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Abstract. We give an effective bound on how much time orbits of a unipotent
group U on an arithmetic quotient G/I" can stay near homogeneous subvarieties
of G/T" corresponding to Q-subgroups of G. In particular, we show that if such
a U-orbit is moderately near a proper homogeneous subvariety of G/I" for a long
time, it is very near a different homogeneous subvariety. Our work builds upon the
linearization method of Dani and Margulis.

Our motivation in developing these bounds is in order to prove quantitative density
statements about unipotent orbits, which we plan to pursue in a subsequent paper.
New qualitative implications of our effective bounds are also given.

1 Introduction

A basic challenge in homogeneous dynamics is the quantitative understanding
of behavior of orbits, in particular of unipotent orbits. In this paper, we give a
sharper form of the Dani—Margulis linearization method [17], that allows to control
the amount of time a unipotent trajectory spends near invariant subvarieties of a
homogeneous space; related techniques were also considered by Shah in [46].
One important use of this technique is to be able to relate the behavior of indi-
vidual unipotent (or unipotent-like, see, e.g., [20]) orbits with Ratner’s landmark
measure classification result [42]. This result says that any measure invariant and
ergodic under a connected unipotent group U on a homogeneous space G/I" has to
be in one of countably many families; for the cases of G/I" and unipotent group U
we will consider, the group U acts ergodically on G/I" with respect to the uniform
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measure on G/I', hence this uniform measure is one of the countably many pos-
sibilities. All other ergodic measures will be supported on proper homogeneous
subvarieties of G/I'. If one is able to show, using linearization or a different
technique, that a given collection of orbits under consideration of increasing size
do not spend much time next to any one of these countably many families of not
fully supported invariant measures, then one is able to conclude using the mea-
sure classification that this collection of orbits tends to become equidistributed
in G/I". We note that for the special case when one looks at a single orbit of a
one-parameter unipotent group Ratner was able to establish such an avoidance by
a different argument in [41].

However, the linearization technique of [17] is interesting in its own sake,
and in fact originated in work of Dani and Margulis before the proof of mea-
sure classification such as [15] in order to give a purely topological proof of the
Raghunathan Conjecture for the action of a generic one-parameter unipotent group
on SL3(R)/SL3(Z). Notably, unlike the techniques of Ratner used to prove the
measure classification result in [42, 43] or the techniques used to give a related but
different proof of this result by Margulis and Tomanov in [35], which in particular
rely on results such as the pointwise ergodic theorem and Luzin’s theorem which
are hard to make effective, the linearization technique relies essentially only on the
polynomial nature of the action: not only are the elements of the unipotent group
(considered as a subgroup of some SLy) polynomial, but the same holds for any
linear representation of G.

In a subsequent paper we plan to make essential use of the results of this paperin
order to provide a fully effective orbit closure classification theorem for unipotent
flows on arithmetic homogenous spaces (albeit with very slow rates). We provide
some other applications of independent interest here.

Somewhat surprisingly, many of the most striking applications of the theory
of unipotent flows to number theory require working in the S-arithmetic context,
i.e., for products of real and p-adic groups (here we prefer to use X for the set of
places instead of the more traditional S, so we refer to this case as the Z-arithmetic
case). Ratner’s measure classification result was generalized to this context by
Ratner [43] and by Margulis and Tomanov [35]; the linearization techniques of
Dani and Margulis were adapted to this context by Tomanov and by Gorodnik
and Oh in [50, 25]. With a view to potential applications, our paper is written
for Z-arithmetic quotients. For simplicity we state here in the introduction the
main results in the special case where we consider the action of a one-parameter
unipotent group and consider only real algebraic groups, deferring stating the
slightly more technical general statements to §3. We emphasize that in order to
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get a fully explicit and effective result, we assume that the lattice is arithmetic.
By the Margulis Arithmeticity Theorem this assumption automatically holds for a
large class of groups G, and in any case arithmetic quotients are the only type of
quotients G/I" that seem to appear in number theoretic applications.

The non-divergence result of Margulis [32], which were sharpened by Dani
in [13], are effective and have been given a very explicit and effective form by
Kleinbock and Margulis in [29]. The technique of linearization is related, but
we are not aware of an effective treatment of the main results in [17], and doing
so in this paper relies on employing an effective Nullstellensatz by Masser and
Wiistholz [36, Thm. IV] as well as some local non-vanishing theorems related
to Lojasiewicz inequality by Brownawell and Greenberg [11, 23, 24]. Moreover,
since we are not content with analyzing what happens in the limit, we need to be
able to analyze trajectories that are somewhat near a subvariety for a long time,
which is an issue that has not been discussed in previous works on the linearization
method.

Let G be a connected Q-group and put G = G(R). We assume I is an arithmetic
lattice in G. More specifically, fix an embedding 1 : G — SLy, defined over Q
so that 1(I') € SLy(Z). Using 1, we identify G with :(G) C SLy and hence
G C SLy(R). Note that using the restriction of scalars from number fields to Q,
our results are applicable also in the case of groups defined over a general number
field.

Let U = {u(r) : t € R} C G be a one parameter unipotent subgroup of G, and
put X = G/T.

Define the following family

H={H c G : His a connected QQ-subgroup and R(H) = R,,(H)}

where R(H) (resp. R,(H)) denotes the solvable (resp. unipotent) radical of H.
Alternatively, H € H if and only if H is a connected Q-subgroup which is generated
by unipotent subgroups over the algebraic closure of Q. By a theorem of Borel
and Harish-Chandra, H(R) N T is a lattice in H(R) for any H € 3.

Our standing assumption is that G € J{ and
that U is not contained in H(R) for any proper normal H <1 G.

For any H € J{ put H = H(R), we also write H € J{. Define
Ng(U,H) ={ge G:Ug C gH}.

Note that Ng(U, H) is an R-subvariety of G. Moreover, if H <G and U C H, then
Ng(U, H) =G.
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Put
S(U):<U NG(U,H))/F and  G(U) = X \ S(U).

HeX
H#G

Following Dani and Margulis, [17], points in $(U) are called singular with
respect to U, and points in §(U) are called generic with respect to U—these are,
a priori, different from the measure theoretically generic points in the sense of
Furstenberg for the action of U on X equipped with the G-invariant probability
measure (see, e.g., [22, p. 98] for a definition); however, any measure theoretically
generic point is generic in this explicit sense as well. In the early 1990’s Ratner
proved the remarkable result [41], previously conjectured by Raghunathan, that
for every x € G(U) we have Ux = X. Prior to Ratner’s proof of the general case of
Raghunathan’s Conjecture in [41], important cases of Raghunathan’s Conjecture
were proven in [33, 14, 15].

Roughly speaking our main theorems guarantee that unless there is an explicit
obstruction, most points on a unipotent orbit are generic. We begin with the
following statement which follows from our main effective theorems in this paper.

1.1 Theorem. Let n > 0. Let {H; : 1 < i < r} C H be a finite subset
consisting of proper subgroups, and for each 1 < i < rlet C; C Ng(U, H;) be a
compact subset. There exists an open set O = O(n, {H;}, {C;}) so that X \ O is
compact and disjoint from | J; C;T' /T, and so that for every x € S(U) there exists
some To = To(n, { Hi}, { Ci}, x) so that for all T > Ty we have

{t e [T, T]:ul®x e 0} <yT

We note that this theorem can also be deduced by combining Ratner’s measure
classification theorem, [42], and results in [17]; however this would only give a
non-effective proof of the above statement. Without appealing to [42] and only
utilizing statements in [17] (where the proof is essentially effective), one does not
get uniformity as in Theorem 1.1: indeed, from the argument in [17] the set O
above will depend on the initial point x. This distinction is similar to the difference
between the non-divergence statement given by Dani in [13] and the dependence
on the base point in Margulis’ [32].

1.2 Effective versions of linearization. The main theorems in this paper
yield amore precise and effective information about the compact set X\ O appearing
above, with a polynomial dependence on the relevant parameters. We need some
preliminary notation before we can state our main results.
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Let || || (or simply || ||) denote the max norm on sly(R) with respect to the
standard basis; this induces a family of norms on Asly(R), which we continue to
denote by || || (or simply || ||). We also let || || be a norm on SLy(R) fixed once
and for all. For every g € SLy(R), in particular for any g € G, we let

lgl = max{ gl lg~"II}.

Let g = Lie(G) and put g(Z) = g N sly(Z).
For every > 0, we define

X,={gl eX: mi Ad > nl.
s=1gl' € 0#11316191&)” (&l = n}

For every n > 0 the space X,, is compact (see §2.7 and Lemma 2.8), and
U x,=6/r.
n>0

Recall that U is a one parameter unipotent subgroup of G. Fix a z € g with
|| z]l = 1 so that
(1.1 U= {u(®) =exp(tz) : t € R}.
Let H € 3{ be a nontrivial proper subgroup of G and put
pu = ASMH AL and Vo= AYMHg

The representation py is defined over Q.

Let vy be a primitive integral vector in AY™HLie(G) corresponding to the
Lie algebra of H, i.e., we fix a Z-basis for Lie(H) N sly(Z), and let vy be the
corresponding wedge product.

We also view vy as an element in A%™Hg: in order to put an emphasis on the
local nature of this vector, we will denote it by zy. Define

nu(g) == pu(g)vn forevery g € G.

With this notation, for an element H € H, we have
NG(U,H)={g € G: z A nu(g) = 0).

Note that Ng(U, H) is a variety and could change drastically under small perturba-
tions of U. However, effective notions must be stable under small perturbations.
We will use the above finite-dimensional representations to give an effective notion
of generic points. The integer vector vy also allows us to give a notion of arithmetic
complexity for subgroups in J{ by defining the height of the group H to be

(1.2) ht(H) := [|Vh||co-
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Thus the height of a Q-group H is given by the height of the corresponding point
in the Grassmanian of Lie(G); cf. [4, §1.5].
The following definition will play a crucial role in this paper.

1.3 Definition. Let ¢ : R* — (0, 1) be a monotone decreasing function, and
let € R*. Let z be as in (1.1). A point gI" is called (¢, r)-Diophantine for the
action of U if for all H € J{ with {e} #H # G

(1.3) iz Anu(@ll = ellnu(@) if l7u(@l < €.
A point is e-Diophantine if it is (¢, 7)-Diophantine for all # > 0.

Note that this is a condition on the pair (U, gI'). Unless U < H(R) for some
(proper) H <1 G, the set G(U) is non-empty, and moreover any x € G(U) is &-
Diophantine for some ¢ as above. In most interesting examples the singular
set S(U) is a dense subset of X. Therefore, G(U) is usually a Gs-set without any
interior points. For any 7 € R*, on the other hand, the set of (¢, r)-Diophantine
points in Definition 1.3 is a nice closed set with interior points (indeed, is the
closure of its interior points).

We can now state our main theorem (in slightly simplified form, see Theorem 3.2
below for the full version with all the features):

1.4 Theorem. There are constants A, D > 1depending onlyon N, and E; > 1
depending on N, G and T', so that the following holds. Let g € G, t > 0, k > 1,
and 0 < n < 1/2. Assume ¢ : R — (0, 1) satisfies for any s > 0 that

&(s) < s /E\.

Then at least one of the following three possibilities holds.
(D) 1{¢ e [=1, 11 (el ¢ X, or
u(ek&)gT is not (¢, 1)-Diophantine}| < Eyn'/P.

(2) There exist a nontrivial proper subgroup H € H of
ht(H) < Ei(Jg|* +¢*)n ™
so that the following hold for all £ € [—1, 1]

Ina(Ed)| < Ei(lgl* + &) 2,
llz A 7))l < Ere™P(|g|* + &) n74,

where z is as in (1.1).
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(3) There exist a nontrivial proper normal subgroup H <1 G of
ht(H) < Ej e’y

so that
llz A ol < e(ht(H)An/E)'A.

Similar to [17], the proof of Theorem 1.4, and its X-arithmetic analogue, relies
on the polynomial like behavior of the unipotent orbits. However, in addition to
being polynomially effective, our results here also differ from [17] in the following
sense. They provide a compact subset of G(U) which is independent of the base
point and to which a unipotent orbit returns unless there is an algebraic obstruction;
this uniformity is used essentially in Theorem 1.1 and Theorem 1.5. Regarding
non-divergence properties of unipotent orbits, such uniformity is well known and
is due to Dani (see [13, 16]), but in this context it is new.

These features have been made possible using two main ingredients. Firstis the
use of an effective notion of a generic point, Definition 1.3. The second ingredient
is the use of a group My, see §4.7, to control the speed of unipotent orbits in the
representation space Vy; this group does not feature in the analysis in [17].

Using Theorem 1.4 one can give a topological analogue of a result of Mozes
and Shah [39]. To deal with groups with infinitely many normal Q-subgroups we
need the following definition:

For any 7" > 0, put

o(T)=min({1}U{llzAogll : He H,H< G, ht(H) < T, {1} #H#G)).

1.5 Theorem. There exists some D > 1 depending on N and E| > 0 depend-
ing on N, G, and T so that the following holds. Let0 < n < 1/2.

Let {x,,} be a sequence of points in X, and let T,, — oo be a sequence of real
numbers. Foreachmlet I, C [—T,, T;] be a measurable set with measure > nT,,.
Let

Y= Jlu@xn:1 €1}

k>1m>k

Then exactly one of the following holds.
(1) Y contains an e-Diophantine point for

&(s) = (ns ™ o(EL ™) 2ED.
(2) There exists a countable (or finite) collection

F={H,L):iel}cHxR"
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so that if
Yi={geNWU,H): nu(I < L}T'/T

then
@ Y C U Vi
(b) forany > 0
#iel: YNXgNY; #0} < oo.

As we shall see in Corollary 4.10.1 below, for any H € H{ and L > O the set
Y={geNWU,H): |l <L}I'/T

is a closed (though in general not compact) subset of X. For instance, for G=SL,(R)
and I' = SL,(Z), if we take H to be the stabilizer of the vector ((1’) e 772,
U = H = H(R) and define Y as above, then Y is the union of all periodic U-orbits
of period < L.

Theorem 1.5 is related to [17, Thm. 4]. Specifically in that paper it is proved
that if one assumes that sequence {x,,} converges to a point in §(U), then a less
precise form of (1) of Theorem 1.5, namely that Y contains a point in §(U), holds.

1.6 Friendly measures. In this section we discuss generalizations of The-
orem 1.5 to the class of friendly measures which were studied in [28].

Let (Y, d) be a o-compact metric space; for every y € Y and r > 0, let B(y, )
denote the open ball of radius r centered at y. Let x4 be a locally finite Borel
measure on Y. If A > 0 and O C Y is an open subset, the measure u is called
A-Federer on O if for all y € supp(u) N O one has

nB3r)
H(BG 1)

whenever B(y, 3r) C O.

Let Y = R be equipped with the standard metric. Given a pointa € Rand ¢ > 0,
we let I5(a) = (a — J, a + J). Given ¢, o > 0 and an open subset O C R, we say u
is (¢, a)-absolutely decaying on O if for every non-empty open interval J C O
centered in supp(u), every point a € R, and every 6 > 0 we have

O\ @
(1.4) uUNIx@) < e(2) ne)
r
where J has length 2r, see [28, Lemma 2.2].

We will say a measure x4 on R is uniformly friendly if x is A-Federer and
(c, a)-absolutely decaying for some A, ¢, a > 0.
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Let the notation be as in §1.2; in particular,
U ={u@) =exp(tz) : t € R}
for some nilpotent element z € g with || z|| = 1.

1.7 Theorem. Let u be a uniformly friendly measure on R. There exists some
D > 1 depending on N and u, and E; > 0 depending on N, G, T', and u so that
the following holds.

Let 0 < 5 < 1/2. Let {x,,} be a sequence of points in X, 0 < n < 1/2, and
let k,, — 00 be a sequence of real numbers. For each m let I,, C [—1, 1] be a
measurable set with (1) > n u([—1, 1]). Let

Y= Jluerx, : 1 €1}

>1m=>C
Then exactly one of the following holds:

(1) Y contains an e-Diophantine point for
e(s) = (s~ a(E{n~"s™) ) 2E1)".

(2) There exists a countable (or finite) collection
?z{(ﬂ{i,Li):ieI}CfoR*

so that if
Yi={g e N, H): nu(ll < L}I'/T,

then
(@) Y C Ui Yo
(b) forany > 0
#liel: YNXgNY, #0} < oo.

See §9 for a more detailed discussion of this generalization.

Acknowledgements. We would like to thank M. Einsiedler, H. Oh, and
A. Wieser for their helpful comments on earlier drafts of this paper.

2 Notation

2.1 Let8 = {oo}U{p : pisaprime} denote the set of places of Q. We let
8; = 8 \ {oo} denote the set of finite places in 8. For every v € § let Q, be the
completion of Q at v ; we often write R for Q.
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For every p € 8, we let C, be the completion of the algebraic closure, @p,
of Q, with respect to the p-adic norm. The field C, is a complete and algebraically
closed field.

Given a finite subset £ C 8, we put X := X \ {oo}; also set Qz =[],z Q,.
Given an element r € Qx, we put |r|x = maX,cs |7],-

For any p € &, let Z, denote the ring of p-adic integers in Q,. The ring of
>-integers in Q is as usual denoted by Zs.

Given a (Q-variety Y, we put Y, = Y(Q,); given a finite subset £ C 8, we also
write Y, or simply Y if there is no confusion, for [[+ ¥,,.

For any Q-variety Y, we denote by dimY the dimension in the algebro-
geometric sense. In particular dim G is the dimension of G as an algebraic group.
Note that dimg, Y, , the dimension of Y, as a QQ,-manifold, equals dimY; see,
e.g., [34, Ch. 1, §2.5]. We also put

dimYy := ) dimg, ¥, = (#X)dimY.
z

Given a Q-group, H, we denote by Lie(H) the Lie algebra of H. We will use
lower case gothic letters to denote the Lie algebra of H over various local fields,
e.g., b, = Lie(H(Q,)); similarly, we write by, or simply b, for ®xb,.

The space by is a Qz-module; and the notation rw for r € Qy and w € hy in
the sequel refers to this module structure.

Given a natural number m < dim(Lie(H)), we write A™H or A”hy to denote
@Z(/\mbz))'

For any (compact) subset K C Q7" and any 6 > 0, we let Ns(K) denote the
J-neighborhood of K. Also let |K| denote the Haar measure of K.

Let H be a Qz-group and put H = H(Qx). Given a subset B C H, we define

Zy(B)={g € H:gb=>bgforall b € B}.
Given two subsets By, B, C H, we define
Nu(B1,By)={g € H:g 'Big C B},

and put Ny (B) := Ny(B, B) forany B C H.

2.2 For any place v € 8, let || ||, denote the max norm, with respect to the
standard basis, on sly(Q,) and on Asly(Q,). Given a finite subset ¥ C 8, the norm
Il l'x (or simply || ) is defined by

= max .
I 115 = max] Il
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We let d denote the induced metric on the exterior algebra Asly(Qyx) induced
from || ||.
We also fix norms, which we continue to denote by || ||,, on SLy(Q,) for all v;

and put || || = maxy ||||,. For every g € SLy(Qy), in particular for every g € G,
we set

(2.1 lg| == max{llgll, lg~"II}.

Note that

(2.2) lgl=1g7"| and |gigal < |gillgal-

Fix A; and A, both depending only on N so that

(2.3) | A" Ad(g)z]| < Aslgl* ||zl forall z € sly(Qyx)and 1 < r < N°.

2.3 Let W C sly be a rational subspace, then A“™WW defines a rational line
in A9mWs[y This line is diagonally embedded in AY™Ws(y(Qs), and we do not
distinguish between this diagonal embedding and the line.

Fix a Z-basis for W(R) N sly(Z). Let vy denote the corresponding primitive
integral vector on AY™WW, and define

ht(W) = [lvw]l.

Note that we used the max norm in the above definition, in particular, we have:
ht(W) is an integer.

Alternatively, ht(W) may be defined as follows. Let {ej,...,esnw} be a
Q-basis for W. Then

ht (W) = [T ller A -~ A eaimwll-
veS
In view of the product formula, the above is independent of our choice of the
rational basis for W, see [4, §1.5].
Given a Q-subgroup H of SLy, we put vy := VL) and define

(2.4) ht(H) := ht(Lie(H)) = ||vu]l.

2.4  For the rest of this paper, fix a finite subset £ C 8 containing co.

The exponents in this paper are denoted by A with numerical indices. These
constants depend only on N. The understanding is that A. > 1.

Similarly, the constants C, D, and F in the sequel depend only on N, and are
implicitly assumed to be > 1.
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‘We use the notation T << Rto denote 7 < cR where the multiplicative constant ¢
is allowed to depend on N, the number of places #X, and polynomially on the finite
primes in £ and on ht(G). Similarly we define T > R.

It will also be convenient to use % to denote a constant. More precisely, we
write T < R*if T < ¢R* or T < ¢R* where c is allowed to depend on N, #ZX,
polynomially on the finite primes in £ and ht(G), and the exponent is either a “big
enough” constant or a “small enough” constant depending only on N; hopefully
the context will make it clear if the exponent needs to be large or small.

2.5 Forallo € Z, let || ||, denote the max norm with respect to the standard
basis on Q7; we put | z|| = ||z]|x = max || ||, forall z = (z,) € Q%.
Define
(2.5) c(z)=[] lzll, forall z e Q%.
veX

Note that c(rz) = c(z) for all r € Z3 and all z € QF.

2.6 Lemma. There exists A3z and some C,, s > 1 so that the following holds.
Let z € QF be a vector so that c(z) # 0.
(1) There exists some ro € Z% so that

—1
Cosllrozlls < llrozlly < G sllirozlls

forallv € X, in particular, we have

(2.6) min |rzlls < Cuxllrozllx < Coxc(roz) /">,
reZy
(2) Let ||zllg =1, andlet T > 0. Then
T \As
X . _
2.7) #reli: |rallz <T) < cm,z(log C(Z)) .

Proof. The claim in part (1) is proved in [30, Lemma 8.6].
We now turn to the proof of part (2). Let £ = #Z and for every a > 0O put

Eu:{(wl,...,w[)ERiZle-:a}.

Note that €, is invariant under multiplication by positive diagonal matrices
in SL,(R).

Let Dy denote the group of positive diagonal matrices in SL,(Q) whose en-
tries are in Zx. Let a = c(z). Then (|z|,) € &,, and for every r € Z5 we
have Diag(|r|,) € Ds.
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Let || |lop denote the operator norm on SL,(R) and let || ||, denote the max
norm on RY. We have

(2.8) #{A € Dy : [|Allop < S} K,z (logS)™.

Further, if w = (wy, ..., we) € €, is so that |w;| Kz [|@w|lm K,z |w;| for all i,
then [|Allopll2llm Km,z l[2Allm Km,x [1Allopll|Im.
Hence, the claim follows from (2.8) if we replace z by rpz so that

lrozlls K= l7ozllo K= 7ozl s

forallov € X. 0
Similar to (2.5), we define c(w) =[] ||w||, for all w € Asly(Qx).

2.7 Let G beaconnected Q-group of class H. Fix an embedding: : G — SLy
defined over Q. Put G = Gy and g = g5.

We identify G with 1(G) C SLy, hence, GC SLy(Qx). Let g(Zx) :=gNsiy(Zyx),
then [g(Zs), 9(Zs)] C 9(Zs).

We fix a Z-basis, Bg = {21, ..., z4}, for g N SLy(Z) so that ¢c(z)<< ht(G)* for
all 1 < i < d. Using this basis, we identify Lie(G) with a d-dimensional vector
space with a Q-structure. We also identify the Z-span of Bg with Z%; hence we
get a representation Ad : G — SL,.

Let I' € G N SLy(Zyx) be a lattice. Then I fixes g(Zy), which implies that
Ad(T") C SL4(Zy)—recall that we are using B to define Ad over the ring Zy (and
not just as a Q-representation).

Let X := G/T". For any n > 0, set

2.9) X, ={glheX: O#vrggi{lzz)c(gv) > n}
where here and in what follows we often simply write go for Ad(g)v ; similarly,
for w € Ag, we simply write gw to denote the corresponding wedge power of the
adjoint representation.
For any 5 > 0, the set X, is a compact subset of G/T', and G/T" = U, ¢ X
We will need a quantitative version of the former statement:

2.8 Lemma. There exist some Eg (depending on the geometry of G/T") and F
(depending only on N) so that the following holds. Let g € G be so that gI' € X,,.
There exists some y € T so that

lgyl < EgnF.
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Remark. For a point gI" to be X, essentially means that the local injectivity
radius for G/I" at gI" is > #*. Thus Lemma 2.8 can be viewed as an estimate of
the diameter of the part of G/I" which has injectivity radius greater than #*. In
particular, for G/T" compact, F is essentially meaningless, and E¢ is the diameter of
the smallest norm ball in G needed to cover G/T'; see [37, Thm. 1.7 and Thm. 6.9]
for more explicit estimates.

For future convenience, we set Eg = ht(G) - Eg. In the proof of this lemma
implicit constants are allowed to depend on G and I" where indicated.

Proof. By [37, Prop. 3.1] there exists a Levi subgroup L so that ht(L) is
bounded by ht(G)*, in particular, L N T is a lattice in L.
For any g € G, define

ag(g) = max{c(Ad(9)2) ' 1 0% = € 9(Zx));

define similarly a; for any g € L = L(Qgx).
Let g € G and write g = g%g* where g° € L and g“ € R,(G). Then

a1(8”) < ay(g”)

and by [37, Lemmas 4.4 and 6.8] we have ocg(go) <Lg,r ag(g)*. It follows from
reduction theory for L ([40, Thm. 4.8] and [40, Thm. 4.17]) that there exists some
yo € LN T so that

1€%70] <e.r (g,

and combining the above we get |g%y| <« ag4(g)*. Moreover, yy lg"yo € Ry (G)
and ht(R,(G)) < 1, see Lemma 4.2. Therefore, there exists some y; € R,(G)N T
so that

170 8" voy1l <er 1,

see, e.g., [37, Lemma 5.6].
Put y = yoy:. Then

lgyl = 188" yoril
<e.rlg®vollye g voyil Ke.r ag(g)",

as was claimed. O

'Note that without the estimate on the height, the existence of a Levi subgroup so that LN T is a
lattice in L is a theorem of Mostow [38].
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29 LetU=1]]
trivial) unipotent subgroup of G. We will refer to such groups as a Qx-unipotent

U, C G where for all v € £ we have U, is a (possibly

veX

subgroup of G. Define
(2.10) Y ={veX:U,#{e}}.

Let u (resp. u,) denote the Lie algebra of U (resp. U,). The exponential map
defines an isomorphism of Qy-varieties from u onto U. We fix once and for all a
basis By for u consisting of elements which are nontrivial at only one place.

For d > 0, let
B. (0, 5>:{ > railrls < 5}

ZEBU

where r, € Qy and |r|y := maxg |7, |,; put
Bu(e) := exp(Bu(0, 1)).

Thus By (e) is a product of neighborhoods of 1 in U, forv € 2. A subsetB C By(e)
will be called a ball if it is the image, under the exponential map, of a norm ball
in u.

Let A : u — u be a Qz-diagonalizable expanding linear map, and for all k € N
let A; : u — u denote the k-fold composition of A with itself, i.e., Ay =40---0 4,
k-times. We will throughout make the assumption that for some fixed x > 0 and
allk > 1

(2.11) exp(Ai—x(Bu(0, 1))) - exp(Ak-1(Bu(0, 1))) C exp(4x(Bu(0, 1))).

We now explicate two examples of 1 which satisfy the required conditions.
One may take A to be an expanding automorphism of the Lie algebra u as Margulis
and Tomanov did in [35]; more explicitly, we may embed G in a larger group in
which one can find an element % so that 1 = Ad(%) expands 1.

The following is an alternative construction for a A which satisfies the required
assumptions: Let v € Z, and consider the lower central series for u,. That is:

Uy = Uy DUyl D= DUy, = {0}

where u, ;41 = [u, ,u,;] forall0 <i < n,.
For each i, let uf) denote an orthogonal complement of u,;; in uv,i.z In
particular, we have
Ui = Up i1 DU

2Recall that for a finite prime p, a set of unit vectors in Q' is called orthonormal if it can be extended
to a Zp-basis for Zj)'.
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Fixing an orthonormal basis of uf) forall 0 < i < n,, we obtain an orthonormal
basis of u,. Leta, =p~3 if pis a finite prime and a,, = €. For each k € N, define
Ak Uy, = u, by

Ii(z)=a™kz forall z el .

‘We leave the verification that this example does indeed satisfy (2.11) to the reader.
Abusing the notation, for an element u = exp(z) € U we set 1(u) := exp(1(2));
that is: A and A, are also considered as functions on U.

In this paper, we assume that a linear expanding map 4 satisfying (2.11) is fixed;

[21(By ()
IlBuE/e))I ’

polynomially on ht(G). For instance, the examples above satisfy these properties,

moreover, we assume that the parameters «, etc. depend only on N and

and the reader may take A to be one of these examples.

However, if for some reason, the reader is keen on taking some particularly wild
expanding linear map A satisfying (2.11), the only adverse effect would be that the
implicit multiplicative constants need to be allowed to depend polynomially on the
parameters of A.

3 Statements of the main theorems: X-arithmetic

Let G C SLy be a Q-group. Recall the family
H ={H c G : His a connected Q-subgroup and R(H) = R,(H)},

where R(H) (resp. R, (H)) denotes the solvable (resp. unipotent) radical of H. We
always assume that G € H. Recall also our notation G, = G(Q,) for all v € X,
and G =[[,.x G,.

Let H € 3 be a proper subgroup and put

pr = ®s(ATMHAL) and V= AYMHG = @ (A9mHg )

We shall identify between the representation py of G and the Q-representaiton
ASmH Ad of G.

Let vy be a primitive integral vector in AYMHLie(G) corresponding to the Lie
algebra of H. Recall from (2.4) that

3.1) ht(H) = |lvallz = [Ivall.

The vector vy is diagonally embedded in Vi (which is a product of local factors);
in order to put an emphasis on the local nature of this diagonally embedded vector,
we will denote it by zy. Define

nu(g) == pu(g)vy forevery g € G.
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Throughout, U = []
notation from §2.9. In particular, By is an orthonormal basis for u, and

Bu(e)=exp({ Y rez:lrls < 1}).

ZG':BU

U, C G is a Qx-unipotent subgroup. We will use the

veX

Recall also from §2.9 the notion of an admissible expanding map 4, : U — U for
all k e N.

The following is a X-arithmetic version of Definition 1.3, and plays a crucial
role in this paper.

3.1 Definition. Let ¢ : R* — (0, 1) be a monotone decreasing function,
t € R*, and F C H a subcollection that is I'-invariant with respect to conjugation.
A point gI is called (e, t, F)-Diophantine for the action of U if for all H € &
with {e} # H+# G and c(nu(g)) < €'

(3.2) max llz A (@)l = e(c(nu(g)))-

A point is (g, t)-Diophantine if it is (¢, t, })-Diophantine. A point is e-Dio-
phantine if it is (&, 7)-Diophantine for all 7 > 0.

Note that if there exists some nontrivial H < G so that U ¢ H(Qy), then for
any ¢ : R* — (0, 1) the set of e-Diophantine points is empty.
We now state the main result of this paper.

3.2 Theorem. There exist constants A and D depending only on N, and
constants E depending on N, #X and polynomially on ht(G) and the primes in Z,
and E;| depending in addition also (polynomially) on Eg, so that the following
holds. Letg € G, t > 0,k > 1,and 0 < 5 < 1/2. Assume ¢ : R* — (0, 1) satisfies
for any s € R* that

(3.3) &(s) < s /E\.

Then at least one of the following three possibilities holds.
(1) {u € By(e) : Ak(uw)gl' €X,, or A (u)gl is not (g, t)-Diophantine}| < E\n'/P.
(2) There exists a nontrivial proper subgroup H € H with

ht(H) < (E|g|* + E )™
so that the following hold for all u € By(e):

o (A(w))) < (Elgl* + Ere™)y™,
max |5 A na ()l < e PElgl + Ereyn~.
zeBy
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(3) There exists a nontrivial proper normal subgroup H < G with
ht(H) < Ey(e'y )

so that
max ||z A oyl < e(ht(H)! Ay /B,
ze€by

Of course if G is Q-simple, possibility (3) cannot hold. A typical example
where there are infinitely many normal subgroups is

G =SL, X ((G)" x (G)")

with G, denoting the one-dimensional additive group (the simplest possible alge-
braic group!). The group G is a perfect group, and for any [, k € Z the subgroup

Hl,k = {(g> l7/, k‘{/) 8 € SLna v E GZ}

is a normal subgroup of G.

We note the following interesting corollary of Theorem 3.2. For simplicity we
state it in the case where G has only finitely many normal Q-subgroups (it is fairly
easy to adjust the statement and the proof to accommodate general G, but they
become a bit messier). Results of a similar flavor were given by Lindenstrauss and
Margulis in [31, Prop. 4.4].

3.3 Corollary. Let G, G, I', U be as above, with G having only finitely many
normal Q-subgroups, and U ¢ H(Qx) for all H < G. There are A4, As depend-
ing only on N and €1, €; depending on N,#X and polynomially on ht(G), the
primes in X, and Eg, and ty that depend in addition also on U and how far
it is from lying in any H <t G, so that if e(s) = e\ q*s™ then if t > ty, and
ift', k > As(t +log(1/n) +1og(1/€2)), then for any (e, t')-Diophantine gT' € X,

Hu € By(e): gl g Xy or H < Ein'/®.
Ax(u)gl is not (e, t)-Diophantine

Proof of Corollary 3.3 assuming Theorem 3.2.

Assuming that the constants in Corollary 3.3 were appropriately chosen, ¢
satisfies (3.3) and we may apply Theorem 3.2.

If (1) of that theorem holds there is nothing to prove. Otherwise either (2) or (3)
of that theorem holds. (3) is ruled out by our assumption that U ¢ H(Qy) for all
H <« G if 1y is large enough.



QUANTITATIVE BEHAVIOR OF UNIPOTENT FLOWS 19

Suppose then we are in case (2). As gI' € X, it follows that there is a nontrivial
subgroup H € ¥ for which in particular’

c(u(g)) < 2Ee* ™,

3.4 _ _
@4 max |1z A (R < 2Ere Py,
z€By

Choose As, € so that in particular ¢ > log(2E;e'5™*). Then since gI is (¢, t')-
Diophantine

max [z A ()l = e QE ™)™ > e,
zeby

But this contradicts (3.4) if £ > As(z + log(1/%) + log(1/¢,)) for sufficiently

large As. O

4 The family J and the Diophantine condition

4.1 Recall the family
H={H c G : His a connected Q-subgroup and R(H) = R,,(H)}

where R(H) (resp. R, (H)) denotes the solvable (resp. unipotent) radical of H.
For any subgroup H € HH, we put H = H(Qyx). Sometimes we write H € H.

4.2 Lemma. There exists some Ag so that the following holds. Let L. C SLy
be a connected algebraic group defined over Q. Then

ht([L, L)< ht(L)*;  ht(R(L))<<ht(L)*; and ht(R,(L))< ht(L)".

Proof. Let B be a Z-basis for Lie(LL) N SLy(Z) so that ||z|| < ht(L)* for all
z € B. Then {[z, 2] : z, 2 € B} generates [Lie(L), Lie(L)]. Hence,

ht([Lie(L), Lie(L)])<< ht(L)*.
It remains to bound ht(R,(L)). To that end, first note that
R(Lie(L)) = {z € Lie(L) : ki(z, [w, @']) =0, Vw, o’ € Lie(L)}

where kp, is the killing form of Lie(L). Therefore, ht(R(Lie(L)))<< ht(L)*.
Now let B’ be a Z-basis for R(Lie(L)) N SLy(Z) so that || z||<< ht(L)* for all
z € B’. Then

R, (Lie(L)) = {z € R(Lie(L)) : tr(w; - - - wyz) = 0, V1 < s < N, w; € B}.

Hence, ht(R,(Lie(L)))<< ht(L)*. O

3Possibly for a slightly larger A than in the theorem.
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4.3 Algebraic properties of subgroups in class H{. A quantitative no-
tion of a point satisfying a Diophantine condition was given in Definition 3.1. This
definition is formulated in terms of certain representations whose constructions
and basic properties we now recall.

Let He J{ be a proper subgroup. Recall that g=®s g, where g, =Lie(G,). Put

PH = AMHAG and Vo= @y AYMH g
The representation py is defined over Q.
Let vy be a primitive integral vector in AY™HLie(G) (or A%™Hs[y) correspond-

ing to the Lie algebra of H, see §2.3. We embed vy diagonally in Vg and denote
this vector by uy. Let 7y : G — Vp denote the orbit map, that is

nu(g) = pu(g)vn forallg € G.
Note that py and Vi depend only on dim H, however, vy (similarly vg) uniquely

determines Lie(H) and hence H.

44 Lemma. (1) Ng(H)={g € G : pu(®)vu = (xu(gp))vesvn}, where yu
is a rational character.

(2) The orbit ny(T') is discrete and closed in V.

Proof. Property (1) is a consequences of the definition.

In light of our assumption that I" is arithmetic, property (2) also follows from
the definitions. We note, however, that this qualitative result does not require
arithmeticity of I', see [17, Thm. 3.4]. Ul

4.5 Lemma. There exists some constant A7 so that the following holds.
4.1) #HHe H:ht(H) < T) < TV.
Proof. This follows from the definitions of vy and ht(H). [l

4.6 Lemma. There exists some Ag > 0 so that the following holds. Given any
Q-group L C G, there exists a normal subgroup L’ c L which is maximal among
all subgroups of L. which belong to class H; moreover,

4.2) ht(L7) < ht(L)™.

Proof. Since L/ R, (L) is a reductive group and unipotent subgroups in L map
to unipotent subgroups in L./ R, (L), we have
4.3) Lie(L™) = [Lie(L), Lie(L)] + Lie(R,(L));

in particular, L7¢ exists.
By Lemma 4.2 we have ht([L, L])<< ht(L)* and ht(R,(L))<< ht(L)*. The claim
thus follows from (4.3). O
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4.7 Let
LH = {g eG: /\dimHAd(g)VH = VH}_

Then Ly is a Q-group. The subgroup Ly is not necessarily in . Define
My = L}f}[( ;

see (4.2) for the notation.
Put Ly = LH(@):) and My = MH(@):) Note that

Ly={geG:pu(gvy = vy}

We will simply denote these groups by L, L, M, and M when there is no
confusion.

4.8 Lemma. There exist Ag with the following property. For any H € 3 we
have

(4.4) ht(Lyg) < ht(HY**  and ht(Mg) < ht(H)*.

Proof. Since My := Lj{, the second inequality is a consequence of the first
inequality and (4.2).
Recall now that

Lie(Ly) = { z € Lie(G) : AY™H ad(z)vy = 0},

and that vy is an integral vector with ||vyg|| = ht(H).
The first inequality thus follows, and the proof is complete. O

4.9 Lemma. (1) Foranyy €T and any H € H, we have

1 < ht(yHy™) = c(qu(y)).

(2) Let r > 1 and suppose y € T is so that c(ngy(y)) < r. Then
(a) ht(yLuy™") < r*;
(b) ht(yMuy™) <« r~.

Proof. Recallthat Ad(I") C SLy(Zy). Recall that vy is primitive, in particular,
I17a()l, =1 for all p & X. Part (1) of the lemma thus follows from the definition
of ht(yHy™1).

To see parts (2)a and (2)b, note that

yLHV_1 = LyHy-n and yMHy_1 = MyHy—l-

Hence, the claim follows from part (1) and (4.4). Ul
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Let H € H{. For any g € G and any r > 1, put
(4.5 mp(g, 1) = [log(Ru(g, r)1,

where Ry (g, r) := max{c(nm,(gy)) : y € I, c(qu(y)) < r}.

4.9.1 Corollary. (1) Ry(g,r) < |g|*r".
(2) #(nu(I') N By, (v, 1)) KL 1*.

Proof. We first prove part (1). For any y € I' so that c(yy(y)) < r, we have
ht(yMgy~!) <« r*, see Lemma 4.9(2)(b). Moreover, by Lemma 4.9(1), we have

1 < ht(yMnuy™") = c(nu, ().

Using (2.3) to control the effect of g, the above implies the claim in part (1).
The second claim follows from the fact that Ad(I") € SLy(Zy). O

4.10 Lemma. Let H € H. Assume there exist an L > 0, a sequence €,, — 0,
and a sequence g,I" — gl satisfying the following:
(1) c(nu(gn) < L for all n, and
(2) maxees, [z A nu(gn)ll < €y for all n.
Then g € {g' € Ng(U, H) : c(nu(g')) < L}T.

Proof. In view of our assumption, there exists a sequence { y,} so that

g > g

Hence, using the assumption in (1), we get that

(4.6) c(nu(gnyy 7)) = c(nu(gn)) < L.

n

Moreover, since g,y;' — g, we have |g,7,!| < 1+|g| for all large enough n. This

and the above imply that for some constant A’ depending only on N, we have

c(nu(yn)) = ht(y,Hy, ") < L2 + g™

for all large enough n.
Using (4.1) and passing to a subsequence, we assume that y,Hy ;! = yHy~! for
all n, or equivalently that #4(y,) = #g(y). Then for any z € By

N nyHy*'(gny;l) =zA nH(gny;an)
=z A nH(gn)
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This computation and the assumption in (2) now imply that

Iz A fyy-1(g7, DI < €, forall z € By.
Passing to the limit, we get that z A 77,,-1(g) = 0 for all z € By. Thatis
“4.7) zAng(gy)=0 forall z € By.

Similarly, using the fact that 75(y,) = #g(y) for all n and passing to the limit
in (4.6) we get that

(4.8) c(nu(gy)) < L.

In view of (4.7) and (4.8) we obtain

gy €{g € No(U, H) : c(nu(g)) < L},
as we claimed.

4.10.1 Corollary. Let H € J{ and let L > 0. The set
{g € No(U,H) : c(nu(g)) < L}I'/T
is a closed subset of G/T.

Proof. Recall that Ng(U, H) = {g € G : z A ng(gy) =0 for all z € By}. The
claim thus follows from Lemma 4.10. O

4.11 Theorems A and B below will be used in the proof of Lemma 4.12. We
begin by recalling an effective versions of Hilbert’s Nullstellensatz theorem; the
statement presented here is due to D. Masser, G. Wiistholz, [36, Thm. IV]; see
also [45, 26] and references there.

Theorem (Effective Nullstellensatz). Assumelf,fi, ..., €Z[t1, ..., ty] have
total degree at most Dy and logarithmic height at most h. Suppose f vanishes at
all the common zeros (if any) of {f;} in C™.

Put M = 2"~ Then there exist

e some b € N with b < (8Dy)*M,

® Gi,....,qn € Zt1, ..., 1,] of total degree at most (8Do)*M*! and logarithmic

height at most (8Do)*~1(h + 8Dg log(8Dy)), and

e some a € Z with log |a| < (8Dg)*~!(h + 8Dy log(8Dy))

so that
af’ = qif:.
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‘We need the following theorem of W. Brownawell which can be thought of as
a local version of the above theorem.

Theorem A (cf. [11]). Let fi,....fu € Zlt1,...,t,] have total degree at
most Dy and logarithmic height at most h. If fi,...,f, have no common zero
within 0 < 6 < 1 of some w € C", then

IIwIIZ)—A10

SR p——r

where Cy and Ao are explicit constants depending only on n, m, and Dy.

In the p-adic setting, we have the following theorem. This theorem is proved
by M. Greenberg; we reconstruct Greenberg’s proof in Appendix Appendix A to
make the dependence on the height of the polynomials in question explicit.

Theorem B (cf. [23] and [24]). Let fi,....fn € Zlt1,...,t,] have total
degree at most Dy and logarithmic height at most h. There exists Ay, depending
only on m, n, and Dy so that the following holds.

Suppose wy, ..., W, € Z, and C > 2A,h are such that

fi(wi, ..., wy) =0 (mod p) forall j.
Then, there exist yi, ..., Ym € Z, such that

I'CZ_Allh'I
Vi = w; (modp All )

and fi(y1, ..., ym) =0 for all j.

The following lemma is a crucial ingredient for our inductive argument in the
proof of Theorem 3.2.

4.12 Lemma. There exist A1y, Az, and Cy where Cy depends on N, the
number of places #X, and polynomially on the finite primes in X and on ht(G) so
that the following holds.

Letr > 1,e > 1, and g € G be fixed. Suppose Hy, Hy < G are two Q-subgroups
of class-J with c(nu(g)) < rfori=1,2. Assume that

4.9) max [z A g, (@)l <€ fori=1,2.

z€By
LetH,, := (H1 N Hz)}c. Then if € < Colg|~42r~412, the group H, » is not trivial,
ht(H, ) < |g]*r, and

(4.10) max [|z A 7 ()] < gl riuet/Ae,
ze€By
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Proof. First note that (4.9) and (2.3) imply the following:
| Ad(g™z A oy || K |gl*e fori=1,2andall z € By.
Rewriting this at the level of the Lie algebra, we have
4.11) d(Ad(g™ Dz, b) < |gl*r'e fori=1,2andall z € By,

where h; denotes the Lie algebra of H; = H;(Qx).
Now (2.3) and c(#g,(g)) < r imply

ht(H)) = c(oy,)Lr|gl* fori=1,2.
Therefore, ht(H; N H,) < ht(H)) - ht(H;) and hence by (4.2) we have
ht(H; ») < |g[*r".

As B and b, are rational subspaces of g with height < |g|*r*, the esti-
mates (4.11) thus imply that

(4.12) d(Ad(g™"z, b1 Nhy) K lgl*r*e forall z € By,;

see, e.g., [18, §13.4].
For every finite place p € X let Q, = Q,, and let Q, = C. Set Qs = [[5 Q,.
Let N denote the cone of ad-nilpotent elements in g ® Qx. Then

(4.13) Ad(g™Hz e N.

There are n, m >> 1 so that the subspace h; N b, and the cone N are Q-varieties
defined by

{fpj:1<j<n}CZlt,....ty] and {fen;:1<j<n} CZt,..., 10l

respectively;* further, the logarithmic heights h of these polynomials are bounded
by
By +logr
for some By depending on N, the number of places #X, and polynomially on the
finite primes in £ and on ht(G).
In particular, conditions of Theorems A and B are satisfied for {fs, ;} U {fcn}-
In view of Theorems A and B, thus, (4.12) and (4.13) imply the following estimate:

d(Ad(g™")z, NN ((h1 N hy) ® Qs)) <K g r*e.

4The subscript sp stands for subspace and cp stands for cone.
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Let b, » = Lie(H; »). By the definition of the family H, see §4.1, we have b »
contains the Lie algebra generated by N N ((h; N hz) ® Qx). Therefore, the above
estimate implies that

(4.14) d(Ad(g™"z, h1o ®Qs) < |g*r*e* forall z € By.
Now since Ad(g~ 1)z € g, we get the following from (4.14):
(4.15) d(Ad(g™ Yz, hi2) < |g|*r*e* forall z € By.

Equation (4.15) implies bh;» # {0} so long as the right-hand side of (4.15) is a
sufficiently high power of |g|~!; this is satisfied if € < |g|*r*. Equation (4.10) is
now an immediate consequence of (4.15). Ul

5 Non-divergence of unipotent flows inSLy(Q5s)/SLy(Zyx)
with an application to almost invariant Lie algebras

In this section we recall the basic non-divergence results regarding the action of
unipotent groups on SLy(Qyx)/SLy(Zx), and deduce some important corollaries
that will play a central role in the following sections. The basic reference for this
section is the paper [30] by Kleinbock and Tomanov, which can be viewed as a Z-
arithmetic adaptation of [29] by Kleinbock and Margulis (which itself relies on the
non-divergence result of Margulis [32], perhaps the first general result regarding
dynamics of unipotent groups on arithmetic quotients, and Dani [13]).

Some of the implicit multiplicative constants in this section satisfy a stricter
requirement, i.e., they depend on N, #X, and polynomially on the finite primes
in X, but not on ht(G). We will explicate these by an index, i.e., we write <y,x
or 3>y s for these implicit multiplicative constants.

5.1 Let GL}(Qx) denote the group

GLL(@y) = {(go € GL@y) : ] det(g,) = 1}.
vex

Then we can identify GL}V(@Z) /GL(Zys) with the space of discrete Zgy-
modules in QY of covolume 1, and there is a natural injective proper map from
SLy(Qs)/SLy(Zs) to GL}V(QE)/GL(ZZ) obtained by assigning to (g,)ycx the Q-
module spanned by the elements in QY formed by taking the ith column of all g,
fori=1,..., N. In view of this, we will view SLy(Qx)/SLy(Z5x) as embedded
in GLy(Q)/GL(Zs).
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Let 'y = GLy(Zy) and G| = GLL(Qyx). Forx = gI'y/T'; € G1 /Ty, let
a(x) =max{1/c(z) : z € gZ5 \ {0}};

this function is a proper map from G;/T'; to R* (as well as from the quo-
tient space SLy(Qx)/SLy(Zs) to R*) and any compact subset of G1/I'; is con-
tained in the compact subset of the form {x : a(x) < M} for some M > O.
Let A be a Zs-submodule of rank & in a discrete Zs-module gZy., say generated
over Zy by vy, ..., v € Q’%’. Then while vy, ..., v; are not uniquely defined, the
wedge v; A -+ Ay in /\k@l\zl is, and we define c(A) = c(oy A -+ Av). A Zy-
submodule A of gZ¥ is said to be primitive in gZY if it is maximal with respect
to finite-index extensions, i.e., it is not a proper Zys-submodule of finite index in
any Zy-submodule of gZ¥.

The results of [30] are more general in that they deal with general “(c, a)-good”
maps from a convex B in a product of parameter spaces over Q, for » in some
subset of £ to G;/I'j, but the basic non-divergence estimate of the paper [30,
Thm. 9.4] gives the following:

5.2 Theorem (cf.[30]). Let U =]
an open ball in U and A as in §2.9. Let g € GL}V(QE) and assume that for every
primitive Zs-submodule A of 75 of rank 1 < k < N — 1

U, be a Qx-unipotent subgroup, By(e)

veEX

3.1 max c(Ax(u)A) > 7.

ueBy(e)

Then
1 e\1l/D
[t € Bu(@): aagTy) > € < B()1Bucel,

with D depending only on N and E depending on N, #%, and polynomially on finite
primes in .

In fact, the basic inductive argument used to prove Theorem 5.2, specifically
[30, Thm. 6.1] can be used to provide a more precise result that would be important
for us in the sequel. This result does not seem to appear in the literature. One can
view Kleinbock’s [27, Thm. 0.2] as a step in this direction, and a result very close
to what we give below can be found in a draft by Breuillard and de Saxce [10].

Forgl'i e G;/Tiand1 <i <N —1let

a:(gT'1) = 1/min {c(A) : A is a primitive Zx-submodule of gZY of rank i} .

5.3 Theorem. With the notations of Theorem 5.2 (but without the assump-
tion (5.1)), there are 0 = kg < ky < kp < --- < k¢ < kpy1 = N, and primitive
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Zs-submodules Ay, < Ay, < --- < Ay, of gZY of rank corresponding to their
index so that if n(ky), . .., n(kes1) € (0, 1] is defined by

n(0) =n(N) =1,
5.2)

n(k;) = Héai()c(ik(u)Aki) forl <i<¢,

ueby(e
then n(e) can be extended to a function [1, N]— (0, 1]so that —log 5 : [1, N]— R*
is concave and linear on each interval [ko, k1], . . ., [ke, kes1] and

. ! .

az(;{k(u)ig 1) < El}
n(@)

with D depending only on N and E depending on N, #%, and polynomially on finite

Hu € By(e) : Ji s.t. < E€'PBy(e),

primes in . Moreover, given a primitive Zx-submodule A < gZX, we can choose
Akl < Akz < -ee < Ak[, so that

Ak(A) < max o).

Note that it easily follows from the Z-arithmetic version of Minkowski’s second
theorem, [4, §C.2, specifically Thm. C.2.11], that under the assumption (5.2) for
any u € By(e) one can complete the partial flag Ay, < Ag, < --- < Ay, of
submodules of gZ@‘:’to a full flag of primitive Zy-modules A} < -+ < Ay_j s0
that if k; < r < k;yq and 7 = (ki1 — r)/ (ki1 — k;) then

() A,) < Ac(Aa() M) e(Ar() Ag,,,)' ™
< An(k) (ki)' =" = An(r),
with A depending only on N and X. Hence for all u € By(e)
o (A (u)gl)™!
n(r)

(5.3)

< A.

Proof. Consider the (finite) collection of all primitive Zy-submodules A < gZ’\E’
so that

(5.4) max c(A(u)A) <1,
eBy(e)

and for each such A, let

na = max c(Ax(u)A).
ueBy(e)

From all the possible partial flags of primitive Zs-submodules Ay, < Ag, <--- <Ay,
with all Ay, in this subcollection, choose one for which the convex hull of the pairs
of points

(55) {(03 0)3 (kla _log ’7Akl)9 ey (kl, _log ’7Ak[,)9 (Na 0)}
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is maximal (with respect to the usual partial order by inclusion on subsets of R?).
There could be more than one possible choice, but any one of these choices
would be good enough for us, and if A satisfies (5.4) we can choose such a
Ay, < Ap, < --- < Ay, so that the convex hull of the points in (5.5) contains the
point (rk(A), — log 773).

Fix the choice of primitive Zs-submodules Ay, < Ay, < --- < Ay, and
let n : [0, N] > R* be as in the statement of the theorem. Then the graph
of —log 77(e) forms the upper half of the boundary of the convex hull of the set
in (5.5), and 5(rk(A)) < 5.

By the choice of the Ay and definition of #x(e), it follows that for any
1 < r < N —1 and any Zs-primitive submodule A of rank r of gZY compat-
ible with Ay, < Ay, < --- < Ayg,,

max c(Ag(w)A) > n(r).
ueBy(e)

Applying [30, Thm. 6.1] similarly to the way it is used to prove [30, Thm. 9.3],
but with the poset used in [30, Thm. 6.1] being the collection of Zy-submodules of
g7Z% compatible with the chosen partial flag Ay, < Ay, < --- < Aj, one obtains
that outside a subset C C By(e) of measure |C| <y x € we can find for every
u € By(e)\ C acompletion A; < --- < Ay_; (depending on u) of the fixed partial
flag Ay, < --- < Ay, so that for every i

(5.6) en() < c(h)Ay) < A'n(,

with A’ depending only on N and X. To be precise, we apply a variant of [30,

Thm. 6.1] where the marking equations (M1) and (M2) on [30, p. 540] for a partial

flag &, (compatible with our fixed flag Ay, < --- < Ay,) are replaced by (in the

notations of this paper)

M1) n(rkA) = c(Ar(w)A) > en(rkA) for every A € &,

M2) c(Ar(u)A) > n(rkA) for every A compatible with &, and Ay, < --- < Ay,

but not in &,,.

The argument of [30, Thm. 6.1] would give us that for u outside the set C as above

there exists a partial flag &, for which (M1), (M2) hold. Subsequently apply-

ing Minkowski’s 2nd theorem (cf. note following the statement of Theorem 5.3,

particularly (5.3)) we can complete the flag &, to a full flag so that (5.6) holds.
Such a marking was used in [30] (and [29]) to show that there is no primitive

v E lk(u)gZ%’ with small ¢(), i.e., to control a(gl';) = a1(gI'1), but in fact can be

used to show a;(A(u)gl'1) K.z € 'n(i)~!, as we now show.
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The proof is by induction on the rank of the submodule A < gZ¥, and all im-
plicit constants may depend on the step in the induction. Note that since — log 7(7)
is a concave function,

n@ i+ D)
=1 =

(5.7) foralll <i<N-—1.
We also recall the following important inequality for any primitive A, A’ < gZ¥
andany u € U,

(5.8) cwA)c(uA") > c(uA NuA"Yc(uA'+ul)/A,

with A depending only on N, X.

We start induction with rank one primitive submodules Zsv < gZY. Let i be
such that v € A, but not in A; (where for this purpose we take Ay = {0} and
Ay = gZ5). Then by (5.8) and (5.7),

i) _ enli+1) _ en(l)
AT 2 3Gy = AAG) © AAT

Consider now a rank-r primitive submodule A < gZ¥, let i be such that
A < A and i is minimal such (clearly, i+ 1 > 7). Applying (5.8) once again, we
obtain
c(A@)A) c(Ak@) A) = c(A)(A; N A)) c(A(u) Ai1) /A.

By induction c(Ax(u)(A; N A)) >>n s € ~'5n(r — 1) hence

COR)A) Sw s €= p(r — 1S A1)

c(Ar(m)A))

i+ 1
Sz e — HIEED

n(@)

’
>Nz €n(r— 1)L =éen(r),
n(r—1)
and we are done. O

A key ingredient in the works of Margulis, Dani, Kleinbock—Margulis, and
Kleinbock—Tomanov quoted above is an estimate on the size of the set where a
polynomial function is small. The result needed, at least for the real case (i.e.,
¥ = {o0}) is known as Remez inequality, and is used in [29] and [30] to verify
the “(C, a)-good” property. Since we will also use it in the sequel, we quote it
below (in a slightly sharper form, though this is not relevant to us; cf., e.g., [29,
Prop. 3.2]).
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5.4 Lemma. Let § be a local field with absolute value | |. Let B be a compact
convex subset of §', and letf € §[t1, - - - , t,] be a nonzero polynomial of degree d.
Then for any 0 > 0 we have

(5.9) {zeB:1f@I <oswpl@I}| = o' B,

zeB

where |K| denotes the Haar measure of K for any subset K C §’, with ¢ depending
only on d and r.

See [12] for a proof for k = R; the general case is essentially identical.

Sketch of proof. Let & = dsup_g|f(z)]. For r = 1 this follows from
Lagrange’s interpolation formula. For higher dimension, let x € B be such that
f(x) = sup_cg [f(2)|. Then there is a line ¢ through x where

{zeB:|f(a)| <d}N{| - {zeB:|f(2)| <d}l
BN : |B|

Since x € ¢ by the choice of x we have

sup |[f(2)| = sup [f(2);

zeB zeBNt
now apply the one dimensional result. (|
S5.5Lemma. Let X' C X. Forall positive integers r and d, there exists explicit

constant ¢ = c(r, d, ') with the following property. For every v € X' and every
1 <j<r,letfpjeQ,lti, - ,t,1beanonzeropolynomial of degree < d. Define

Soltrs 1) = 1Fo1 (@), - oo for, O = max{[fo;D], 11 <j <1}

Let B =[],cs B, where B, is a convex set in Q) for each v, and set

F(ty:veX, 1<i<nr)=[[ A1)

veX!

Then for any 6 > 0 we have

Hz €B:F(z) < 5supF(z)}‘ < ¢|log 8|*¥ 114 |B|.

zeB

Similarly, if we put F(t,;) = maxy f,(t,;), then

Hz eB:F(z) < 5supF(z)}’ < ¢59B.

zeB



32 E. LINDENSTRAUSS, G. MARGULIS, A. MOHAMMADI AND N. SHAH

Proof. We first prove the first claim. Hence, let F = [[ .y f, be as in that
statement; note that max F' = [[ max f,. Moreover, (5.9) holds true for f, in place
of |f]; see, e.g., [30, Lemma 3.1].

Note also that it suffices to prove the lemma for 6 = 27" where m is a non-
negative integer. For all non-negative integers m’ and any v € X, put

Bl = {z €B, :f)(z) < 27" maxf, }
B,
Then we have

{Z eB: F(Z) <27m SupF(Z)} - UH BfuU m,
z€B 5

where the union is taken over all partitions m = )y, m, with m, non-negative
integer for all v € X.

Now by (5.9) applied for f, implies that |B} ™ | < C2~™ /4|B, | forallv € %’
and m,. The claim follows from this as the number partitions m = > 5, m,
is < m"¥ -1,

To see the second claim, let v be so that maxg, f, = max F. The claim then
follows from the fact that (5.9) holds for f, . [l

Note that replacing é with é — ¢, for a small enough € depending only on d
and the constant ¢ by a bigger constant depending on X’ if necessary, we have the
following. There exists some a = a(d) so that for all F' as in Lemma 5.5 we have

(5.10) {zeB:F@) <osupF@}| < co”lB)
z€B

where ¢ = ¢(r, d, ).

In the sequel, we will deal with functions defined on U of the form
u — c(np(Ar(w)g)) and u — |z A yg(Ar(1)g)ll, see §4 for the notation. We
let a be so that (5.10) holds true for all of these functions; note that o depends only
on N.

5.6 Lemma. There exists some A4 so that the following holds. Let H € H
and g € G. Put €, = max{ |z A ny, ()|l : z € By}. Assume €, > 0, i.e. that g 'Ug
does not normalize H. Then

l{u € By(e) : c(nu(Ar(w)g)) < R} < (R|g| ht(H)/e )1 e~/ A1,

We need the following lemma for the proof of Lemma 5.6.
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5.7 Lemma. There exists some As so that the following holds. Let the
notation and assumptions be as in Lemma 5.6. Moreover, let Derpy denote the
derivative of py. Then

max{||Detpy(2)nu(@)ll : z € By} >0
where 6 = (€, ht(H)~!|g|~1)As.

Proof. Let b > 0 and assume that max{ ||Derpy(z)nu(g)ll : z € By} < b.
Using (2.3), then we have

(5.11) max{ ||DerpH(Ad(g_l)z)vH|| 1z€ By} < |gl™b.
Recall from the definition of Ly that
Lie(Ly) = {w € g : Derpy(w)vy = 0}.

That is: Lie(Ly) is the kernel of the linear map w — Derpgy(w)vy from g to Vy.
The vector vy is an integral vector of size ht(H). Therefore, the map

w — Derpy(w)vy

can be realized by an integral matrix whose entries are bounded by ht(H)*.
Now by (5.11), for all z € u with ||z|| = 1 the vector Ad(g~")z almost belongs
to the kernel of this map; in view of the above bound we get that

(5.12) d(Ad(g™ ")z, Lie(Ly)) < |g|* ht(H)*b*,

see, e.g., [18, §13.4].

Recall that u is a nilpotent Lie algebra and My = L{{. Hence, arguing as in
the proof of Lemma 4.12, i.e., using Theorems A and B, we get the following
from (5.12):

d(Ad(g™ "z, Lie(Mp)) < |g|" ht(H)*b*  for all z € By.
The above estimate thus implies that
llz A g, ()Nl < |gl" b forall z € By,
as we wanted to show. (]

Proof of Lemma 5.6. In view of Lemma 5.5, it suffices to prove that

€ ¥k
— S
ht(H)|g| )

(5.13) max{c(7(Awg)) : u € B} > (
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To see this, for any z € By define

f=(0) = pu(exp(t2))nu(g).

Then f, is a polynomial map from Q, into Vy. Let us write f, = c, o + f; where
c.0 € Vy and £,(0) = 0.

Let 6 be as in the previous lemma. By the conclusion of that lemma, there
exists some zy € By so that

(5.14) max{|c|, : cis a coefficient off;O} > 0.

For any nonzero T € Q,, define the renormalized polynomial

faor (@) 1= 32 (TO).
Then by (5.14), we have sup,, -, ooz (ON] > 5~

Hence, there exists some v € X so that

max{u, € By, () : 752y} > 5"e™;

we also used the fact that for all w € £ we have [[75(g)|l» > |g]™* ht(H)™*; this
lower bound follows as vz is an integral vector whose co-norm is ht(H).
Altogether, we get that

max{c(nx(Ax(u)g) : u € By(e)}

> max{ |7z (aCu)gllo [ 17:()1lw ¢ uo € By, (&)}
wFo

> &*|g| ™" ht(H) e
this completes the proof of (5.13) and hence the lemma. (|

5.8 Proposition. There is a constant D' depending only on N so that the
following holds. Let H € H and r > 1. Suppose that k > 1 and

(5.15) c(ng(Li(w)g)) < r forall u € By(e).
Then

c(nm, (A(w)g)) K r*|g|*  for all u € By(e),
moreovet, for all u € By(e) and z € By we have

iz A a, Q)| < gl e ™7



QUANTITATIVE BEHAVIOR OF UNIPOTENT FLOWS 35

Proof. Let/=dim(H). Recall that 75 denotes the integer vector corresponding
to Lie(H) in Alg ¢ Alsly(Qs) — here and in what follows we view A”g as a rational
subspace of A"sly(Qyx) of height <« 1 (recall from §2.4 that the implicit constants
for <« and > are allowed to depend polynomialy on ht(G)).

In the notations of §2.9, let B = By (e) and set

Bl
¥ =0.1 .
141(B)|

For any primitive Zs-submodule A of gZ¥, it holds that c(A) > |g|~™*, hence by
Theorem 5.2 there exists a subset B, C A;(B) with

|4k(B) \ Bg| < ¥ A(B)

so that
a(ugl) < |g|* forall u € B,.

This implies that for every u € B, there exists some y, € SLy(Zs) so that
(5.16) lugyy 'l < gl

Now (5.16) and (5.15) imply that

(5.17) o(yumn) < lugyy " - clugen) < gl*r.

Applying a similar argument to the integral vector w € AY%™SG5(y(Qyx) correspond-
ing to AYmCLie(G) and using the fact that

w=ugw = ugy, " y.w,

we have that Ad(y,)g is a rational subspace of sly(Qx) of height < |g|*.

Define L' = {g € SLy(Qx) : gug = vg}. It follows from (5.15) applied with
u = e that c(vy) < |g|*r; hence, ht(L') < |g|*r.

Moreover, the definitions imply that Ly = G N L’ and that Mg = L7, see 84.7.
Further, in view of (4.4) we have ht(My) < |g|*r".

Similarly, for each u € B, define

L, ={g € SLy(Qx) : gyuvm = yuon} = 7. L'y "

then ht(L)) < |g|*r. Put L, = yuLHy,jl, and let M,, = L,;H = yuMHy,jl. Then
ht(M,,) = c(yuom,) < 18" r".
For every u € B, we have

(5.18) c(nm, (ug)) < lugy, ' I"c(yuom,) < Iglr*.
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Since u — #, (ugy) is a polynomial, the estimate in (5.18) and Lemma 5.5 imply
that

(5.19) c(nm, (Ae(w)g)) < |g|*r* forall u € B.

In particular, the first claim in the proposition holds.

We now turn to the proof of the second claim. Let u € By N A;,—1(B). By the
choice of ¥, this set has measure > 0.9|4;,_1(B)|, in particular is non-empty. Let
7. € SLy(Zx) be as in (5.16).

By (2.11), Ax—x(B)Ax—1(B) C Ax(B); hence by (5.15) we have

c(ng(Li—x(v)ug)) < r forall v € B.
Therefore, by Lemma 5.6 for every u € B, N A4—1(B),
max{ ||z A, (ug)ll : 2 € By} < rlugyy'| - ht(y, Hy; e ™4,

For u € By, |ugy;'| < lgI* and ht(y,Hy,; ') = c(y,ow) < |g[*r hence for
1€ By N i_1(B)

*ox —k/*

max{ ||z A nu, (ug)ll : z € By} L |gl"r’e

Since u — z A ny,, (Ak—1(1)g) is a polynomial, the above estimate together with
Lemma 5.5 implies that

max{ ||z A g, (AW : z € By} < |g*re™™* forall u e B.

This finishes the proof of the second claim and the proposition. (|

6 Non-divergence of unipotent flows for general alge-
braic groups

Consider now G a Q-group of class-H and G = G(Qgy) as in §2. Let d = dimG.
Recall that g(Zyz) = gNsiy(Zsx), see §2.7. Let U = [ [, 5 U, C G be aQx-unipotent
group as in §2.9. By assumption G is equipped with an embedding : : G — SLy,
and a lattice I' commensurable to G N SLy(Zy). Taking a finite index subgroup
if necessary, we assume that I' < G N SLy(Zy), and that Ad(T") preserves g(Zy).
Hence we get a finite to one map

G/T' — SLn(Qx)/SLn(Zs3),
or using the adjoint representation a different map

G/T' — SLa(Qz)/SLa(Zy).
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This latter map is in general not finite to one, but has compact fibers, since if Cg
denotes the connected component of the center of G (necessarily a unipotent group
as G is of class-H) the fibers would be a finite-to-one extension of the compact
space C¢(Qx)/Cg(Zy). Therefore we may apply Theorem 5.2 to the image of G/T°
to either of these quotient spaces to deduce that forevery g € Gandd > 0, there is a
compact K C G/T so that for every & for all u € By(e) outside a set of measure < o
we have that A;(u)gl” € K.

Theorem 5.2 gives more: it also says that for a compact set K that does not
depend on the point gI, if 1 (u)gl’ &€ K for a large set of u € By(e) then there
would be a Zy-submodule in gSLy(Zyx) which is not changed much by the action
of U, at least not when we act by 1;(By(e)), and Theorem 5.3 gives somewhat
finer information. However both of these theorems relate the properties of U orbits
in G/T to the structure of the ambient SL,(Q5x)/SL.(Zs) and not some intrinsic
algebraic structure of G/T".

In [16] Dani and Margulis prove (in the real case) that given a one-parameter
unipotent subgroup u, of G and § > 0, one can find a (fixed) compact subset
K C G/T so that if a trajectory of the one-parameter unipotent group u, starting
from gI" does not eventually spend 1 — ¢ of its time in K, then there is a Q-parabolic
subgroup P < G so that g € P(Qy). This information is intrinsic for G/T.

The purpose of this section is to provide an effective version of [16], where the
existence of many u € By(e) for which Ax(u)gI is outside a suitable fixed compact
region is used to imply some Diophantine conditions at appropriate scale for gI'.
We note that in addition to [16], understanding intrinsically behavior of orbits near
the cusp in arithmetic quotients G/I, this time for certain diagonalizable groups,
was studied by Tomanov and Weiss in [51].

Recall from §2.7 the definition

X, = {gF eX: O#mmz )C(Ad(g)z) > 11}.

zeg(Zx

It follows from the discussion at the beginning of this section that for any # > 0,
the set X,, is a compact subset of G/T".

6.1 Lemma. There exists some 0 < k(N, X) < 1 with the following property.
Let w € g(Zy) and suppose that there exists some g € G so that

c(Ad(g)w) < k(N, ).

Then w is a nilpotent element.
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Proof. Let o(w) = [[o where the product is taken over all the nonzero
eigenvalues of w; if the product is empty, i.e., = is nilpotent, put o(w) = 0.
Then o(w) € Q—indeed o(w) is invariant under the Galois group of the splitting
field of w. Further, since w € g(Zyx), the product formula implies that either
c(o(w)) > 1 or o(w) = 0.

Let x > 0 and assume that c(Ad(g)w) < « for some g € G. Using Lemma 2.6,
there exist some r € Z3 and a constant A = A(N, X) so that

A"le(Ad(@)w) " < [Ir Ad(@)wll, < Ac(Ad(g)w)'/**

forall v € X. Therefore, all the eigenvalues of » Ad(g)w have v -norm <y, x K HE

Since c(r) = 1 and Ad(g)w has the same eigenvalues as w, we get that
c(o(w)) > 1 cannot hold for small enough x; hence, w is nilpotent. O

6.2 Lemma. There exists some k' (N, X) with the following property. Let
V C g be a nonzero rational subspace, and let v € Ag(Zs) be a primitive integral
vector corresponding to V. Assume that there is some g € G so that

max c(Ax(u)gv) < p < K (N, ).
ueBy(e)

Then there exists a unipotent Q-group W < G so that

6.1) mazc)c(/lk(u)gyw) < pdim(W)/dim(V)

ueBy(e

where vwe "W g(Z5) is the primitive integer vector corresponding to Was in §2.3.

Proof. Let d = dim(G). We apply Theorem 5.3 on the image of G/I' in
SL4(Qs)/SL4(Zs) obtained via Ad, with A the Zy-submodule of Ad(g)g(Zs)
corresponding to V (or more precisely gV(Q)); let » denote the dimension of the
Q-subspace V (equivalently, r = rk(A)).

Let n(e) and Ay, < Ay, < --- < Ay, be as in that theorem. Then n(r) < p,

l/r‘

hence by concavity of —log #(e) we have that (1) < p Let s be maximal so

that % < p'/; clearly 1 < r < d — 1, and because — log 7(e) changes its slope
at s this implies that there is some 1 < j < ¢ for which k; = rk(Ay) = s.

We claim that (assuming x'(V, X) is small enough) the rational subspace of g
corresponding to rk(Ay,) is the Lie algebra of a unipotent Q-subgroup W < G. Let
us denote by vy the vector in ARG g(Z5) corresponding to this rational subspace.

By the choice of A k» We have

c(Liwgow) = c(Aw)Ay) = n(s) < p*/"

for all u € By(e); so (6.1) is satisfied.
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It remains to show that Ay, does indeed correspond to a rational nilpotent Lie
algebra. Fix an € > 0 (depending only on N) so that for a set of u € By(e) of
size > 0.5|By(e)| we can find a completion A} < --- < Ay_; (depending on u) of
the fixed partial flag Ay, < --- < Ay, so that for every i

(6.2) en(i) < c(A)Aj) Ln,x n(D).

Indeed, we will only use the existence of one such u.
Using (5.8), we can deduce from (6.2) that for every v € A;(u)A;;; which is

not in Ag(u)A;
c(Ar()Aiy)  ni+1)

c(Ak(u)Aj) n(i)
(since € depends only on N, we absorbed it in the implicit constant).

c(v) >

Moreover, by induction one easily shows that we can pick v; € A (1) A; (in par-

ticular, v; € Ad(Ax(1)g)g(Zsx)) sothat oy, . . ., v; generate A, (1) A; and c(v;) K ng@l) .

We conclude that there is some A depending only on N and X so that if
v € Ax(u)A; but not in A;(u)A;_; then c(v) > % and c(v;) < ;;Eﬁ?)'
Recall that for i < s we have that % < p'r. As c([z,7]) <K c(x)e(?), it

follows that if (N, X) (hence also p) is small enough, for i < i/ < s we have

that c([v;, v7]) is so small it forces [v;, vy] to belong to A;_;.

It follows that Ay, is closed under [-, -]. Since by Lemma 6.1 if (N, X) is
small enough, all the v; for i < s = k; are nilpotent, it follows that all v € Ay, are
nilpotent. Hence Ay, corresponds to the Lie algebra of a unipotent Q-subgroup
of G. O

6.3 Theorem. There exists a constant F depending on N and a constant E
depending on N, #X and polynomialy on ht(G) and the primes in X so that for any
g€G, k>1,andany0 < n < 1/2 at least one of the following holds:

(D
[{u € Bu(e) : 24wl & X} < En''".

(2) There exists a unipotent Q-subgroup W of height ht(W) < E|g|" n'/F so that
(6.3) crw(Zawg)) < En'/" for all u € By(e).
Moreover, if we put M = My, then M # G,
ht(M) < Elgl"n'"/",

and we have:
(a) For all u € By(e) we have

c(mm(A(w)g)) < Elgl"n'/".
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(b) For all u € By(e) we have

max ||z A (Al < Elgl"n'/"e ™",
zeby

Proof. We may assume 5 < «'(V, X) with «/(N, £) as in Lemma 6.2 since
otherwise, for a sufficiently large implicit constant, alternative (1) in the statement
of this theorem becomes vacuous.

Apply Theorem 5.2. Then either alternative (1) in the theorem holds, or there
exists some primitive integral vector » € A"g(Zyx) so that

max c(Ax(u)gv) < 7.
ueBy(e)

By Lemma 6.2, we conclude that there is some unipotent Q-group W < G so
that

(6.4) max c(x(w)gow) <K n"" "
ueBy(e)
Applying (6.4) with u = e we get that ht(W) < |g]*#4™™)/" Let M be as in
(2) in the statement of this theorem. Then ht(M) < ht(W)* < |g|*#*, see (4.2).
Moreover, if # is small enough, then (6.4) (say for u = ¢) implies that

c(gow) < 1/2.

As c(oy) > 1 this means that g does not fix » and so (since G is of class-JH, hence
fixes vy for any normal subgroup H <1 G) the group W is not a normal subgroup
of G. In particular, M # G.
Applying Proposition 5.8 for H = W, we have that parts (a) and (b) in (2) of
the statement of the theorem hold, concluding the proof of this theorem. O
Theorem 6.3 allows us to give a new, and arguably more elementary, proof to
the main result of [16] (though the main ingredients are similar):

6.4 Corollary. Suppose G is semisimple, and g € G is such that
(6.5) l{u € By(e) : Lu(u)gl & X,}| > En''*  for infinitely many k.
Then Ug C gP(Qy) for some parabolic proper Q-subgroup of G.

6.5 Lemma. Assume G is semisimple. Let W C g be a rational subspace
which generates a unipotent subalgebra. There exists a Q-parabolic subgroup
P(W) so that ht(P(W)) < ht(W)* and W C Lie(R,(P(W)).
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Proof. Let W be the algebra generated by W and let Uy = {exp(W)}. Let U,
denote the corresponding algebraic group. Define inductively U; = R,(Ng(U;-1)).
Then

U; C N(}(Ui_l) and U,_; Cc U,.

This process terminates after d < dim G number of steps and gives a unipotent
subgroup U, so that U; = R,(Ng(U,)). Therefore, N¢(Uy) is a parabolic subgroup,
see [8]; the claim holds with P(W) = Ng(Uy,). [l

Proof of Corollary 6.4. Suppose (6.5) holds along some sequence, say
€1, €, ... of ks (to avoid confusion with k; of Theorem 5.3 we use £ rather than k).
Then by Theorem 6.3 there exists for every j a unipotent (Q-subgroup W; and
M; = My, with M; # G so that the heights of W; and M; are bounded uniformly
in j and so that

(6.6) max ||z A nu(g)ll < Elgl™n'Te=/".

z€By
Since there are only finitely many QQ-subgroups are of a given height, passing to
a subsequence if necessary, we may assume that W; = W and M; = M for all j,
hence from (6.6) it follows that z A 7,,(g) = 0 for all z € By, hence Ug C gM(Qy).
By Lemma 6.5, M is contained in some nontrivial QQ-parabolic subgroup P < G
(indeed, with ht(P) < |g|*). O

7 Proof of Theorem 3.2

For every I'-invariant subcollection ¥ c H, ¢ € R*, and ¢ : R* — (0, 1), let
Exc(e, t, F) be the set

Exc(e, t, F) = {u € By(e) : Ax(u)gl is not (¢, ¢, F)-Diophantine}.

For every € € (0, 1), we let € denote the constant function € : s — €. For every
1 < r < dimG, we let &, denote the collection of class-JH subgroups of G of
dimension < r. For notational simplicity, let Fo = ().

The bulk of the proof of Theorem 3.2 is the following estimate:

7.1 Lemma. There are A, A7 > 2, and D > 1 depending on N, and
0 < cg < 1 depending on N, #%, and polynomially on the primes in X so that the
following holds. For1 <r <dimG and n, f, 7 € (0, 1), n € R* with

(7.1) ntA < co - (tfe"EG Mo

at least one of the following holds:
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(1) |(Exc(y, n, F)\Exc(y, 0, Fr—1)) N {u € By(e) : (gl € X.}| < BYP for
n' =As(n+log(1/7) +log(1/p) +logEg), o =é" 54,

or
(2) for some H of dimension r:
(a) Forall u € By(e) we have

cin(Aa(wg)) < p'e".

(b) For all u € By(e) we have
max ||z A qu(Aw)ll < 7'/,
ZEBU

Proof. Recall from §2.9 the definition

B. (0, 6>:{ S retinds < 5}

z€By

so that By (e) := exp(By(0, 1)).
We will cover the set

log(Exc(z, n, F,)) C B = B,(0, 1)

by a collection of balls € = {B; = By(0, p;) + u}ie; and for each such ball attach a
class-H group H; € &, so that:

(D) > IBil K 1.
(€2) Forevery u € B; and u = exp(u)

(7.2) o(nu,(Lw)g)) < 1",
(7.3) max ||z A 7, (Mgl < 7',

(E3) For every i € I, for some u € B;, equality holds in at least one of (7.2) or
(7.3).
More precisely, we will try to construct a cover € with these properties, and if
we fail this will establish that part (2) of Lemma 7.1 holds.
Assuming we succeed, we will show that these properties imply, for a suitable
choice of constants A, A7, k, that for n’, ' as above

(Exc(n, n, F,) \ Exc(yy', n', F,—1)) N {u € By(e) : Li(w)gl € X;}
C U{u € exp(B;) : Ax(u)g satisfies (7.2) and (7.3)'}

iel

(7.4)
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where (7.2) and (7.3)" denote inequalities (7.2) and (7.3) but with ¢” and # instead
of f~'¢" and 5'/?, respectively. Once (7.4) is established, we get from Lemma 5.5
that

|(Exc(n, n, F,) \ Exc(y', ', F,—1)) N {u € By(e) : Ax(u)gl € X}
< max(;yl/z, ﬂ)l/D_

The desired estimate in part (1) follows from this bound and (7.1).

The construction of the open cover is straightforward. For every « € B, (0, 1)
for which u = exp(u) € Exc(y, n, F,), there is (by definition) a Q-group H, € H of
dimension < rsothat(7.2) and (7.3) hold (with H, replacing the yet undefined H;).

For each such u, let B(x) denote the set B(x) = B, (0, p,)+ u with p, chosen to be
as small as possible so that for some v € B(u) either c(yy, (Ax(exp v)g)) = B le" or
maxs, ||z A 7, (A(expv)g)ll = #'/2. Unless the estimates (2)(a) and (2)(b) of the
statement of this theorem hold for some r-dimensional H € 3, for any « € B, (0, 1)
it holds that B(x) c B, (0, 3). Note that the estimate of (2)(a) together with (2.3)
gives that ht(H) < |g|*e?".

Assuming there is no such H, the Vitali covering argument allows us to find a
subcollection € = {B; = B, (0, p;) + u};c; of {B(x)} so that the collection of smaller

balls {B(0, p;/3) + u;},; is a disjoint collection of subsets of B, (0, 3) but

iel
(7.5) |JBi O log(Exc(y, n, F,)).

iel
The resulting collection € clearly satisfies (E1)—(E3).

It remains to establish (7.4). Fix some u € Exc(7, n, F,) N X;. Then by (7.5)
there is an i € I so that u € exp(B;); put H; = H,.. By the definition of B; estimates
(7.2) and (7.3) hold, while by the definition of Exc(n, n, F,) there is an H € H of
dimension < r so that c(g(Ax(1)g)) < € and maxs,, ||z A ng(Ax(w)g)|l < 5. There
are now two possibilities: either H = H;, in which case u is contained in the set on
the right-hand side of (7.4), or H # H,.

Thus suppose that H # H;. By Lemma 2.8 there is a y € I so that

|Ak(u)gy| < Egt™".
Since 7,14, (Ax(1)gy) = ne(Ar(u)g), we have

c(n((ugy)) < p'e"

— 1 —1g.
max [ls A e CaGupgyl < g2 =R
U

Since H # H;, we have that H = (y"'Hy N y~'H;»)** is of dimension < r — 1.
Applying Lemma4.12 with € = n'/? and r = f~1e" we getthatif n < Eg St ™",
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the group H is nontrivial and

c(n(An)gy)) <K (Egp 't e"yhe,
r%e:/x ||z A r]ﬁ(/lk(u)gy)” < (E(;ﬂ_lf_le")Amr]l/A”_

Therefore (in view of our convention regarding implicit constants, and recalling
that Eg = Eg ht(G)) we have that u € Exc(y/, n’, F,_;) for

n' =As(n+log(1/p) +log(1/7) +log Eg)
and 5/ = " y'/Av, O
Proof of Theorem 3.2. We need to estimate the size of the set
Bad = {u € By(e) : Lk(u)gl” & X,, oris not (g, )-Diophantine}.
Set
Bad, = {u € By(e) : Lx(u)gl” € X,},
Badgx. = {u € By(e) : Ax(u)gT is not (g, r)-Diophantine but is in X, }.

Clearly Bad = Bad,) U Badgxc-
We can bound the size of Bad, using Theorem 6.3, obtaining that

(7.6) |Bad, | < En'/*
unless there exists a group M # G,
he(M) < Elgl"n"/",
so that for all u € By(e)
cOm(Axw)g)) < Elgl"n"'",

max ||z A gyl I < Elgl”n' e,

zeby
This clearly implies that (2) of Theorem 3.2 holds (if we choose A large enough).

Assume therefore for the remainder of the proof that (7.6) holds. Letd = dim G.
It follows from Definition 3.1 that in the notations of Lemma 7.1
(7]

(7.7) Badgy C <U Exc(e(e)), £+1, F4_1) UExc(e(0), 1, ?d_1)> N (Bu(e)\Bad,).
=1

Fix £. To estimate | Exc(e(ef), € + 1, F,_1) N (By(e) \ Bad,)|, define iteratively,
starting with r =d — 1, ng_; = £ + 1 and 74_; = &(e). Proceed by induction to
define

ne_1 = A, + € +2log(1/n) +log Eg), n,_y =e"'nt/A7.
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Then
| Exc(e(e’),f + 1, Faima) N (Bu(e) \ Bad,)|

(7.8) -1
< D IExc(y, ny, T\ (Exc(—1, -1, Fr-1)) N (Bu(e) \ Bad,)|.

r=1

We want to apply Lemma 7.1 (with 7 = 5 and B = ne~¢ where 7 is as in this
theorem). In order to apply Lemma 7.1, our choice of parameters needs to satisfy
condition (7.1), with the critical case being that of » = 1. In this case (7.1) becomes

(79) n}/An <cp- (l’]ze_fe_mEN'(_}l)Am.

Iteratively working through the constants, there are Ajg > A6, Aj9 > Ay, easily
explicated in terms of d and A and A7 so that

A
oM < <2E(;€

Ag
2n \1/A
< 2_5) . om < eMe(e)!
n-e

Then assuming (3.3) with A large enough and suitable choice of constant £; we
can ensure that 7; < e(e)!/?41° and that (7.9) holds.
By Lemma 7.1 and (3.3) (for A large enough), for every r

|Exc(rs 1> Fr) \ EXCOl—15 2r—1, Fr1))N(Bue) \ Bad,)|

(7.10)
& y'/Pe=t/P

unless for some H of dimension r, for all # € By(e) and some constant F depending
only on N and E/ depending polynomially on £¢ and on N,

(7.11) cnu(2xw)g)) < '™ < Epe™n",
(7.12) max ||z A nu(A)ll < 1% < Ere " a(eh)".
zeby

If equations (7.11) and (7.12) hold for all u € By (e), there are two cases. Firstly,
it may happen that H < G in which case

ht(H) = c(7a(A(u)g)) < Eje™ n7".

Then as we assumed &(s) < #*s™ /E; (for the constants A and E; of the theorem
we are proving, which are yet to be fixed) if A was chosen large enough, by (7.12)

(7.13) max ||z A (2]l < e
ze€By

For a given H, the value of ¢ has to be large enough so that (7.11) holds, namely

e’ > (he(H)n" /ED'F,
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SO

max ||z A (ARl < et/ n/E7)'20
ze€By

and (3) of the statement of Theorem 3.2 is satisfied.

If equations (7.11) and (7.12) hold for all u € By(e), but H is not a normal
subgroup of G we apply Proposition 5.8 and conclude that M = My satisfies for
all u € By(e)

cm(n(w)g)) < Eg e n™*

* *

7.14 s
(7.19) max |1z A (0Pl < Eg*en e
z€By

kD

(The dependence of the upper bounds in (7.14) on |g| can be eliminated as in the
proof of Proposition 5.8 by using the fact that by (7.6) for most u € By (e) there is
ay, € I' sothat |Ax(u)gy.] < n~*.) In this case, (2) of Theorem 3.2 holds.

The only remaining case is if (7.10) holds for every r and ¢ (as well as
the analogous estimates for Exc(e(0), 1, F4—1), for which we omit the details,
but is handled similarly), in which case it follows from (7.7) and (7.8) that
|Badgx.| < #'/P, establishing (1) of Theorem 3.2. O

Let us record the following corollary of the proofs of Lemma 7.1 and Theo-
rem 3.2.

7.2 Corollary. Let the notation be as in Theorem 3.2. In particular, A, D
and Ey are as in loc. cit. Let g € G, t > 0,k > 1,and 0 < 5 < 1/2. Assume

0 <e<nye™/E,.
Suppose there exists
Exc, C {u € By(e) : A(w)gl’ € X,;}

with | Exc, | > En'/P so that and for every u € Exc, there is a Q-group H, € H
of dimension < r satisfying both of the following

c(nu,(A)g) < ¢

max lz A g, (L)@l < e.
U

Then Theorem 3.2(2) holds with a subgroup H € H which is also contained
in yH,y~! for some u € Exc, and some y € T.
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8 Some corollaries of Theorem 3.2

In this section we discuss some of the consequences of Theorem 3.2. Recall that
for any T > 0, we put

@8.1) o(T)=min({1}U{|lzA vyl : He H,H1G,ht(H) < T, {1} #H # G}).

8.1 Theorem. Let A, D, and E; be as in Theorem 3.2. There exists some ¥
depending only on N so that the following holds. Let 0 < n < 1/2. Let {x,,} be a
sequence in X and let k,, — 00 be a sequence of natural numbers. For each m let
V,, C By(e) be a measurable set with measure > YE1n'/P. Let

Y= Uk, 0)x - 1w € V).

>1m>¢

Then exactly one of the following holds.
(1) Y contains an e-Diophantine point for

e(s) = (s~ a(E{n~"s™) ) 2E0)".
(2) There exists
(a) a finite collection {(H;,L;) : 1 <i < £} Cc H x R*, and
(b) a countable (possibly finite) collection
W={(W;,R;,rp):jeJ} CHxR" xR"
where W; is a non-normal unipotent subgroup for all j € J, and r; — 0
so that if we put
Yi={g € Ng(U, H)) : c(nu,(g)) < L}T/T

and

Zj={g € Ng(U, Mw,) : c(nmy, (8)) < R; &c(nw;(g)) < i}/ T,

then

re (UnU(Uz)

=

This theorem implies Theorem 1.5 since each Z; is contained in
{g € No(U, My;) : c(n1my, () < Rj} T'/ T,

and as r; — O for any f only finitely many of the Z; can interset Xz. Recall that
for every i the sets Y; above are closed subsets of X (see Corollary 4.10.1), and the
same proof gives that the sets Z; are closed as well.

We first prove a special case of Theorem 8.1.
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8.2 Lemma. Let A, D, and E; be as in Theorem 3.2. There exists some
depending only on N so that the following holds. Let 0 < 5 < 1/2 and let t € R*.
Let {x,,} be a sequence in X and let k,, — 00 be a sequence of natural numbers.
For each mlet V,, C By(e) be a measurable set with measure > ﬁElnl/D. Let

Y= Uk, @)% 1 € V).

>1m>¢C

Then at least one of the following holds.
(1) Y N X, contains an (&, t)-Diophantine point for

e(s) = (ns o (Ef =) )2EDA.

(2) There exists
(a) a finite collection {(H;,L;) : 1 <i < £} Cc H x R*, and
(b) a countable (possibly finite) collection

W={(W;,R;,rp):jeJ} CHxR" xR"

where W; is a non-normal unipotent subgroup for all j € J, and r; — 0
so that if we put

Y;={g e Ng(U, Hy) : c(nu,(g)) < L;}I'/T
and

Zj={g € No(U, Mw,) : c(nmy, (8)) < R; &c(nw;(g)) < i}/ T,

then
¢

e (UnU(U2)

We need the following lemma.

8.3 Lemma. Let E and F be as in Theorem 6.3. Let the notation be as in
Theorem 8.1. Then one of the following holds:

(1) There exists some By > 0 and subsequence m; — o0 so that
{u € By(e) : A, —1(w)xm, & Xp}| < EBYT,

forall p < Py, or
2) Y=0.
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Proof. In view of Theorem 6.3 it suffices to show that there exists some £
and a subsequence {m;} so that

{u (S BU(e) . ikmi_l(u)xmi} ﬂXﬁ/ ?{@

Indeed if this is established, then Theorem 6.3(2) cannot hold for any
n=p < B*/2E,x,, and k,,, — 1, hence Theorem 6.3(1) holds which implies part (1)
in this lemma with B, = g /2E.

Assume contrary to the above claim that for every f there exists some mg so
that for all m > myp

{u S BU(e) : lkm_l(u)xm} ﬂXﬁ = @

Then by Theorem 6.3 applied with # = f and the point x,, = h,,I', we thus get that
there exists a unipotent Q-subgroup W which is not normal in G so that

c(nw (A, —1(why) < EBYF forall u € By(e);
see (6.3), also Lemma 6.2. This and Lemma 5.5 imply that
(8.2) c(nw(Ar, Why)) < E'BYE for all u € By(e).
Therefore, we get that
(8.3) { Ak, @)Xy 1 u € By(e)} N Xppr =0 forall m > mg.

Hence the claim in part (2) holds. Ol

Proof of Lemma 8.2. The proof is based on applying Theorem 3.2 to the
pieces of the orbits
{ Ak, @)Xy 1 u € Vp,}.

We show that Theorem 3.2(3) cannot hold for the choice of &€ we made in the
lemma. Further, we show that if there are infinitely many m so that Theorem 3.2(1)
holds, then part (1) in the lemma holds. In consequence, we are reduced to the
case that for all but finitely many m, Theorem 3.2(2) holds. In this case we use
Lemma 4.10 to conclude that part (2) above holds.

‘We begin by replacing x,,, with a possibly different point in the orbit which is
chosen to have a representative of a controlled size.

Assuming Y # () and repeatedly applying Lemma 8.3, we may find natural
numbers {n; : i € I} with |log o] < n; <np < --- so that if we put

Jii={m e N\Ji_s : [{u € By(e) : Ax,—1(w)xy & Xo-n| < E27"/T},

for all i € I and Joy = (), then the following hold:
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e foralli € I, J; is an infinite set, and
e for every x € Y, there exists an i € I, a sequence m, — o0 in J;, and for
any m, there is some um, € By(e) so that

/1k (ump)xm,7 — X.

mp

We remark that by Lemma 8.3 if Y = (3, then I # (J, but it may well be finite: for
instance, if {x,,} is a bounded sequence, then we may choose n; large enough so
that [ = {1}.

Recall the constants Eg and F from Lemma 2.8. For every i € I and m € J; fix
some g,, € G so that

(8.4) lgm| < E2™F = T;

and g, I" = A, —1 (U)X € Xo-» for some u,, € By(e).
Recall also from (2.11) that for some x > 0 we have

(8.5 Abey=r(Bu(€) Ak, —1 () C A, (Bu(e)).

Let
¥ =2|By(e)|/|A-(Bu(e))].

Apply Theorem 3.2 with g,,,, k., — k, 1, t, and
(8.6) e(s) = (ns™ (B 5™ /2B,

note that ¢ satisfies the condition in (3.3).

We first argue that Theorem 3.2(3) cannot hold. Indeed, assume contrary
to this claim that there exists some H <1 G satisfying Theorem 3.2(3). That is:
ht(H) < E,(e'n~ )" and

max ||z A ol| < e(ht(H)'Ay/Ep)'A.
ZG':BU
In view of (8.6) we thus get that
max llz A o]l < ht(H)™Y4o(ht(H))/2 < o(ht(H)).
ze€By

However, this contradicts the definition of o, see (8.1).
Assume now that the conclusion in Theorem 3.2(1) holds for a subsequence
m; — oo. Then, since

Aty —c(Bu(€)) Ak, —1(um;) C Ay, (Bu(e)),
|2k, —<(Bu(eD|/| 4k, (Bu(e))| > 2/9, and |Vy, | > YE5'/P, we have that

{ 2k, WX, 2 1 € Vi) N {x € X, 1 x is (¢, 1)-Diophantine} # ()
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for all m;. Hence Y N {x € X, : xis (g, 1)-Diophantine} # () and part (1) in the
lemma holds.

Altogether, we are reduced to the case that Theorem 3.2(2) holds for all but
finitely many m. Dropping the first few terms, which does not affect Y, we assume
that Theorem 3.2(2) holds for all m, or more precisely that Theorem 3.2(2) holds
for g, km — x, 77, and (g, #). In particular, we have the following: For every m € J,
there exists a nontrivial proper subgroup H,, € 3 with

ht(H,,) < (Elgml* + E1e™)n™ < (ET} + E1eM)n™ = L,

so that the following hold:
(1)1 Forall u € By(e) we have

C(yle(ikm—K(u)gm)) < L.
(1)1 Forevery u € By(e) we have

—k D
max ||z A an,(/lkn,—K(u)gm)” < Le e/ .
z€By

LetF={(H,L): ht(H) < L}. In view of (4.1), JF is a finite family.

Letnow i € I and i > 2—we note again that it is possible that / = { 1} and this
case is empty.

Arguing as in Lemma 8.3, see in particular (8.3), for all m € J; we have

{ Ak, (W)X 1 u € By(e)y N Xy, =0,
where 0; = E'27"-1/F This, in view of (8.5), implies that
(8.7) {Ak—rc()gmI 1 u € By(e)} N Xy, = 0.

Therefore, by Theorem 6.3, for every m € J; there exists some unipotent sub-
group W,,, with
ht(W,,) < ETF}/F =: s;

so that
(8.8) c(nw, G, —c)g)) < EOVF =:s; forall u € By(e).
Moreover, if we put M,, = My, , then M,,, # G,

ht(M,,) < S,

and the following hold:
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(1); For all u € By(e) we have
c(m(Ak,—(1)g)) < Si.
(1); For all u € By(e) we have
max 2 A Ak, ()N < Sie™*m*/E.
Let
Ei={(W,S;,s;): ht(W) < §;, W € H is unipotent and not normal}.

Then &; is a finite family for each i.

We now show that the claim in part (2) holds with ¥ and &;, i > 2. Let
x =gI' € Y. Then there exists an i € I and a sequence m, — 00 in J; so that the
following holds. For any m, there is some u,,, € V,,, so that

Ak

mp

(um,,)gmpr — gl

Assume first that i = 1. Then passing to a subsequence we may assume that (7);
and (1); hold with H,,, = H for all p. Hence by Lemma 4.10 we have

g €{g € No(U,My) : c(nu(g")) < L}T.

Similarly, if i > 2 we may pass to a subsequence and assume that W, = W,
for all p. One then argues as in Lemma 4.10 and gets that

g €{g' € No(U, M) : c(m,, (&) < Si, c(nw(g) < si}.
The proof is complete. O

Proof of Theorem 8.1. Let0 < # < 1/2 and define ¢ as in part (1).
Recall from Definition 3.1 that

{x € X : xis e-Diophantine} = ﬂ{x € X : x is (&, t)-Diophantine}.
t

Moreover, {x € X, : xis (g, 1)-Diophantine} is a nested family of compact sets.
Therefore, if Lemma 8.2(1) holds for all #, then Theorem 8.1(1) holds. Therefore,
we may assume there exists some 7 so that Lemma 8.2(2) holds. This implies that
Theorem 8.1(2) holds and completes the proof. U

We now state and prove an analogue of Theorem 1.1 in the more general
X -arithmetic setting.
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8.4 Theorem. Let o > 0. Let {H; : 1 < i < r} C H be a finite subset
consisting of proper subgroups, and for each 1 < i < r let C; C Ng(U, H;) be
a compact subset. There exists an open neighborhood O = O(a, {H;}, {C;}) so
that X \ O is compact and disjoint from J;C;I" /T so that the following holds. For
every x € G(U) there exists some kg = ko(a, { H;}, { C;}, x) so that for all k > ko we
have

[{u € By(e) : Ax(u)x € O}] < a

Proof. Let s = (a/E;)” where D and E; are as in Theorem 3.2.
Let x € G(U) and let g € G be so that x = gI'. Define

(8.9) e(s) = (ps Lo (Ef =45 )2ED)A

where o(T) is defined as in (8.1).
Let r € R* be so that ht(H;) < ¢’ and c(yy,(h)) < € forall 1 <i < rand all
h € C;. We will show that the theorem holds with

O={xeX:x¢X,orxisnot (g, t)-Diophantine}.

First note that for any i and any & € C; we have c(#y,(h)) < ¢’ and z A ny,(h) =0
for all z € By. Therefore,
U,C;I'/T c 0.

We claim there exists some kq so that for all k& > ky, Theorem 3.2(1) holds
for g, k, and (e, t). First note that this claim in view of the assertion in Theo-
rem 3.2(1) implies that

{ueB: iuxe O} <En'P=a

and the theorem follows.

Let us now prove the claim. Assume contrary to the claim that Theorem 3.2(2)
or (3) holds for g, asequence k,, — 00, and (¢, t). We first show that Theorem 3.2(3)
cannot hold. Indeed, if Theorem 3.2(3) holds, then there is some H << G with
ht(H) < E ('~ )" so that

max ||z A oyl < Evy~ et )t /B,
zeBy

In view of (8.9) we thus get that
max ||z A o] < e(ht(H)HA5(ht(H))/2 < o(ht(H)).
z€ U

This contradicts the definition of ¢ in (8.1).
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Hence we may reduce to the case that Theorem 3.2(2) holds for g, k, — oo,
and (e, 1). Let
L= (E|g|* + E\e™)n~™.

Then in view of Theorem 3.2(2), for every n there exists a proper subgroup H,, €
with ht(H,,) < L so that for all u € By(e) we have

max ||z A np, (2, W)l < e™/PL.
ZEBU

Since there are only finitely many subgroups H € J with ht(H) < L, see (4.1),
passing to a subsequence we assume H,, = H for all n. Hence

max ||z A gy (A, W)l < e™/PL,
z€By
Applying this with u# = e and passing to the limit we get that
zAnp(g)=0 forall z € By.

This contradicts the fact that gI" € G(U) and completes the proof. ]

9 Friendly measures

In this section we discuss generalizations of our main theorems to the class of
friendly measures which were studied in [28], see §1.6 for the definition.
Let the notation be as in §1.2; in particular,

U ={u(®) =exp(tz) : t € R}

for some nilpotent element z € g with || z|| = 1.

In [28], an extension of Theorem 5.2 for £ = { oo} was presented where the
Haar measure on U is replaced by a (uniformly) friendly measure . While for
simplicity of notation we keep our treatment of friendly measures to this case,
Kleinbock and Tomanov wrote in [30] the X-arithmetic non-divergence results
also for the case of friendly measures. The only difference between the statement
of Theorem 5.2 and the analogous statement for uniformly friendly measures (other
than the obvious difference of how the size of subsets of A;(By) are measured)
is that the exponent 1/D of the theorem is allowed to depend on the doubling
constant for g. Theorem 5.3 also holds for uniformly friendly measures with the
same modification. We also note (and use below) that in view of [28, Prop. 7.33],
an analogue of Lemma 5.5 holds true for x in place of the Haar measure on U
(with a different ¢ and exponent).

Repeating the proof of Theorem 6.3 but with the (uniformly) friendly versions
of Theorems 5.2 and 5.3, we obtain the following:
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9.1 Theorem. Let u be a uniformly friendly measure on R. There exists
a constant F depending on N and u so that for any g € G, k > 1, and any
0 < n < 1/2 small enough at least one of the following holds:
(D
p(re[=1,1]: ungl & X)) < n'/*.

(2) There exists a unipotent Q-subgroup W so that
I(w(u(e*ng)ll < n'/* forallt e [—1, 1].
Moreover, if we put M = My, then M # G,
heVM) < [gI"n"/",

and we have:
(a) Forallt e [—1, 1] we have

Inm(ue D)l < g1 n'/".
(b) Forallt e [—1, 1] we have

max ||z A nu(ue DRIl < Igl"n' e,
z U

Similarly, the proof of Theorem 1.4 is easily adapted to the friendly case, giving:

9.2 Theorem. Let u be a uniformly friendly measure on R. There are con-
stants A, D depending only on N and u, and E| depending on N, G, T', and u so that
the following holds. Let g € G, k > 1, and 0 < n < 1/2. Assume ¢ : R* — (0, 1)
satisfies for any s € R* that

e(s) < s /Ey.

Then at least one of the following three possibilities holds:
(1) u(f€e1,11:u(e gl ¢ X, or u(e*E)gT is not (¢, t)-Diophantine}) < Eyn'/P.
(2) There exist a nontrivial proper subgroup H € H of

ht(H) < Ei(Jg|* +¢*)n ™"
so that the following hold for all £ € [—1, 1]

I na (O < Ei(lgl* + e*)n™,
Iz A (gl < Ere™P(g|* + ey,

where z is as in (1.1).
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(3) There exists a nontrivial proper normal subgroup H < G of
ht(H) < Ej e’y

so that
le Aol < Evp~e(he ) Ao JEDTA.
As a consequence Theorem 1.7 follows; see the proof of Theorem 8.1. We also
get the following analogues of Theorem 1.1 whose proof is mutatis mutandis the
same as the proof of Theorem 8.4.

9.3 Theorem. Let u be a uniformly friendly measure on R. Let n > 0. Let
(Hi:1<i<rjcH

be a finite subset consisting of proper subgroups, and for each 1 < i < r
let C; C Ng(U, H;) be a compact subset. There exists an open neighborhood
O = 0O(a, {H;}, {C;}) so that X\ O is compact and disjoint from U;C;I" /T so that the
following holds. For every x € G(U) there exists some ko = ko(u, n, { Hi}, { G}, x)
so that for all k > ko we have

u{te[—1,11: unx e O} < n.
Appendix A Proof of Theorem B

In this section we prove Theorem B. In qualitative form, this is proved by Greenberg
in [23] and [24]. We reproduce the argument here to make the estimates explicit.

Proof of Theorem B. Let C, denote the completion of the algebraic closure
of Q, for all p € Xy; as abstract fields, C and C,, for any p € Xy, are isomorphic.
Therefore, C™ in Effective Nullstellensatz theorem of §4.11 may be replaced by C}}
foranyp € X;.

As in [23, pp. 59-60] and [24, Steps 1 and 2] we begin with some reductions.

LetJ C Z[t,...,t,] be the ideal generated by {f;}, and let Y be the variety
defined by J in C}'.

Put J := JQI[z, ..., t,]. The radical and the primary decomposition of J
in Q[#,...,t,] can be computed, see [2, Chap. 8.7]; this computation uses

the Grobner basis and yields the following. There exists a computable con-
stant s = s(m, n, Dy) so that
e (VI i,
e /J =N%P; where P; is a prime ideal forall 1 <j < b < s, and
e P is generated by {f;; : 1 < ¢ < s} where the total degree of {fj} is
bounded by s and the logarithmic height of the numerators and denominators
of each f;  is controlled by sh.
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Moreover, by [21, Cor. 3.8], we may replace s with s* > s, which is again
computable and depends only on m, n, and Dy, so that the following holds. For
every 1 < j < b the ideal P; N Z[t, ..., t,] is generated by {gjx : 1 < k < s'};
furthermore, the total degree of {g;} is bounded by s” and for every j and k the
logarithmic height of g; ; is bounded by s’h.

Altogether, we may assume that J is a prime ideal, i.e., Y is Q-irreducible.

We now use induction on i := dim Y to prove the claim, see [23, Case 1, p. 60]
and [24, Step 3].

The base case is when u=—1, that is: when J contains a nonzero constant. In
this case we use the effective nullstellensatz theorem above and find some a € Z with

log |a| < (8Dp)*™~!(h + 8Dy log(8Dy))

where M = 2! so thata = Y, q/f;.

This implies the claim in the theorem when u = —1.

Assume now that Y is non-empty and that the theorem is established in dimen-
sions less than u. Let Jac be the Jacobian matrix of {f;} and let A be the system of
minors of order m — u taken from Jac. Since char(Q) = 0, the locus of common
zeros of { A, {f;}} is a proper Q-subvariety of Y. By inductive hypothesis, thus,
there exists some 4’ depending on m, n, and D which satisfies the claim in the
theorem for { A, {fi}}.

Forany 1 <a; <--- <opy—y < n,put

(a) = ((X], .. -aam—u)

and set fio) = {fa,5 - - - » fa,_.}- Let Y(o) be the variety defined by fi,). Let

C
Zy) = U L)
=1

where forall 1 < j < b, we have Z,); C Y(4), Z(y); is Q-irreducible with
dim Z(a),j =u,

and Zy,; #Y.

Let J); C Z[t1, ..., t,] be the ideal corresponding to Z, ;. Since Y, is
defined by f(,), a similar argument as above implies that there exists a computable
constant r = r(m, n, D) so that

e ¢ <r,and

e forevery 1 < j < c, there exists { gt : 1 < k < r}sothatJ,;is generated

by { g(a).j.x}, further, the total degree of { g(,) j,«} is bounded by r and for every j
and k the logarithmic height of g(,) j is controlled by rh
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Since Z,); # Y for all j, by inductive hypothesis, there exists 4, depending
on m, n, and Dy which satisfies the claim in the theorem for

Hewwjn s L <k <rh{fi:1<i<ni},

forall1 <j<ec.

Given (a) = (ay, ..., 0nm—y) and (B) = (B1, ..., fm—w) let A, s denote the
corresponding minor from Jac. By the implicit function theorem, if z € Y, is
such that A ) (5(z) # 0 for some (f), then z lies on exactly one component of Y,
moreover, that component has dimension u.

Let ¥ = ¥'(m, n, Dy) be so that the logarithmic height of { A, {f;}} is bounded
by r’h. Define

d:=2rd" + rZ )
(@)
‘We claim that the theorem holds with A{; = 4.
Let w = (wq, ..., w,) be as in the statement of the theorem. If either
(1) vp(Aa,py(w)) > 2¢ d’h for all (a) and (f), or
(2) v(g)jk(w)) > 2r¢{(’a)h for some (a), some j, and all &,
then we get the claim from the inductive hypothesis.
Therefore, we may assume that there are (o) and (f) so that

(Al) vp(A(a),(ﬁ)(w)) < 2r’c[/h,
and for every (¢) and every j there exists some k so that
(A.2) 0p(80)jk(W)) < 2rdph.

Now a suitable version of Hensel’s Lemma, see [24, Note 1], implies that there
exists some y € Z so that f(,)(y) = 0 and

(A.3) vp(y —w) > C, — 21 d'h.

The theorem follows if we show thaty € Y.
Let us recall that

(A.4) Cy > 4 d'h + 2r(max{ dy, : (O)h.

Then, (A.2), (A.3), and (A.4), imply that v,(g@),;(w)) = v,(gw®).ik(y)). In par-
ticular, y & Z; for all (0) and all j. Similarly, (A.1), (A.3), and (A.4) imply

that A(a),(ﬁ)(y) Z0.
Thus, the implicit function theorem implies that y belongs to Y. (|
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