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Abstract—With the exponential growth of the Internet of 
Things (IoT) ecosystem there is increasing concern regarding 
how to ensure its security. This is  particularly critical because  
in this ecosystem a significant number of devices are of very low 
computational capabilities making them particularly vulnerable 
to attacks. Moreover, cryptographic techniques that are tradition- 
ally used for establishing trust in entities through identification 
and authentication also do  not  appear  to  be  suitable because 
of computational requirements as well as scalability issues. We 
present a new vision for security in this ecosystem that does not 
rely on cryptographic techniques and yet is able to achieve strong 
device identity. We also present the outlines of a crypto key less 
trust ecosystem that can be used to implement fine-grained access 
control in a pragmatic manner. 

Index Terms—Internet of Things, security, identity, trust 
 

I. INTRODUCTION 

The Internet-of-Things (IoT) industry is rapidly growing 
with a multitude of device manufacturers releasing new smart 
devices (or device components that can be added to other 
devices) everyday to enhance our standard of living. The 
number of IoT device in use at the end of the first half of  
2018 was estimated to be 7 billion and it is expected to reach 
10 billion by 2020 ( [1]). In this connected world, devices can 
not only be controlled by the user remotely, but one device can 
control another device without having the user to intervene at 
all. Unfortunately, security is an after-thought in a significant 
number of these IoT devices resulting in vulnerabilities that 
have been successfully exploited to cause significant damage. 
A widely reported example of such an attack is the Mirai IoT 
botnet [2] that left much of the Internet on the U.S. east coast 
inaccessible to users. 

Several steps need to be taken  to  have  confidence  that  
the IoT world is significantly better protected against secu- 
rity attacks than what it is today. These include, but not 
necessarily limited to, (i) designing IoT firmware, operating 
system, and application so that they are (ideally) free of 
software vulnerabilities that can be exploited, (ii) designing 
robust identification and/or authentication schemes that will 
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ensure only trusted devices are securely  bootstrapped  onto 
the network as well as allow more robust monitoring and 
auditing of these devices, (iii) strongly enforced access control 
schemes that ensure that devices have access to only those 
resources that they need to provide needed services, and 
(iv) as appropriate, cryptographic techniques to better protect 
sensitive communication. 

Unfortunately, there is  often  a  tendency  to  rely  too  
much on cryptographic  mechanisms  to  achieve  security.  
For example, the Open Connectivity Foundation (OCF - 
https://openconnectivity.org) which has developed the OCF 
Security Specification for the IoT ecosystem [3], assumes that 
if a devices is successfully authenticated during onboarding it 
can be trusted for the rest of its connection session, and uses 
the cryptographic protocol DTLS to achieve authentication. 
While cryptography is an important tool  in  security,  there 
are several operational issues which lead us to believe that  
we need to look beyond  cryptography  to  achieve  security. 
To begin with, many of the cryptographic techniques in use 
today especially public key cryptographic techniques, are 
computationally expensive and is beyond the capabilities of     
a significantly large class of IoT devices. In addition, under 
current public key infrastructure (PKI) market models, it is 
very expensive for a device manufacturer to purchase public 
key certificates. Many IoT device manufacturers who operate 
on thin margins find such costs as too expensive and choose 
not to use cryptographic keys for security. To complicate 
things, establishing and managing a PKI is very challenging. 
it has been observed ( [4]) that a significantly large number of 
current PKIs are implemented incorrectly and have fatal flaws 
that render any security achieved under these PKIs useless in 
practice. In other words, cryptographic techniques often given 
a false sense of security. 

In this work, we present a vision for an IoT ecosystem    
that achieves considerable practical security without using 
cryptography. It is based on creating unforgeable identities of 
IoT devices through behavioral fingerprinting that is strongly 
tied to the device, and on a trust framework for IoT devices 
that is not reputation based (unlike other trust models) but 
uses measurable and quantifiable properties of IoT devices to 
establish trust levels for them. We outline the architecture of 
the trust framework as well an access control model that uses 
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the underlying trust model. 

II. TOWARDS UNIQUE DEVICE IDENTITY 

Many security problems can be mitigated through strong  
identification and authentication of devices, which enables 
administrators to effectively monitor devices and enforce 
appropriate access controls on a particular device. Proper 
identification needs the device to be associated with an un- 
forgeable identity that is also stringly tied to the devices. We 
posit that such an identity can be established by appropriately 
characterizing the behavior of the device through behavioral 
fingerprinting. The latter also helps establish a behavioral 
baseline that answer the question “Is the device doing what it 
is supposed to do.” For example, a light bulb mostly performs 
three tasks - turn on, turn off, and adjust brightness. Scanning 
the network is not its desired behavior. 

Fingerprinting IoT devices is challenging due to the large 
variety of devices, protocols,and control  interfaces,  across  
the devices. Fingerprinting involves modelling the normal 
behavior based on network traffic features that characterizes a 
device. An untrusted device can masquerade as another device 
by providing false information about its identity and type. 
More importantly, an untrusted or compromised IoT device 
might behave contrary to its baseline behavior, e.g., connecting 
to other devices to disrupt their normal functionality or to scan 
the network for information about other devices. 

IoT device type fingerprinting research is in early stages 
due to the evolving nature of the IoT industry.  General  
device fingerprinting has been described in [5], [6], [7], which 
have explored several techniques ranging from packet header 
features to physical features such as clockskews. Wireless 
device finger printing techniques have been discussed in [8], 
[9], [10], [11], [12]. These works explored the device type 
identification by exploring  the  implementation  differences  
of a common protocol such as SIP, across similar devices. 
However, IoT devices use numerous protocols and it would be 
nearly impossible to attempt such analysis on a per protocol 
and per device basis. Physical layer based device fingerprinting 
has received considerable attention [13], [14], [15], [16], 
[17] where the focus is on analyzing the physical aspects of 
devices to fingerprint them. All these works focused on general 
wireless devices and their applicability to IoT devices is an 
open question. 

Miettinen et al. [18] described IoT Sentinel, a framework for 
device fingerprinting and securing IoT networks. Their work 
focused on supervised machine learning techniques for finger- 
printing a device when it first registers on a network. Bezawada 
et. al. [19] described IoTSense. This work is focused towards 
the active state of the device i.e. what the device is doing     
on the network. They also use supervised machine learning  
techniques to characterize the behavior of the device on the 
network. Both of these works, IoT Sentinel [18] and IoTSense 
[18], focus on identifying a device of a specific type; however 
both suffer from the problem that if a device of an unknown 
type joins the network it is wrongly classified as one of the 
known devices which the algorithms have learned before. 

Marchal, et al. [20] overcomes the shortcomings of IoT- 
Sentinel to propose AuDI that is able to detect an unknown 
devices type with a high degree of accuracy.However, this 
method relies heavily on low network congestion. Because the 
method is dealing with flow frequency, if there is any network 
congestion this frequency has the potential to be misaligned 
with the device fingerprints. Another issue with this approach 
is that it takes 2.5 hours to train a new device type, and 30 
minutes to collect enough idle traffic to classify a device with 
such high accuracy. 

We now describe our initial efforts in developing an un- 
supervised learning approach for fingerprinting devices. We 
describe our approach on device fingerprinting at the device 
bootstrap or onboarding phase, when it first registers on a 
network. However, this approach can also be used to create 
device fingerprint both when the device is active and when it 
is idle. Our results are very encouraging and we are convinced 
that this approach can be extended to create unique fingerprints 
of devices that can be used as the basis of a strong device 
identity. When paired with fingerprints of devices at the idle 
and active states, this approach can form the basis of an 
effective monitoring system for IoT devices. We have tested 
our approach not only on different device types (at the level  
of granularity such as music systems, lights, camera, voice 
assistants etc. but also on similar devices. For example, we 
have trained on Amazon Echo dot (smaller one) and Echo 
(bigger one) and found that we can distinguish them distinctly. 
Neither the IoTSentinel approach nor the IoTSense approach 
can lay claim to this particular feature and it remains to be 
seen if AuDI can. 

III. PROPOSED LEARNING MODEL 

The model we are proposing is an unsupervised learning 
model that can identify devices based solely on network traffic. 
Our model doesn’t take into account any traditional addressing 
techniques such as IP addressing  or  MAC  addressing.  In  
this section we describe the model features and classification 
technique used. 

A. Model Features 
As a passive identification model we observe four types     

of messages: DNS Query, DNS Response, SSL Cert, Client 
Hello. These message types were chosen due to their ubiquity 
between home IoT devices. From each of these message types 
we mined common and specific features. 

Common: The common features gathered from each mes- 
sage were frame length, ip length, tcp/udp length. The frame 
length in this context is the size of the whole packet. The ip 
length is the size of the ip packet, and the tcp/udp length is  
the size of either the tcp portion of the packet or udp portion  
of the packet depending on which protocol the message type 
uses. For example the DNS Query and DNS Response will  
use udp length, the SSL Cert and Client Hello will use tcp 
length. 

Specific: Each message type has specific data that is mined. 
The features are listed below by message type. 
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• DNS Query: query name length, url score. 
• DNS Response: response name length, url score. 
• SSL Cert: certificate length. 
• Client Hello: handshake length, handshake cipher suite 

length, handshake extensions length, handshake exten- 
sions server name length, url score. 

The Url score mentioned above is a value computed based 
on message type and domain names. The score depends on 
how close the url in question matches the trained urls. For 
example, if the url in question is aaa.bbb.ccc and it matches 
exactly then the score is 100. if it does not match then we take 
off one sub-domain to make the example *.bbb.ccc. After this 
we check and continue this process until there is only the core 
domain left. If there was a match the score is set to be slightly 
lower at 99. If there was no match then the score is set to zero. 

B. Classification Method 
For each device in the training phase, four clusters are 

created based on the message types described above. Similar 
message type clusters are aggregated to form a model which  
is used for evaluation of that specific message type. The 
centroids of each cluster are stored and used to determine  
how far the test data sample is from the centroid. A threshold 
value of 100 is provided. This can be set by the user for a 
tighter or relaxed evaluation constraint. As an example, if there 
are 4 devices in training d1, d2, d3 and d4, the first model 
contains the dns request cluster centroids of d1 to d4. The 
second model contains the dns response and so on. During 
evaluation when a device dn connects to the network, it’s 
communication messages are grouped by message type, sent 
to the four models and the cluster number to which it matches 
is returned. There is often a case that a single message may 
return match with more than one cluster. Hence, the final 
prediction is aggregated and displayed after a certain time 
interval. Also the scores from each model is taken into account 
and the final score is an average of the four models. This is    
to verify that all types of messages indicate that they are from 
the same type of device and there might be a possibility that 
one type of message will be same for two different devices. 
The algorithm that was used for generating the clusters was K- 
means. Any other clustering algorithm will work as well and 
the accuracy might improve. We have not tested with other 
unsupervised clustering algorithm as our goal relies on using 
any unsupervised algorithm rather than a supervised one. 

IV. EXPERIMENTATION AND RESULTS 

For this work we performed two experiments. The first ex- 
periment was to see if our classifier could correctly distinguish 
device boot-up traffic from trained and unknown devices. The 
second experiment was to validate our claims tested by the first 
experiment. For both of the experiments below we developed 
a testing script in Python to collect network data and pass it 
through the classifier. The two experiments included the IoT 
devices listed below. 

The first experiment that we performed aimed to test the 
correctness of our learning model. In order to examine if the 

TABLE I 
LIST OF DEVICES USED IN EXPERIMENTS 

 
Device Name Label Manufacturer Interface 
Fire Stick TV 0 Amazon WiFi 
Apple TV 1 1 Apple WiFi 
Apple TV 2 2 Apple WiFi 
Cloud Camera 3 DLink Ethernet 
Echo 4 Amazon WiFi 
Echo Dot 5 Amazon WiFi 
ArloQ Camera 6 Netgear WiFi 
TPLink Bulb 7 TPLink WiFi 
Wink Hub 99 Wink Ethernet 
Echo Show 99 Amazon WiFi 
Home Mini 99 Google WiFi 
Xperia Phone 99 Sony WiFi 
Nexus 5e Phone 99 LG WiFi 

 
 

features that we chose were significant, we tested against 13 
devices listed in table I. Our model generated eight labels that 
represent the eight device that we used to train the classifier. 
The ninth label (99) was reserved for any device that the 
classifier deemed as unknown. This is the default label for   
any device which was not used in training and not classified 
within the bounds of any trained centroid during testing. 

Our results for this experiment showed that of the 14 devices 
tested, all but one was classified correctly. The details of the 
classification probability for two of our unknown devices are 
shown in Tables II and III. The total number of packets that 
the boot phase generated are in the total row. Out of that the 
number of packets matching the labels are in each column. 
From table II it can be observed that during the boot phase     
of Google Home, there were 53 DNS requests. Out of 53, 35 
suggested that the request was similar to Amazon Firestick 
(label 0) and 18 are never seen before (label 99). So just by 
looking at the DNS requests, the device is likely to be an 
Amazon Firestick. But when the rest of the three models are 
consulted, the final probability suggests that the device is 99 - 
not matching with any cluster or unknown. The one device that 
was misclassified was the Amazon Echo Show. This device is 
very similar to the Echo and Echo Dot. Below in Table III  
you can see the test results for the misclassified device. 

Our second experiment aimed to validate the correctness   
of our learning model and provide insights into how we can 
improve the model. 

For this experiment out of the nine devices tested eight were 
correctly classified by the end of boot up process. The one 
device that was misclassified was again the Amazon Echo 
Show. This is no  surprise  as  we  did  not  alter  the training 
of the classifier between the two experiments. Looking at the 
probabilities and confidence that we calculated, we found that 
model did correctly classify the Amazon Echo Show as an 
Amazon product. In Figure 1 we  see  that  the  device  with 
the highest ending probability was the Amazon Firestick with 
74.26%. The classifier correctly identified the Amazon Echo 
Show as an Amazon product through the calculated confidence 
between the two devices but it was technically wrong as it 
should have predicted 99 or unknown. This makes intuitive 
sense as these Amazon devices are very similar in behavior and 
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functionality. In Figure 1 and Figure 2, we see the probability 
and confidence of the misclassified device over time. 

These results show that untrained on the Amazon Echo 
Show’s boot data the classifier performs very well when 
identifying devices at coarse granularity,  i.e.  brand,  type,  
etc. In order for the classifier to identify the device at fine 
granularity such as the specific model of device, Echo dot vs. 
Echo show, we needed to add the cluster of the new device 
with the boot data of that device to the existing clusters. Once 
we added the new  cluster  we  achieved  a  final  probability 
of 90.4%. Seen in Figure 3 the classifier has now correctly 
identified the Amazon Echo Show. In Figure V, the classifiers 
highest ending probability and peak confidence results for each 
devices boot data are listed. A new label 8 was added to mark 
the centroid created when training the Amazon Echo Show. 

 
 

 
Fig. 1.   Probability of Echo Show Over  Time 

 
 
 

 
Fig. 2.   Confidence of Echo Show Over  Time 

 
 

V. TRUST MODEL FOR IOT ECOSYSTEM 

The main motivation behind the trust model is to implement 
the ability to enforce fine-grained access control on an IoT 
device depending on how its different properties and behavior 
are evaluated. There are several trust models that have been 
proposed over the years mostly reputation oriented. 

The model enables on to compute device trust values, which 
are normalized values in the range [0, 1]. We discuss in this 
section the proposed IoT ecosystem trust model, which can 

 

 
 

Fig. 3. Probability of Echo Show Over Time: Trained 
 
 

estimate the trust of various devices based on some metrics. 
The trust model computes the degree to which an attached 
device can be trusted by measuring different trust indicators 
relevant to the device and monitoring the trust triggers that 
change values of these trust indicators. The trust values at any 
given period of time are used to enforce the access control 
policies corresponding to that trust levels. 

A pre-requisite for using  this  trust  model  is  the  ability  
to associate a unique identity  to  an  IoT  device  such  that  
the identity is neither forgeable nor can it  be  dissociated  
from the device. The current device trust  value,  previous  
trust values and, more importantly, the evaluated parameters 
used to compute the trust values are stored indexed by this 
device identity. In Section II we discussed our initial attempts 
to generate unique identifier of devices through behavioral 
fingerprinting. 

Before presenting the IoT ecosystem trust model, we give    
a high-level overview of the trust framework architecture with 
the various components and their interactions in  Figure  4. 
The framework consists of the Trust Management System 
which has two components – the Trust Model and Trust 
Evaluation Engine – the Trust Based Access Control System 
(discussed later), the Device Monitoring System that monitors 
trust triggers and evaluates the trust indicators relevant to 
devices, and the Access Decision Point  which is any device   
or process working on behalf of an entity that needs to 
determine whether further access can be permitted to the 
requesting device. The interactions between these components 
are indicated by directed and labeled arrows in Figure 4. The 
number against a label represent the ordering of interactions 
in an access control decision. 

At system initiation time, the Device Monitoring System 
learns the identify of an IoT device via the fingerprinting 
approach discussed in Section II. This behavior-based identity 
is converted to a unique string representation  and  shared  
with the Trust Management System for indexing of device 
trust values. Subsequently, the Device Monitoring System 
continuously monitors the devices in the system  to  ensure 
that only a known  device  (that  is  a  device  whose identity 
is available) exists in the system and evaluates various trust 
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TABLE II 
EXPERIMENT 1: RESULTS FOR GOOGLE  HOME 

 
Prediction label DNS Query DNS Response SSL Cert Client Hello Probability 

0 
99 

35 
18 

8 
16 

0 
17 

0 
23 

0.2402 
0.7621 

TOTAL 53 24 17 23  

 
TABLE III 

EXPERIMENT 1: RESULTS FOR ECHO  SHOW 
 

Prediction Label DNS Query DNS Response SSL Cert Client Hello Probability 
0 177 174 190 61 0.71272 
4 170 176 129 73 0.65659 
5 141 142 76 42 0.48155 

99 141 142 76 42 0.16718 
TOTAL 206 206 231 188  

 
TABLE IV 

EXPERIMENT 1: RESULTS FOR AMAZON  ECHO 
 

Prediction label DNS Query DNS Response SSL Cert Client Hello Probability 
0 25 24 18 20 0.5972 
4 34 33 15 24 0.75 
5 32 31 17 21 0.5972 

99 0 0 6 0 0.1250 
TOTAL 34 33 24 24  

 
TABLE V 

EXPERIMENT 2: PROBABILITY AND CONFIDENCE RESULTS 
 

Predicted Label Probability Confidence 
0 (Amazon Firestick) 83.05 [0] 95 [0] 

1 (Apple TV 1) 59.2 [1] 85.71 [1] 
2 (Apple TV 2) 57.3 [2] 80.32 [2] 

3 (Dlink Cloud Camera) 100 [3] 100 [3] 
4 (Amazon Echo) 75 [4] 96.4 [4] 

5 (Amazon Echo dot) 76.44 [5] 90 [5] 
7 (TPlink Bulb) 100 [7] 100[7] 

8 (Amazon Echo show) 90.4 [8] 87.5 [8] 
 
 

indicators and updates these to the Trust Management System. 
These steps are indicated by “0” in the figure. 

When an access request is made by a device (arrow labeled 
“1”), the Access Decision Point evaluates the device trust by 
interacting with the Trust Management System (arrow labeled 
“2”). The request for an access triggers the Device Monitoring 
System to push the latest update of the device’s trust indicators 
to the Trust Management System (arrow labeled “3”). The 
computed device trust value is then sent over to the Trust- 
Based Access Control System (arrow labeled “4”), which 
returns a set of allowed accesses (arrow labeled “5”). Finally, 
the Access Decision Point makes a decision to allow or deny 
the access (arrow labeled “6”). This decision is also recorded 
by the Trust Management System (arrow labeled “7”) and is 
used in subsequent evaluation of device trust. 

Although the job of the Access Decision Point is similar to 
that of the Policy Enforcement Point of XACML, we envision 
it to be the conduit through which the IoT devices interacts 
with the rest of the world. For example, the Access Decision 
Point can be the cable modem router through which a smart 

home IoT device connects to the cable broadband ecosystem 
or it can a IoT hub that connects a multitude of non TCP/IP 
speaking IoT devices to a TCP/IP network, and so on. Thus,  
in our model the Access Decision Point is the trustor and the 
IoT device is the trustee. For the rest of the discussion we will 
refer to the Access Decision Point as the trustor to which a 
device connects and use the symbol CM to refer to it. 

 

Fig. 4. IoT Trust Framework 
 
 

A. Trust model components 
The ADP system trusts a device connected to it to different 

degrees for different access types. An access type intuitively 
captures the nature of resource-access requested by a device. 
Note that, our definition of trust is not absolute or specific 
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to a device but depends on the context of the access that is 
captured by the notion of access type. Context may include  
architectural, topological, internal and external security indi- 
cators, and other factors that may change in time (in other 
words, context varies temporally). We model the access types 
of the devices using an access graph, which is described at       
a later sub-section. In the following, we describe the outline  
of the trust model formalism and the intuitions that operate 

the trust indicator score of the device and ht is the 
trust history score of the device computed at current 
time, tn, using the trust level of the device at time 
tn−1. 

E. Trust history score computation: The trust history 
score ht at the current time tn is based on the 
trust value Vtn−1   computed at time tn−1. Let ∆t = 
tn − tn−1. Then, the trust history score at time tn 

within the model. is  given  by  ht = Vtn−1  × e −((Vt n−1 )
−1 ∆t)2k 

, where 
A. Access type based trust: We use the expression 

CMi  Dj to denote that trustor CMi trusts device 
Dj (the trustee) for a specific access type c. The 
access type determines what specific actions are 
possible on various resources under control of CM . 

k 1, is a small integer that determines the rate of 
change of trust and is assigned by the system as a 
system policy. 

F. Trust value at current time: The degree of trust that a trustor has on the trustee at the current time is given 
i 

B. Degree of trust: A truster trusts a device to a specific by Vtn (
CMi ⇒ 

Dj

 
= P dev ⊗ ht, where ⊗ is an 

level. This degree of trust is computed periodically 
or is triggered by the occurrence of one  or more 
trust triggers. These trust triggers are events that 
change the value of a trust indicator. The expression 
V (CM D ) [0 . . . 1] represents the degree (or 
level) of trust that the trustor (also referred to as the 
trust evaluator) has on the trustee for the access type 
c as computed at time t. 

a. Lack of trust - A value of 0 means that the 
trust evaluator has no trust on the device. 
This can be because the evaluator does not 
have any information about the device to 
compute a trust value or that the result of 
trust evaluation has been 0. 

b. Fully trusted - A value of 1 means that the 
trust evaluator fully trusts the device. 

C. Trust history: The trust management system corre- 
sponding to a trustor maintains a history of trust 
values determined for the trustees it has encountered. 
The history also contains a log of the trust indicator 
values that resulted in the corresponding trust levels 
of the device. The trust history allows one to keep 
track of how the trustworthiness of a device has 
evolved, if at all, over time and plays a role in 
determining the current trustworthiness of the device. 
The rationale behind allowing the trust history to 
affect the current trust level are two: (a) There may 
be situations when the relevant trust indicators cannot 
be evaluated for various reasons; a trust history 
allows a reasonable evaluation of trustworthiness 
under such circumstances. shows a scenario where 
such trust history is useful. (b) A device that used   
to be trusted (at some level) at some time cannot 
become overnight un-trusted. A trust history score 
allows arbitrary changes to be smoothened out. 

D. Trust history log: For every trustee that the trustor 
has ever evaluated, the trust history log is an update 
only database of key, value pairs, where key is the 
time instance when the trust value is being computed 
and recorded and value = [Pdev, ht], where Pdev is 

operator defined in a later section for combining the 
two trust parameters into a single value in [0 . . . 1]. 

B. Trust model defintions and parameters 
The IoT trust model defines device trust indicators to 

quantify trust and a belief system to determine accuracy of 
trust indicators. Each device is associated with a vector of  
trust indicators, which is used to determine the trust indicator 
score Pdev that is finally used to evaluate the trust of a device. 

 
DEFINITION 1 A device trust indicator is some measurable 
property of the device whose value impacts the trust level of 
the device. An internal trust indicator of a device is either a 
property that is intrinsic to the device or a property associated 
with the device that emerges from within the IoT ecosystem. 
An external trust indicator, on the other hand, is either a 
property that is extrinsic to the device or that emerges from 
outside the IoT ecosystem. 

 
DEFINITION 2 A trust trigger is an event that changes the value 
of a trust indicator. Not all trust indicators have associ- ated 
triggers; some may have more than one trigger while others 
may share trigger. Trust triggers can be internal or external. 

 
DEFINITION 3 Trust indicator vector: Every device is as- 
sociated with an ordered set  of  size  m  of  trust  indicators 
pt = [k1, k2, . . . , kj, . . . , km]. The trust indicator kj has a 
value kj . It can be evaluated by the Device Monitoring 
System. However, some trust indicators can be measured only 
probabilistically with some degree of confidence while others 
can be measured accurately. 

 
DEFINITION 4 Confidence in trust indicator value: The con- 
fidence in trust indicator value is a measure or percentage of 
accuracy of a given trust indicator value. 

Although all attempts are made to measure a trust indicator 
accurately, there is always a degree of uncertainty as to how 
accurate the trust indicator value is. To address these concerns, 
we define a belief system based on subjective logic [21] that 

c 
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allows the adjustment of the trust indicator values based on  
the perceived beliefs of the measurements. Each time a trust 
indicator kj is evaluated, the proposition “the measurement is 
accurate” is subjectively judged by associating it with four 

trust indicator importance and then normalizing it to a 
scale of [0 . . . 1]. 

3) Compute the trust indicator score for the device as: 
m 

values: (i) a belief bkj   ∈ [0 . . . 1] that the proposition is true, 
(ii) a belief dkj   ∈ [0 . . . 1] that the proposition is false, (iii) a Pdev =   fj (kj) ojpj  

max {fj (kj) ojpj} 
belief ukj   ∈ [0 . . . 1] that is neither committed to the truth nor j=1 j 

falsehood about the proposition, and (iv) an a priori probability 
akj    about  the  the  truth  of  the  proposition  in  the  absence  of 
a specific belief. Since this is a binary state space, akj    is set 
to 0.5 as per the theory of subjective logic described in [21]. 
The  values  bj ,  dj ,  and  uj  are  related  as  bj + dj + uj  = 1. 
Using these values the confidence level of a measured trust  
indicator  is  given  by  oj  =  bj + ajuj .  As  a  trust  indicator 
is being evaluated, we assume that the belief, disbelief and 
uncertainty values associated with the measure would also be 
provided. An example of computation of confidence in trust 
indicator value is given in Figure 5. 

 

Fig. 5. Trust Indicator Confidence Level Computation 
 
 

DEFINITION 5 Trust indicator importance vector: Device  
trust indicator importance is represented as a 1-dimensional 
vector pimp = [p1, p2, . . . , pj, . . . , pm], where pj represents 
the importance weight of trust indicator kj. 

• Trust indicator  score:  The  trust  indicator  score  Pdev 
of a device  at  time  tn is  a  single  value  in  the  range 
[0 . . . 1] computed as a weighted average over the values 
in the trust indicator vector using  the  values  in  the  
trust indicator importance vector and the corresponding 
confidence values. 

The trust indicator score is computed as follows: 
1) Define a single value function 

f  (k ) =     |kj |  100 
max |kj | 

for each trust indicator, where kj represents the value of 
the trust indicator kj. The purpose of this function is to 
normalize different unit measures so that the values can 
be summed together under single standard scale. 

2) Multiply each normalized trust indicator values in pj with 
the corresponding trust indicator confidence level and 

C. Trust indicators for device trust in smart home IoT 

To use the trust model in practice one has to determine a set 
of suitable trust indicators that can be measured. In association 
with our industry partner in the broadband-over-cable industry, 
we undertook an investigation of what can serve as potential 
trust indicators in a smart  home  IoT  environment.  Below  
we list several device trust indicators. We have categorized  
them according to their functionality and not necessarily by 
importance. A system designer is free to choose the relative 
importance of the categories and the components within the 
categories. Trust indicators are scored on  a  point  basis.  If 
the existence of a trust indicator positively helps / enhances 
/ impacts / sustains the security of smart home IoT, then a 
positive point is assigned. If it impacts negatively, a negative 
point is assigned. The trust indicators we have identified are: 

A. Device category – Evaluation decision is based on what 
impact would a compromise of a device in that category 
have on the system. Impact is evaluated on a Likert scale. 
Various subtypes are also identified: 

i) End-point networking - Examples include IoT hubs, 
switches, routers, wifi access points, etc. 

ii) Productivity - Examples include tablet, smartphones, 
smart printers, etc. 

iii) Entertainment - Examples include smart TV, speakers, 
music systems, media hub etc. 

iv) Physical safety and security - Examples include mo- 
tion detector, security camera, fire alarm, smoke de- 
tector, doorbell etc. 

v) Home comfort and convenience - Examples include 
thermostat, bulb, electric switch etc. 

vi) Utility - Examples include refrigerator, washer, dryer 
etc. 

vii) Medical and health care devices - Examples include 
smart watches, wearable health monitors etc. 

viii) Voice assistants and controllers - Examples include 
devices such as Echo show, Google Home etc. 

B. Device capability - The higher the device’s computational 
capabilities the more damage can probably be done by 
exploiting the devices.  Factors  considered  are  (i)  type  
of processor (microcontroller, general purpose etc. (ii) 
available RAM, and (iii) storage capability. 

C. Network connection type - wired, wireless type (WiFi, 
cellular, Bluetooth, Zigbee, Zwave, etc.) 

D. Physical location of device - (i) Unprotected (no physical 
barriers), (ii) partially protected (some physical barriers   
to access), or (iii) high protection (inside house only 
accessible to owner or by authorization of owner). 
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E. Connection requirement - (i) device to device (ii) device  
to cloud, (iii) application to device or (iv) application to 
cloud 

F. Connection security - (i) Authenticated connection (Y/N), 
(ii) Encrypted connection (Y/N), and if encrypted connec- 
tion (i) encryption type and (ii) encryption strength. 

G. Connection behavior - (i) device initiated or outside ini- 
tiated, (ii) average frequency of connection with outside, 
(iii) average duration of connection, (iv) average bandwidth 
consumed per connection (v) frame rate for traffic, (vi) 
traffic type, (vii) signal strength (viii) connection port 
numbers, and (ix) packet length deviation (expected vs. 
observed. 

H. Current configuration of device - (i) default, (ii) updated, 
and (iii) latest firmware with patches updated 

I. Device manufacturer trust level 
No that this list is, by no means, complete. Our preliminary 

investigations have led to the determination of this  list  of 
trust indicators. Depending on the scenario, this list may need 
to be updated. In addition, recall from  earlier  discussions, 
that each trust indicator is associated with a confidence level 
that determines one’s belief about how well a measured trust 
indicator score is. 

D. Trust management system 
The trust management system is responsible for monitoring 

and managing device trust indicators as well evaluating trust 
levels of devices and answering queries related to device trust. 
It consists of the following components: 

• Immutable database to store and manage trust related data 
• Immutable log of trust history 
• Trust specification engine for defining and managing trust 

relationships 
• Trust analysis engine to process the results of a trust 

query 
• Trust evaluation engine for evaluating trust  relationships 
• Trust monitor for monitoring trust triggers to update trust 

relationships 
The architecture of the trust management system is shown in 

Figure. The green-colored arrows in the figure reflects commu- 
nication between various modules that happen periodically in 
order to update trust levels of devices; the red-colored arrows 
represent communications that occur when the trust manage- 
ment system is queried for trust value related information. 
Finally, the black-colored arrows represent internal operation 
of the trust database. 

VI. FLEXIBLE TRUST-BASED ACCESS CONTROL FOR IOT 
The purpose of defining the new trust model is to enable 

fine-grained access control of the connected devices. A factor 
that is often overlooked when fine-grained access decisions 
are made is that there can be various tradeoffs in terms of   
cost of effectuating permission, cost of consequence for a 
coarser grained versus finer grained permission etc. that need 
to be accounted for in determining the granularity of access. 
One of the novel features of this access control paradigm is 

 

 
 

Fig. 6. Trust Management System Architecture 
 
 

it provides an opportunity of expressing policies by trading  
off factors. In this section, we describe the trust based access 
control framework that achieves this task. 

A. Trust-based access control model 
The main elements of the access control model are the 

devices, the access types and the resources. Devices request 
access of a specific type to the system resources. An access 
request can be satisfied by one or more set of permissions to   
a set of resources managed by the system. Some key concepts 
in this model are: 

• A permission is defined as an action on a specific resource 
(object). 

• A permission has a consequence cost and cost to effec- 
tuate it that are determined during the time of access 
control policy establishment. 

• An access request has an associated trust value (or range) 
that specifies the level of trustworthiness needed for a 
device to be granted that access request. 

Every device has one and only one trust history; a device 
also has a set of trust indicators as described in the trust model. 
When a device requests access to resource, the trust based 
access control system determines: 

1) Whether the device’s trust level allows the desired access, 
i.e., is the  device trust trust level needed for access. 

2) The cost of the consequences of the set of permissions 
and the cost of effectuating the set. 

3) The set of permissions that effectuates the access request 
and at the same time minimizes the costs. 

The last item is important to note. The access control 
framework returns a set of permissions that are allowable for a 
particular scenario. What this allows is that if an access request 
involves multiple permissions but only a subset of that can be 
allowed, a decision can still be made to allow partial access 
instead of complete access denial. 

1) Model elements: We refer to Figure 7 for the following 
discussion. It shows the different model elements and their  
relationships. 
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Fig. 7.  Trust-based Access Control Model for IoT 

 
The trust-based access control model is defined in terms of 

a set of elements and relationships among those elements. The 
different elements are: 

i. Device: A device   DEVICES is defined as an entity that 
is connected to the system and requests access to some 
resources controlled by the system. 

ii. Trust Indicators: Each device, d, has an ordered set pd   
of measurable properties called trust indicators. The set 
TRUST INDICATORS = d DEV ICES) pd . A device 
can manifest measurable values for any subset p pd 
during a specific session. (See earlier for discussion on 
trust indicators.) 

iii. Trust history: A trust history   TRUST  HISTORY  is a   
set of information regarding a device’s old trust values as 
evaluated in various times including in a previous session. 

iv. Trust trigger: A trust trigger TRUST TRIGGERS is an 
event that changes the value of a trust indicator or a clock 
tick designating a time instance where a change of value 
for a trust indicator has occurred. A trust trigger causes a 
trust history to be updated. 

v. Session: A session  SESSIONS is a connection instance 
of a device. A device requests access to system resources 
during a session. A device can instantiate multiple ses- 
sions. A session is identified by a unique system generated 
id. 

vi. Trust Level: A trust level is a set of real numbers between 
0 and 1. A device at some instant of time in a session has a 
trust level. The set TRUST LEVELS is the set of possible 
subsets of [0 . . . 1]. 

vii. Access Type: An access type specifies the nature of access 
that is sought. An access type, ATi   ACCESS  TYPES   
is a set of keywords with some associated semantics 
regarding the resources needed and the outcome. 

viii. Resource: A resource oj ∈ RESOURCES is an object 

controlled by the system that needs to be protected. 
ix. Actions: An action xi  ACTIONS is an operation that   

can be performed on a resource oj. 
x. Permission: A permission ak PERMISSIONS is an 

authorization to allow certain action. It is defined as an 
element of RESOURCES ACTIONS, i.e., PERMIS- 
SIONS = 2RESOURCES × ACTIONS. 

xi. Consequence: A consequence ξ  CONSEQUENCES is  
the resulting system state when a permission is effectu- 
ated. 

xii. Access: An access Ai is an ordered subset of PERMIS- 
SIONS. Every access is associated with an access type. 

xiii. Cost of effectuating permission: A cost of effectuating a 
permission is a real number from a finite, discrete set of 
real numbers 0 that represent an unitless cost amount 
incurred by the system in enabling the permission. 

xiv. Cost of consequence: When a permission is effectuated,   
it results in a change of system state which is the 
consequence. The changed system state can be better 
than, worse than or same as the original state in terms     
of security. Regardless, there is a cost that is incurred    
for being in the new state. A cost of consequence C 
COST OF CONSEQUENCES is a real number from a 
finite, discrete set of  real number 0 that represent this 
cost. It is unitless. 

Association between any two of the above elements are 
specified by mathematical relations. The following relations 
are defined in the trust based access control model. 

i. DTA DEVICES TRUST INDICATORS define the 
device – trust indicator assignment. It is a many to many 
relation where a device can have many trust indicators and 
a trust indicator can be associated with many devices. 

ii. DTH  DEVICES   TRUST  HISTORY   defines  the 
device – trust history mapping. It is a one-to-one relation; 
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one device has one trust history and vice versa. 
iii. TTT TRUST TRIGGERS  TRUST  INDICATORS 

specify the trust trigger – trust indicator assignment. It is 
a many to many relation where a trust trigger can cause 
change in value for many trust indicators and the same  
trust indicator can have a change in value caused by many 
trust triggers. 

iv. DVT DEVICES TRUST VALUES define the device 
– trust value mapping. It is a many  to  one  mapping  
from DEVICES to TRUST VALUES. A device can be 
associated with one and only one trust value. However, 
many devices can have the same trust value. 

v. TAT TRUST VALUES ACCESS TYPES define the 
trust value needed for a specific access type. It is a many 
to many mapping. 

vi. ATA  ACCESS TYPE  ACCESS define the access 
type to access mapping. It is a many to one mapping  
from ACCESS TYPE to ACCESS. Several access types 
may imply the same access; however, every access is of 
one specific type. 

vii. ACP  ACCESS  PERMISSIONS defines the permis-  
sions needed for a specific access. It is a many to many 
relation. 

viii. PCE PERMISSIONS COST OF EFFECTUATING 
  PERMISSION is a mapping that define the relation 
between a permission and the cost associated with imple- 
menting the permission. It is a many to many relations.   
A cost of a permission c PCE is a real number from a 
finite set of numbers 0 that gives the unitless cost. 

ix. PEC   PERMISSIONS   CONSEQUENCES is a map- 
ping that define the many to many relation between 
PERMISSIONS and CONSEQUENCES. A permission 
consequence ξ PEC gives the consequence of effec- 
tuating the permission. 

x. CCS         CONSEQUENCES COST OF CONSE- 
QUENCES is a many to many mapping between CONSE- 
QUENCES and COST OF CONSEQUENCES. An ele- 
ment C CCS is a real number 0 that gives the specific 
cost associated with a specific consequence. xi. Constraint min (α.c (A ) + β.C (A )) defines an expres- 

establish trust levels for them. We outline the architecture of 
the trust framework as well an access control model that uses 
the underlying trust model. 
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