5.8 for H = W, we have that parts (a) and (b) in (2) of
the statement of the theorem hold, concluding the proof of this theorem. "

Theorem 6.3 allows us to give a new, and arguably more elementary, proof to
the main result of [16] (though the main ingredients are similar):

6.4 Corollary. Suppose G is semisimple, and g ∈ G is such that

(6.5) |{u ∈ BU(e) : λk(u)g! %∈ Xη}| > Eη1/F for infinitely many k.

Then Ug ⊂ gP(Q") for some parabolic proper Q-subgroup of G.

6.5 Lemma. Assume G is semisimple. Let W ⊂ g be a rational subspace

which generates a unipotent subalgebra. There exists a Q-parabolic subgroup

P(W) so that ht(P(W)) / ht(W)- and W ⊂ Lie(Ru(P(W)).
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Proof. Let Ŵ be the algebra generated by W and let U0 = {exp(Ŵ)}. Let U0

denote the corresponding algebraic group. Define inductively Ui = Ru(NG(Ui−1)).
Then

Ui ⊂ NG(Ui−1) and Ui−1 ⊂ Ui.

This process terminates after d ≤ dim G number of steps and gives a unipotent
subgroup Ud so that Ud = Ru(NG(Ud)). Therefore, NG(Ud) is a parabolic subgroup,
see [8]; the claim holds with P(W) = NG(Ud). "

Proof of Corollary 6.4. Suppose (6.5) holds along some sequence, say
,1, ,2, . . . of ks (to avoid confusion with ki of Theorem 5.3 we use , rather than k).
Then by Theorem 6.3 there exists for every j a unipotent Q-subgroup Wj and
Mj = MWj

with Mj %= G so that the heights of Wj and Mj are bounded uniformly
in j and so that

(6.6) max
z∈BU

‖z ∧ ηM(g)‖ ≤ E|g|Fη1/Fe−,j/F.

Since there are only finitely many Q-subgroups are of a given height, passing to
a subsequence if necessary, we may assume that Wj = W and Mj = M for all j,
hence from (6.6) it follows that z ∧ηM(g) = 0 for all z ∈ BU, hence Ug ⊂ gM(Q").
By Lemma 6.5, M is contained in some nontrivial Q-parabolic subgroup P < G
(indeed, with ht(P) / |g|-). "

7 Proof of Theorem 3.2

For every !-invariant subcollection F ⊂ H, t ∈ R+, and ε : R+ → (0, 1), let
Exc(ε, t,F) be the set

Exc(ε, t,F) = {u ∈ BU(e) : λk(u)g! is not (ε, t,F)-Diophantine}.

For every ε ∈ (0, 1), we let ε denote the constant function ε : s "→ ε. For every
1 ≤ r ≤ dim G, we let Fr denote the collection of class-H subgroups of G of
dimension ≤ r. For notational simplicity, let F0 = ∅.

The bulk of the proof of Theorem 3.2 is the following estimate:

7.1 Lemma. There are A16, A17 > 2, and D ≥ 1 depending on N, and

0 < c0 ≤ 1 depending on N, #", and polynomially on the primes in " so that the

following holds. For 1 ≤ r ≤ dim G and η,β, τ ∈ (0, 1), n ∈ R+ with

(7.1) η1/A17 ≤ c0 · (τβe−nẼ−1
G )A16

at least one of the following holds:
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(1) |(Exc(η, n,Fr)\Exc(η′, n′,Fr−1))∩{u ∈ BU(e) : λk(u)g! ∈ Xτ}| / β1/D for

n′ = A16(n + log(1/τ) + log(1/β) + log ẼG), η′ = en′
η1/A17,

or

(2) for some H of dimension r:

(a) For all u ∈ BU(e) we have

c(ηH(λk(u)g)) ≤ β−1en.

(b) For all u ∈ BU(e) we have

max
z∈BU

‖z ∧ ηH(λk(u)g)‖ ≤ η1/2.

Proof. Recall from §2.9 the definition

Bu(0, δ) =
{ ∑

z∈BU

rz z : |rz|" ≤ δ

}

so that BU(e) := exp(Bu(0, 1)).
We will cover the set

log(Exc(η, n,Fr)) ⊂ B = Bu(0, 1)

by a collection of balls E = {Bi = Bu(0,ρi) + ui}i∈I and for each such ball attach a
class-H group Hi ∈ Fr so that:
(E1)

∑
i∈I |Bi| / 1.

(E2) For every u ∈ Bi and u = exp(u)

c(ηHi
(λk(u)g)) ≤ β−1en,(7.2)

max
BU

‖z ∧ ηHi
(λk(u)g)‖ ≤ η1/2.(7.3)

(E3) For every i ∈ I, for some u ∈ Bi, equality holds in at least one of (7.2) or
(7.3).

More precisely, we will try to construct a cover E with these properties, and if
we fail this will establish that part (2) of Lemma 7.1 holds.

Assuming we succeed, we will show that these properties imply, for a suitable
choice of constants A16,A17, κ, that for n′, η′ as above

(7.4)
(Exc(η, n,Fr) \ Exc(η′, n′,Fr−1)) ∩ {u ∈ BU(e) : λk(u)g! ∈ Xτ}

⊂
⋃

i∈I

{u ∈ exp(Bi) : λk(u)g satisfies (7.2)′ and (7.3)′}
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where (7.2)′ and (7.3)′ denote inequalities (7.2) and (7.3) but with en and η instead
of β−1en and η1/2, respectively. Once (7.4) is established, we get from Lemma 5.5
that

|(Exc(η, n,Fr) \ Exc(η′, n′,Fr−1)) ∩ {u ∈ BU(e) : λk(u)g! ∈ Xτ}|
/ max(η1/2,β)1/D.

The desired estimate in part (1) follows from this bound and (7.1).
The construction of the open cover is straightforward. For every u ∈ Bu(0, 1)

for which u = exp(u) ∈ Exc(η, n,Fr), there is (by definition) a Q-group Hu ∈ H of
dimension≤ r so that (7.2)′ and (7.3)′ hold (with Hu replacing the yet undefinedHi).

For each such u, let B(u) denote the set B(u) = Bu(0,ρu)+u with ρu chosen to be
as small as possible so that for some v ∈ B(u) either c(ηHu (λk(exp v)g)) = β−1en or
maxBU

‖z ∧ ηHu (λk(exp v)g)‖ = η1/2. Unless the estimates (2)(a) and (2)(b) of the
statement of this theorem hold for some r-dimensional H ∈ H, for any u ∈ Bu(0, 1)
it holds that B(u) ⊂ Bu(0, 3). Note that the estimate of (2)(a) together with (2.3)
gives that ht(H) / |g|-e2n.

Assuming there is no such H, the Vitali covering argument allows us to find a
subcollection E = {Bi = Bu(0,ρi) + ui}i∈I of {B(u)} so that the collection of smaller
balls {Bu(0,ρi/3) + ui}i∈I is a disjoint collection of subsets of Bu(0, 3) but

(7.5)
⋃

i∈I

Bi ⊃ log(Exc(η, n,Fr)).

The resulting collection E clearly satisfies (E1)–(E3).
It remains to establish (7.4). Fix some u ∈ Exc(η, n,Fr) ∩ Xτ. Then by (7.5)

there is an i ∈ I so that u ∈ exp(Bi); put Hi = Hui
. By the definition of Bi estimates

(7.2) and (7.3) hold, while by the definition of Exc(η, n,Fr) there is an H ∈ H of
dimension ≤ r so that c(ηH(λk(u)g)) ≤ en and maxBU

‖z ∧ηH(λk(u)g)‖ ≤ η. There
are now two possibilities: either H = Hi, in which case u is contained in the set on
the right-hand side of (7.4), or H %= Hi.

Thus suppose that H %= Hi. By Lemma 2.8 there is a γ ∈ ! so that

|λk(u)gγ| ≤ EGτ−F.

Since ηγ−1•γ(λk(u)gγ) = η•(λk(u)g), we have

c(ηL(λk(u)gγ)) ≤ β−1en

max
BU

‖z ∧ ηL(λk(u)gγ)‖ ≤ η1/2 for L = γ−1Hγ, γ−1Hiγ.

Since H %= Hi, we have that H̃ = (γ−1Hγ ∩ γ−1Hiγ)H is of dimension ≤ r − 1.
Applying Lemma 4.12 with ε = η1/2 and r = β−1en we get that if η / E-

Gβ−-τ−-e-n,
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the group H̃ is nontrivial and

c(ηH̃(λk(u)gγ)) / (EGβ−1τ−1en)A16,

max
BU

‖z ∧ ηH̃(λk(u)gγ)‖ / (EGβ−1τ−1en)A16η1/A17 .

Therefore (in view of our convention regarding implicit constants, and recalling
that ẼG = EG ht(G)) we have that u ∈ Exc(η′, n′,Fr−1) for

n′ = A16(n + log(1/β) + log(1/τ) + log ẼG)

and η′ = en′
η1/A17 . "

Proof of Theorem 3.2. We need to estimate the size of the set

Bad = {u ∈ BU(e) : λk(u)g! %∈ Xη or is not (ε, t)-Diophantine}.

Set

Badη = {u ∈ BU(e) : λk(u)g! %∈ Xη},
BadExc = {u ∈ BU(e) : λk(u)g! is not (ε, t)-Diophantine but is in Xη}.

Clearly Bad = Badη ∪ BadExc.
We can bound the size of Badη using Theorem 6.3, obtaining that

(7.6) |Badη| ≤ Eη1/F

unless there exists a group M %= G,

ht(M) ≤ E|g|Fη1/F,

so that for all u ∈ BU(e)

c(ηM(λk(u)g)) ≤ E|g|Fη1/F,

max
z∈BU

‖z ∧ ηM(λk−1(u)g)‖ ≤ E|g|Fη1/Fe−k/F.

This clearly implies that (2) of Theorem 3.2 holds (if we choose A large enough).
Assume therefore for the remainder of the proof that (7.6) holds. Let d = dim G.

It follows from Definition 3.1 that in the notations of Lemma 7.1

(7.7) BadExc ⊂
( 5t6⋃

,=1

Exc(ε(e,), ,+1,Fd−1) ∪ Exc(ε(0), 1,Fd−1)
)

∩ (BU(e)\Badη).

Fix ,. To estimate |Exc(ε(e,), , + 1,Fd−1) ∩ (BU(e) \ Badη)|, define iteratively,
starting with r = d − 1, nd−1 = , + 1 and ηd−1 = ε(e,). Proceed by induction to
define

nr−1 = A16(nr + , + 2 log(1/η) + log ẼG), ηr−1 = enr−1η1/A17
r .



QUANTITATIVE BEHAVIOR OF UNIPOTENT FLOWS 45

Then

(7.8)

|Exc(ε(e,),, + 1,Fdim G) ∩ (BU(e) \ Badη)|

≤
d−1∑

r=1

|(Exc(ηr, nr,Fr) \ (Exc(ηr−1, nr−1,Fr−1)) ∩ (BU(e) \ Badη)|.

We want to apply Lemma 7.1 (with τ = η and β = ηe−, where η is as in this
theorem). In order to apply Lemma 7.1, our choice of parameters needs to satisfy
condition (7.1), with the critical case being that of r = 1. In this case (7.1) becomes

(7.9) η1/A17
1 ≤ c0 · (η2e−,e−n1Ẽ−1

G )A16 .

Iteratively working through the constants, there are A18 > A16, A19 > A17, easily
explicated in terms of d and A16 and A17 so that

en1 ≤
(2ẼGe,

η2e−,

)A18

, η1 ≤ e2n1ε(e,)1/A19.

Then assuming (3.3) with A large enough and suitable choice of constant E1 we
can ensure that η1 ≤ ε(e,)1/2A19 and that (7.9) holds.

By Lemma 7.1 and (3.3) (for A large enough), for every r

(7.10)
|(Exc(ηr, nr,Fr) \ Exc(ηr−1, nr−1,Fr−1))∩(BU(e) \ Badη)|

/ η1/De−,/D

unless for some H of dimension r, for all u ∈ BU(e) and some constant F depending
only on N and E′

1 depending polynomially on ẼG and on N,

c(ηH(λk(u)g)) ≤ η−1e,+nr ≤ E′
1e

F,η−F,(7.11)

max
z∈BU

‖z ∧ ηH(λk(u)g)‖ ≤ η1/2
r ≤ E′

1e
F,η−Fε(e,)1/F.(7.12)

If equations (7.11) and (7.12) hold for all u ∈ BU(e), there are two cases. Firstly,
it may happen that H ! G in which case

ht(H) = c(ηH(λk(u)g)) ≤ E′
1e

F,η−F.

Then as we assumed ε(s) ≤ ηAs−A/E1 (for the constants A and E1 of the theorem
we are proving, which are yet to be fixed) if A was chosen large enough, by (7.12)

(7.13) max
z∈BU

‖z ∧ ηH(λk(u)g)‖ ≤ ε(e,)1/2F.

For a given H, the value of , has to be large enough so that (7.11) holds, namely

e, ≥ (ht(H)ηF/E′
1)

1/F,



46 E. LINDENSTRAUSS, G. MARGULIS, A. MOHAMMADI AND N. SHAH

so

max
z∈BU

‖z ∧ ηH(λk(u)g)‖ ≤ ε(ht(H)1/Fη/E′
1)

1/2F

and (3) of the statement of Theorem 3.2 is satisfied.

If equations (7.11) and (7.12) hold for all u ∈ BU(e), but H is not a normal
subgroup of G we apply Proposition 5.8 and conclude that M = MH satisfies for
all u ∈ BU(e)

(7.14)
c(ηM(λk(u)g)) / EG

-e-,η−-

max
z∈BU

‖z ∧ ηM(λk(u)g)‖ / EG
-e-,η−-e−k/D′

.

(The dependence of the upper bounds in (7.14) on |g| can be eliminated as in the
proof of Proposition 5.8 by using the fact that by (7.6) for most u ∈ BU(e) there is
a γu ∈ ! so that |λk(u)gγu| / η−-.) In this case, (2) of Theorem 3.2 holds.

The only remaining case is if (7.10) holds for every r and , (as well as
the analogous estimates for Exc(ε(0), 1,Fd−1), for which we omit the details,
but is handled similarly), in which case it follows from (7.7) and (7.8) that
|BadExc| / η1/D, establishing (1) of Theorem 3.2. "

Let us record the following corollary of the proofs of Lemma 7.1 and Theo-
rem 3.2.

7.2 Corollary. Let the notation be as in Theorem 3.2. In particular, A,D

and E1 are as in loc. cit. Let g ∈ G, t > 0, k ≥ 1, and 0 < η < 1/2. Assume

0 < ε ≤ ηAe−tA/E1.

Suppose there exists

Excr ⊂ {u ∈ BU(e) : λk(u)g! ∈ Xη}

with |Excr | > E1η1/D so that and for every u ∈ Excr there is a Q-group Hu ∈ H

of dimension ≤ r satisfying both of the following

c(ηHu
(λk(u)g)) ≤ et

max
BU

‖z ∧ ηHu
(λk(u)g)‖ ≤ ε.

Then Theorem 3.2(2) holds with a subgroup H ∈ H which is also contained

in γHuγ−1 for some u ∈ Excr and some γ ∈ !.
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8 Some corollaries of Theorem 3.2

In this section we discuss some of the consequences of Theorem 3.2. Recall that
for any T > 0, we put

(8.1) σ(T) = min({1} ∪ {‖z ∧ vH‖ : H ∈ H, H ! G, ht(H) ≤ T, {1} %= H %= G}).
8.1 Theorem. Let A, D, and E1 be as in Theorem 3.2. There exists some ϑ

depending only on N so that the following holds. Let 0 < η < 1/2. Let {xm} be a

sequence in X and let km → ∞ be a sequence of natural numbers. For each m let

Vm ⊂ BU(e) be a measurable set with measure > ϑE1η1/D. Let

Y =
⋂

,≥1

⋃

m≥,

{λkm
(u)xm : u ∈ Vm}.

Then exactly one of the following holds.

(1) Y contains an ε-Diophantine point for

ε(s) = (ηs−1σ(EA
1 η−AsA)/2E1)

A.

(2) There exists

(a) a finite collection {(Hi,Li) : 1 ≤ i ≤ ,} ⊂ H × R+, and

(b) a countable (possibly finite) collection

W = {(Wj,Rj, rj) : j ∈ J} ⊂ H × R+ × R+

where Wj is a non-normal unipotent subgroup for all j ∈ J, and rj → 0
so that if we put

Yi = {g ∈ NG(U,Hi) : c(ηHi
(g)) ≤ Li}!/!

and

Zj = {g ∈ NG(U,MWj
) : c(ηMWj

(g)) ≤ Rj & c(ηWj
(g)) ≤ rj}!/!,

then

Y ⊂
( ,⋃

i=1

Yi

)⋃(⋃

j∈J

Zj

)
.

This theorem implies Theorem 1.5 since each Zj is contained in

{g ∈ NG(U,MWj
) : c(ηMWj

(g)) ≤ Rj}!/!,

and as rj → 0 for any β only finitely many of the Zj can interset Xβ. Recall that
for every i the sets Yi above are closed subsets of X (see Corollary 4.10.1), and the
same proof gives that the sets Zj are closed as well.

We first prove a special case of Theorem 8.1.



48 E. LINDENSTRAUSS, G. MARGULIS, A. MOHAMMADI AND N. SHAH

8.2 Lemma. Let A, D, and E1 be as in Theorem 3.2. There exists some ϑ

depending only on N so that the following holds. Let 0 < η < 1/2 and let t ∈ R+.

Let {xm} be a sequence in X and let km → ∞ be a sequence of natural numbers.

For each m let Vm ⊂ BU(e) be a measurable set with measure > ϑE1η1/D. Let

Y =
⋂

,≥1

⋃

m≥,

{λkm
(u)xm : u ∈ Vm}.

Then at least one of the following holds.

(1) Y ∩ Xη contains an (ε, t)-Diophantine point for

ε(s) = (ηs−1σ(EA
1 η−AsA)/2E1)

A.

(2) There exists

(a) a finite collection {(Hi,Li) : 1 ≤ i ≤ ,} ⊂ H × R+, and

(b) a countable (possibly finite) collection

W = {(Wj,Rj, rj) : j ∈ J} ⊂ H × R+ × R+

where Wj is a non-normal unipotent subgroup for all j ∈ J, and rj → 0
so that if we put

Yi = {g ∈ NG(U,Hi) : c(ηHi
(g)) ≤ Li}!/!

and

Zj = {g ∈ NG(U,MWj
) : c(ηMWj

(g)) ≤ Rj & c(ηWj
(g)) ≤ rj}!/!,

then

Y ⊂
( ,⋃

i=1

Yi

)⋃(⋃

j∈J

Zj

)
.

We need the following lemma.

8.3 Lemma. Let E and F be as in Theorem 6.3. Let the notation be as in

Theorem 8.1. Then one of the following holds:

(1) There exists some β0 > 0 and subsequence mi → ∞ so that

|{u ∈ BU(e) : λkmi
−1(u)xmi

%∈ Xβ}| ≤ Eβ1/F,

for all β ≤ β0, or

(2) Y = ∅.
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Proof. In view of Theorem 6.3 it suffices to show that there exists some β′

and a subsequence {mi} so that

{u ∈ BU(e) : λkmi
−1(u)xmi

} ∩ Xβ′ %= ∅.

Indeed if this is established, then Theorem 6.3(2) cannot hold for any
η = β ≤ β′F/2E, xmi

and kmi
−1, henceTheorem6.3(1) holds which implies part (1)

in this lemma with β0 = β′F/2E.
Assume contrary to the above claim that for every β there exists some mβ so

that for all m ≥ mβ

{u ∈ BU(e) : λkm−1(u)xm} ∩ Xβ = ∅.

Then by Theorem 6.3 applied with η = β and the point xm = hm!, we thus get that
there exists a unipotent Q-subgroup W which is not normal in G so that

c(ηW(λkm−1(u)hm)) ≤ Eβ1/F for all u ∈ BU(e);

see (6.3), also Lemma 6.2. This and Lemma 5.5 imply that

(8.2) c(ηW(λkm
(u)hm)) ≤ E′β1/F for all u ∈ BU(e).

Therefore, we get that

(8.3) {λkm
(u)xm : u ∈ BU(e)} ∩ XE′β1/F = ∅ for all m > mβ.

Hence the claim in part (2) holds. "
Proof of Lemma 8.2. The proof is based on applying Theorem 3.2 to the

pieces of the orbits
{λkm

(u)xm : u ∈ Vm}.
We show that Theorem 3.2(3) cannot hold for the choice of ε we made in the
lemma. Further, we show that if there are infinitely many m so that Theorem 3.2(1)
holds, then part (1) in the lemma holds. In consequence, we are reduced to the
case that for all but finitely many m, Theorem 3.2(2) holds. In this case we use
Lemma 4.10 to conclude that part (2) above holds.

We begin by replacing xm with a possibly different point in the orbit which is
chosen to have a representative of a controlled size.

Assuming Y %= ∅ and repeatedly applying Lemma 8.3, we may find natural
numbers {ni : i ∈ I} with | logβ0| < n1 < n2 < · · · so that if we put

Ji := {m ∈ N \ Ji−1 : |{u ∈ BU(e) : λkm−1(u)xm %∈ X2−ni | ≤ E2−ni/F},

for all i ∈ I and J0 = ∅, then the following hold:
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• for all i ∈ I, Ji is an infinite set, and
• for every x ∈ Y , there exists an i ∈ I, a sequence mp → ∞ in Ji, and for

any mp there is some ump
∈ BU(e) so that

λkmp
(ump

)xmp
→ x.

We remark that by Lemma 8.3 if Y %= ∅, then I %= ∅, but it may well be finite: for
instance, if {xm} is a bounded sequence, then we may choose n1 large enough so
that I = {1}.

Recall the constants EG and F from Lemma 2.8. For every i ∈ I and m ∈ Ji fix
some gm ∈ G so that

(8.4) |gm| ≤ EG2niF =: Ti

and gm! = λkm−1(um)xm ∈ X2−ni for some um ∈ BU(e).
Recall also from (2.11) that for some κ > 0 we have

(8.5) λkm−κ(BU(e))λkm−1(um) ⊂ λkm
(BU(e)).

Let
ϑ = 2|BU(e)|/|λ−κ(BU(e))|.

Apply Theorem 3.2 with gm, km − κ, η, t, and

(8.6) ε(s) = (ηs−1σ(EA
1 η−AsA)/2E1)

A;

note that ε satisfies the condition in (3.3).
We first argue that Theorem 3.2(3) cannot hold. Indeed, assume contrary

to this claim that there exists some H ! G satisfying Theorem 3.2(3). That is:
ht(H) ≤ E1(etη−1)A and

max
z∈BU

‖z ∧ vH‖ ≤ ε(ht(H)1/Aη/E1)
1/A.

In view of (8.6) we thus get that

max
z∈BU

‖z ∧ vH‖ ≤ ht(H)−1/Aσ(ht(H))/2 < σ(ht(H)).

However, this contradicts the definition of σ, see (8.1).
Assume now that the conclusion in Theorem 3.2(1) holds for a subsequence

mi → ∞. Then, since

λkmi
−κ(BU(e))λkmi

−1(umi
) ⊂ λkmi

(BU(e)),

|λkmi
−κ(BU(e))|/|λkmi

(BU(e))| ≥ 2/ϑ, and |Vmi
| > ϑE1η1/D, we have that

{λkmi
(u)xmi

: u ∈ Vm} ∩ {x ∈ Xη : x is (ε, t)-Diophantine} %= ∅
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for all mi. Hence Y ∩ {x ∈ Xη : x is (ε, t)-Diophantine} %= ∅ and part (1) in the
lemma holds.

Altogether, we are reduced to the case that Theorem 3.2(2) holds for all but
finitely many m. Dropping the first few terms, which does not affect Y , we assume
that Theorem 3.2(2) holds for all m, or more precisely that Theorem 3.2(2) holds
for gm, km − κ, η, and (ε, t). In particular, we have the following: For every m ∈ J1

there exists a nontrivial proper subgroup Hm ∈ H with

ht(Hm) ≤ (E|gm|A + E1e
At)η−A ≤ (ETA

1 + E1e
At)η−A =: L,

so that the following hold:
(†)1 For all u ∈ BU(e) we have

c(ηHm
(λkm−κ(u)gm)) ≤ L.

(‡)1 For every u ∈ BU(e) we have

max
z∈BU

‖z ∧ ηHm
(λkm−κ(u)gm)‖ ≤ Le−km+κ/D.

Let F = {(H,L) : ht(H) ≤ L}. In view of (4.1), F is a finite family.
Let now i ∈ I and i ≥ 2—we note again that it is possible that I = {1} and this

case is empty.
Arguing as in Lemma 8.3, see in particular (8.3), for all m ∈ Ji we have

{λkm
(u)xm : u ∈ BU(e)} ∩ Xθi

= ∅,

where θi = E′2−ni−1/F . This, in view of (8.5), implies that

(8.7) {λkm−κ(u)gm! : u ∈ BU(e)} ∩ Xθi
= ∅.

Therefore, by Theorem 6.3, for every m ∈ Ji there exists some unipotent sub-
group Wm with

ht(Wm) ≤ ETF
i θ1/F

i =: Si

so that

(8.8) c(ηWm
(λkm−κ(u)g)) ≤ Eθ1/F

i =: si for all u ∈ BU(e).

Moreover, if we put Mm = MWm
, then Mm %= G,

ht(Mm) ≤ Si,

and the following hold:
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(†)i For all u ∈ BU(e) we have

c(ηM(λkm−κ(u)g)) ≤ Si.

(‡)i For all u ∈ BU(e) we have

max
z∈BU

‖z ∧ ηM(λkm−κ(u)g)‖ ≤ Sie
−km+κ/F.

Let

Ei = {(W, Si, si) : ht(W) ≤ Si, W ∈ H is unipotent and not normal}.

Then Ei is a finite family for each i.
We now show that the claim in part (2) holds with F and Ei, i ≥ 2. Let

x = g! ∈ Y . Then there exists an i ∈ I and a sequence mp → ∞ in Ji so that the
following holds. For any mp there is some ump

∈ Vmp
so that

λkmp
(ump

)gmp
! → g!.

Assume first that i = 1. Then passing to a subsequence we may assume that (†)1
and (‡)1 hold with Hmp

= H for all p. Hence by Lemma 4.10 we have

g ∈ {g′ ∈ NG(U,MW) : c(ηH(g′)) ≤ L}!.

Similarly, if i ≥ 2 we may pass to a subsequence and assume that Wmp
= Wm

for all p. One then argues as in Lemma 4.10 and gets that

g ∈ {g′ ∈ NG(U,MW) : c(ηMW
(g′)) ≤ Si, c(ηW(g′)) ≤ si}.

The proof is complete. "

Proof of Theorem 8.1. Let 0 < η < 1/2 and define ε as in part (1).
Recall from Definition 3.1 that

{x ∈ X : x is ε-Diophantine} =
⋂

t

{x ∈ X : x is (ε, t)-Diophantine}.

Moreover, {x ∈ Xη : x is (ε, t)-Diophantine} is a nested family of compact sets.
Therefore, if Lemma 8.2(1) holds for all t, then Theorem 8.1(1) holds. Therefore,
we may assume there exists some t so that Lemma 8.2(2) holds. This implies that
Theorem 8.1(2) holds and completes the proof. "

We now state and prove an analogue of Theorem 1.1 in the more general
"-arithmetic setting.
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8.4 Theorem. Let α > 0. Let {Hi : 1 ≤ i ≤ r} ⊂ H be a finite subset

consisting of proper subgroups, and for each 1 ≤ i ≤ r let Ci ⊂ NG(U,Hi) be

a compact subset. There exists an open neighborhood O = O(α, {Hi}, {Ci}) so

that X \ O is compact and disjoint from ∪iCi!/! so that the following holds. For

every x ∈ G(U) there exists some k0 = k0(α, {Hi}, {Ci}, x) so that for all k ≥ k0 we

have

|{u ∈ BU(e) : λk(u)x ∈ O}| < α

Proof. Let η = (α/E1)D where D and E1 are as in Theorem 3.2.
Let x ∈ G(U) and let g ∈ G be so that x = g!. Define

(8.9) ε(s) = (ηs−1σ(EA
1 η−AsA)/2E1)

A

where σ(T) is defined as in (8.1).
Let t ∈ R+ be so that ht(Hi) ≤ et and c(ηHi

(h)) < et for all 1 ≤ i ≤ r and all
h ∈ Ci. We will show that the theorem holds with

O = {x ∈ X : x %∈ Xη or x is not (ε, t)-Diophantine}.

First note that for any i and any h ∈ Ci we have c(ηHi
(h)) < et and z ∧ηHi

(h) = 0
for all z ∈ BU . Therefore,

∪iCi!/! ⊂ O.

We claim there exists some k0 so that for all k ≥ k0, Theorem 3.2(1) holds
for g, k, and (ε, t). First note that this claim in view of the assertion in Theo-
rem 3.2(1) implies that

|{u ∈ B : λk(u)x ∈ O}| ≤ E1η
1/D = α

and the theorem follows.
Let us now prove the claim. Assume contrary to the claim that Theorem 3.2(2)

or (3) holds forg, a sequence kn → ∞, and (ε, t). We first show that Theorem3.2(3)
cannot hold. Indeed, if Theorem 3.2(3) holds, then there is some H ! G with
ht(H) ≤ E1(etη−1)A so that

max
z∈BU

‖z ∧ vH‖ ≤ E1η
−Aε(ht(H)1/AηA/E1)

1/A.

In view of (8.9) we thus get that

max
z∈BU

‖z ∧ vH‖ ≤ ε(ht(H)1/A)1/Aσ(ht(H))/2 < σ(ht(H)).

This contradicts the definition of σ in (8.1).
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Hence we may reduce to the case that Theorem 3.2(2) holds for g, kn → ∞,
and (ε, t). Let

L := (E|g|A + E1e
At)η−A.

Then in view of Theorem 3.2(2), for every n there exists a proper subgroup Hn ∈ H

with ht(Hn) ≤ L so that for all u ∈ BU(e) we have

max
z∈BU

‖z ∧ ηHn
(λkn

(u)g)‖ ≤ e−kn/DL.

Since there are only finitely many subgroups H ∈ H with ht(H) ≤ L, see (4.1),
passing to a subsequence we assume Hn = H for all n. Hence

max
z∈BU

‖z ∧ ηH(λkn
(u)g)‖ ≤ e−kn/DL.

Applying this with u = e and passing to the limit we get that

z ∧ ηH(g) = 0 for all z ∈ BU.

This contradicts the fact that g! ∈ G(U) and completes the proof. "

9 Friendly measures

In this section we discuss generalizations of our main theorems to the class of
friendly measures which were studied in [28], see §1.6 for the definition.

Let the notation be as in §1.2; in particular,

U = {u(t) = exp(tz) : t ∈ R}

for some nilpotent element z ∈ g with ‖z‖ = 1.
In [28], an extension of Theorem 5.2 for " = {∞} was presented where the

Haar measure on U is replaced by a (uniformly) friendly measure µ. While for
simplicity of notation we keep our treatment of friendly measures to this case,
Kleinbock and Tomanov wrote in [30] the "-arithmetic non-divergence results
also for the case of friendly measures. The only difference between the statement
of Theorem5.2 and the analogous statement for uniformly friendly measures (other
than the obvious difference of how the size of subsets of λk(BU) are measured)
is that the exponent 1/D of the theorem is allowed to depend on the doubling
constant for µ. Theorem 5.3 also holds for uniformly friendly measures with the
same modification. We also note (and use below) that in view of [28, Prop. 7.33],
an analogue of Lemma 5.5 holds true for µ in place of the Haar measure on U

(with a different c and exponent).
Repeating the proof of Theorem 6.3 but with the (uniformly) friendly versions

of Theorems 5.2 and 5.3, we obtain the following:
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9.1 Theorem. Let µ be a uniformly friendly measure on R. There exists

a constant F depending on N and µ so that for any g ∈ G, k ≥ 1, and any

0 < η ≤ 1/2 small enough at least one of the following holds:

(1)
µ({t ∈ [−1, 1] : u(ekt)g! %∈ Xη}) / η1/F.

(2) There exists a unipotent Q-subgroup W so that

‖(ηW(u(ekt)g)‖ / η1/F for all t ∈ [−1, 1].

Moreover, if we put M = MW, then M %= G,

ht(M) / |g|Fη1/F,

and we have:

(a) For all t ∈ [−1, 1] we have

‖ηM(u(ekt)g)‖ / |g|Fη1/F.

(b) For all t ∈ [−1, 1] we have

max
z∈BU

‖z ∧ ηM(u(ekt)g)‖ / |g|Fη1/Fe−k/F.

Similarly, the proof of Theorem1.4 is easily adapted to the friendly case, giving:

9.2 Theorem. Let µ be a uniformly friendly measure on R. There are con-

stants A,D depending only on N and µ, and E1 depending on N, G, !, and µ so that

the following holds. Let g ∈ G, k ≥ 1, and 0 < η < 1/2. Assume ε : R+ → (0, 1)
satisfies for any s ∈ R+ that

ε(s) ≤ ηAs−A/E1.

Then at least one of the following three possibilities holds:

(1) µ({ξ∈ [−1,1] :u(ekξ)g!%∈Xη or u(ekξ)g! is not (ε, t)-Diophantine})<E1η1/D.

(2) There exist a nontrivial proper subgroup H ∈ H of

ht(H) ≤ E1(|g|A + eAt)η−A

so that the following hold for all ξ ∈ [−1, 1]:

‖ηH(u(ekξ)g)‖ ≤ E1(|g|A + eAt)η−A,

‖z ∧ ηH(u(ekξ)g)‖ ≤ E1e
−k/D(|g|A + eAt)η−A,

where z is as in (1.1).
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(3) There exists a nontrivial proper normal subgroup H ! G of

ht(H) ≤ E1e
Atη−A

so that

‖z ∧ vH‖ ≤ E1η
−Aε(ht(H)1/AηA/E1)

1/A.

As a consequence Theorem 1.7 follows; see the proof of Theorem 8.1. We also
get the following analogues of Theorem 1.1 whose proof is mutatis mutandis the
same as the proof of Theorem 8.4.

9.3 Theorem. Let µ be a uniformly friendly measure on R. Let η > 0. Let

{Hi : 1 ≤ i ≤ r} ⊂ H

be a finite subset consisting of proper subgroups, and for each 1 ≤ i ≤ r

let Ci ⊂ NG(U,Hi) be a compact subset. There exists an open neighborhood

O = O(α, {Hi}, {Ci}) so that X \O is compact and disjoint from ∪iCi!/! so that the

following holds. For every x ∈ G(U) there exists some k0 = k0(µ, η, {Hi}, {Ci}, x)
so that for all k ≥ k0 we have

µ({t ∈ [−1, 1] : u(ekt)x ∈ O}) < η.

Appendix A Proof of Theorem B

In this sectionwe proveTheoremB. In qualitative form, this is provedby Greenberg
in [23] and [24]. We reproduce the argument here to make the estimates explicit.

Proof of Theorem B. Let Cp denote the completion of the algebraic closure
of Qp for all p ∈ "f ; as abstract fields, C and Cp, for any p ∈ "f , are isomorphic.
Therefore,Cm in Effective Nullstellensatz theorem of §4.11 may be replaced byCm

p

for any p ∈ "f .
As in [23, pp. 59–60] and [24, Steps 1 and 2] we begin with some reductions.
Let I ⊂ Z[t1, . . . , tm] be the ideal generated by {fi}, and let Y be the variety

defined by I in Cm
p .

Put J := IQ[t1, . . . , tm]. The radical and the primary decomposition of J

in Q[t1, . . . , tm] can be computed, see [2, Chap. 8.7]; this computation uses
the Gröbner basis and yields the following. There exists a computable con-
stant s = s(m, n,D0) so that

• (
√
J)s ⊂ J,

• √
J = ∩b

1Pj where Pj is a prime ideal for all 1 ≤ j ≤ b ≤ s, and
• Pj is generated by {fj,, : 1 ≤ , ≤ s} where the total degree of {fj,,} is

bounded by s and the logarithmic height of the numerators and denominators
of each fj,, is controlled by sh.
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Moreover, by [21, Cor. 3.8], we may replace s with s′ ≥ s, which is again
computable and depends only on m, n, and D0, so that the following holds. For
every 1 ≤ j ≤ b the ideal Pj ∩ Z[t1, . . . , tm] is generated by {gj,k : 1 ≤ k ≤ s′};
furthermore, the total degree of {gj,k} is bounded by s′ and for every j and k the
logarithmic height of gj,k is bounded by s′h.

Altogether, we may assume that I is a prime ideal, i.e., Y is Q-irreducible.
We now use induction on u := dim Y to prove the claim, see [23, Case 1, p. 60]

and [24, Step 3].
The base case is when u=−1, that is: when I contains a nonzero constant. In

this casewe use the effective nullstellensatz theoremabove andfind some a∈Zwith

log |a| ≤ (8D0)
4M−1(h + 8D0 log(8D0))

where M = 2m−1 so that a =
∑

i qifi.
This implies the claim in the theorem when u = −1.
Assume now that Y is non-empty and that the theorem is established in dimen-

sions less than u. Let Jac be the Jacobian matrix of {fi} and let 4 be the system of
minors of order m − u taken from Jac. Since char(Q) = 0, the locus of common
zeros of {4, {fi}} is a proper Q-subvariety of Y. By inductive hypothesis, thus,
there exists some d ′ depending on m, n, and D which satisfies the claim in the
theorem for {4, {fi}}.

For any 1 ≤ α1 < · · · < αm−u ≤ n, put

(α) = (α1, . . . ,αm−u)

and set f(α) = {fα1 , . . . , fαm−u
}. Let Y(α) be the variety defined by f(α). Let

Z(α) =
c⋃

j=1

Z(α),j,

where for all 1 ≤ j ≤ b, we have Z(α),j ⊂ Y(α), Z(α),j is Q-irreducible with

dim Z(α),j = u,

and Z(α),j %= Y.
Let I(α),j ⊂ Z[t1, . . . , tm] be the ideal corresponding to Z(α),j. Since Y(α) is

defined by f(α), a similar argument as above implies that there exists a computable
constant r = r(m, n,D0) so that

• c ≤ r, and
• for every 1 ≤ j ≤ c, there exists {g(α),j,k : 1 ≤ k ≤ r} so that I(α),j is generated

by {g(α),j,k}, further, the total degree of {g(α),j,k} is bounded by r and for every j

and k the logarithmic height of g(α),j,k is controlled by rh
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Since Z(α),j %= Y for all j, by inductive hypothesis, there exists d ′
(α) depending

on m, n, and D0 which satisfies the claim in the theorem for

{{g((α),j,k) : 1 ≤ k ≤ r}, {fi : 1 ≤ i ≤ n}},

for all 1 ≤ j ≤ c.
Given (α) = (α1, . . . ,αm−u) and (β) = (β1, . . . ,βm−u) let 4(α),(β) denote the

corresponding minor from Jac. By the implicit function theorem, if z ∈ Y(α) is
such that 4(α),(β)(z) %= 0 for some (β), then z lies on exactly one component of Y(α),
moreover, that component has dimension u.

Let r′ = r′(m, n,D0) be so that the logarithmic height of {4, {fi}} is bounded
by r′h. Define

d := 2r′d ′ + r
∑

(α)

d ′
(α).

We claim that the theorem holds with A11 = d .
Let w = (w1, . . . , wm) be as in the statement of the theorem. If either

(1) vp(4(α,(β))(w)) > 2r′d ′h for all (α) and (β), or
(2) vp(g(α),j,k(w)) > 2rd ′

(α)h for some (α), some j, and all k,
then we get the claim from the inductive hypothesis.

Therefore, we may assume that there are (α) and (β) so that

(A.1) vp(4(α),(β)(w)) ≤ 2r′d ′h,

and for every (θ) and every j there exists some k so that

(A.2) vp(g(θ),j,k(w)) ≤ 2rd ′
(θ)h.

Now a suitable version of Hensel’s Lemma, see [24, Note 1], implies that there
exists some y ∈ Zm

p so that f(α)(y) = 0 and

(A.3) vp(y − w) > C2 − 2r′d ′h.

The theorem follows if we show that y ∈ Y.
Let us recall that

(A.4) C2 > 4r′d ′h + 2r(max{d ′
(θ) : (θ)})h.

Then, (A.2), (A.3), and (A.4), imply that vp(g(θ),j,k(w)) = vp(g(θ),j,k(y)). In par-
ticular, y %∈ Z(θ),j for all (θ) and all j. Similarly, (A.1), (A.3), and (A.4) imply
that 4(α),(β)(y) %= 0.

Thus, the implicit function theorem implies that y belongs to Y. "
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