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Abstract: In this paper, we examine the high-probability finite-time theoretical guarantees of the least squares method for
system identification of switched linear systems with process noise and without control input. We consider two scenarios:
one in which the switching is i.i.d., and the other in which the switching is according to a Markov process. We provide
concentration inequalities using a martingale-type argument to bound the identification error at each mode, and we use
concentration lemmas for the switching signal. Our bound is in terms of state dimension, trajectory length, finite-time
gramian, and properties of the switching signal distribution. We then provide simulations to demonstrate the accuracy of
the identification. Additionally, we show that the empirical convergence rate is consistent with our theoretical bound.
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1. INTRODUCTION

The identification of linear systems is a significant task
in different fields, such as control theory, time series anal-
ysis, robotics, and biology. This task involves creating
a model for an unknown system by using input-output
data that closely resembles the original system with min-
imal error. The purpose of this task can be controlling
or optimizing the system, detecting faults, making pre-
dictions, or gaining knowledge of critical parameters of
the unknown system through the identified model. Re-
cently, there has been growing interest in developing al-
gorithms with finite-time sample complexity analysis in
this field. A number of works, such as those in [1-4],
have addressed this problem. The least square method
has gained popularity in linear system identification, and
several works have provided non-asymptotic theoretical
guarantees for this approach, such as those in [5, 6].

Switched linear systems are a type of hybrid system
that feature multiple linear subsystems, with each of them
being active for a certain period. These systems are com-
monly used to model practical systems like control sys-
tems, power electronics, and robotics. Identifying these
systems becomes more challenging due to the presence
of multiple subsystems and the switching between them.
However, there has been limited research on understand-
ing the sample complexity analysis for these systems
when using the least square method.

In terms of identifying switched linear systems, the
approach taken by [7] involves creating a Hankel-like
matrix from multiple noisy input-output trajectories and
then using ordinary least squares to obtain a good lower-
order approximation of the underlying model. In con-
trast, [8] presents a system identification algorithm for
Markov jump linear systems using a single trajectory of
the system states, inputs, and modes. They also analyze
non-asymptotic probabilistic sample complexity using
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mixing-time arguments. In another work by [9], asymp-
totic but almost sure guarantees are provided for au-
tonomous Markov jump linear systems using non-mixing
arguments via martingales.

This paper presents a non-asymptotic analysis of the
sample complexity of the least-squares estimator for
identifying switched linear systems. We use a single tra-
jectory of states and modes, of length T , which is excited
by noise. We employ a martingale-type theory closely
following the approach used in [5]. Specifically, we con-
sider two scenarios: one in which the switching is i.i.d.,
and the other in which the switching is according to a
Markov process. Our aim is to provide non-asymptotic
bounds with high probability that take into account the
trajectory length, system excitation, state dimension, and
properties of the switching signal distribution. We care-
fully analyze the least square model with correlated data
and use a concentration bound on the Markov chains to
derive our finite-time bound. Finally, we present simula-
tions to evaluate the performance of the least square esti-
mator for identifying switched linear systems.

We start by stating the problem in Section 2, followed
by the theoretical analysis in Section 3 that includes the
main results of the paper. We then provide simulations in
Section 4. The proof of the main results is provided in
the Appendix.

2. PROBLEM STATEMENT

2.1. Notation

The set of real numbers is denoted by R. For a
real matrix Z, ZT represents its transpose, |Z| denotes
its maximum singular value, and ωmin(Z) represents its
minimum eigenvalue. For a real symmetric matrix Z,
Z → 0 and Z ↑ 0 indicate that Z is positive definite
and positive semi-definite, respectively. Let ε2(ϑ) de-
note the set of functions f mapping a finite set G to R
that satisfy

∑
x→G f(x)2ϑ(x) < ↓, where ϑ(x) > 0
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for all x ↔ G. The ε2(ϑ) norm of f is defined as
↗f↗22,ω =

∑
x→G f(x)2ϑ(x). The inner product for func-

tions f and g on ε2(ϑ) is then defined as ↘f, g≃ω =∑
x→G f(x)g(x)ϑ(x). For an operator P : G ⇐G ⇒ R,

P denotes its conjugate on ε2(ϑ), satisfying ↘Pf, g≃ω =
↘f, P g≃ω for f, g ↔ ε2(ϑ). Furthermore, let ε↑(ϑ) de-
note the set of functions f mapping a finite set G to R,
satisfying supx→G |f(x)|ϑ(x) < ↓, where ϑ(x) > 0
for all x ↔ G. The ε↑(ϑ) norm of f is denoted as
↗f↗↑,ω = supx→G |f(x)|ϑ(x).

2.2. Problem Statement

A switched linear system is a type of dynamical sys-
tem that combines multiple linear subsystems, each with
its own state and dynamics. The system switches between
these subsystems according to a switching signal, which
can be based on time, sensor measurements, or other cri-
teria. In this paper, we consider a discrete-time switched
linear system described as:

xt+1 = A↓εtxt + ϖt, (1)

where xt ↔ Rn represents the state of the system at time
t, ϖt ⇑ N (0,ϱ2I) denotes i.i.d. noise at time t with
ϱ > 0, and A↓εt ↔ Rn↔n is a matrix that defines the
dynamics of the system in the current mode determined
by the switching signal ςt. We assume that the switching
signal is a function of time and is independent of the sys-
tem’s states. We use M = {1, 2, · · · , L} to denote the
set of modes, where L > 0 (i.e., ςt ↔ M).

Given a sequence of states {x0, x1, x2, ..., xT+1} with
x0 = 0 and a sequence of modes {ς0,ς1, ...,ςT }, the
least square (LS) estimator is the solution to the following
optimization problem:

Â1(T ), · · · , ÂL(T )

= argmin
A1,··· ,AL→Rn→n

1

2

T∑

t=1

↗xt+1 ⇓Aεtxt↗
2
2.

(2)

Our objective is to provide high-probability bounds on
the performance of the LS estimator for each mode within
a finite time frame. For a given mode l ↔ M, trajectory
length T , and a given φ ↔ (0, 1), we seek to determine
whether there exists an ↼ ↔ (0, 1) satisfying:

|Âl(T )⇓A↓l|

|A↓1|
⇔ ↼ with probability at least 1⇓ φ ? (3)

If such an ↼ exists, we aim to explore its dependence on
the trajectory length T , system parameters, and φ. It is
worth noting that we can rewrite the LS estimator prob-
lem in (2) as:

Â1(T ), · · · , ÂL(T )

= argmin
A1,··· ,AL→Rn→n

1

2

T∑

t=1

L∑

l=1

↗xt+1 ⇓Aεtxt↗
2
21{ςt = l}.

Assuming that we can observe the modes at each time
t, the LS estimator Âl(T ) for each mode ε ↔ M is the

solution to the following optimization problem:

Âl(T ) = argmin
A1→Rn→n

1

2

T∑

t=1

↗xt+1 ⇓Aεtxt↗
2
21{ςt = l}.

3. ANALYSIS

In this section, we provide a theoretical assessment of
the LS estimator’s performance in addressing the prob-
lem described in (2). To do so, we start by introducing
definitions, assumptions, and lemmas that are essential
for conducting the analysis outlined in (3).

For the linear system in (1), the filtration created by
the states, switching signal, and noise process at time t is
defined as Ft := {ϖ0, ..., ϖt↗1,ς0, ...,ςt↗1, x1, ..., xt}.
A random process (zt)t↘1 is said to be {Ft}t↘0-adapted
if zt ↔ Ft and zt /↔ Ft↗1. We define a sub-Gaussian
noise with respect to this filtration as follows:

Definition 1: We say that ϖt|Ft is a mean-zero and
ϱ2-sub-Gaussian noise if E[ϖt|Ft] = 0, and it satisfies
the tail condition E[eϑϖt |Ft] ⇔ eϱ

2ϑ2/2 for some ω > 0.
We define the stability of the linear system in (1) in the

mean square sense as follows:
Definition 2: The linear system in (1) is said to be sta-

ble in the mean square sense if, for every initial condition
x0 and ς0, E[xtxT

t ] ⇒ 0 as t ⇒ ↓. It is said to be
marginally stable in the mean square sense if, for every
initial condition x0 and ς0, E[xtxT

t ] < ↓ as t ⇒ ↓.
Let the finite-time controllability gramian of the sys-

tem in (1) be defined as

!̄t = E
[ t↗2∑

l=0

l+1∏

s=t↗1

AεsA
≃
εs

]
+ I

for t > 1 with !̄1 = I . If the system is marginally sta-
ble in the mean square sense, then !̄t is finite for any
t ↖ 1. To ensure a finite !̄t for our subsequent analy-
sis, we assume that our system is marginally stable in the
mean square sense throughout the paper. Our approach is
similar to that described in [5], which relies on the linear
system being excitable by noise. To formalize this con-
cept in terms of the states xt along a trajectory of length
T , the following definition is helpful.

Definition 3: Given an {Ft}t↘1-adapted random pro-
cess (xt)t↘1 in Rn, we say it satisfies the (k,!, p)-block
martingale small ball condition for ! → 0 with some
k ↖ 1, ! → 0, and p ↔ (0, 1) if, for any w ↔ Rn with
|w| = 1 and for any j ↖ 0, it satisfies:

1

k

k∑

i=1

P
[
wTxj+ix

T
j+iw ↖ wT!w|Fj

]
↖ p.

It is worth noting that as the eigenvalues of ! increase,
the system becomes more susceptible to noise. The next
lemma provides an estimate of the statistical performance
of the LS method for identifying the system in (1) with a
single mode. This result is borrowed from [5] (Theorem
2.4).
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Lemma 1: For a given φ ↔ (0, 1) and T > 0, suppose
that the pair (xt+1, xt)t↘1 is a random sequence satisfy-
ing the following conditions:
• It is generated by marginally stable linear system
xt+1 = A↓xt + ϖt with ϖt|Ft being mean-zero and ϱ2-
sub-Gaussian noise.
• The process (xt)t↘1 satisfies the (k,!, p)-block mar-
tingale small ball condition for some p ↔ (0, 1) and
! → 0.
• It holds that P[

∑T
t=1 xtxT

t ⊋ T !̄] ⇔ φ for some !̄ ↑

!.
Then, if the following condition holds:

T

k
↖

10

p2

(
2n log

10

p
+ log

1

φ
+ log det

(
!̄!↗1

))
,

the LS estimator in (2) achieves the following perfor-
mance:

P
[
|Â(T )⇓A↓|

>
90ϱ

p

√√√√n+ n log 10
p + log 1

ς + log det
(
!̄!↗1

)

Tωmin

(
!
)


⇔ φ.

The proof of this result differs from the standard LS
analysis because the states {x1, x2, · · · , xT } are corre-
lated. The central assumption of this meta-theorem is that
every length k block of states (i.e., (xj+i)ki=1 for any j)
satisfies the lower bound in the block martingale small
ball condition. This assumption ensures that the linear
system is excitable by noise. In the probabilistic bound,
this assumption appears as the term log det

(
!̄!̄

↗1) and
suggests that the more excitable the system, the faster the
learning rate. Moreover, as T increases, the probabilistic
bound improves.

To apply this result to a multi-mode case, we need ad-
ditional definitions. We define a length T execution of
switching signals as ↽T = {ς0,ς1, · · · ,ςT↗1}. Within
a time frame of length T , there are 2T possible execu-
tions, denoted by ↽i

T , where i ranges from 1 to 2T . We
introduce a random variable, ST , which represents a se-
quence of modes within a time frame of length T . By
considering each possible execution ↽i

T , we can modify
Theorem 2 and obtain the following results:

Lemma 2: Consider the dynamical system in (1) that
is marginally stable in the mean square sense, and let
x0 = 0. Fix T > 0 and φ ↔ (0, 1/2), and let
{x1, x2, · · · , xT } be a random sequence of states gen-
erated by the dynamical system. Let ↽i

T be the execution
of modes that generate this sequence of states. Let T i

l de-
note the number of times that mode l is active along this
trajectory, i.e., T i

l =
∑T

t=1 1{ςt = l|ST = ↽i
T }. Then,

for any kl satisfying

T i
l

kl
> cn

(
n log

n

φ
+ log det

(
!̄T !̄

↗1
kl

))
, (4)

we have:

P
[
|Âl(T )⇓A↓l| > ↼il(φ, T, T

i
l , kl)

ST = ↽i
T

]
⇔ φ,

where

↼il(φ, T, T
i
l , kl) = Cn


n log n

ς + log det
(
!̄T !̄

↗1
kl

)

T i
l ωmin

(
!̄kl

) ,

for some cn, Cn > 0.
This lemma is a direct consequence of the previous

lemma, and its proof has been moved to the Appendix for
readability. It should be noted that the bound described
above applies to any kl that satisfies (4). Therefore, it is
also valid for ↼̄il(φ, T, T

i
l ) = infk ↼il(φ, T, T

i
l , k). Having

established the required definitions and lemmas, we can
now present the following theorem.

Theorem 1: Consider the dynamical system in (1)
that is marginally stable in the mean square sense and
x0 = 0. Fix T > 0 and φ ↔ (0, 1/2). Let T̄ ⇔ T and T i

l
be the number of times that mode l is active along the ex-
ecution ↽i

T , i.e. T i
l =

∑T
t=1 1{ςt = l|ST = ↽i

T }, where
1 ⇔ i ⇔ 2T . Let ↼̄l(φ, T, T̄ ) = maxT i

l ↘T̄ ↼̄il(φ, T, T
i
l ),

then we have:

P
[
|Âl(T )⇓A↓l| > ↼̄l(φ, T, T̄ )

]
⇔ φ + (1⇓ φ)p̄l(T̄ )

with p̄l(T̄ ) =
∑2T

i = 1 :
T i
1 < T̄

P
[
ST = ↽i

T

]
.

This result can be directly derived using the Law of
Total Probability. For a detailed explanation of the proof,
please see the Appendix. It should be noted that this the-
orem is valid for any T̄ ⇔ T , and the optimal T̄ is the
one that minimizes both ↼̄l(φ, T, T̄ ) and p̄l(T̄ ) simultane-
ously. So far, we have not made any assumptions regard-
ing the distribution of the switching signal, other than it
being independent of the system’s state. However, the
distribution of the switching signal affects p̄l(T̄ ). We will
examine two general cases for the switching signal: one
with i.i.d. switching, and the other in which the switch-
ing is according to a Markov process. These two cases
are studied in more detail.

3.1. i.i.d. case

In this situation, where the probability of each mode l
being active at each time is pl, we can represent the event
of mode l being active as a Bernoulli random variable
with parameter pl. As a result, the following relationship
holds:

p̄l(T̄ ) =
2T∑

i = 1 :
T i
l < T̄

P
[
ST = ↽i

T

]
=

T̄∑

k=1

(
T
k

)
pkl (1⇓ pl)

T↗k.

Lemma 3: Suppose at each time t, each mode l ↔ M

is active with probability pl, where
∑

l→M pl = 1. Fix
T > 0. Fix φ ↔ (0, 1/2) and let T̄ < plT , then we have:

P
[
|Âl(T )⇓A↓l| > ↼̄l(φ, T, T̄ )

]

⇔ φ + (1⇓ φ)
T̄∑

k=1

(
T
k

)
pkl (1⇓ pl)

T↗k.
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This is a direct result of the previous theorem. It is impor-
tant to note that this applies to any T̄ < plT . For a larger
T̄ , ↼̄l(φ, T, T̄ ) is smaller, which is desired, and p̄l(T̄ ) is
larger, which is not desired. Therefore, the optimal value
of T̄ is the one that minimizes both ↼̄l(φ, T, T̄ ) and p̄l(T̄ ).
Notice for T̄ < plT we can also use Hoeffding’s inequal-
ity for sum of bounded independent random variables to
get

T̄∑

k=1

(
T
k

)
pkl (1⇓ pl)

T↗k
⇔ exp

(
⇓ T

(
pl ⇓

T̄

T

)2
)
.

This implies that p̄l(T̄ ) is bounded if T̄ < plT and it
tends to 0 as T ⇒ ↓.

3.2. DTMC case

In this situation, where the modes are the states of a
finite, aperiodic, and irreducible DTMC, we can utilize a
concentration lemma for finite Markov chains, which is
derived from Theorem 3.3 in [10].

Lemma 4: Let’s consider an aperiodic and irre-
ducible discrete-time Markov chain (DTMC) on a finite
set M, with a probability transition matrix P and a sta-
tionary distribution ϑ. Suppose the multiplicative sym-
metrization K = P ↓P is also irreducible. We have a
function f : M ⇒ R such that ϑf = 0, ↗f↗ω,↑ < 1,
and 0 < ↗f↗2ω,2 ⇔ b2 for some b > 0. Now, for an initial
distribution q, a positive integer T , and 0 < ⇀ ⇔ 1, we
have the following inequality:

P
[
1

T

T∑

t=1

f(st) ↖ ⇀

]
⇔ Nq exp

(
⇓T⇀2

(
1⇓ ω1(K)

)

8b2
(
1 + h( 5φb2 )

)
)
,

where {s1, · · · , sT } are sequence of states generated by
this DTMC up to time T , Nq = ↗

q
ω↗ω,2 , ω1(P ↓P )

is the second largest eigenvalue of P ↓P and h(s) =
1
2

(↙
1 + s⇓ (1⇓ s

2 )
)
.

This concentration lemma is distinct from the analysis
of sums of independent random variables, as the states
of the Markov chain are correlated. However, the rate of
convergence is still exponentially decreasing as T grows,
with the additional dependence of the spectral gap of the
probability transition matrix. A larger spectral gap results
in a faster rate of convergence. With this concentration
lemma, we can state the following lemma:

Lemma 5: Suppose the switching signal is accord-
ing to a aperiodic and irreducible DTMC with probabil-
ity transition matrix P and stationary distribution ϑ =
(ϑ1, · · · ,ϑL). Suppose P ↓P is also irreducible. Fix
T > 0 and φ ↔ (0, 1/2). For each mode l ↔ M if
T̄ < ϑlT , the following holds with ⇀(T̄ ) = ϑl ⇓

T̄
T :

P
[
|Âl(T )⇓A↓l| > ↼̄l(φ, T, T̄ )

]

⇔ φ + (1⇓ φ)N0 exp

(
⇓T⇀(T̄ )2

(
1⇓ ω1(P ↓P )

)

8(1⇓ ϑl)2
(
1 + h

( 5φ(T̄ )
(1↗ωl)2

))
)
,

To keep the readability of the main text, the proof is
provided in the Appendix.

3.3. Asymptotic Bound

Here we aim to derive the asymptotic bound for the
DTMC case. Since T̄ < ϑlT , it also holds that T̄ =
(ϑl ⇓ ⇁)T for any ⇁ ↔ (0,ϑl). Thus we have:

lim
T⇐↑

↼̄l(φ, T, T̄ )

= lim
T⇐↑

inf
k
Cn


n log n

ς + log det
(
!̄T !̄

↗1
k

)

T̄ωmin

(
!̄k

)

= lim
T⇐↑

inf
k
Cn


n log n

ς + log det
(
!̄T !̄

↗1
k

)

(ϑl ⇓ ⇁)Tωmin

(
!̄k

)

= lim
T⇐↑


n log n

ς

(ϑl ⇓ ⇁)T
.

Moreover,

lim
T⇐↑

Nq exp

(
⇓T⇀(T̄ )2

(
1⇓ ω1(P ↓P )

)

8(1⇓ ϑl)2
(
1 + h

( 5φ(T̄ )
(1↗ωl)2

))
)

= 0.

With these considerations, we can conclude that

lim
T⇐↑

|Âl(T )⇓A↓l| ⇔ lim
T⇐↑


n log n

ς

(ϑl ⇓ ⇁)T
,

with a probability of at least 1 ⇓ φ. This implies that

the asymptotic rate of convergence is O

(
log 1

ω
T

)
with

a probability of at least 1 ⇓ φ. Similar asymptotic rates
can be concluded for the i.i.d. case if T̄ < plT .

4. SIMULATION RESULTS

This section presents simulation outcomes that
demonstrate the practical effectiveness of LS for a
switched linear system in (1) consisting of two modes.
The nominal system matrices associated with each mode

are as A↓1 = T1




”1 0 0
0 ”2 0
0 0 ”3



T↗1
1 and A↓2 =

T2

(
”4 0
0 ”5

)
T↗1
2 , with ”1 =

(
0.198 0.969
⇓0.969 0.198

)
,

”2 =

(
0.4 0.693

⇓0.693 0.4

)
, ”3 = 0.01I , ”4 =

(
0.49 0.499

⇓0.499 0.49

)
, ”5 = 0.1I , and non-singular T1

and T2. The spectral radius of the system matrix linked to
the first mode is higher than that of the second mode. This
means that the first mode is more susceptible to noise and,
with the same activation rate, is anticipated to be identi-
fied more effortlessly.

The upcoming Figure 1 illustrates the performance of
LS in a scenario where the switching signal is an i.i.d.
random variable with probability p. The plot displays
the outcomes for p = 0.1, 0.3, 0.5 and each graph corre-
sponds to the average of 20 distinct trajectories with a du-
ration of T . Upon analyzing the individual plots for each
mode, it is apparent that the LS estimation error improves
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Fig. 1 Empirical performance of LS: the switching signal is a bino-
mial random process with parameter p.

as the probability of activation increases. When consid-
ering the plots jointly for both modes, it is observed that
when the probability of activation is the same for both
modes (p = 0.5), the estimation error for the first mode
is smaller than that of the second mode. On the extreme
end, when the probability of activation for the first mode
is 0.1 and for the second mode is 0.9, the performance
of LS is better for the second mode, although identify-
ing it is a more challenging task. Another scenario arises
when the probability of activation for the first mode is
0.3, which is still less than that of the second mode, which
is 0.7, but the LS performance for both modes is com-
parable. In addition, notice that by inspecting it more
closely we see that log |Âl(T )↗A↑1|

|A↑l| can be approximated
with ⇓

1
2 log T . This indicate that the rate of convergence

empirically is approximately 1⇒
T

. This is consistent with
our asymptotic convergence rate.

Similar results can be seen in the upcoming Figure 2
which illustrates the performance of LS in a scenario
where the switching is according to a Markov process
with probability transition matrix and stationary distri-

bution as P =

(
0.1 0.9
0.5 0.5

)
, ϑ =

(
0.36, 0.64

)
, re-

spectively. The plot displays the outcomes for different

Fig. 2 Empirical performance of LS: the switching is according to a
Markov process with initial distribution

(
q, 1→ q

)
.

q = 0.1, 0.5, 0.9 where q is the parameter in initial distri-
bution

(
q, 1⇓ q

)
. Each graph corresponds to the aver-

age of 20 distinct trajectories with a duration of T . Sim-
ilar to the i.i.d. case the plot reveals that log |Âl(T )↗A↑1|

|A↑l|
can be approximated with ⇓

1
2 log T which again implies

the empirical rate of convergence approximately as 1⇒
T

which is consistent with our theoretical bound.
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APPENDIX

Proof: (proof of Lemma 2) To prove the lemma, it is
sufficient to demonstrate the existence of 0 ∝ ! ′ !̄
satisfying the following conditions for any l ↔ M:
• The {Ft}t↘1-adapted process (xt)t↘1:εt=l for a given
execution ↽i

T satisfies the (k,!, p) block martingale
small ball condition.
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• It holds that P
[∑T

t=1 xtxT
t 1{ςt = l|ST = ↽i

T } ⊋
T !̄

]
⇔ φ.

• For any w ↔ Rn with |w| = 1, it holds
that P

[∑T
t=1 w

TxtxT
t w1{ςt = l|ST = ↽i

T } ⇔

wT!wp2

8 k∞T i
l
k ∈

]
⇔ e↗

↓
Ti
l
k

↔p2

8 , and
• A martingale-type argument, similar to Lemma
4.2 in [5], holds for the {Ft}t↘1-adapted process
(xt)t↘1:εt=l for a given execution ↽i

T .
Due to limitations of space, we leave the statements men-
tioned above without proof. However, it can be observed
that all of these statements remain valid with the follow-
ing choices of parameters: !̄ = ϱ2d

ς !̄T , p = 3
20 , and

! = ϱ2!̄r. Here, r represents the index in the execution
↽i
T where mode l is active for the ∞

k
2 ∈-th time, meaning

that
∑r+1

t=1 1{ςt = l|ST = ↽i
T } = ∞

k
2 ∈.

Proof: (proof of Theorem 1) Using the law of total
probability, we can derive an expression for the proba-
bility of the identification error of A↓l being greater than
↼ > 0 as:

P
[
|Âl(T )⇓A↓l| > ↼

]

= P
[
∋
2T

i=1


|Âl(T )⇓A↓l| > ↼


△

ST = ↽i

T

]

=
2T∑

i=1

P
[

|Âl(T )⇓A↓l| > ↼

△

ST = ↽i

T

]

=
2T∑

i=1

P
[
|Âl(T )⇓A↓l| > ↼

ST = ↽i
T

]
P
[
ST = ↽i

T

]
.

This expression tells us that the probability of the iden-
tification error depends on both the error probability for
each execution and the probability of each execution oc-
curring. However, it’s important to note that not all exe-
cutions have the same probability of occurring, and some
executions that are less likely to occur might contribute
less in the identification error. To account for this, we
split the sum into two parts:

P
[
|Âl(T )⇓A↓l| > ↼

]

=
2T∑

i = 1 :
T i
l < T̄

P
[
|Âl(T )⇓A↓l| > ↼

ST = ↽i
T

]
P
[
ST = ↽i

T

]

+
2T∑

i = 1 :
T i
l ↑ T̄

P
[
|Âl(T )⇓A↓l| > ↼

ST = ↽i
T

]
P
[
ST = ↽i

T

]
.

In the first sum, where T i
l < T̄ , we consider executions

where the subsystem with A↓l appears less frequently.
Since these trajectories are less likely to contribute to a
better estimation error, we set an upper bound of 1 on
their probability.

For any φ ↔ (0, 1/2), we define ↼ = ↼̄l(φ, T, T̄ ), which
represents the maximum value of ↼̄il(φ, T, T

i
l ) among all

T i
l ↖ T̄ . It is worth noting that in this case, ↼̄il(φ, T, T

i
l ) ⇔

↼̄l(φ, T, T̄ ) for all executions ↽i
T . Based on this, can fur-

ther simplify the terms in the second sum as:

P
[
|Âl(T )⇓A↓l| > ↼

ST = ↽i
T

]

⇔ P
[
|Âl(T )⇓A↓l| > ↼̄il(φ, T, T

i
l )
ST = ↽i

T

]

⇔ φ.

This allows us to conclude that:

P
[
|Âl(T )⇓A↓l| > ↼̄l(φ, T, T̄ )

]

⇔

2T∑

i = 1 :
T i
l < T̄

P
[
ST = ↽i

T

]
+ φ

2T∑

i = 1 :
T i
l ↑ T̄

P
[
ST = ↽i

T

]

= p̄l(T̄ ) + φ(1⇓ p̄l(T̄ )),

where p̄l(T̄ ) denotes the probability of the subsystem
with A↓l appearing less frequently. This concludes the
proof.

Proof: (proof of Lemma 5) We first need to determine
an upper bound for p̄l(T̄ ). We define M↗l as the set of all
modes except mode l. We can express p̄l(T̄ ) as follows:

p̄l(T̄ ) =
2T∑

i = 1 :
T i
l < T̄

P
[
ST = ↽i

T

]
= P

[ T∑

t=1

1{ςt = l} < T̄

]

= P
[
1

T

T∑

t=1

1{ςt ↔ M↗l} ↖
T ⇓ T̄

T

]
.

By defining f(s) = 1{s ↔ M↗1}, we have:

p̄l(T̄ ) = P
[
1

T

T∑

t=1

f(ςt) ↖
T ⇓ T̄

T

]
.

It is straightforward to verify that ϑf = 1⇓ϑl, ↗f↗ω,↑ =
ϑl, and ↗f↗2ω,2 = (1 ⇓ ϑl)2. Therefore, we can utilize
concentration Lemma 4 with any 0 < ⇀ ⇔ 1:

Pq

[
1

T

T∑

t=1

f(ςt)⇓ ϑf ↖ ⇀

]

⇔ Nq exp

(
⇓

T⇀2↼(K)

8b2
(
1 + h

( 5φ
b2

))
)
,

Now, let T↗T̄
T = ⇀+ϑf . Since the above result holds for

any 0 < ⇀ < 1, it also holds for T̄ < ϑlT . Therefore, we
have:

p̄l(T̄ ) ⇔ Nq exp

(
⇓

T⇀2↼(K)

8b2
(
1 + h

( 5φ
b2

))
)
,

for any ⇀ = ϑ1 ⇓
T̄
T with T̄ < ϑlT . Finally, we can com-

plete the proof by substituting this result into Theorem 1.
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