
S-RFUP: Secure Remote Firmware
Update Protocol

Rakesh Podder1(B), Tyler Rios1, Indrajit Ray1, Presanna Raman2,
and Stefano Righi2

1 Colorado State University, Fort Collins, CO, USA
{rakesh.podder,tyler.rios,indrajit.ray}@colostate.edu

2 AMI US Holdings Inc., Duluth, GA, USA
{presannar,stefanor}@ami.com

Abstract. Traditional over-the-air (OTA) update mechanisms lack
security features. As a result, OTA firmware updates expose a device
to several threats including unauthorized update, introduction of mal-
ware in the firmware code and rollback of firmware to an vulnerable
older version. A handful of domain specific OTA firmware update pro-
tocols, especially in the automotive sector, have started incorporating
rudimentary security features; however, these are not always enough.
Moreover, a lack of standardization can lead to compatibility issues. In
this work, we introduce the Secure Remote Firmware Update Proto-
col (S-RFUP) for platform (We use the term “platform” to mean any
computer or hardware device and/or associated operating system, or a
virtual environment on which software can be installed and run. Source
NISTIR 7698, https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7698.
pdf) firmware updates that enhances security and operational integrity
across firmware devices during the update procedure. We build upon the
hardware root of trust functionality provided by the Project Cerberus to
perform secure attestation. With a goal of providing uniformity across a
multitude of platforms, we leverage industry standards such as Platform
Level Data Model (PLDM), Management Component Transport Proto-
col (MCTP), and well established cryptographic algorithms. Incorporat-
ing PLDM and MCTP reduces the management complexity and ensure
interoperability between different hardware and software components in
platform. We provide a security analysis of the proposed S-RFUP frame-
work and discuss its implementation, testing and validation results.

Keywords: PLDM · MCTP · Project Cerberus · Firmware Update ·
Hardware Root of Trust (HRoT)

1 Introduction

Firmware is a critical piece of software in all computing devices, serving as the
intermediary between the hardware functionality and the software operations
of these devices. Like any other software, firmware needs periodic updates to
c⃝ The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
V. T. Patil et al. (Eds.): ICISS 2024, LNCS 15416, pp. 42–62, 2025.
https://doi.org/10.1007/978-3-031-80020-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80020-7_3&domain=pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7698.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7698.pdf
https://doi.org/10.1007/978-3-031-80020-7_3

S-RFUP: Secure Remote Firmware Update Protocol 43

address vulnerabilities, enhance performance, and introduce new features. Tra-
ditionally, firmware updates had been conducted locally. However as devices
grow in complexity (think, cloud servers) and scale (think Internet of Things
(IoT)) significant challenges arise for local firmware updates, such as physical
access requirements, operational downtime, and logistical complexities.

Remote Firmware Update (RFU) is emerging as a viable solution, enabling
updates to be deployed over-the-air (OTA) [38], minimizing disruptions and elim-
inating the need for physical proximity. However, over-the-air (OTA) update
mechanisms, while convenient, are often targeted by attackers such as replay
attack [39], denial of services [23], legacy firmware update [41], tampering [42],
fake and malicious updates [2], and eavesdropping [20]; these attacks allow adver-
saries to tamper with the firmware, execute arbitrary code or roll back the
firmware version to expose prior vulnerabilities [8,37]. Recent vulnerabilities in
the update mechanisms of Jeep Cherokee [26], Samsung SmartThings Hub1, and
Asus Router2 highlight these concerns. Ensuring the security of RFU protects
the integrity of the firmware, maintains device functionality, and safeguards sen-
sitive information contained within these devices. This is particularly crucial in
industries where compromised firmware could lead to severe operational disrup-
tions.

In this paper, we describe our efforts to achieve high-level security and stan-
dardization in firmware updates across platforms. The proposed Secure Remote
Firmware Update Protocol (S-RFUP) systematizes the update process and
provides needed security features to protect against tampering, unauthorized
firmware rollback and intellectual property (IP) theft. S-RFUP ensures compat-
ibility across a diversity of devices, and reduces complexity, which, in turn, also
enhances the overall security posture by minimizing the inconsistencies that can
be exploited in an attack. S-RFUP leverages Project Cerberus’ paradigm of hard-
ware root of trust [21] to enable secure attestation, ensuring that all firmware
and software boot processes are verified and secure and making it an ideal foun-
dation for secure RFU. We integrate industry standards such as Platform Level
Data Model (PLDM), Management Component Transport Protocol (MCTP)
with Project Cerberus for standardizing remote management and monitoring of
firmware updates. The proposed S-RFUP framework leverages strong crypto-
graphic such as AES-256 and ECDH Key Exchange techniques to encrypt and
decrypt messages during communication between Update Agent and Firmware
Device.

The main contributions of this work are:

1. We present a novel framework (S-RFUP) that integrates industry standard
protocols (PLDM, MCTP) with a hardware root of trust (HRoT) to ensure
interoperable and secure RFU across multiple device platforms.

2. We extend Project Cerberus by introducing new libraries to handle PLDM
message construction, PLDM over MCTP binding, and encryption for an
end-to-end secure pipeline and standrization of RFU.

1 CVE-2018-3926: https://nvd.nist.gov/vuln/detail/CVE-2018-3926.
2 CVE-2021-3166: https://nvd.nist.gov/vuln/detail/CVE-2021-3166.

https://nvd.nist.gov/vuln/detail/CVE-2018-3926
https://nvd.nist.gov/vuln/detail/CVE-2021-3166

44 R. Podder et al.

3. We perform empirical evaluations and security analyses to validate the func-
tionality and effectiveness of the proposed protocol and demonstrate robust-
ness against known vulnerabilities, ensuring a secure firmware update process
respectively.

2 Related Works

Security researchers have demonstrated several concerns with conventional
remote BIOS and EFI/UEFI firmware updates [1,2,4,20,23,37,39,41,42]. In
the following, we discuss some of these works and limitations of proposed solu-
tions.

The integrity of the system BIOS is essential for the security and opera-
tional reliability of computer systems, especially for critical systems such as cloud
servers, healthcare devices etc. Unauthorized firmware modifications, including
malicious firmware updates and alterations, present serious risks [35]. These
unauthorized modifications can occur when attackers exploit vulnerabilities
or insufficient security practices during a remote firmware update process to
manipulate the BIOS, potentially introducing malware or Trojans that com-
promise data security, disrupt device functionality, or enable system hijack-
ing [3]. The threat landscape is further complicated by man-in-the-middle attacks
(MITM) [5] and supply chain attacks [27], which may intercept or tamper with
firmware updates or embed malware. Such attacks leverage the foundational level
operations of firmware, challenging both detection and mitigation efforts, and
pose ongoing security concerns [6,16]. Cui et al. [8] present a proof-of-concept
for printer malware that can perform network reconnaissance, extract data, and
spread to additional devices. The research points out the inadequacies in the
security of firmware update processes and the existence of vulnerabilities within
third-party libraries used in firmware.

The widespread adoption of non-secure protocols like HTTP further exposes
firmware update processes to potential MITM and backdoor exploits [4,34]. Psy-
coB0t [24] is a well known example of a worm infection during firmware update
of a router. Additionally, there have been cases where vulnerabilities in update
procedures are exploited to carry out firmware modification attacks [37]. Jack
using “jackpotting” [18] demonstrated that unauthorized firmware modification
can be done in ATM machines. Costin showcases the susceptibility of certain
Lexmark printers to memory inspection and arbitrary firmware modifications
by employing PostScript [7].

Both the academic community and the Internet Engineering Task Force
(IETF) are working on creating software update mechanisms for Class 1 and
Class 2 devices (Upkit [22,28]) and developing hot-patching techniques such
as RapidPatch [17], and Hera [30] that can be potentially used. However, the
emphasis in these protocols is on patching low capability devices and not nec-
essarily on the security of the same. There are some works by researchers on
designing secure firmware updates [9,19,20,29,36,40]. Falas et al. proposed a
Public PUF model [14] for secure firmware updates, but its dependency on high

S-RFUP: Secure Remote Firmware Update Protocol 45

computational resources and complex key management, limits its feasibility for
low-power IoT devices and present scalability and standardization challenges
in large-scale deployments. The OTA firmware update mechanism proposed by
Frisch et al. [15], requires manual intervention to update the framework version
and rebuild the firmware, potentially leading to higher latency in updates when
API changes occur. Also, the method is unable to verify the cryptographic sig-
nature before writing the firmware to flash, potentially allowing corrupted or
malicious updates to be partially written before being detected. Similarly, the
proposed Narrowband IoT (NB-IoT) as the wireless communication standard for
firmware updates by Mahfoudhi et al. [25], does not implement any support for
firmware authenticity and confidentiality, and thus can be susceptible to legacy
firmware update and MITM attacks. The current state-of-art protocols fails to
provide a high-level security with standardization in firmware updates across
diverse device ecosystem. Our proposed S-RFUP can provide firmware integrity,
and a streamlined and standardized operational functionality to secure sensitive
information during remote firmware update.

3 Background

3.1 Firmware Base Specifications

PLDM Base Specification [11] is a standardized protocol designed to facili-
tate efficient communication and management within platform management sub-
systems. The primary purpose of the PLDM Base Specification is to establish a
common protocol for monitoring and controlling various platform components,
such as sensors, firmware, and hardware subsystems. This includes inventory
management, event notifications, control functions, and data transfer operations.

Fig. 1. OpenBMC/libpldm library
Framework.

MCTP Base Specification [10] is a com-
prehensive communication model designed
to facilitate interactions between manage-
ment controllers and management devices
within a platform. MCTP establishes a stan-
dardized protocol that can be implemented
across various physical transport mediums,
enabling flexible and robust platform manage-
ment solutions. This protocol operates inde-
pendently of the underlying bus properties
and data-link layer messaging. This abstrac-
tion allows MCTP to be implemented over
different transport bindings such as PCIe,
SMBus/I2C, and potentially other mediums
like USB and RMII in the future.

PLDM over MCTP Binding Specifica-
tion [12] outlines how PLDM messages are transported over MCTP, establish-
ing a common format and ensuring interoperability between different hardware

46 R. Podder et al.

and software components within a platform management subsystem. The main
objective of the PLDM over MCTP Binding Specification is to establish the
message format and protocol requirements for transmitting PLDM messages via
the MCTP transport protocol.

We are using this specifications in our proposed S-RFUP framework to stan-
dardized and streamline the firmware update process.

3.2 PIT-Cerberus

Project Cerberus [21] is developed by Microsoft as a hardware root of trust
(HRoT) specifically for server platforms. It enables secure boot functionality
for device firmware, whether or not the devices inherently support secure boot.
Additionally, it offers a secure method to verify and attest to the firmware state
of the devices. We are using Project-Cerberus as a server-platform for Update
Agent (UA) and as a HRoT for Firmware Device (FD).

3.3 OpenBMC/libpldm

This library is part of the OpenBMC project, aimed at providing an open-source
firmware solution for baseboard management controllers (BMCs). The ‘libpldm’
deals with the encoding and decoding of PLDM messages. Figure 1 shows various
core module to facilitate tasks such as firmware updates, monitoring, and control
of hardware devices across different hardware platforms.

4 Threat Model

In this section, we delineate the threat model pertinent to the secure remote
firmware update protocol (S-RFUP).

4.1 Assumptions

For this work we made a number of assumptions. First, we assume the HRoT
processor is considered tamper-proof and trusted. The company is deemed trust-
worthy, with no insider threats, and securely programs the HRoT processor with
the PIT-Cerberus and related libraries and data. The Update Agent (UA) is hon-
est and not curious, ensuring the protection of any stored confidential informa-
tion against breaches of confidentiality and integrity. The company server used
by UA is considered a trusted zone, protected by Intrusion Detection Systems
(IDS) and Intrusion Prevention Systems (IPS), alongside strict security policies
and personnel and not a target for intrusion and denial-of-service attacks. Proto-
cols and cryptographic methods, the key size of Advanced Encryption Standard
(AES), prime modulus of Elliptic-curve cryptography (ECC), curve selection for
ECC, and the Digital Signature Algorithm (DSA), are carefully selected and
implemented in a secure environment (SCIF3) to resist physical tampering and
3 Sensitive Compartmented Information Facility.

S-RFUP: Secure Remote Firmware Update Protocol 47

side-channel attacks. The initial key establishment is completed before deploy-
ment and is not regarded as an issue. Encryption keys are generated with strong
randomness and installed in the firmware devices during the manufacturing pro-
cess.

4.2 Attacker Model

The primary target of the attacker is the communication channel between UA,
and FD during firmware updates. We adopt the Dolev-Yao attacker model [13],
where the attacker can eavesdrop, intercept, modify, or inject messages into the
communication channel. Replay attacks involve attackers delaying or re-sending
packets to mislead the FD or UA. Attackers might also inject false informa-
tion to disrupt ongoing services. An attacker impersonating (MITM attacks)
the UA or a legitimate FD could compromise firmware integrity or gain unau-
thorized access. The FD is vulnerable to physical tampering during transit, such
as replacing the HRoT with a malicious microcontroller or embedding a hard-
ware Trojan. To mitigate this, tamper-proof seals are assumed to protect the
device during shipment, alerting the Recipient if breached. This paper does not
consider scenarios involving physical tampering with the Firmware Device.

4.3 Desired Security Properties

The essential security properties required for network traffic within a secure
remote firmware update protocol include data integrity, data authentication,
data confidentiality, and data freshness.

– Data Integrity: Ensures that the firmware updates received by the Firmware
Device (FD) have not been tampered with.

– Data Authentication: Verifies the source and integrity of the firmware
update to ensure that the updates come from legitimate sources and prevent
unauthorized modifications.

– Data Confidentiality: Maintains the secrecy of firmware data by protecting
sensitive proprietary information from unauthorized access.

– Data Freshness: Guarantees that the firmware updates are recent.

By addressing these security properties, the protocol (S-RFUP) aims to pro-
vide a robust, secure, and reliable process for remote firmware updates.

5 Description of S-RFUP

The S-RFUP operates as a client-server model, as depicted in Fig. 2. The key
entities within this protocol include the Hardware Root of Trust (HRoT),
Firmware Devices (FD), Update Agent (UA), Sender, and Recipient. UA is
a function within S-RFUP framework, designed to identify firmware devices,
capable of executing a PLDM firmware update and to facilitate the transfer of
component images to these devices. HRoT is the tamper-proof micro-controller

48 R. Podder et al.

Fig. 2. High-level representation of S-RFUP framework.

that acts as the hardware root of trust. It is a critical component leveraging
the Project Cerberus embedded framework for Firmware Device. FD is a PLDM
endpoint (terminus) that comprises one or more processor elements that execute
firmware. The Sender is the manufacturer or company responsible for maintain-
ing the firmware and initiating firmware updates, while the Recipient is the end
user utilizing the firmware device with HRoT capabilities.

5.1 Proposed Approach

The proposed S-RFUP framework is divided into two main segments; 1) the
establishment of a secure channel, 2) the initiation of remote firmware update
process. Initially, UA and FD establish a connection and compute public and
private key pairs using Elliptic-curve Diffie-Hellman (ECDH) key agreement pro-
tocol [31,33]. UA generates an ECC (Elliptic Curve Cryptography) private key
(dU) - public key (qU) pair, where, qU = dU ×G. G is the base point of the chosen
elliptic curve. Then UA sends the public key (qU) to the FD. FD generates a
private key dF , computes a public key qF = dF ×G and an AES secret key S =
dF × qU . FD transmits its public key to the UA, which then computes the same
AES secret key S as S = dU × qF = dU × {dF ×G} = dF × {dU ×G} = dF × qU .

In the second segment, as illustrated in Fig. 3, UA initiates the firmware
updates, converting the firmware image into a Platform Level Data Model
payload (pldm message) using ‘OpenBMC/libplm’ library. The pldm message
is then transformed to a mctp message by the Project-Cerberus using Man-
agement Component Transport Protocol (MCTP) & S-RFUP. After that, the
mctp message is encrypted with AES encryption [32] schema (encData =
AESEncryption(mctp, S)) using a shared key (S) generated previously by UA,
before sending it to HRoT. HRoT, containing the Project Cerberus frame-
work (MCTP Protocol) with S-RFUP functionalities, decrypts it using AES
(mctp = AESEncryption(encData, S)) and converts the mctp to pldm mes-
sage, before sending it to FD. Based on the request data (pldm message) FD
generates an response data using ‘libpldm’ and sends it back to UA.

S-RFUP: Secure Remote Firmware Update Protocol 49

Fig. 3. Sequence diagram of S-RFUP firmware update process.

Fig. 4. PLDM firmware update package.

Similarly, if FD has request data, it
follows the same encoding, encrypting,
transferring, decrypting, and decoding
steps, ultimately returning the response
data to UA. This process will continue
till all the firmware components (includ-
ing firmware package header and pay-
load) transfer to FD and FD activates
the firmware updates.

5.2 PLDM Firmware Update
Package

The firmware update package is designed
to work in conjunction with PLDM Firmware Update commands and contains
several essential elements. These elements include a firmware package header
that outlines the update package’s contents as illustrated in Fig. 4. Specifically,
the header provides a description of the overall packaging version and the date it

50 R. Podder et al.

was created. It also includes device identifier records, which specify the firmware
devices (FDs) targeted for the update. Further, the header details the package
contents, listing each component image’s classification, offset, size, and version.
Additionally, the package incorporates a checksum to ensure the integrity of the
data.

Within the S-RFUP framework, three primary types of PLDM commands
facilitate the transfer of firmware package headers and component images during
updates. These include: {Inventory: QueryDeviceIdentifiers, GetFirmwareParame-
ters},{Update: RequestUpdate, PassComponentTable, UpdateComponent, Trans-
ferComplete, VerifyComplete, ApplyComplete, ActivateFirmware, GetStatus, Can-
celUpdateComponent, CancelUpdate}, and {Transfer: RequestFirmwareData, Get-
PackageData, GetDeviceMetaData, GetMetaData}. These commands utilize the
‘OpenBMC/libpldm’ library for efficient serialization and de-serialization of the
PLDM messages.

6 Implementation of S-RFUP

In this section we discussed the implementation and execution flow of S-RFUP
within the Project Cerberus framework. It outlines the libraries, procedural
steps, and interactions between various components involved in the firmware
update process. Figure 5 illustrates a generic mctp message that has encapsu-
lated a pldm message. This pldm message is generated by UA using ‘libpldm’
library. For each PLDM command described in Sect. 5.2, the fields of pldm mes-
sage will be populated with different values. Once the pldm message is generated
it will be encoded to mctp message shown in Fig. 5 before encrypting or decrypt-
ing. For this purpose, we developed the following core libraries that could handle
the firmware update process (Table 1).

Fig. 5. Generic MCTP message encoded a generic PLDM message.

S-RFUP: Secure Remote Firmware Update Protocol 51

6.1 S-RFUP Core Libraries

Table 1. Description of S-RFUP core libraries.

Source Function/API

New S-RFUP Libraries

pldm fwup crypto keyGeneration(), keyExachange(), secretKey()

AESEncryption(), AESDecryption(), generateDSA()

cmd interface pldm cmd interface pldm process request()

,cmd interface pldm process response()

pldm fwup handler pldm fwup handler run update ua(),

pldm fwup handler start update fd()

pldm fwup manager pldm fwup manager init(), pldm fwup manager deinit().

pldm fwup protocol commands pldm fwup process query device identifiers request(),

pldm fwup prcocess get firmware parameters request(),

pldm fwup process request update request(),

pldm fwup process request update response(), ...,

pldm fwup generate activate firmware request(),

pldm fwup generate activate firmware response()

pldm fwup protocol struct pldm fwup protocol version string, struct

pldm fwup fup component image entry, struct

pldm fwup protocol component parameter entry

Modified Project Cerberus Libraries

core/mctp mctp interface process packet()

core/projects/linux platform config()

core/tools/testing setup fwup flash virtual disk()

The S-RFUP architecture employs a modular approach to firmware updates. The
core modules of S-RFUP and their interaction with various external framework
such as Project Cerberus and ‘OpenBMC/libplm’, is illustrated in Fig. 6.

PLDM FWUP Crypto. The ‘pldm fwup crypto’ supports the encryp-
tion and decryption of messages, securing communications across the net-
work. It utilised the aes.h & ecc.h to generate ECDH key pair and AES
encryption from Project Cerberus. A Lamport timestamp is incorporated
within AESEncryption() & AESDecryption() before encrypting/decrypting
the mctp message. We are also using ECC curve to generate a digital sig-
nature (DSA) to sign each encrypted mctp message for UA and FD. The
signature verification ecc.h file helps to verify the figital signatures of
UA/FD during update process.

PLDM Command Interface. Project Cerberus (or Cerberus) defines
a generic command interface called ‘cmd interface’ for processing requests
and responses in a command protocol. The ‘cmd interface pldm’ extends
‘cmd interface’ to handle PLDM specific commands as shown in Table 1. It
inherits the properties and function pointers from ‘cmd interface’ which are then
defined during its initialization. Currently ‘cmd interface pldm’ only processes
PLDM firmware update command types, but can be further extended to process
others such as PLDM for FRU commands.

52 R. Podder et al.

Fig. 6. S-RFUP library framework and interaction with Project Cerberus & libpldm.

Command Interfaces and MCTP: Cerberus uses MCTP as the protocol for which
messages are exchanged throughout a Cerberus managed subsystem. MCTP
is a flexible standard that can encapsulate other protocols such as Cerberus’s
own command protocol, SPDM. We modified the mctp interface process
packet() function to handle PLDM command. During the processing of MCTP
packets Cerberus will interpret the MCTP header and extract the message type
field which descries the type of payload that packet is carrying. The payload is
then passed along to its respective command interface for further processing.

PLDM FWUP Manager. The ‘pldm fwup manager ’ is a library for managing
the state of a PLDM-based firmware update and allowing other parts of the S-
RFUP framework to modify or view the information present in the firmware
update commands. An instance of it is passed along to the ‘cmd interface
pldm’ so that during the processing of firmware update commands the informa-
tion needed to populate or save the fields of the commands can be accomplished.

PLDM FWUP Protocol Commands. The ‘pldm fwup protocol commands’
contains functions which perform the actual decoding and encoding of PLDM
commands saving information to or populating message fields with information
from the PLDM FWUP manager. For example, ‘pldm fwup process request
update request()’ function is used to process incoming RequestUpdate PLDM
commands saving information in the request data to the manager and extracting
the manager’s context to generate a RequestUpdate response.

PLDM FWUP Handler. The ‘pldm fwup handler ’ is the main driver code
of S-RFUP. The handler mainly calls the API of the PLDM FWUP proto-
col commands and the MCTP interface API to generate, send, receive, pro-
cess, and respond to PLDM firmware update commands. The most impor-
tant fact is that at any time S-RFUP can be operating as either UA, per-
forming firmware update on another device it manages or as the actual FD
being updated. As such the ‘pldm fwup handler ’ interface contains two function

S-RFUP: Secure Remote Firmware Update Protocol 53

pointers: pldm fwup handler run update ua() for updating a firmware device
in the subsystem as an UA and pldm fwup handler run update fd() for updat-
ing S-RFUP’s own firmware (FD) as directed by another UA.

Apart form this core libraries, S-RFUP also has ‘pldm fwup protocol ’ library
header containing various structures, macros, and enumerations used by the
above mentioned libraries. Table 1 shows the main libraries and some of API that
we have designed, modified or used in the protocol. To convert the BIOS/BMC
firmware images to a PLDM message we are mainly using firmware update.h
of ‘libpldm’ library as external.

As explained in Sect. 5.2, the firmware component images reside in the
Firmware Update Package where they are retrieved as needed using Cerberus’s
flash module. Since we are compiling and evaluating on Linux, a virtual flash
module was created to simulate that functionality using disk I/O. We have devel-
oped a python script setup fwup flash virtual disk(), that located in the
‘core/tools’ directory, generates a 4GB binary file divided into sections to simu-
late different flash regions: one for package data, one for meta data, and one for
each two firmware components. These regions are populated with random bytes.

6.2 State Transitions

Fig. 7. State Transition Diagram with PLDM Commands.

54 R. Podder et al.

Figure 7 outlines the various PLDM command and states that the Firmware
Device (FD) can be during update process. Each circle in the diagram repre-
sents a distinct state the FD might be in and, each rectangular boxes represents
a PLDM command. Whenever the FD is initialized, or when it undergoes a sys-
tem reboot or device reset, it starts in the IDLE state. The execution starts from
QueryDeviceIdentifiers and ends at ActivateFirmware. Every PLDM command on
a successful execution transits to next PLDM command and the associated states
also change. For example, if S-RFUP executes RequestUpdate command, on suc-
cess it will move to GetPackageData and state of FD will change from IDLE
to LEARN COMPONENTS. Similarly, if the execution fails or FD throws a
compilation code error, the state of FD remains on IDLE. This design helps
us to understand the FD’s state with each PLDM command, so that a prompt
diagnosis can be launched if any error occurs and it also helps to standardise the
update process.

6.3 S-RFUP Update Flow in Project-Cerberus

The firmware update is performed in a sequential manner. Implementation for
parallel operation and message exchange is not addressed in the paper. Addi-
tionally, the ‘pldm fwup manager ’ must be initialized and the PLDM command
interface must obtain a reference to the manager prior to the start of the firmware
update process.

Before UA initiates the update process, keyGeneration() function of
‘pldm fwup crypto’ library is responsible for generating the ECC key pair for
UA and FD. It loads the length of the key in key length, initializes private key
in privkey, public key in pubkey. keyExchange(): function exchanges the public
key of UA and FD. On success, keyExchange() will initialize pubkey cli with
the UA’s public key and load the pubkey serv variable with a public key received
from the FD. The secretKey() takes ECC private key from UA and FD, com-
putes the secret key and loads in secret parameter.

S-RFUP Operating as UA Flow

1. First, S-RFUP checks the need to send QueryDeviceIdentifiers and Get-
FirmwareParameters based on the control boolean in pldm fwup handler
run update ua().

2. It then sends these inventory commands followed by the RequestUpdate com-
mand, passing information such as maximum transfer size and number of
allowed outstanding requests, configurable in platform config().

3. If package data is required, the device notifies S-RFUP, which then sends the
necessary data via GetPackageData. Subsequently, S-RFUP may also send
the GetDeviceMetaData command depending on the device’s feedback.

4. Next, S-RFUP sends the PassComponentTable command, transferring com-
ponent details to the device, which responds with compatibility codes.

5. Upon confirming compatibility, S-RFUP issues the UpdateComponent com-
mand for each component sequentially.

S-RFUP: Secure Remote Firmware Update Protocol 55

6. As the device requests firmware data using the RequestFirmwareData com-
mand, S-RFUP responds with the specified firmware portions.

7. After the firmware transfer, the device sends a TransferComplete command. If
there is an error, S-RFUP might send a CancelUpdateComponent command.

8. S-RFUP waits for the VerifyComplete command within a preset timeout
period, monitoring the status with potential GetStatus commands.

9. Once verification is complete, the device is expected to apply the update,
followed by an ApplyComplete command.

10. These steps are repeated for each component until all are updated.
11. Finally, S-RFUP sends ActivateFirmware to activate the firmware, indicating

with a boolean flag whether self-contained components should be activated
immediately.

Please note that before sending the mctp message AESEncryption() encrypts
the message using a secret key gnerated by secretKey(). This function takes
secret key, message plus a timestamp, and use AES-GCM-256 method to encrypt
the message and loads into ciphertext parameter. Each message then signed with
a digital signature generate by generateDSA() function. Once the FD receives
the message it verifies the signature. AESDecryption() function takes encrypted
message (ciphertext), secret key (secret) as input, decrypts it and loads the
message to the provided plaintext buffer. In the current implementation this
metadata is written to a region in flash although depending on the metadat, it
could be written to a structure or any other volatile memory.

S-RFUP Operating as FD Flow

1. S-RFUP waits for initial commands from the Update Agent (UA). If an
inventory command is received, it anticipates a second inventory command.

2. Upon receiving inventory commands, S-RFUP processes the RequestUpdate
command. It determines whether to send the GetPackageData command
based on the UA’s instructions and specifies the length of metadata to retain.

3. Following the RequestUpdate, S-RFUP issues the GetPackageData and han-
dles any GetDeviceMetaData commands as required.

4. S-RFUP waits to receive the PassComponentTable command from the UA,
which specifies which firmware components are to be updated.

5. Upon receiving the UpdateComponent command, S-RFUP verifies compo-
nent compatibility and proceeds to request the necessary firmware data using
the RequestFirmwareData command, specifying the needed data offset and
length.

6. After receiving and writing firmware data to flash memory, S-RFUP issues
a TransferComplete command, assuming successful transfer unless indicated
otherwise.

7. S-RFUP verifies the firmware image by issuing a GetMetaData command,
and comparing the received digital signature against its own.

8. Once verification is complete, S-RFUP directly applies the firmware image,
and sends an ApplyComplete command to the UA.

56 R. Podder et al.

9. Steps 5 to 8 are repeated for each firmware component requiring an update.
10. Finally, upon completing all updates, S-RFUP awaits the ActivateFirmware

command to activate the updated firmware, with specifics such as timing
handled according to settings in platform config().

The verification mechanism is left up to the user to implement and subse-
quently the assignment of the result field in the VerifyComplete command (by
default set to success). In our case, S-RFUP issues the GetMetaData command
with the UA responding with signatures4 of the firmware image. S-RFUP would
then take these and compare them to the DSA signature it generated with the
received component image. Additionally, how the firmware is activated depends
on the system specifications and user preferences.

6.4 Results and Discussions

We developed various experimental test scenarios to evaluate our framework
for correctness, consistency and performance. We run our experiments on 2 vir-
tual Linux servers. The client side (assumed as FD) has a 5000MHz 12th Gen
Intel(R) Core(TM) i7-12700K processor, x86 64 architecture, 20 cpus and UA
(as server) in Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60 GHz, x86 64 architec-
ture, 12 CPU(s).

All the S-FRUP PLDM firmware update libraries are available on GitHub5.
All user guidelines, API descriptions, test results, and setup manuals are publicly
available on GitHub.

In order to validate that the our protocol is working as it is supposed
to, we used Project Cerberus with S-RFUP libraries (server platform) and
‘OpenBMC/libpldm’ library as an Update Agent (UA) or server and a HRoT
that is a micro-controller containing Project Cerberus with S-RFUP libraries
and ‘OpenBMC/libpldm’ library as a Firmware Device or client. We intro-
duce ‘cmd chanel tcp’ that uses a TCP socket for communication between UA
and FD. It has initialize global server socket() function that works with
‘pldm fwup crypto’ & ‘cmd interface pldm’ library to send the encrypted mctp
packets to UA/FD. As designed and expected, our protocol delivers the antici-
pated results, with successful operations observed across both UA and FD.

4 DSA with keys derived from ECC curve25519 has been used to generate signatures.
5 https://github.com/AMIProject0/Project-Cerberus-PLDM/tree/master.

https://github.com/AMIProject0/Project-Cerberus-PLDM/tree/master

S-RFUP: Secure Remote Firmware Update Protocol 57

Fig. 8. UA Time vs FD Time for Firmware Update Tests (with and without Inventory
Commands).

We have tested our framework with various firmware image sizes:{ 50 KB,
100 KB, . . . , 500 MB, 1 GB }. Figure 8 illustrates a bar chart comparing the exe-
cution times for different firmware image sizes, both with and without inventory
commands (as it is not always required for inventory commands). For 50 KB to
1 MB, the percentage increases in times are 55.68% (for UA) and 55.56% (for
FD). If we compare the 50 KB to 1 GB sizes, the percentage increases in times
are 60194.30% (UA) and 60190.13% (FD). The growth rate is exponential. But
it is reasonable as, for 1 GB file it’s takes only 128 s which is acceptable compare
to state-of-art firmware update methods.

6.5 Exception and Error Handling

We have done an extensive software testing for the proposed protocol (S-RFUP).
Throughout the development we have introduced several methods to handle
errors of the compilation code, time-out exception for each PLDM command
and tested the software in various test scenarios that shows the capability of the
proposed framework.

Error Completion Codes. For each command, we have designed a specific
structure to handle the response based on the compilation codes returned by a
pldm message from UA/FD. Table 2 shows some of the PLDM commands and
various scenarios of compilation code and they to handle the error. Let’s say if
UA send a RequestUpdate pldm message to FD and FD is currently on another
firmware update process, the response pldm would contain a compilation code =

58 R. Podder et al.

ALREADY IN UPDATE MODE and a return value of 0× 81. If the FD can not
do a firmware update right now it will send a response with compilation code
= RETRY REQUEST UPDATE. Similarly, we have designed error handling
capabilities of each command for all possible states of FD.

Table 2. Command Responses and Descriptions for Firmware Updates. PBC:
PLDM BASE CODES; AIUM: ALREADY IN UPDATE MODE; UTIU: UNABLE
TO INITIATE UPDATE; RRU: RETRY REQUEST UPDATE; ITL: INVALID
TRANSFER LENGTH; CNE: COMMAND NOT EXPECTED; DOFR: DATA OUT
OF RANGE; RRFD: RETRY REQUEST FW DATA; CP: CANCEL PENDING;

Command
Name

Completion
Codes

Return
Value

Return
By

Descriptions

QDI PBC 0x00 FD Executed successfully.

RU PBC 0x00 FD Executed successfully.

AIUM 0x81 Already in update mode.

UTIU 0x8A Unable to enter update mode.

RRU 0x8E Requests a retry of the RequestUpdate
command, needing more time to prepare.

RFD PBC 0x00 UA Executed successfully

ITL 0x83 Image portion > MaxTransferSize .

CNE 0x88 Command is not expected in the sequence.

DOFR 0x89 Image portion offset exceeds the range.

RRFD 0x91 Component image portion is not available.

CP 0x87 When CancelUpdate initiated by FD
previously.

Timing Specification A timing specification has been designed for every com-
pilation codes and time-out exceptions. For RequestUpdate response message if
compilation code = RETRY REQUEST UPDATE sent by FD, it will assign
an UA T46 time specification for the process. It means the amount of time to
wait before UA re-sends a RequestUpdate PLDM command after receiving the
previous response. There are also, GetPackageData timeout (1s ≤ UA T5 ≤ 5s),
Update mode IDLE timeout for FD (60s ≤ FD T1 ≤ 120s) and several others
that we have specified. A detailed documentation about the timing specifications
will be provided with the source code.

We have also designed several test scenarios to check various failure that can
occur during firmware update process such as, if the UA/FD loses connections
during update process then the program will wait until the timer specified time
(UA T7 or FD T5) or if the connection is not back, it will revert back to the pre-
vious IDLE state and throws a timeout exception (GT T1). The S-RFUP is thor-
oughly tested and validated to handle unexpected behaviours during firmware
update process.

6 For UA T4 the minTime = 1s and MaxTime = 5s.

S-RFUP: Secure Remote Firmware Update Protocol 59

7 Security Analysis

The proposed secure firmware update protocol (S-RFUP) effectively mitigates a
range of security threats through a combination of robust encryption techniques,
rigorous verification procedures, and systematic error handling mechanisms. The
following analysis details how the identified threats are addressed using this
approach and how the essential security properties are maintained. To prevent
service unavailability (due to dos attack) and ensure continuous operation during
the firmware update process, the protocol incorporates several exceptions and
error handling mechanisms. These mechanisms are designed to catch and manage
unexpected errors or attacks that could lead to server or service unavailability.
By handling such scenarios promptly, the system avoids unwanted interruptions
or crashes, maintaining service availability and reliability.

The communication between the UA and FD is protected using advanced
encryption methods. Specifically, the Management Component Transport Pro-
tocol (MCTP) messages are encrypted using the S-RFUP ‘crypto’ library frame-
work, which utilizes the Advanced Encryption Standard – Galois/Counter Mode
– with a 256-bit key (AES-GCM 256). This encryption method is resistant to a
variety of attacks, including Known Plaintext Attack, (KPA), Chosen Plaintext
Attack (CPA), Chosen Ciphertext Attack (CCA), and Ciphertext-Only Attack
(COA). By encrypting all communications, the protocol ensures that any inter-
cepted data remains inaccessible to attackers, protecting sensitive information
such as firmware/device information. Thus, data integrity is maintained by
ensuring as data packets are delivered to the Recipient without any alterations.
The protocol achieves this through the use of AES-GCM encryption, which
includes built-in integrity checks to verify that the data has not been tampered
with during transmission.

To mitigate replay attacks, the protocol employs unique session keys and
Lamport timestamps. During each session, the UA and FD generate a new shared
AES-GCM key using the ECDH key agreement protocol. This ensures that each
session is encrypted with a unique key, preventing attackers from reusing inter-
cepted messages in a different session. Thus, by employing Lamport timestamps
we can verify the freshness of messages, ensuring that old messages cannot be
replayed to disrupt the firmware update process, this gives the assurance of data
freshness.

The protocol incorporates the Digital Signature Algorithm (DSA) with keys
derived from ECC curve to authenticate legitimacy of the entities. This ensures
that the recipient can verify the authenticity of the sender, protecting against
impersonation attacks. By using digital signatures, the protocol ensures that only
legitimate UA and FD entities can participate in the firmware update process,
effectively preventing MITM attacks where an attacker could intercept and alter
communications. This process confirms the authenticity of the data source and
the integrity of the data itself. The use of ECDH for key exchange, combined with
AES-GCM for encryption, provides robust protection against Adaptive Chosen-
Plaintext and Chosen-Ciphertext Attacks. By generating a new secret key for
each session, the protocol ensures that attackers cannot use previous encryption

60 R. Podder et al.

or decryption to infer the current encryption key. This dynamic key management
system enhances security by preventing key reuse and complicating any attempts
to compromise the communication through adaptive attacks.

This comprehensive security framework provides robust protection against
eavesdropping, replay & MitM attacks, credential theft, and adaptive attacks,
ensuring a secure and reliable remote firmware update mechanism. S-RFUP
successfully maintains the essential security properties of data integrity, data
authentication, data confidentiality, and data freshness, providing a secure, and
reliable process for remote updates.

8 Conclusion

In this work, we propose S-RFUP as a uniform framework for secure remote
firmware updates across mutitude of platforms. S-RFUP builds upon Project
Cerberus hardware root of trust capabilities by integrating the industry-standard
protocols PLDM & MCTP and conventional cryptographic protocols to ensure
a secure, reliable, interoperable and easily manageable firmware update process.
The implementation has been rigorously tested, validating its resilience against
various security concerns and demonstrating its robustness in a controlled
environment. We plan to open-source S-RFUP libraries. Future work involves
enhancing the protocol’s performance and security through implementing par-
allel firmware updates to increase efficiency, porting the hardware-agnostic S-
RFUP to the microchip-specific I2C protocol, and validating the protocol across
different firmware ecosystems to ensure robust performance and compatibility.

Acknowledgments. This work was partially supported by the U.S. National Sci-
ence Foundation under Grant No. 1822118 and 2226232, the member partners of the
NSF IUCRC Center for Cyber Security Analytics and Automation - AMI, NewPush,
Cyber Risk Research, NIST and ARL - the State of Colorado (grant #SB 18-086) and
the authors’ institutions. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation, or other organizations.

References

1. Alrawi, O., Lever, C., Antonakakis, M., Monrose, F.: SOK: security evaluation of
home-based iot deployments. In: 2019 IEEE Symposium on Security and Privacy
(SP), pp. 1362–1380. IEEE (2019)

2. Basnight, Z., Butts, J., Lopez, J., Jr., Dube, T.: Firmware modification attacks on
programmable logic controllers. Int. J. Crit. Infrastruct. Prot. 6(2), 76–84 (2013)

3. Basnight, Z., Butts, J., Lopez, J., Jr., Dube, T.: Firmware modification attacks on
programmable logic controllers. Int. J. Crit. Infrastruct. Prot. 6(2), 76–84 (2013).
https://doi.org/10.1016/j.ijcip.2013.04.004

4. Bellissimo, A., Burgess, J., Fu, K.: Secure software updates: disappointments and
new challenges. In: HotSec (2006)

5. Conti, M., Dragoni, N., Lesyk, V.: A survey of man in the middle attacks. IEEE
Commun. Surv. Tutorials 18(3), 2027–2051 (2016)

https://doi.org/10.1016/j.ijcip.2013.04.004

S-RFUP: Secure Remote Firmware Update Protocol 61

6. Cooper, D., Polk, W., Regenscheid, A., Souppaya, M., et al.: Bios Protection Guide-
lines, vol. 800, p. 147. NIST Special Publication (2011)

7. Costin, A.: Hacking MFPS. In: The 28th Chaos Communication Congress (2011)
8. Cui, A., Costello, M., Stolfo, S.: When firmware modifications attack: a case study

of embedded exploitation. In: NDSS (2013)
9. Dhakal, S., Jaafar, F., Zavarsky, P.: Private blockchain network for IoT device

firmware integrity verification and update. In: 2019 IEEE 19th International Sym-
posium on High Assurance Systems Engineering (HASE), pp. 164–170. IEEE
(2019)

10. DMTF: Mctp base specification 1.2.0. DSP0236 (2009). http://dmtf.org/sites/
default/files/standards/documents/DSP0236 1.2.0.pdf

11. DMTF: Platform level data model (pldm) base specification 1.0. DSP0240 (2009).
http://dmtf.org/sites/default/files/standards/documents/DSP0240 1.0.0.pdf

12. DMTF: Platform level data model (pldm) for firmware update specifi-
cation 1.0.1. DSP0267 (2009). https://dmtf.org/sites/default/files/standards/
documents/DSP0267 1.0.1.pdf

13. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–208 (1983)

14. Falas, S., Konstantinou, C., Michael, M.K.: A modular end-to-end framework for
secure firmware updates on embedded systems. ACM J. Emerg. Technol. Comput.
Syst. (JETC) 18(1), 1–19 (2021)

15. Frisch, D., Reißmann, S., Pape, C.: An over the air update mechanism for esp8266
microcontrollers. In: Proceedings of the ICSNC, the Twelfth International Confer-
ence on Systems and Networks Communications, Athens, Greece, pp. 8–12 (2017)

16. Fuchs, A., Krauß, C., Repp, J.: Advanced remote firmware upgrades using TPM
2.0. In: Hoepman, J.-H., Katzenbeisser, S. (eds.) SEC 2016. IAICT, vol. 471, pp.
276–289. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33630-5 19

17. He, Y., et al.: {RapidPatch}: firmware hotpatching for {Real-Time} embedded
devices. In: 31st USENIX Security Symposium (USENIX Security 22), pp. 2225–
2242 (2022)

18. Jack, B.: Jackpotting automated teller machines redux. Black Hat USA (2010)
19. Jain, N., Mali, S.G., Kulkarni, S.: Infield firmware update: challenges and solu-

tions. In: 2016 International Conference on Communication and Signal Processing
(ICCSP), pp. 1232–1236. IEEE (2016)

20. Keleman, L., Matić, D., Popović, M., Kaštelan, I.: Secure firmware update in
embedded systems. In: 2019 IEEE 9th International Conference on Consumer Elec-
tronics (ICCE-Berlin), pp. 16–19. IEEE (2019)

21. Kelly, B.: Project cerberus security architecture overview specification.
Open Compute Project (2017). https://learn.microsoft.com/en-us/azure/security/
fundamentals/project-cerberus

22. Langiu, A., Boano, C.A., Schuß, M., Römer, K.: Upkit: an open-source, portable,
and lightweight update framework for constrained IoT devices. In: 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS), pp. 2101–
2112. IEEE (2019)

23. Lau, P.T., Katzenbeisser, S.: Firmware-based dos attacks in wireless sensor net-
work. In: Katsikas, S., et al. (eds.) ESORICS 2023. LNCS, vol. 14399, pp. 214–232.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-54129-2 13

24. Maassen, A.: Network bluepill-stealth router-based botnet has been ddosing
dronebl for the last couple of weeks (2009). https://www.dronebl.org/blog/8

25. Mahfoudhi, F., Sultania, A.K., Famaey, J.: Over-the-air firmware updates for con-
strained NB-IoT devices. Sensors 22(19), 7572 (2022)

http://dmtf.org/sites/default/files/standards/documents/DSP0236_1.2.0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP0236_1.2.0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0267_1.0.1.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0267_1.0.1.pdf
https://doi.org/10.1007/978-3-319-33630-5_19
https://learn.microsoft.com/en-us/azure/security/fundamentals/project-cerberus
https://learn.microsoft.com/en-us/azure/security/fundamentals/project-cerberus
https://doi.org/10.1007/978-3-031-54129-2_13
https://www.dronebl.org/blog/8

62 R. Podder et al.

26. Miller, C., Valasek, C.: Remote exploitation of an unaltered passenger vehicle.
Black Hat USA 2015(S 91), 1–91 (2015)

27. Miller, J.F.: Supply chain attack framework and attack patterns. The MITRE
Corporation, MacLean, VA (2013)

28. Moran, B., Tschofenig, H., Brown, D., Meriac, M.: A firmware update architecture
for internet of things. Internet Requests for Comments, RFC Editor, RFC 9019
(2021)

29. Neves, B.P., Santos, V.D., Valente, A.: Innovative firmware update method to
microcontrollers during runtime. Electronics 13(7), 1328 (2024)

30. Niesler, C., Surminski, S., Davi, L.: Hera: Hotpatching of embedded real-time appli-
cations. In: NDSS (2021)

31. Podder, R., Abdelgawad, M., Ray, I., Ray, I., Santharam, M., Righi, S.: Correctness
and security analysis of the protection in transit (pit) protocol. Available at SSRN
4980331 (2024)

32. Podder, R., Barai, R.K.: Hybrid encryption algorithm for the data security of
esp32 based IoT-enabled robots. In: 2021 Innovations in Energy Management and
Renewable Resources (52042), pp. 1–5. IEEE (2021)

33. Podder, R., Sovereign, J., Ray, I., Santharam, M.B., Righi, S.: The pit-cerberus
framework: preventing device tampering during transit. In: 2024 IEEE 24th Inter-
national Conference on Software Quality, Reliability and Security (QRS), pp. 584–
595. IEEE (2024)

34. Samuel, J., Mathewson, N., Cappos, J., Dingledine, R.: Survivable key compro-
mise in software update systems. In: Proceedings of the 17th ACM Conference on
Computer and Communications Security, pp. 61–72 (2010)

35. Schmidt, S., Tausig, M., Hudler, M., Simhandl, G.: Secure firmware update over
the air in the internet of things focusing on flexibility and feasibility. In: Internet
of Things Software Update Workshop (IoTSU). Proceeding (2016)

36. Sun, S.: Design and implementation of partial firmware upgrade (2019)
37. Tsang, R., et al.: Fandemic: firmware attack construction and deployment on power

management integrated circuit and impacts on IoT applications. In: NDSS (2022)
38. Vrachkov, D.G., Todorov, D.G.: Research of the systems for firmware over the air

(fota) and wireless diagnostic in the new vehicles. In: 2020 XXIX International
Scientific Conference Electronics (ET), pp. 1–4. IEEE (2020)

39. Wara, M.S., Yu, Q.: New replay attacks on zigbee devices for internet-of-things
(IoT) applications. In: 2020 IEEE International Conference on Embedded Software
and Systems (ICESS), pp. 1–6. IEEE (2020)

40. Wee, Y., Kim, T.: A new code compression method for FOTA. IEEE Trans. Con-
sum. Electron. 56(4), 2350–2354 (2010)

41. Wu, Y., et al.: Your firmware has arrived: a study of firmware update vulnerabili-
ties. In: USENIX Security Symposium (2023)

42. Zhang, Y., Li, Y., Li, Z.: Aye: a trusted forensic method for firmware tampering
attacks. Symmetry 15(1), 145 (2023)

