2019 IEEE 5th International Conference on Collaboration and Internet Computing (CIC)

Device Identity and Trust in IoT-sphere Forsaking
Cryptography

Indrajit Ray, Diptendu M. Kar, Jordan Peterson

Department of Computer Science
Colorado State University
Fort Collins, CO, USA

{Indrajit.Ray, Diptendu.Kar, Jordan.Peterson}@colostate.edu

Abstract—With the exponential growth of the Internet of
Things (IoT) ecosystem there is increasing concern regarding
how to ensure its security. This is particularly critical because
in this ecosystem a significant number of devices are of very low
computational capabilities making them particularly vulnerable
to attacks. Moreover, cryptographic techniques that are tradition-
ally used for establishing trust in entities through identification
and authentication also do not appear to be suitable because
of computational requirements as well as scalability issues. We
present a new vision for security in this ecosystem that does not
rely on cryptographic techniques and yet is able to achieve strong
device identity. We also present the outlines of a crypto key less
trust ecosystem that can be used to implement fine-grained access
control in a pragmatic manner.

Index Terms—Internet of Things, security, identity, trust

I. INTRODUCTION

The Internet-of-Things (IoT) industry is rapidly growing
with a multitude of device manufacturers releasing new smart
devices (or device components that can be added to other
devices) everyday to enhance our standard of living. The
number of IoT device in use at the end of the first half of
2018 was estimated to be 7 billion and it is expected to reach
10 billion by 2020 ([1]). In this connected world, devices can
not only be controlled by the user remotely, but one device can
control another device without having the user to intervene at
all. Unfortunately, security is an after-thought in a significant
number of these IoT devices resulting in vulnerabilities that
have been successfully exploited to cause significant damage.
A widely reported example of such an attack is the Mirai IoT
botnet [2] that left much of the Internet on the U.S. east coast
inaccessible to users.

Several steps need to be taken to have confidence that
the IoT world is significantly better protected against secu-
rity attacks than what it is today. These include, but not
necessarily limited to, (i) designing IoT firmware, operating
system, and application so that they are (ideally) free of
software vulnerabilities that can be exploited, (ii) designing
robust identification and/or authentication schemes that will

This work is partially supported by CableLabs. This material is also based
upon work performed by Indrajit Ray while serving at the National Science
Foundation. Research findings presented here and opinions expressed are
solely those of the authors and in no way represent the opinions of CableLabs
or the U.S. NSF or any other federal agencies.

978-1-7281-6741-1/19/$31.00 ©2019 IEEE
DOI 10.1109/CIC48465.2019.00034

Steve Goeringer
Security Group
CableLabs
Louisville, CO, USA
S.Goeringer@cablelabs.com

ensure only trusted devices are securely bootstrapped onto
the network as well as allow more robust monitoring and
auditing of these devices, (iii) strongly enforced access control
schemes that ensure that devices have access to only those
resources that they need to provide needed services, and

(iv) as appropriate, cryptographic techniques to better protect
sensitive communication.

Unfortunately, there is often a tendency to rely too
much on cryptographic mechanisms to achieve security.
For example, the Open Connectivity Foundation (OCF -
https://openconnectivity.org) which has developed the OCF
Security Specification for the IoT ecosystem [3], assumes that
if a devices is successfully authenticated during onboarding it
can be trusted for the rest of its connection session, and uses
the cryptographic protocol DTLS to achieve authentication.
While cryptography is an important tool in security, there
are several operational issues which lead us to believe that
we need to look beyond cryptography to achieve security.
To begin with, many of the cryptographic techniques in use
today especially public key cryptographic techniques, are
computationally expensive and is beyond the capabilities of
a significantly large class of IoT devices. In addition, under
current public key infrastructure (PKI) market models, it is
very expensive for a device manufacturer to purchase public
key certificates. Many IoT device manufacturers who operate
on thin margins find such costs as too expensive and choose
not to use cryptographic keys for security. To complicate
things, establishing and managing a PKI is very challenging.
it has been observed ([4]) that a significantly large number of
current PKIs are implemented incorrectly and have fatal flaws
that render any security achieved under these PKIs useless in
practice. In other words, cryptographic techniques often given
a false sense of security.

In this work, we present a vision for an [oT ecosystem
that achieves considerable practical security without using
cryptography. It is based on creating unforgeable identities of
IoT devices through behavioral fingerprinting that is strongly
tied to the device, and on a trust framework for IoT devices
that is not reputation based (unlike other trust models) but
uses measurable and quantifiable properties of IoT devices to
establish trust levels for them. We outline the architecture of
the trust framework as well an access control model that uses

204

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 07,2025 at 00:32:42 UTC from IEEE Xplore. Restrictions apply.

the underlying trust model.

II. TOWARDS UNIQUE DEVICE IDENTITY

Many security problems can be mitigated through strong
identification and authentication of devices, which enables
administrators to effectively monitor devices and enforce
appropriate access controls on a particular device. Proper
identification needs the device to be associated with an un-
forgeable identity that is also stringly tied to the devices. We
posit that such an identity can be established by appropriately
characterizing the behavior of the device through behavioral
fingerprinting. The latter also helps establish a behavioral
baseline that answer the question “Is the device doing what it
is supposed to do.” For example, a light bulb mostly performs
three tasks - turn on, turn off, and adjust brightness. Scanning
the network is not its desired behavior.

Fingerprinting loT devices is challenging due to the large
variety of devices, protocols,and control interfaces, across
the devices. Fingerprinting involves modelling the normal
behavior based on network traffic features that characterizes a
device. An untrusted device can masquerade as another device
by providing false information about its identity and type.
More importantly, an untrusted or compromised IoT device
might behave contrary to its baseline behavior, e.g., connecting
to other devices to disrupt their normal functionality or to scan
the network for information about other devices.

IoT device type fingerprinting research is in early stages
due to the evolving nature of the IoT industry. General
device fingerprinting has been described in [5], [6], [7], which
have explored several techniques ranging from packet header
features to physical features such as clockskews. Wireless
device finger printing techniques have been discussed in [8],
[9], [10], [11], [12]. These works explored the device type
identification by exploring the implementation differences
of a common protocol such as SIP, across similar devices.
However, 1oT devices use numerous protocols and it would be
nearly impossible to attempt such analysis on a per protocol
and per device basis. Physical layer based device fingerprinting
has received considerable attention [13], [14], [15], [16],
[17] where the focus is on analyzing the physical aspects of
devices to fingerprint them. All these works focused on general
wireless devices and their applicability to IoT devices is an
open question.

Miettinen et al. [18] described IoT Sentinel, a framework for
device fingerprinting and securing IoT networks. Their work
focused on supervised machine learning techniques for finger-
printing a device when it first registers on a network. Bezawada
et. al. [19] described IoTSense. This work is focused towards
the active state of the device i.e. what the device is doing
on the network. They also use supervised machine learning
techniques to characterize the behavior of the device on the
network. Both of these works, IoT Sentinel [18] and IoTSense
[18], focus on identifying a device of a specific type; however
both suffer from the problem that if a device of an unknown
type joins the network it is wrongly classified as one of the
known devices which the algorithms have learned before.

Marchal, et al. [20] overcomes the shortcomings of IoT-
Sentinel to propose AuDI that is able to detect an unknown
devices type with a high degree of accuracy.However, this
method relies heavily on low network congestion. Because the
method is dealing with flow frequency, if there is any network
congestion this frequency has the potential to be misaligned
with the device fingerprints. Another issue with this approach
is that it takes 2.5 hours to train a new device type, and 30
minutes to collect enough idle traffic to classify a device with
such high accuracy.

We now describe our initial efforts in developing an un-
supervised learning approach for fingerprinting devices. We
describe our approach on device fingerprinting at the device
bootstrap or onboarding phase, when it first registers on a
network. However, this approach can also be used to create
device fingerprint both when the device is active and when it
is idle. Our results are very encouraging and we are convinced
that this approach can be extended to create unique fingerprints
of devices that can be used as the basis of a strong device
identity. When paired with fingerprints of devices at the idle
and active states, this approach can form the basis of an
effective monitoring system for IoT devices. We have tested
our approach not only on different device types (at the level
of granularity such as music systems, lights, camera, voice
assistants etc. but also on similar devices. For example, we
have trained on Amazon Echo dot (smaller one) and Echo
(bigger one) and found that we can distinguish them distinctly.
Neither the loTSentinel approach nor the IoTSense approach
can lay claim to this particular feature and it remains to be
seen if AuDI can.

III. PROPOSED LEARNING MODEL

The model we are proposing is an unsupervised learning
model that can identify devices based solely on network traffic.
Our model doesn’t take into account any traditional addressing
techniques such as IP addressing or MAC addressing. In
this section we describe the model features and classification
technique used.

A. Model Features

As a passive identification model we observe four types
of messages: DNS Query, DNS Response, SSL Cert, Client
Hello. These message types were chosen due to their ubiquity
between home IoT devices. From each of these message types
we mined common and specific features.

Common: The common features gathered from each mes-
sage were frame length, ip length, tcp/udp length. The frame
length in this context is the size of the whole packet. The ip
length is the size of the ip packet, and the tcp/udp length is
the size of either the tcp portion of the packet or udp portion
of the packet depending on which protocol the message type
uses. For example the DNS Query and DNS Response will
use udp length, the SSL Cert and Client Hello will use tcp
length.

Specific: Each message type has specific data that is mined.
The features are listed below by message type.

205

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 07,2025 at 00:32:42 UTC from IEEE Xplore. Restrictions apply.

DNS Query: query name length, url score.

DNS Response: response name length, url score.

SSL Cert: certificate length.

Client Hello: handshake length, handshake cipher suite
length, handshake extensions length, handshake exten-
sions server name length, url score.

The Url score mentioned above is a value computed based
on message type and domain names. The score depends on
how close the url in question matches the trained urls. For
example, if the url in question is aaa.bbb.ccc and it matches
exactly then the score is 100. if it does not match then we take
off one sub-domain to make the example *.bbb.ccc. After this
we check and continue this process until there is only the core
domain left. If there was a match the score is set to be slightly
lower at 99. If there was no match then the score is set to zero.

B. Classification Method

For each device in the training phase, four clusters are
created based on the message types described above. Similar
message type clusters are aggregated to form a model which
is used for evaluation of that specific message type. The
centroids of each cluster are stored and used to determine
how far the test data sample is from the centroid. A threshold
value of 100 is provided. This can be set by the user for a
tighter or relaxed evaluation constraint. As an example, if there
are 4 devices in training d1, d2, d3 and d4, the first model
contains the dns request cluster centroids of dl to d4. The
second model contains the dns response and so on. During
evaluation when a device dn connects to the network, it’s
communication messages are grouped by message type, sent
to the four models and the cluster number to which it matches
is returned. There is often a case that a single message may
return match with more than one cluster. Hence, the final
prediction is aggregated and displayed after a certain time
interval. Also the scores from each model is taken into account
and the final score is an average of the four models. This is
to verify that all types of messages indicate that they are from
the same type of device and there might be a possibility that
one type of message will be same for two different devices.
The algorithm that was used for generating the clusters was K-
means. Any other clustering algorithm will work as well and
the accuracy might improve. We have not tested with other
unsupervised clustering algorithm as our goal relies on using
any unsupervised algorithm rather than a supervised one.

IV. EXPERIMENTATION AND RESULTS

For this work we performed two experiments. The first ex-
periment was to see if our classifier could correctly distinguish
device boot-up traffic from trained and unknown devices. The
second experiment was to validate our claims tested by the first
experiment. For both of the experiments below we developed
a testing script in Python to collect network data and pass it
through the classifier. The two experiments included the IoT
devices listed below.

The first experiment that we performed aimed to test the
correctness of our learning model. In order to examine if the

TABLE I
LIST OF DEVICES USED IN EXPERIMENTS
Device Name Label | Manufacturer | Interface
Fire Stick TV 0 Amazon WiFi
Apple TV 1 1 Apple WiFi
Apple TV 2 2 Apple WiFi
Cloud Camera 3 DLink Ethernet
Echo 4 Amazon WiFi
Echo Dot 5 Amazon WiFi
ArloQ Camera 6 Netgear WiFi
TPLink Bulb 7 TPLink WiFi
Wink Hub 99 Wink Ethernet
Echo Show 99 Amazon WiFi
Home Mini 99 Google WiFi
Xperia Phone 99 Sony WiFi
Nexus Se Phone 99 LG WiFi

features that we chose were significant, we tested against 13
devices listed in table I. Our model generated eight labels that
represent the eight device that we used to train the classifier.
The ninth label (99) was reserved for any device that the
classifier deemed as unknown. This is the default label for
any device which was not used in training and not classified
within the bounds of any trained centroid during testing.

Our results for this experiment showed that of the 14 devices
tested, all but one was classified correctly. The details of the
classification probability for two of our unknown devices are
shown in Tables II and III. The total number of packets that
the boot phase generated are in the total row. Out of that the
number of packets matching the labels are in each column.
From table II it can be observed that during the boot phase
of Google Home, there were 53 DNS requests. Out of 53, 35
suggested that the request was similar to Amazon Firestick
(label 0) and 18 are never seen before (label 99). So just by
looking at the DNS requests, the device is likely to be an
Amazon Firestick. But when the rest of the three models are
consulted, the final probability suggests that the device is 99 -
not matching with any cluster or unknown. The one device that
was misclassified was the Amazon Echo Show. This device is
very similar to the Echo and Echo Dot. Below in Table III
you can see the test results for the misclassified device.

Our second experiment aimed to validate the correctness
of our learning model and provide insights into how we can
improve the model.

For this experiment out of the nine devices tested eight were
correctly classified by the end of boot up process. The one
device that was misclassified was again the Amazon Echo
Show. This is no surprise as we did not alter the training
of the classifier between the two experiments. Looking at the
probabilities and confidence that we calculated, we found that
model did correctly classify the Amazon Echo Show as an
Amazon product. In Figure 1 we see that the device with
the highest ending probability was the Amazon Firestick with
74.26%. The classifier correctly identified the Amazon Echo
Show as an Amazon product through the calculated confidence
between the two devices but it was technically wrong as it
should have predicted 99 or unknown. This makes intuitive
sense as these Amazon devices are very similar in behavior and

206

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 07,2025 at 00:32:42 UTC from IEEE Xplore. Restrictions apply.

functionality. In Figure 1 and Figure 2, we see the probability
and confidence of the misclassified device over time.

These results show that untrained on the Amazon Echo
Show’s boot data the classifier performs very well when
identifying devices at coarse granularity, i.e. brand, type,
etc. In order for the classifier to identify the device at fine
granularity such as the specific model of device, Echo dot vs.
Echo show, we needed to add the cluster of the new device
with the boot data of that device to the existing clusters. Once
we added the new cluster we achieved a final probability
of 90.4%. Seen in Figure 3 the classifier has now correctly
identified the Amazon Echo Show. In Figure V, the classifiers
highest ending probability and peak confidence results for each
devices boot data are listed. A new label 8 was added to mark
the centroid created when training the Amazon Echo Show.

Probability of Echo Show Over Time

£ —— Amazon Firestick

—— EchoBig
- —— Echo Dot
/—\\\ —— Echo Show (UNKNOWN)
70

Probability (36)
8

Time (seconds)

Fig. 1. Probability of Echo Show Over Time

Confidence of Echo Show Over Time

—— Amazon Firestick
—— EchoBig

~— Echo Dot

—— UNKNOWN

Confidence (%)

Time (seconds)

Fig. 2. Confidence of Echo Show Over Time

V. TRUST MODEL FOR IOT ECOSYSTEM

The main motivation behind the trust model is to implement
the ability to enforce fine-grained access control on an IoT
device depending on how its different properties and behavior
are evaluated. There are several trust models that have been
proposed over the years mostly reputation oriented.

The model enables on to compute device trust values, which
are normalized values in the range [0, 1]. We discuss in this
section the proposed IoT ecosystem trust model, which can

Probability of Echo Show Over Boot

—— Amazon Firestick

—— Echo Show

—— unknown

Probability (%)

Time (seconds)

Fig. 3. Probability of Echo Show Over Time: Trained

estimate the trust of various devices based on some metrics.
The trust model computes the degree to which an attached
device can be trusted by measuring different trust indicators
relevant to the device and monitoring the trust triggers that
change values of these trust indicators. The trust values at any
given period of time are used to enforce the access control
policies corresponding to that trust levels.

A pre-requisite for using this trust model is the ability
to associate a unique identity to an IoT device such that
the identity is neither forgeable nor can it be dissociated
from the device. The current device trust value, previous
trust values and, more importantly, the evaluated parameters
used to compute the trust values are stored indexed by this
device identity. In Section II we discussed our initial attempts
to generate unique identifier of devices through behavioral
fingerprinting.

Before presenting the IoT ecosystem trust model, we give
a high-level overview of the trust framework architecture with
the various components and their interactions in Figure 4.
The framework consists of the Trust Management System
which has two components — the Trust Model and Trust
Evaluation Engine — the Trust Based Access Control System
(discussed later), the Device Monitoring System that monitors
trust triggers and evaluates the trust indicators relevant to
devices, and the Access Decision Point which is any device
or process working on behalf of an entity that needs to
determine whether further access can be permitted to the
requesting device. The interactions between these components
are indicated by directed and labeled arrows in Figure 4. The
number against a label represent the ordering of interactions
in an access control decision.

At system initiation time, the Device Monitoring System
learns the identify of an IoT device via the fingerprinting
approach discussed in Section II. This behavior-based identity
is converted to a unique string representation and shared
with the Trust Management System for indexing of device
trust values. Subsequently, the Device Monitoring System
continuously monitors the devices in the system to ensure
that only a known device (that is a device whose identity
is available) exists in the system and evaluates various trust

207

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 07,2025 at 00:32:42 UTC from IEEE Xplore. Restrictions apply.

TABLE II
EXPERIMENT 1: RESULTS FOR GOOGLE HOME

Prediction label | DNS Query | DNS Response | SSL Cert | Client Hello | Probability
0 35 8 0 0 0.2402
99 18 16 17 23 0.7621
TOTAL 53 24 17 23
TABLE III
EXPERIMENT 1: RESULTS FOR ECHO SHOW
Prediction Label | DNS Query | DNS Response | SSL Cert | Client Hello | Probability
0 177 174 190 61 0.71272
4 170 176 129 73 0.65659
5 141 142 76 42 0.48155
99 141 142 76 42 0.16718
TOTAL 206 206 231 188
TABLE IV
EXPERIMENT 1: RESULTS FOR AMAZON EcHO
Prediction label | DNS Query | DNS Response | SSL Cert | Client Hello | Probability
0 25 24 18 20 0.5972
4 34 33 15 24 0.75
5 32 31 17 21 0.5972
99 0 0 6 0 0.1250
TOTAL 34 33 24 24

TABLE V
EXPERIMENT 2: PROBABILITY AND CONFIDENCE RESULTS
Predicted Label Probability | Confidence
0 (Amazon Firestick) 83.05 [0] 95 [0]
1 (Apple TV 1) 59.2 1] 85.71 1]
2 (Apple TV 2) 57.3 2] 80.32 [2]
3 (Dlink Cloud Camera) 100 [3] 100 [3]
4 (Amazon Echo) 75 [4] 96.4 [4]
5 (Amazon Echo dot) 76.44 [5] 90 [5]
7 (TPlink Bulb) 100 [7] 100[7]
8 (Amazon Echo show) 90.4 [8] 87.5[8]

indicators and updates these to the Trust Management System.
These steps are indicated by “0” in the figure.

When an access request is made by a device (arrow labeled
“1”), the Access Decision Point evaluates the device trust by
interacting with the Trust Management System (arrow labeled
“2”). The request for an access triggers the Device Monitoring
System to push the latest update of the device’s trust indicators
to the Trust Management System (arrow labeled “3). The
computed device trust value is then sent over to the Trust-
Based Access Control System (arrow labeled “4”), which
returns a set of allowed accesses (arrow labeled “5”). Finally,
the Access Decision Point makes a decision to allow or deny
the access (arrow labeled “6”). This decision is also recorded
by the Trust Management System (arrow labeled “7”) and is
used in subsequent evaluation of device trust.

Although the job of the Access Decision Point is similar to
that of the Policy Enforcement Point of XACML, we envision
it to be the conduit through which the IoT devices interacts
with the rest of the world. For example, the Access Decision
Point can be the cable modem router through which a smart

home IoT device connects to the cable broadband ecosystem
or it can a IoT hub that connects a multitude of non TCP/IP
speaking IoT devices to a TCP/IP network, and so on. Thus,
in our model the Access Decision Point is the trustor and the
IoT device is the trustee. For the rest of the discussion we will
refer to the Access Decision Point as the trustor to which a
device connects and use the symbol CM to refer to it.

0. Ensures monitored

1aT Device i

P

1
! 1
: |
1

| Devige device is known N
I - |
| S ldentty ' 0.3, Trust inicator :
| H values as -l
| monitored Trust B
g — Management g
[- System g
:] § 2. Evaluate| g

2 8)
| s 2 28 Device 4. Device »
g cé T3 Trust Trust Value g

o % 2>
[El N

& = Access Trust-based o
; G s ‘HADE:;S —=| Decision |« Access Contral &
. eq Point 5.%etof | System g
| Accesses |
I 1
| 1
! 1
! |
! |

Allow 6.Yes -~ Hequesied g g Deny __
[4 Access P
Access ~_Alowed? Access

Fig. 4. 10T Trust Framework

A. Trust model components

The ADP system trusts a device connected to it to different
degrees for different access types. An access type intuitively
captures the nature of resource-access requested by a device.
Note that, our definition of trust is not absolute or specific

208

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 07,2025 at 00:32:42 UTC from IEEE Xplore. Restrictions apply.

to a device but depends on the context of the access that is
captured by the notion of access type. Context may include
architectural, topological, internal and external security indi-
cators, and other factors that may change in time (in other
words, context varies temporally). We model the access types
of the devices using an access graph, which is described at
a later sub-section. In the following, we describe the outline
of the trust model formalism and the intuitions that operate
within the model.

A. Access type based trust. We use the expression
CM; -Dj to denote that trustor CM; trusts device
D; (the trustee) for a specific access type c. The
access type determines what specific actions are
possible on various resources under control of CM,.

B. Degree of trust: A truster trusts a device to a specific
level. This degree of trust is computed periodically
or is triggered by the occurrence of one or more
trust triggers. These trust triggers are events that
change the value of a trust indicator. The expression
V.(CM; B) [0g . . 1] represents the degree (or
level) of trust that the trustor (also referred to as the
trust evaluator) has on the trustee for the access type
c as computed at time ¢.

a. Lack of trust - A value of 0 means that the
trust evaluator has no trust on the device.
This can be because the evaluator does not
have any information about the device to
compute a trust value or that the result of
trust evaluation has been 0.

b. Fully trusted - A value of 1 means that the
trust evaluator fully trusts the device.

C. Trust history: The trust management system corre-
sponding to a trustor maintains a history of trust
values determined for the trustees it has encountered.
The history also contains a log of the trust indicator
values that resulted in the corresponding trust levels
of the device. The trust history allows one to keep
track of how the trustworthiness of a device has
evolved, if at all, over time and plays a role in
determining the current trustworthiness of the device.
The rationale behind allowing the trust history to
affect the current trust level are two: (a) There may
be situations when the relevant trust indicators cannot
be evaluated for various reasons; a trust history
allows a reasonable evaluation of trustworthiness
under such circumstances. shows a scenario where
such trust history is useful. (b) A device that used
to be trusted (at some level) at some time cannot
become overnight un-trusted. A trust history score
allows arbitrary changes to be smoothened out.

D. Trust history log: For every trustee that the trustor
has ever evaluated, the trust history log is an update
only database of fcey, valuepairs, where key isthe
time instance when the trust value is being computed
and recorded and value = [Pudev, hi], where Paevis

the trust indicator score of the device and h: is the
trust history score of the device computed at current
time, tn, using the trust level of the device at time
th-1.

E. Trust history score computation: The trust history
score h: at the current time t. is based on the
trust value Vy,_, computed at time tn-1. Let At =
tn — tn—1. Then, the trust history score at time tn
S o = —((Vep_q) 1ADZ
is given by ht = Vi,_, X e n-1 , Where
k > 1, is a small integer that determines the rate of
change of trust and is assigned by the system as a
system policy.

Foo flatvqlue gt surentfime The degres of st that
[}
by Vi, (Dj= P gev ® hy, where ® is an

operator ge%eﬁ in a later section for combining the
two trust parameters into a single value in [0 . . . 1].

B. Trust model defintions and parameters

The IoT trust model defines device trust indicators to
quantify trust and a belief system to determine accuracy of
trust indicators. Each device is associated with a vector of
trust indicators, which is used to determine the trust indicator
score Paey that is finally used to evaluate the trust of a device.

DEFINITION 1 A device frust indicator is some measurable
property of the device whose value impacts the trust level of
the device. An internal trust indicator of a device is either a
property that is intrinsic to the device or a property associated
with the device that emerges from within the IoT ecosystem.
An external trust indicator, on the other hand, is either a
property that is extrinsic to the device or that emerges from
outside the IoT ecosystem.

DEFINITION 2 A trust trigger is an event that changes the value
of a trust indicator. Not all trust indicators have associ- ated
triggers; some may have more than one trigger while others
may share trigger. Trust triggers can be internal or external.

DEFINITION 3 Trust indicator vector: Every device is as-
sociated with an ordered set of size m of trust indicators
pt=[ki, k2, ..., kj, . .., km]. The trust indicator k;j has a
value fj . It can be evaluated by the Device Monitoring
System. However, some trust indicators can be measured only
probabilistically with some degree of confidence while others
can be measured accurately.

DEFINITION 4 Confidence in trust indicator value: The con-
fidence in trust indicator value is a measure or percentage of
accuracy of a given trust indicator value.

Although all attempts are made to measure a trust indicator
accurately, there is always a degree of uncertainty as to how
accurate the trust indicator value is. To address these concerns,
we define a belief system based on subjective logic [21] that

209

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 07,2025 at 00:32:42 UTC from IEEE Xplore. Restrictions apply.

allows the adjustment of the trust indicator values based on
the perceived beliefs of the measurements. Each time a trust
indicator k; is evaluated, the proposition “the measurement is
accurate” is subjectively judged by associating it with four
values: (i) a belief bk, € [0...1] that the proposition is true,
(ii) a belief dx, € [0...1] that the proposition is false, (iii) a
belief ux, € [0...1] that is neither committed to the truth nor
falsehood about the proposition, and (iv) an a priori probability
ak, about the the truth of the proposition in the absence of
a specific belief. Since this is a binary state space, ax, is set
to 0.5 as per the theory of subjective logic described in [21].
The values bj, dj, and u; are related as by + d; + uj = 1.
Using these values the confidence level of a measured trust
indicator is given by o; = b; + aju;. As a trust indicator
is being evaluated, we assume that the belief, disbelief and
uncertainty values associated with the measure would also be
provided. An example of computation of confidence in trust
indicator value is given in Figure 5.

Trust indicator
. Confidence level
Unce;talnty (b= 75,d=_04,u=21)
=0.85
0 0
1 : 1
Disbelief 0 [0.75] Belief

Fig. 5. Trust Indicator Confidence Level Computation

DEFINITION 5 Trust indicator importance vector: Device
trust indicator importance is represented as a 1-dimensional
vector pimp = [p1, p2, ..., Dj, ..., Pml, where pj represents
the importance weight of trust indicator k;.

Trust indicator score: The trust indicator score Paev
of a device at time t.is a single value in the range
[0...1] computed as a weighted average over the values
in the trust indicator vector using the values in the
trust indicator importance vector and the corresponding
confidence values.

The trust indicator score is computed as follows:

1) Define a single value function

Fy=—K 10
j J X
m]cmlkjl

for each trust indicator, where| k; represents the value of
the trust indicator kj. The purpose of this function is to
normalize different unit measures so that the values can
be summed together under single standard scale.

2) Multiply each normalized trust indicator values in p;j with
the corresponding trust indicator confidence level and

trust indicator importance and then normalizing it to a
scale of [0 . . . 1].
3) Compute the trust indicator score for the device as:
m

a

P = fi(k) oipi
dev = max{fi(kj) oipj}
Jj=1 j

C. Trust indicators for device trust in smart home loT

To use the trust model in practice one has to determine a set
of suitable trust indicators that can be measured. In association
with our industry partner in the broadband-over-cable industry,
we undertook an investigation of what can serve as potential
trust indicators in a smart home IoT environment. Below
we list several device trust indicators. We have categorized
them according to their functionality and not necessarily by
importance. A system designer is free to choose the relative
importance of the categories and the components within the
categories. Trust indicators are scored on a point basis. If
the existence of a trust indicator positively helps / enhances
/ impacts / sustains the security of smart home IoT, then a
positive point is assigned. If it impacts negatively, a negative
point is assigned. The trust indicators we have identified are:

A. Device category — Evaluation decision is based on what
impact would a compromise of a device in that category
have on the system. Impact is evaluated on a Likert scale.
Various subtypes are also identified:

i) End-point networking - Examples include IoT hubs,
switches, routers, wifi access points, etc.

il) Productivity - Examples include tablet, smartphones,

smart printers, etc.

Entertainment - Examples include smart TV, speakers,

music systems, media hub etc.

Physical safety and security - Examples include mo-

tion detector, security camera, fire alarm, smoke de-

tector, doorbell etc.

v) Home comfort and convenience - Examples include

thermostat, bulb, electric switch etc.

Utility - Examples include refrigerator, washer, dryer

etc.

iii)

iv)

vi)

vii) Medical and health care devices - Examples include
smart watches, wearable health monitors etc.
viii) Voice assistants and controllers - Examples include

devices such as Echo show, Google Home etc.

B. Device capability - The higher the device’s computational
capabilities the more damage can probably be done by
exploiting the devices. Factors considered are (i) type
of processor (microcontroller, general purpose etc. (ii)
available RAM, and (iii) storage capability.

C. Network connection type - wired, wireless type (WiFi,
cellular, Bluetooth, Zigbee, Zwave, etc.)

D. Physical location of device - (i) Unprotected (no physical
barriers), (ii) partially protected (some physical barriers
to access), or (iii) high protection (inside house only
accessible to owner or by authorization of owner).

210

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 07,2025 at 00:32:42 UTC from IEEE Xplore. Restrictions apply.

E. Connection requirement - (i) device to device (ii) device
to cloud, (iii) application to device or (iv) application to
cloud

F. Connection security - (i) Authenticated connection (Y/N),
(i1) Encrypted connection (Y/N), and if encrypted connec-
tion (i) encryption type and (ii) encryption strength.

G. Connection behavior - (i) device initiated or outside ini-
tiated, (ii) average frequency of connection with outside,
(iii) average duration of connection, (iv) average bandwidth
consumed per connection (v) frame rate for traffic, (vi)
traffic type, (vii) signal strength (viii) connection port
numbers, and (ix) packet length deviation (expected vs.
observed.

H. Current configuration of device - (i) default, (ii) updated,
and (iii) latest firmware with patches updated

I. Device manufacturer trust level

No that this list is, by no means, complete. Our preliminary
investigations have led to the determination of this list of
trust indicators. Depending on the scenario, this list may need
to be updated. In addition, recall from earlier discussions,
that each trust indicator is associated with a confidence level
that determines one’s belief about how well a measured trust
indicator score is.

D. Trust management system

The trust management system is responsible for monitoring
and managing device trust indicators as well evaluating trust
levels of devices and answering queries related to device trust.
It consists of the following components:

Immutable database to store and manage trust related data

Immutable log of trust history

Trust specification engine for defining and managing trust

relationships

Trust analysis engine to process the results of a trust

query

Trust evaluation engine for evaluating trust relationships

Trust monitor for monitoring trust triggers to update trust

relationships

The architecture of the trust management system is shown in

Figure. The green-colored arrows in the figure reflects commu-
nication between various modules that happen periodically in
order to update trust levels of devices; the red-colored arrows
represent communications that occur when the trust manage-
ment system is queried for trust value related information.
Finally, the black-colored arrows represent internal operation
of the trust database.

VI. FLEXIBLE TRUST-BASED ACCESS CONTROL FOR IOT

The purpose of defining the new trust model is to enable
fine-grained access control of the connected devices. A factor
that is often overlooked when fine-grained access decisions
are made is that there can be various tradeoffs in terms of
cost of effectuating permission, cost of consequence for a
coarser grained versus finer grained permission etc. that need
to be accounted for in determining the granularity of access.
One of the novel features of this access control paradigm is

211

] l

| Trust Analysis ‘ | Trust Evalustion

Trust Specification

Engins Engine Engine:

Lv Trust Definition and T Trust
ust Query
Value

Expression
Trust

Jf Language
Query

Trust Data Trust DB
= oa — e Results
Manager Guery Eng,

System
____________ Interface

To Trust-Based
Access Control
System

Updates

Trust Trust
Indicators Monitor
.

| — Query resuts — 4

NModifies —»|
Maonitors

Trust »
Triggers

Immutable Database

Fig. 6. Trust Management System Architecture

it provides an opportunity of expressing policies by trading
off factors. In this section, we describe the trust based access
control framework that achieves this task.

A. Trust-based access control model

The main elements of the access control model are the
devices, the access types and the resources. Devices request
access of a specific type to the system resources. An access
request can be satisfied by one or more set of permissions to
a set of resources managed by the system. Some key concepts
in this model are:

- A permission is defined as an action on a specific resource

(object).

A permission has a consequence cost and cost to effec-
tuate it that are determined during the time of access
control policy establishment.

An access request has an associated trust value (or range)
that specifies the level of trustworthiness needed for a
device to be granted that access request.

Every device has one and only one trust history; a device
also has a set of trust indicators as described in the trust model.
When a device requests access to resource, the trust based
access control system determines:

1) Whether the device’s trust level allows the desired access,
i.e., is the device trust > trust level needed for access.

2) The cost of the consequences of the set of permissions
and the cost of effectuating the set.

3) The set of permissions that effectuates the access request
and at the same time minimizes the costs.

The last item is important to note. The access control
framework returns a set of permissions that are allowable for a
particular scenario. What this allows is that if an access request
involves multiple permissions but only a subset of that can be
allowed, a decision can still be made to allow partial access
instead of complete access denial.

1) Model elements: We refer to Figure 7 for the following
discussion. It shows the different model elements and their
relationships.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 07,2025 at 00:32:42 UTC from IEEE Xplore. Restrictions apply.

TRUST ™ ' ‘ TRUST ACCESS
— j«—» DEVICE fe—» o =
INDICATORS / s VALUES TYPE
< TRUST [
. SESSION — ——
‘. HISTORY - \Andz a4y
. [COST_OF_
o . . _PERMISSIONS CONSEQUENCES
TRUST_ ac(Ai) +[)’C(Al-) “res N — =
TR'GGERS LTI PN |actions |
T - s Ces ! r
—— .
e .
COST_OF_ >
EFFECTUATING CONSEQUENCES
PERMISSION

Fig. 7. Trust-based Access Control Model for IoT

The trust-based access control model is defined in terms of

controlled by the system that needs to be protected.

a set of elements and relationships among those elements. The ix. Actions: An action xi c ACTIONS is an operation that

different elements are: can be performed on a resource o;.

x. Permission: A permission axc PERMISSIONS is an

1. Device: A device ¢ DEVICES is defined as an entity that authorization to allow certain action. It is defined as an

is connected to the system and requests access to some element of RESOURCESy ACTIONS, ie., PERMIS-
resources controlled by the system. SIONS = 2RESOURCES x ACTIONS

ii. Trust Indicators: Each device, d, has an ordered set pa xj. Consequence: A consequence {¢ CONSEQUENCES is
of measurable properties cla_l ed trust indicators. The set the resulting system state when a permission is effectu-
TRUST INDICATORS = gy icEs) Pd - A device ated.
can manifest measurable values for any subset p ¢ pa xiji. Access: An access A; is an ordered subset of PERMIS-
during a specific session. (See eatlier for discussion on SIONS. Every access is associated with an access type.
trust indicators.) xiil. Cost of effectuating permission: A cost of effectuating a

iii. Trust history: A trust history cTRUST_ HISTORY is a permission is a real number from a finite, discrete set of
set of information regarding a device’s old trust values as real numbers that represent an unitless cost amount
evaluated in various times including in a previous session. incurred by the system in enabling the permission.

iv. Trust trigger: A trust triggee TRUST TRIGGERS is an yjy_ Cost of consequence: When a permission is effectuated,
event that changes the value of a trust indicator or a clock it results in a change of system state which is the
tick designating a time instance where a change of value consequence. The changed system state can be better
for a trust indicator has occurred. A trust trigger causes a than, worse than or same as the original state in terms
trust history to be updated. of security. Regardless, there is a cost that is incurred

v. Session: A session cSESSIONS is a connection instance for being in the new state. A cost of consequence C c
of a device. A device requests access to system resources COST OF CONSEQUENCES is a real number from a
during a session. A device can instantiate multiple ses- finite, discrete set of real number > 0 that represent this
sions. A session is identified by a unique system generated cost. It is unitless.

id.

vi. Trust Level: A trust level is a set of real numbers between A§5001at10n between‘ any tW(,) of the above glements. are
0and 1. A device at some instant of time in a session has a specified by mathematical relations. The following relations
trust level. The set TRUST LEVELS is the set of possible ~are defined in the trust based access control model.
subsets of [0...1]. i. DTA DEVICES TRUST INDICATORS define the

vii. Access Type: An access type specifies the nature of access device — trust indicator assignment. It is a many to many
that is sought. An access type, AT: ¢ ACCESS_ TYPES relation where a device can have many trust indicators and
is a set of keywords with some associated semantics a trust indicator can be associated with many devices.
regarding the resources needed and the outcome. ii. DTH HEVICES TRUST_ HISTORY defines the

viii. Resource: A resource oj € RESOURCES is an object device — trust history mapping. It is a one-to-one relation;

212

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 07,2025 at 00:32:42 UTC from IEEE Xplore. Restrictions apply.

one device has one trust history and vice versa.

iii. TTT &RUST TRIGGERS »IRUST__ INDICATORS
specify the trust trigger — trust indicator assignment. It is
a many to many relation where a trust trigger can cause
change in value for many trust indicators and the same
trust indicator can have a change in value caused by many
trust triggers.

iv. DVTe DEVICESx TRUST VALUES define the device
— trust value mapping. It is a many to one mapping
from DEVICES to TRUST VALUES. A device can be
associated with one and only one trust value. However,
many devices can have the same trust value.

v. TAT ARUST VALUES ACCESS TYPES define the
trust value needed for a specific access type. It is a many
to many mapping.

vi. ATA cACCESS TYPE xACCESS define the access
type to access mapping. It is a many to one mapping
from ACCESS TYPE to ACCESS. Several access types
may imply the same access; however, every access is of
one specific type.

vii. ACP cACCESS »PERMISSIONS defines the permis-
sions needed for a specific access. It is a many to many
relation.

viii. PCE<c PERMISSIONS x COST OF EFFECTUATING
_PERMISSION is a mapping that define the relation
between a permission and the cost associated with imple-
menting the permission. It is a many to many relations.
A cost of a permission ¢=PCE is a real number from a
finite set of numbers @ that gives the unitless cost.

ix. PEC ¢ PERMISSIONS x CONSEQUENCES is a map-
ping that define the many to many relation between
PERMISSIONS and CONSEQUENCES. A permission
consequence § PEC gives the consequence of effec-
tuating the permission.

x. CCS ¢ CONSEQUENCES x COST OF CONSE-
QUENCES is a many to many mapping between CONSE-
QUENCES and COST OF CONSEQUENCES. An ele-
ment C&£CS is a real number § that gives the specific

xi. CORASSRHES VAL § APPSITE COTLTY§RESies an expres-
3 I3 I3

sion involving elements of PCE and CCS that needs to
be minimized to select an appropriate set of access in a
session.

VII. CONCLUSION

In this work, we take the position that over-reliance on
cryptographic techniques in IoT is flawed because of various
computational issues, scalability and management issues and
implementation issues with existing public key based crypto-
graphic techniques. We present a vision for an IoT ecosystem
that achieves considerable practical security without using
cryptography. It is based on creating unforgeable identities of
IoT devices through behavioral fingerprinting that is strongly
tied to the device, and on a trust framework for IoT devices
that is not reputation based (unlike other trust models) but
uses measurable and quantifiable properties of IoT devices to

213

establish trust levels for them. We outline the architecture of
the trust framework as well an access control model that uses
the underlying trust model.

(1]

(2]

B3]
[4]

(5]

[6]

(7]

(8]

[12]

[13]

[14]

[15]

REFERENCES

“State of the IoT 2018: Number of IoT devices now at 7B — Market ac-
celerating,” https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-
number-of-iot-devices-now-7b/.

B. Krebs, “Mirai IoT Botnet Co-Authors Plead Guilty-Krebs on Se-
curity,” https://krebsonsecurity.com/2017/12/mirai-iot-botnet-co-authors-
plead-guilty/, 2017.

OCF, “OCF Security Specification Version 2,” Open Connectivity Foun-
dation, Technical Specification, 2018.

R. A. Grimes, “4 fatal problems with PK1”
http://www.infoworld.com/article/2942072/security/4-fatal-problems-
with-pki.html, Jun. 2015.

A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki,
“The DET curve in assessment of detection task performance,” National
Inst. of Standards and Technology, Gaithersburg MD, Tech. Rep., 1997.
T. Kohno, A. Broido, and K. C. Claffy, “Remote physical device fin-
gerprinting,” IEEE Transactions on Dependable and Secure Computing,
vol. 2, no. 2, pp. 93-108, 2005.

R. Lippmann, D. Fried, K. Piwowarski, and W. Streilein, “Passive
operating system identification from TCP/IP packet headers,” in Proc.
of the Workshop on Data Mining for Computer Security, vol. 40, 2003.
J. Franklin, D. McCoy, P. Tabriz, V.Neagoe, J. V.Randwyk, and

D. Sicker, “Passive Data Link Layer 802.11 Wireless Device Driver
Fingerprinting.” in Proc. of the USENIX Security Symposium, vol. 3,
2006, pp. 16-89.

J. Pang, B. Greenstein, R. Gummadi, S. Seshan, and D. Wetherall,
“802.11 user fingerprinting,” in Proc. of the 13th Annual ACM Inter-
national Conference on Mobile Computing and Networking, 2007.

J. Frangois, H. Abdelnur, O. Festor ef al., “Automated behavioral finger-
printing,” in Proc. of the International Workshop on Recent Advances
in Intrusion Detection. Springer, 2009, pp. 182-201.

C. Arackaparambil, S. Bratus, A. Shubina, and D. Kotz, “On the
reliability of wireless fingerprinting using clock skews,” in Proc. of the
Third ACM Conference on Wireless Network Security, 2010.

A. Kurtz, H. Gascon, T. Becker, K. Rieck, and F. Freiling, “Fingerprint-
ing mobile devices using personalized configurations,” Proc. of Privacy
Enhancing Technologies, vol. 2016, no. 1, pp. 4-19, 2016.

V.Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device identifica-
tion with radiometric signatures,” in Proc. of the 14th ACM International
Conference on Mobile Computing and Networking. ACM, 2008, pp.
116-127.

S. Jana and S. K. Kasera, “On fast and accurate detection of unauthorized
wireless access points using clock skews,” IEEE Transactions on Mobile
Computing, vol. 9, no. 3, pp. 449-462, 2009.

S. V. Radhakrishnan, A. S. Uluagac, and R. Beyah, “GTID: A technique
for physical deviceanddevice type fingerprinting,” IEEE Transactions on
Dependable and Secure Computing, vol. 12, no. 5, pp. 519-532, 2014.

[16] Do g m byt Y#s9buf IRy dreRo2piy A PR gtk

[17]

(18]

[19]

[20]

[21]

for Cyber-Physical Systems.” in Proc. of the Network and Distributed
Systems Security Symposium, 2016.

T. Van Goethem, W. Scheepers, D. Preuveneers, and W. Joosen,
“Accelerometer-based device fingerprinting for multi-factor mobile au-
thentication,” in Proc. of the International Symposium on Engineering
Secure Software and Systems. Springer, 2016, pp. 106-121.

M. Miettinen, S. Marchal, 1. Hafeez, N. Asokan, A.-R. Sadeghi, and
S. Tarkoma, “IoT Sentinel: Automated device-type identification for
security enforcement in IoT,” in Proc. of the 37th IEEE International
Conference on Distributed Computing Systems (ICDCS). 1EEE, 2017,
pp. 2177-2184.

B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray, and 1. Ray,
“Behavioral fingerprinting of iot devices,” in Proc. of the 2018 Workshop
on Attacks and Solutions in Hardware Security, Toronto, Canada, 2018.
S. Marchal, M. Miettinen, T. D. Nguyen, A.-R. Sadeghi, and N. Asokan,
“AuDI: Toward Autonomous IoT Device-Type Identification Using
Periodic Communication,” IEEE Journal on Selected Areas in Com-
munications, vol. 37, no. 6, pp. 1402—1412, 2019.

A. Josang, Subjective Logic, ser. Artificial Intelligence: Foundations,
Theory, and Algorithms. Springer International Publishing, 2016.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 07,2025 at 00:32:42 UTC from IEEE Xplore. Restrictions apply.

