
1

Non-Parametric Neuro-Adaptive Formation Control
Christos K. Verginis, Zhe Xu, and Ufuk Topcu

Abstract—We develop a learning-based algorithm for the
distributed formation control of networked multi-agent systems
governed by unknown, nonlinear dynamics. Most existing algo-
rithms either assume certain parametric forms for the unknown
dynamic terms or resort to unnecessarily large control inputs in
order to provide theoretical guarantees. The proposed algorithm
avoids these drawbacks by integrating neural network-based
learning with adaptive control in a two-step procedure. In the first
step of the algorithm, each agent learns a controller, represented
as a neural network, using training data that correspond to
a collection of formation tasks and agent parameters. These
parameters and tasks are derived by varying the nominal agent
parameters and a user-defined formation task to be achieved,
respectively. In the second step of the algorithm, each agent incor-
porates the trained neural network into an online and adaptive
control policy in such a way that the behavior of the multi-
agent closed-loop system satisfies the user-defined formation task.
Both the learning phase and the adaptive control policy are
distributed, in the sense that each agent computes its own actions
using only local information from its neighboring agents. The
proposed algorithm does not use any a priori information on the
agents’ unknown dynamic terms or any approximation schemes.
We provide formal theoretical guarantees on the achievement of
the formation task.

Note to Practitioners—This paper is motivated by control of
multi-agent systems, such as teams of robots, smart grids, or wire-
less sensor networks, with uncertain dynamic models. Existing
works develop controllers that rely on unrealistic or impractical
assumptions on these models. We propose an algorithm that
integrates offline learning with neural networks and real-time
feedback control to accomplish a multi-agent task. The task
consists of the formation of a pre-defined geometric pattern by the
multi-agent team. The learning module of the proposed algorithm
aims to learn stabilizing controllers that accomplish the task from
data that are obtained from offline runs of the system. However,
the learned controller might result in poor performance owing to
potential data inaccuracies and the fact that learning algorithms
can only approximate the stabilizing controllers. Therefore, we
complement the learned controller with a real-time feedback-
control module that adapts on the fly to such discrepancies. In
practise, the data can be collected from pre-recorded trajectories
of the multi-agent system, but these trajectories do need to
accomplish the task at hand. The real-time feedback-control is a
closed-form function of the states of each agent and its neighbours
and the trained neural networks and can be straightforwardly
implemented. The experimental results show that the proposed
algorithm achieves greater performance than algorithms that use
only the trained neural networks or only the real-time feedback-
control policy. Our future research will address the sensitivity of
the algorithm to the quality and quantity of the employed data
as well as to the learning performance of the neural networks.
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I. INTRODUCTION

During the last decades, decentralized control of networked
multi-agent systems has attracted significant attention due to
the great variety of its applications, including multi-robot
systems, transportation, multi-point surveillance as well as bio-
logical systems [1]–[3]. In such systems, each agent calculates
its own actions based on local information, as modeled by
a connectivity graph, without relying on any central control
unit. This absence of central control and global information
motivates leader-follower architectures, where a team of agents
(followers) aims at following a pre-assigned leader agent that
holds information about the execution of a potential task.
The coordination problem of leader–follower architectures has
been the focus of many works [4]–[9] because of its numer-
ous applications in various disciplines including autonomous
vehicles coordination (satellite formation flying, cooperative
search of unmanned aerial vehicles and synchronization of
Euler–Lagrange systems), systems biology (control and syn-
chronization in cellular networks), and power systems (control
of renewable energy microgrids).

Although many works on distributed cooperative control
consider known and simple dynamic models, there exist many
practical engineering systems that cannot be modeled accu-
rately and are affected by unknown exogenous disturbances.
Thus, the design of control algorithms that are robust and
adaptable to such uncertainties and disturbances is important.
For multi-agent systems, ensuring robustness is particularly
challenging due to the lack of global information and the
interacting dynamics of the individual agents. A promising
step towards the control of systems with uncertain dynamics is
the use of data obtained a priori from system runs. However,
engineering systems often undergo purposeful modifications
(e.g., substitution of a motor or link in a robotic arm or
exposure to new working environments) or suffer gradual
faults (e.g., mechanical degradation), which might change the
systems’ dynamics or operating conditions. Therefore, one
cannot rely on the aforementioned data to provably guarantee
the successful control of the system. On the other hand, the
exact incorporation of these changes in the dynamic model,
and consequently, the design of new model-based algorithms,
can be a challenging and often impossible procedure. Hence,
the goal in such cases is to exploit the data obtained a priori
and construct intelligent online policies that achieve a user-
defined task while adapting to the aforementioned changes.

There are numerous works that focus on formation control
with uncertain dynamics, exhibiting however certain limita-
tions. Adaptive-control techniques usually consider conserva-
tive assumptions on the underlying dynamics, such as linear
parametrizations with constant unknown terms [10], [11],
globally Lipschitz functions, growth conditions, or known
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upper bounds [6], [12]–[14]. Similarly, reinforcement-learning
works approximate the unknown dynamic terms via single-
layer neural networks, rendering, however, the performance of
the closed-loop system dependent on the number of layers used
[15], [16]. Works that do not adopt such assumptions, such as
funnel control [17], design high-gain algorithms that might
lead to unnecessarily large control inputs. More information
on the related works is given in Section I-B.

A. Contributions
This paper addresses the distributed coordination of net-

worked multi-agent systems governed by unknown nonlinear
dynamics. Our main contribution lies in the development of
a distributed learning-based control algorithm that provably
guarantees the accomplishment of a given multi-agent forma-
tion task without any a priori information on the underlying
dynamics. The algorithm draws a novel connection between
distributed learning with neural-network-based representations
and adaptive feedback control, and consists of the following
steps. Firstly, it trains a number of neural networks, one for
each agent, to approximate controllers for the agents that
accomplish the given formation task. The data used to train the
neural networks consist of pairs of states and control actions
of the agents that are gathered from runs of the multi-agent
system. Secondly, it uses an online adaptive feedback control
policy that guarantees accomplishment of the given formation
task. Both steps can be executed in a distributed manner in a
sense that each agent uses only local information, as modelled
by a connectivity graph. Our approach builds on a combination
of controllers trained offline and online adaptations, which
was recently shown to significantly enhance performance with
respect to single use of the offline part [18]. Numerical exper-
iments show the robustness and adaptability of the proposed
algorithm to different formation tasks, interactions among the
agents, and system dynamics. That is, the proposed algorithm
is able to achieve the given formation task even when the
neural networks are trained with data that correspond to dif-
ferent multi-agent dynamic models (resembling a change in the
dynamics of the agents), as well as different formation tasks
and interactions among the agents. The novelty of the proposed
method lies in the type of integration of neural networks
and adaptive control. In particular, while the majority of the
related works use neural networks to approximate the multi-
agent dynamics, with the approximation error dictating the
closed-loop convergence properties, we use neural networks to
learn distributed controllers from readily available data. These
data can correspond to systems with modified dynamics as
well as formation tasks and the neural-network controllers
aim to retain the boundedness of the closed-loop system.
The online adaptive control design successfully compensates
then for the bounded uncertainties of the multi-agent system.
This paper extends our preliminary version [19] by providing
(1) formal guarantees on the theoretical correctness of the
proposed algorithm, and (2) a larger variety of experimental
results.

B. Related Work
Robust and adaptive control: A large class of works on

multi-agent coordination with uncertain dynamics falls in the
category of robust and adaptive control [6], [10]–[14], [20]–
[25]. Standard adaptive-control methodologies, however, as-
sume certain linear parametric forms for the unknown terms of
the dynamics, limiting the dynamic uncertainties to unknown
constant terms [10], [11], [20], [21]. Additionally, many works
that do not employ parametric assumptions consider dynamic
uncertainties and disturbances that are uniformly bounded
[13], [14] or satisfy growth conditions [6], [12], [22]. The
works [23], [24] use functions in the control design that are
larger than the upper bounds of the unknown dynamic terms;
such a condition requires some a priori information on these
terms. The work [25] assumes that the unknown drift terms
of the dynamics are passive, which is then exploited in the
stability analysis. Multi-agent coordination with unknown
nonlinear continuous dynamics has been also tackled in the
literature by using the so-called funnel control, without using
dynamic approximations [5], [17], [26], [27]. Nevertheless,
funnel controllers depend on so-called reciprocal time-varying
barrier functions that drive the control input unbounded when
the error approaches a pre-specified funnel, creating thus
unnecessarily large control inputs that cannot be realized by
the system’s actuators. In this paper, we develop a distributed
control algorithm that does not employ such reciprocal terms
and whose correctness does not rely on any of the aforemen-
tioned assumptions.

Learning-based control: A large variety of works focus on
distributed learning-based control to achieve multi-agent coor-
dination under uncertain dynamics [15], [16], [28]–[32]. Such
works resort to neural-network approximations of the unknown
dynamic terms. In particular, they assume that the unknown
functions of the dynamics are approximated arbitrarily well as
a single-layer neural network with known radial-basis activa-
tion functions and a vector of unknown but constant weights.
However, the accuracy of such approximations depends on
the size of that vector, i.e., the number of neural-network
neurons, implying that an arbitrarily small approximation error
might require arbitrarily many weights. Additionally, there
are no guidelines for choosing the activation functions in
practice. Multi-agent coordination with unknown dynamics
has also been tackled via cooperative reinforcement learning
with stochastic processes [33]–[43]. However, such works
usually adopt the conservative assumption that the agents
have access to the states and actions of all other agents in
the learning, execution, or both phases [36], [37]. Moreover,
these works exhibit scalability problems with respect to the
number of agents [35], or assume the availability of time
or state discretizations of the underlying continuous-time and
continuous-state models. Additionally, the related works on
multi-agent cooperative reinforcement learning usually con-
sider common or team-average reward functions for the agents
[33], [39], which cannot be easily extended to account for
inter-agent formation specifications that we account for. When
relative inter-agent formation specifications are considered, the
environment becomes non-stationary creating problems in the
theoretical convergence analysis [33].

In this work, we develop a distributed neuro-adaptive control
algorithm for the formation control of continuous-time and -
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state multi-agent systems with unknown nonlinear dynamics.
In contrast to the related works in the literature, we do not
assume linear parametrizations [10], [11], neural-network ap-
proximations [15], [16], global boundedness or growth condi-
tions [6], [12], [13], passivity properties [25], or known upper
bounds [23], [24] for the unknown dynamic terms. According
to the best of our knowledge, the distributed formation-control
problem with unknown dynamics has not been solved in the
absence of the aforementioned assumptions.

The rest of the paper is organized as follows. Section II
describes the considered problem. We provide our theoretical
results in Section III, and Section IV verifies the proposed
methodology through experimental evaluation. Finally, Section
V concludes the paper.

II. PROBLEM FORMULATION

Consider a networked multi-agent group comprised of a
leader, indexed by i = 0, and N followers, with N :=
{1, . . . , N}. The leading agent acts as an exosystem that gen-
erates a desired command/reference trajectory for the multi-
agent group. The followers, which have to be controlled,
evolve according to the 2nd-order dynamics

ẋi,1 = xi,2 (1a)
ẋi,2 = fi(xi, t) + gi(xi, t)ui, (1b)

where xi,1 2 Rn, xi,2 2 Rn, xi := [x>
i,1, x

>
i,2]

> 2 R2n is
the ith agent’s state, assumed available for measurement by
agent i, fi : R2n ⇥ [0,1) ! Rn, gi : R2n ⇥ [0,1) !
Rn⇥n are unknown functions modeling the agent’s dynamics,
and ui is the ith agent’s control input. The functions fi(xi, t)
and gi(xi, t) are assumed to be locally Lipschitz in xi over
R2n for each fixed t � 0, and uniformly bounded in t over
[0,1) for each fixed xi 2 R2n, for all i 2 N . In contrast
to the works of the related literature, we do not assume any
knowledge of the structure, Lipschitz constants, or bounds of
fi(·) and gi(·), and we do not use any scheme to approximate
them. The lack of such assumptions renders the multi-agent
coordination problem significantly difficult, since there is no
apparent way to counteract the effect of the unknown drift
terms fi(). Moreover, in contrast to the funnel-based schemes,
we do not resort to the use of reciprocal-like terms to dominate
fi(). Nevertheless, we do require the following assumption
on the control directions gi(·):

Assumption 1. The matrices gi(xi, t) are positive definite, for
all xi 2 ⌦i, t � 0, where ⌦i ⇢ R2n are compact sets, i 2 N .

Assumption 1 is a sufficiently controllability condition for
(1) and is adopted in numerous related works (e.g., [5],
[26], [29], [44]). The dynamics (1), subject to Assumption 1,
comprise a large class of nonlinear dynamical systems that
capture contemporary engineering problems in mechanical,
electromechanical and power electronics applications, such as
rigid/flexible robots, induction motors and DC-to-DC convert-
ers, to name a few. Systems not covered by (1) or Assumption
1 consist of underactuated or non-holonomic systems, such as
unicycle robots, underactuated aerial or underwater vehicles.
Such systems require special attention and their study consist

part of our future work. Finally, the 2nd-order model (1) can be
easily extended to account for higher-order integrator systems
[45].

We use an undirected graph G := (N , E) to model the
communication among the agents, with N being the index
set of the agents, and E ✓ N ⇥N being the respective edge
set, with (i, i) /2 E (i.e., simple graph). The adjacency matrix
associated with the graph G is denoted by A := [aij ] 2 RN⇥N ,
with aij 2 {0, 1}, i, j 2 {1, . . . , N}. If aij = 1, then
agent i obtains information regarding the state xj of agent
j (i.e., (i, j) 2 E), whereas if aij = 0 then there is no state-
information flow from agent j to agent i (i.e., (i, j) /2 E).
Furthermore, the set of neighbors of agent i is denoted by
Ni := {j 2 N : (i, j) 2 E}, and the degree matrix is defined
as D := diag{|N1|, . . . , |NN |}. Since the graph is undirected,
the adjacency is a mutual relation, i.e., aij = aji, rendering
A symmetric. The Laplacian matrix of the graph is defined as
L := D�A and is also symmetric. The graph is connected if
there exists a path between any two agents. For a connected
graph, it holds that L1̄ = 0, where 1̄ is the vector of ones of
appropriate dimension.

Regarding the leader agent, we denote its state variables
by x0 := [x>

0,1, x
>
0,2]

> 2 R2n, and consider the 2nd-order
dynamics

ẋ0,1= x0,2

ẋ0,2= u0,

where u0 : [0,1) ! Rn is a bounded command signal.
However, the leader provides its state only to a subgroup
of the N agents. In particular, we model the access of the
follower agents to the leader’s state via a diagonal matrix
B := diag{b1, . . . , bN} 2 RN⇥N ; if bi = 1, then the ith
agent has access to the leader’s state, whereas it does not if
bi = 0, for i 2 N . Thus, we also define the augmented graph
as Ḡ := (N [ {0}, Ē), where Ē := E [ {(0, i) : bi = 1}. We
further define

H := (L+ B)⌦ In,

where ⌦ denotes the Kronecker product, as well as the stacked
vector terms

x̄1 := [x>
1,1, . . . , x

>
N,1]

> 2 RNn

x̄2 := [x>
1,2, . . . , x

>
N,2]

> 2 RNn

x̄ := [x>
1 , . . . , x

>
N
]> 2 R2Nn

x̄0,1 := [x>
0,1, . . . , x

>
0,1]

> 2 RNn

x̄0,2 := [x>
0,2, . . . , x

>
0,2]

> 2 RNn

x̄0 := [x̄>
0,1, x̄

>
0,2]

> 2 R2Nn
.

By further defining

f(x̄, t) := [f1(x1, t)
>
, . . . , fN (xN , t)>]> 2 RNn

g(x̄, t) := diag{g1(x1, t), . . . , gN (xN , t)} 2 RNn⇥Nn

u := [u>
1 , . . . , u

>
N
]> 2 RNn

,

the dynamics (1) can be written as

˙̄x1= x̄2 (2a)
˙̄x2= f(x̄, t) + g(x̄, t)u. (2b)
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The goal of this work is to design a distributed control
algorithm, where each agent has access only to its neighbors’
information, to achieve a pre-specified geometric formation of
the agents in Rn. More specifically, consider for each agent
i 2 N the constant1 vectors cij , j 2 {0} [ Ni prescribing
a desired offset that agent i desires to achieve with respect
to the leader (j = 0), and its neighbors (j 2 Ni)2 . That is,
each agent i 2 Ni aims at achieving xi,1 = xj,1 � cij , for
all j 2 Ni, and if bi = 1 (i.e., the agent obtains information
from the leader), xi,1 = x0,1 � ci0. Note that, in the case
of undirected graph, cij = �cji, for all (i, j) 2 E , and we
assume that the set

{x̄1 2 RNn :xi,1 � xj,1 + cij = 0, 8(i, j) 2 E ,
bi(xi,1 � x0,1 + ci0) = 0, 8i 2 N}

is non-empty in order for the formation specification to be
feasible.

Furthermore, we impose the following assumption on the
graph connectivity:

Assumption 2. The graph G is connected and there exists at
least one i 2 N such that bi = 1.

The aforementioned assumption dictates that L + B is an
irreducibly diagonally dominant M-matrix [46]. An M-matrix
is a square matrix having its off-diagonal entries non-positive
and all principal minors nonnegative, thus L + B is positive
definite.

We define now the error variables for each agent as

ei,1 :=
X

j2Ni

(xi,1 � xj,1 + cij) + bi(xi,1 � x0,1 + ci0), (3)

for i 2 N , and the respective stack vector

e1 := [e>1,1, . . . , e
>
N,1]

>
.

Next, by employing the multi-agent graph properties, noticing
that (L⌦ In)x̄0,1 = 0, and since (L+ B) is positive definite
and hence invertible, (3) can be written as

e1 := H(x̄1 � x̄0,1 + c), (4)

with H = (L+ B)⌦ In and

c :=

2

64
c1
...
cN

3

75 := H
�1

2

64

P
j2N1

c1j + b1c10

...P
j2NN

cNj + bNcN0

3

75 (5)

stacks the relative desired offsets ci of the ith agent with
respect to the leader, as dictated by the desired formation
specification. In this way, the desired formation is expressed
with respect to the leader state, and is thus achieved when the
state xi,1 of each agent approaches the leader state x0,1 with
the corresponding offset ci, i 2 N . Therefore, the formation

1Time-varying cij(t) can be also considered with a minor adjustment of
Assumption 3 in Sec. III.

2The formation specification can be also expressed via formation offsets
with respect to the leader ci, i 2 N . The error (3) becomes then ei,1 =P

j2Ni
(xi,1 � ci � xj,1 + cj) + bi(xi,1 � x0,1 � ci), i 2 N .

control problem is solved if the control algorithm drives the
disagreement vector

�1 :=

2

64
�1,1

...
�N,1

3

75 := x̄1 � x̄0,1 + c (6)

to zero. However, the disagreement formation variables �i,1,
are global quantities and thus cannot be measured distribu-
tively by each agent based on the local measurements, as they
involve information directly from the leader as well as from
the whole graph topology via employing the inverse of L+B
in (5). Nevertheless, from (4), since L+B is positive definite
and hence invertible, one obtains

k�1k  ke1k
�min(H)

, (7)

where �min(·) denotes the minimum singular value. Therefore,
convergence of e1 to zero, which we aim to guarantee, implies
convergence of �1 to zero. We further define the augmented
errors for each agent

ei,2 := ėi,1 + k1ei,1, (8)

where k1 is a positive constant, the respective stacked vector

e2 := [e>
i,2, . . . , e

>
N,2]

> 2 RnN
,

and the total error vector e := [e>1 , e
>
2 ]

>. By using (4), the
total error dynamics can be written as

ė1 = �k1e1 + e2 (9a)
ė2 = H(f(x̄(e), t) + g(x̄(e), t)u� ¨̄x0,1)� k

2
1e1 + k1e2,

(9b)

where, with a slight abuse of notation, we express x̄ as a
function of e through (4).

Before proceeding, we define the tuple

F := (x0(t), f, g, c, Ḡ, x̄(0)) (10)

as the “formation instance”, characterized by the leader profile,
the agent dynamics, the desired formation offsets, the graph
topology, and the initial conditions of the agents.

III. MAIN RESULTS

This section describes the proposed algorithm, which con-
sists of two steps. The first step consists of offline learning of
distributed controllers, represented as neural networks, using
training data derived from offline runs. Note that these data
might be derived from systems with modifications in the
dynamics and operating conditions (e.g., a robotic manipulator
that has undergone a change of motor or end-effector or the
addition of a link) or even different formation tasks as dictated
by cij - the increasing deployment of autonomous systems
guarantees the availability of such data. In the second step,
we design an adaptive feedback control policy that uses the
neural networks and provably guarantees achievement of the
formation specification. Unlike the majority of the related
works, we do not assume global boundedness/Lipschitz or
growth conditions for the drift terms fi(·) and do not use any
parametric schemes to approximate them. Additionally, we do
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not resort to the use of reciprocal barrier functions that yield
excessively large control inputs. The proposed algorithm is a
novel integration of offline-trained controllers, represented as
neural networks, and online adaptive control laws.

A. Neural-network learning

As discussed in Section I, we are inspired by cases where
systems undergo changes that modify their dynamics and
hence the underlying controllers no longer guarantee the
satisfaction of a specific task. In such cases, instead of carrying
out the challenging and tedious procedure of identification of
the new dynamic models and design of new model-based con-
trollers, we aim to exploit data from offline system trajectories
and develop a distributed online policy that is able to adapt
to the aforementioned changes and achieve the formation task
expressed via the offsets cij , (i, j) 2 Ē . Consequently, we
assume the existence of data gathered from a finite set of T

trajectories J generated by a priori runs of the multi-agent
system. More specifically, we consider that J is decomposed
as J = (J1, . . . ,JN ), where Ji is the set of trajectories of
agent i 2 N . Since the proposed control scheme is distributed,
we consider that each agent i has access to the data from its
own set of trajectories Ji, which comprises the finite set

Ji =
n
x
k

i
(t), {xj}

j2Nk
i
, u

k

i

⇣
x
k

i
(t), {xj}

j2Nk
i
, t

⌘o

t2Ti

,

(11)

where Ti is a finite set of time instants, xk

i
2 R2n is the state

trajectory of agent i for trajectory k, N k

i
are the neighbors of

agent i in trajectory k, with {xj}
j2Nk

i
being their respective

state trajectories (which agent i has access to, being their
neighbor), and u

k

i
(xk

i
(t), {xj}

j2Nk
i
, t) 2 Rn is the control

input trajectory of agent i, which is a function of time and of
its own and its neighbors’ states.

Each agent i 2 N uses the data to train a neural network
in order to approximate a controller that accomplishes the
formation task. More specifically, each agent uses the tuples
{xk

i
(t), {xj}

j2Nk
i
}t2Ti as input to a neural network, and

u
k

i

�
x
k

i
(t), {xj}

j2Nk
i
, t
�
t2Ti

as the respective output targets,
for all T trajectories. For the inputs corresponding to agents
that are not neighbours of agent i in a trajectory k, we disable
the respective neurons. The training is performed using the
standard back-propagation procedure in order to minimize
a distance metric among the inputs {xk

i
(t), {xj}

j2Nk
i
}t2Ti

and output targets u
k

i

�
x
k

i
(t), {xj}

j2Nk
i
, t
�
t2Ti

[47] - usu-
ally the Mean-Square-Error (MSE) metric EMSE(x, y) =
1
K

P
k2{1,...,K}(xk � yk)2 for vectors x = [x1, . . . , xK ]>,

y = [y1, . . . , yK ]> and K � 2. For a given x 2 R2Nn, we
denote by ui,nn(x̄) the output of the neural network of agent
i 2 N , and unn(x̄) := [u1,nn(x̄)>, . . . , uN,nn(x̄)>]>. Being
the outputs of neural networks, ui,nn(x̄) constitute composite
functions of input, hidden, and output layers; these layers are
usually linear mappings fm(?) = A?+B, where A and B are
the weights of the neural network, and activation functions of
the form fa(?) = (1+exp(�?))�1, or max(0, ?). For example,
in the experiments of Section IV, we use neural networks of 4
fully connected linear layers, followed by batch normalization,

and a ReLu activation function max(0, ?). More specifically,
the outputs ui,nn(x̄) are given by ui,nn(x̄) = yi,4(x̄), where
yi,4(x̄) is defined recursively as:

⌫i,k = Ai,kyi,k + bi,k

qi,k =
⌫i,k � E[⌫i,k]p

Var[⌫i,k] + ✏

yi,k = max(0, qi,k),

for i 2 N , k 2 {1, . . . , 4}, where Ai,k 2 R2Nn⇥2Nn

and bi,k 2 R2Nn are the weight matrix and bias vector,
respectively, for layer k, ✏ = 10�5, yi,0 = x̄, E[·] is the
expected-value operator, Var[·] is the variance operator, and
max(0, ⇤) is applied element-wise.

We stress that we do not require the training trajectories J
to correspond to the formation instance F specified in (10).
As verified in the numerical experiments of Section IV, each
trajectory k might be derived from the execution of a formation
instance Fk = (xk

0 , f
k
, g

k
, c

k
, Ḡk

, x̄
k(0)) that is different than

the one specified in (10), i.e., different leader profile x
k

0 ,
different parameters in the agent dynamics f

k, gk, different
formation offsets ck or communication graph Ḡk, and different
initial agent conditions x̄

k(0), for all k 2 K and some index
set K ⇢ N. We further note that, in practical applications,
one can obtain state xi and control ui measurements by using
onboard sensors. Therefore, the state-control data Ji in (11)
are more accessible than data that correspond to the unknown
functions fi(xi, t) and gi(xi, t). For instance, consider a multi-
robot system equipped with fine-tuned stabilization controllers
for a number of formation tasks. By using onboard sensors,
one can then measure the robot states x

k

i
(e.g., position and

velocity) and control inputs u
k

i
at the actuators at sampled

time instants of the robot trajectories, without having access
to the expression of the controllers themselves or to the state
derivatives ẋi. Therefore, one does not have direct access to
samples of the unknown functions fi(xi, t) and gi(xi, t).

Since the training trajectories are produced by the instances
Fk, which are different from F , we do not expect the neural
networks to learn how to achieve the formation task at hand,
but rather to be able to adapt to the entire collection of
tasks. The motivation for training the neural networks with
different tasks and dynamics is the following. Since the tasks
correspond to bounded trajectories, the respective stabilizing
controllers compensate successfully for the dynamics in (1).
Therefore, the neural networks aim to approximate distributed
controllers the retain this property, i.e., the boundedness of
the multi-agent dynamics (1). Loosely speaking, the neural
networks aim to inherit a property exhibited by all stabilizing
controllers of the offline trajectories that consist the training
data. More technically, the neural networks aim to approximate
stabilizing distributed controllers that achieve the formation
task, having though access only to the offline-generated data
(uk

i
, x

k

i
, t

k). These data might correspond to different forma-
tion tasks, but exhibit the property of successfully compensat-
ing for the unknown dynamics, even if these differ in some
parameters. By using such approximation, the online feedback-
control policy, which is illustrated in the next section, is able to
guarantee achievement of the formation task at hand, without
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using any explicit information on the dynamics. We explicitly
model the aforementioned approximation via the following
assumption on the closed-loop system trajectory that is driven
the by neural networks’ output.

Assumption 3. There exists r > 0 such that the stacked vector
of outputs unn(x) of the trained neural networks satisfies

e
>
2 H(f(x̄(e), t) + g(x̄(e), t)unn(x̄)� ¨̄x0,1)  ke2k2 (12)

for all e satisfying kek  r, where  is a positive constant.

Assumption 3 is a sufficient condition for the prevention
of finite-time escape of the the error trajectory e(t) when
the agents apply only the neural-network controllers, i.e., of
the solution of the differential equation ë2 = H(f(x̄, t) +
g(x̄, t)unn(x̄)� ¨̄x0,1)� k

2
1e1 + k1e2. Indeed, when the multi-

agent system is driven solely by the neural-network con-
trollers and satisfies (12), one can find a Lyapunov function
V (e) = e

>
Ge, for a suitable constant matrix G 2 R2nN⇥2nN ,

satisfying3
�min(G)kek2  V (e)  �max(G)kek2 and

V̇  ↵kek2  ↵

�min{G}V , for all kek  r and a positive
constant ↵. Therefore, we conclude that �min(G)ke(t)k2 
V (e(t))  V (e(0)) exp

⇣
↵

�min{G} t
⌘

, which prevents any
finite-time escape of e(t). Further note that the constants r

and  in (12) are unknown. Finally, in the case of time-varying
formation vectors cij(t), (12) is modified to e

>
2 H(f(x̄(e), t)+

g(x̄(e), t)unn(x̄)� ¨̄x0,1 + c̈(t))  ke2k2, where c is defined
in (5), with the rest of the analysis remaining the same.

Assumption 3 is motivated by (i) the property of neural
networks to approximate a continuous function arbitrarily well
in a compact domain for a large enough number of neurons
and layers [48], and (ii) the fact that the neural networks
are trained with bounded trajectories. As mentioned before,
the collection of tasks that the neural networks are trained
with correspond to bounded trajectories. Hence, in view of
the similarity of the dynamic terms, the neural networks are
expected to approximate a control policy that maintains the
boundedness of the state trajectories as per (12). Contrary to
the related works (e.g., [4], [44], [49]–[52]), however, we do
not adopt approximation schemes for the system dynamics.
In fact, a standard assumption in the related literature is the
approximation of an unknown function by a single-layer neural
network as ⇥(x)# + ✏(x), where ⇥(x) is a known matrix of
radial basis function, # is a vector of unknown weights, and
✏(x) is an approximation error. However, the performance of
the respective controllers is inversely proportional to the size
of ✏(x), which shrinks with the number of neurons and is
bounded in any contact set. Hence, promising performance is
obtained in the expense of arbitrarily large vector #, which
can potentially lead to numerical issues in practise. In our
case, Assumption 3 is merely a growth condition on the the
solution of the system driven by unn(x̄). In practice, (12) can
be achieved by rich exploration of the state space by the leader
agent xk

0 in the training data Fk. In the numerical experiments
of Section IV, we show that (12) holds true along the executed
trajectories of the multi-agent system.

3
�min and �max denote the minimum and maximum eigenvalues, respec-

tively.

We note that the neural-network controllers unn can be
replaced by other learning methodologies, as long as As-
sumption 3 holds. Nevertheless, the rich structure of neural
networks makes them great candidates for approximating a
control policy that satisfies (12).

B. Distributed Control Policy
We now design a distributed, adaptive feedback control

policy to accomplish the formation task dictated by the graph
topology Ḡ, the leader profile x0(t), and offsets cij , (i, j) 2 Ē ,
given in Section II.

We define the adaptation variables d̂i,1 for each agent
i 2 N , with d̂1 := [d̂1,1, . . . , d̂N,1]> 2 RN , and design the
distributed control policy as

ui = ui,nn(x̄)� (k2 + d̂i,1)ei,2 (13a)

where k2 is a positive constant. We further design the updates
of the adaptation variables d̂i,1 as

˙̂
di,1 := µi,1kei,2k2 (13b)

with d̂i,1(0) > 0 and µi,1 are positive constants, for all i 2 N .
The overall control algorithm is depicted in Fig. 1 for an agent
i 2 N .

Remark 1 (Control design philosophy). The control design
is inspired by adaptive control methodologies [53], where the
time-varying coefficients d̂i,1 adapt, in coordination with the
neural-network controllers, to the unknown dynamics in order
to ensure closed-loop stability. In particular, by inspecting
the proof of Theorem 1, it can be concluded that d̂i,1 aims
to counteract the term d1 := k1kH�1k

g
+ 

g
, where g :=

mini2{1,...,N}{�min(gi)}, i 2 N . Intuitively, d̂i,1 increases
according to (13b) until it dominates the aforementioned term,
leading to convergence of ei,2 to zero, for all i 2 N .

Note further that agent i’s control policy (13) does not use
any information on its own or its neighbors’ dynamic terms
fi(·), gi(·), or the constants r,  of (12). Additionally, note
that each agent uses only relative feedback from its neighbors,
as can be verified by (3), (8) and (13).

Remark 2 (Control algorithm novelty). The proposed al-
gorithm comprises an innovative integration of controllers
represented as neural networks and adaptive feedback control.
In contrast to the majority of related works, which employ
neural networks to approximate the dynamics of the agents
by assuming known radial-basis activation functions, large
amount of weights, and small approximation errors, the pro-
posed algorithm exploits the potential availability of offline-
obtained data to train neural network controllers that simply
maintain the boundedness of the closed-loop system (as per
Assumption 3). The respective approximation errors are then
successfully compensated by real-time adaptive control laws.

Remark 3 (Control parameters). The proposed method can be
easily applied in practice since it consists of a simple adaptive
feedback control for each agent (see eq. (13)) and the well-
known procedure of neural-network training. The majority
of parameters involved in the control method concern the
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�(k2 + �di,1) ei,2

Neural network i(xk
i , xj

j��k
i
, uk

i )
Offline trajectories ui,nn

Training

bi = 1ci0

xi

ei,2

�di,1

·xi,1 = xi,2·xi,2 = fi(xi, t) + g(xi, t)ui

∫

ui

�i,1�ei,2�2

Error 

formulation (3), (8) �

Neighbours

{cij}j��i

{xj}j��i

Fig. 1. Flow diagram for the proposed algorithm (shown for agent i 2 N .
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Fig. 2. Snapshots of Case 1’s experiment in the x-y plane. The agents converge to the desired formation (see bottom-middle and bottom-right plots) around
the leader, which follows a pre-specified trajectory (continuous blue line). The black lines represent the communication edge set Ē of the agents.

This article has been accepted for publication in IEEE Transactions on Automation Science and Engineering. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TASE.2025.3528501

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Arizona State University. Downloaded on February 21,2025 at 02:38:02 UTC from IEEE Xplore.  Restrictions apply. 



8

0 10 20 30 40 50

0

20

40

60

80

100

0 10 20 30 40 50

0

2

4

6

8

10

12

14

16

18

Fig. 3. Evolution of the error signals kei,1(t)k+ kėi,1(t)k, and kei,2(t)k,
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Fig. 5. The evolution of the control inputs ui(t) and the neural-network
controllers ui,nn(t), for i 2 {1, . . . , 5}, in Case 1.

neural-network training since the online feedback controller
(eq. (13) involves only k2 and µi,1 for each agent. The
stability of the closed-loop system requires k2 and µi,1 to be
positive; however, their selection affects the characteristics of
the closed-loop trajectory, such as overshoot and convergence
time, and the control-input characteristics. For example, large
values for k2 and µi,1 will likely yield large overshoot and
control-input magnitude but small error-convergence times.

The training procedure of neural networks naturally in-
volves numerous parameters to adjust, such as input batch size,
number of layers and neurons, number of training iterations,
and learning rate. Since, however, the training is performed
offline, these parameters can be adjusted until satisfactory
training performance is obtained. Moreover, related works
often provide guidelines regarding the choice of these param-
eters, (e.g., [54]).

Remark 4 (Computational aspects). The computational as-
pects of the proposed method concern primarily the part of
offline neural-network training, since the feedback control in
(13) comprises a closed-form expression and can be very
efficiently run in real time. The complexity of the neural-
network training depends on multiple factors, such as the
architecture of the networks, the input data, the number of
neurons, the optimization algorithm used and the number of
training iterations. For stochastic gradient descent algorithms,
which we use in the simulation studies of Sec. IV, the complex-
ity is linear in the amount of data and number of iterations.
Nevertheless, it should be noted that the training is performed
offline, i.e., prior to execution, and hence it does not affect the
scalability of the method. In the simulation studies of Sec. IV,
the total time taken for training a single neural network did
not exceed 5 minutes.

The following theorem, whose proof is given in the ap-
pendix, guarantees the accomplishment of the formation task.
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Theorem 1. Let a multi-agent system evolve subject to the
dynamics (1) under an undirected communication graph Ḡ.
Under Assumptions 1-3, there exists a set ⌦̄x̂ ⇢ RN(2n+1)

such that, if
�
e(0), d̂1(0)

�
2 ⌦̄x̂, the distributed control

mechanism guarantees limt!1(ei,1, ei,2) = 0, for all i 2 N ,
as well as the boundedness of all closed-loop signals.

Contrary to the works in the related literature (e.g., [5],
[27]) we do not impose reciprocal terms in the control input
that grow unbounded in order to guarantee closed-loop sta-
bility. The resulting controller is essentially a simple linear
feedback on e1, e2 with time-varying adaptive control gains,
accompanied by the neural network output that ensures the
boundedness condition (12).

IV. NUMERICAL EXPERIMENTS

In this section, we carry out 4 case studies of numerical
experiments to illustrate the effectiveness of the proposed
algorithm. Comparative studies (3rd case) show that closed-
loop stability requires both the neural networks and the real-
time adaptive controllers under the (loose) assumptions on the
dynamics. We further show the scalability and effectiveness
of the proposed algorithm to large number of agents and its
robustness with respect to time-varying graphs (4th case).

We consider N = 5 follower aerial vehicles in R3 with
dynamics of the form (1), with

fi(xi, t) =
1

mi

(ḡr + wi,1(t) + wi,2(xi))

gi(xi, t) =
kxik+ 0.5 sin(0.1t) + 1

mi

where ḡr = [0, 0, 9.81]> is the gravity vector and mi 2 R is
the mass of agent i 2 N . Furthermore, wi,1(t), wi,2(xi) are
chosen as

wi,1(t) =

2

4
Ai,1 sin(⌘i,1t+ �i,1)
Ai,2 sin(⌘i,2t+ �i,2)
Ai,3 sin(⌘i,3t+ �i,3)

3

5

wi,2(xi) = Fiyi

with yi = [x2
i,21 , x

2
i,22 , x

2
i,23 , xi,21xi,22 , xi,21xi,23 , xi,22 , xi,23 ],

and we further use the notation xi,2 = [xi,21 , xi,22 , xi,23 ]
>

for all i 2 N . The terms mi, Ai,`, ⌘i,`, �i,` are constants
that take values in (0, 1); similarly, Fi 2 R3⇥6 is a constant
matrix whose elements take values in (0, 1). We evaluate the
proposed algorithm in four test cases. In all of these cases, we
choose the control gains of (13) as k1 = 0.1, k2 = µi,1 = 0.5.
The form of the neural network and the learning procedure
used can be found at the end of this section.

Case 1:The first case consists of the stabilization of the
followers around the leader, which is assigned with the track-
ing of a reference time-varying trajectory profile x0(t). We
consider a communication graph modeled by the edge set Ē
= { (1, 2), (2, 3), (3, 4), (4, 5), (1, 0), (3, 0), (5, 0) }, i.e.,
agents 1, 3, and 5 have access to the information of the
leader. The stabilization is dictated by the formation constants
c1,2 = �c2,1 = [1, 1, 0]>, c2,3 = �c3,2 = [1,�1, 0]>,
c3,4 = �c4,3 = [0,�2, 0]>, c4,5 = �c5,4 = [�2, 0, 0]>,
c1,0 = [1,�1, 0]>, c3,0 = [�1,�1, 0]>, c5,0 = [1, 1, 0]>.

The aforementioned parameters, along with the agents’ initial
conditions, specify the first task’s formation instance F :=
(x0, f, g, c, Ḡ, x̄(0)). We generate data from 100 trajectories
that correspond to different f , g, x̄(0) than in F , but with
the same leader profile x0 and inter-agent formation offsets c

and communication graph Ḡ. The differences in f and g are
created by assigning random values, in (0, 1), to the constants
mi, Ai,`, ⌘i,`, �i,`, and Fi, for all i 2 N . We further assign
the initial conditions for each agent as xi,1(0) = x0,1(0) +
rand(�4, 4)[1, 1, 1]>, and xi,2(0) = rand(�2, 2)[1, 1, 1]>,
i 2 N ; we set the leader agent’s initial condition as x0,1(0) =
[5, 2, 10]>, x0,2(0) = [0.0039,�09836, 0]> for all trajectories.
We use the generated data to train 5 neural networks, one for
each agent. We test the control policy (13) using the task’s
formation instance F . The results are depicted in Figs. 2-5;
Fig. 2 depicts snapshots of the multi-agent formation in the
x-y plane and Fig. 3 shows the evolution of the error signals
kei,1(t)k + kėi,1(t)k and kei,2(t)k for i 2 {1, . . . , 5}. Fig. 4
shows the evolution of the adaptation variables d̂i,1(t), i 2 N ,
and the signal CH(t) = e2(t)>H(f(x̄(t), t)+g(x̄(t), t)u(t)�
¨̄x0,1(t)) � 100ke2k, which is always negative, verifying thus
Assumption 3 for  = 100. Finally, Fig. 5 depicts the evolution
of the control inputs ui(t), ui,nn(t), i 2 {1, . . . , 5}. One
concludes that the multi-agent system converges successfully
to the pre-specified formation, whose x-y shape is depicted in
the bottom-right plot of Fig. 2.

Case 2: The second case comprises a surveillance task,
where the agents need to periodically surveil three areas in
the environment. We choose the same communication graph
as in the first case. Each area consists of 6 spherical regions
of interest; the regions of interest of the first area are centered
at [�50,�50,�10]>, [�70,�50, 10]>, [�60,�40, 10]>,
[�40,�40, 10]>, [�40,�60, 10]>, [�60,�60, 10]; the regions
of interest of the second area are centered at [50, 50, 10]>,
[40, 40, 10]>, [40, 60, 10]>, [50, 60, 10]>, [60, 50, 10]>

[50, 40, 10]>; and the regions of interest of the third area are
centered at [50,�50, 10]>, [40,�40, 10]>, [60,�40, 10]>,
[60,�50, 10]>, [40,�60, 10]>, [40,�50, 10]>. The leader
agent navigates sequentially to one of the regions in
the areas, and by setting the constants cij , (i, j) 2 Ē ,
according to the geometry of the regions, the followers
aim to visit the remaining five regions in each area.
More specifically, we set the formation constants as
c1,2 = �c2,1 = [10, 10, 0]>, c2,3 = �c3,2 = [20, 0, 0]>,
c3,4 = �c4,3 = [0,�20, 0]>, c4,5 = �c5,4 = [�20, 0, 0]>,
c1,0 = [20, 0, 0]>, c3,0 = [�10,�10, 0]>, c5,0 = [10, 10, 0]>

for the first area, c1,2 = �c2,1 = [0, 20, 0]>,
c2,3 = �c3,2 = [10, 0, 0]>, c3,4 = �c4,3 = [10,�10, 0]>,
c4,5 = �c5,4 = [�10,�10, 0]>, c1,0 = [10, 10, 0]>,
c3,0 = [0,�10, 0]>, c5,0 = [10, 10, 0]> for the second area,
and c1,2 = �c2,1 = [20, 0, 0]>, c2,3 = �c3,2 = [0,�10, 0]>,
c3,4 = �c4,3 = [�20,�10, 0]>, c4,5 = �c5,4 = [0, 10, 0]>,
c1,0 = [10,�10, 0]>, c3,0 = [�10, 0, 0]>, c5,0 = [10, 0, 0]>

for the third area.
Similarly to the first case, we generate data from 100 trajec-

tories that correspond to different f , g, x̄(0) than in the task’s
formation instance F ; the differences in f , g are created by
assigning random values, in (0, 1), to the constants mi, Ai,`,
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Fig. 6. Snapshots of Case 2’s experiment (top) and their zoomed-in versions (bottom) in the x-y plane. The agents converge to the desired formation around
the leader at t = 50, t = 150, and t = 225, which implies the visit of the regions of interest in the three areas. The black lines represent the communication
edge set Ē of the agents. The initial positions of the agents are depicted with “ + ” in the top-left plot.

⌘i,`, �i,`, and Fi, for all i 2 N . The initial conditions of the
agents are set as xi,1(0) = x0,1(0) + rand(�10, 10)[1, 1, 1]>,
and xi,2(0) = rand(�2, 2)[1, 1, 1]>, i 2 N , and of the leader
agent as x0,1 = [0, 0, 10]>, x0,2 = [0, 0, 0]>. We use the data
to train 5 neural networks, one for each agent. We test the
control policy (13) on F , giving the results depicted in Figs. 6-
9; Fig. 6 depicts snapshots of the agents’ visit to the three areas
(at t = 50, t = 150, and t = 225 seconds, respectively), and
Fig. 7 depicts the evolution of the signals kei,1(t)k+kėi,1(t)k
and kėi,2(t)k, for all agents i 2 {1, . . . , 5}. Fig. 8 shows
the evolution of the adaptation variables d̂i,1(t), i 2 N , and
the signal CH(t) = e2(t)>H(f(x̄(t), t) + g(x̄(t), t)u(t) �
¨̄x0,1(t)) � 100ke2k, which is always negative, verifying thus
Assumption 3 for  = 100. Finally, Fig. 5 depicts the evolution
of the control inputs ui(t), ui,nn(t), i 2 {1, . . . , 5}. As
illustrated in the figures, the agents converge successfully
to the three pre-specified formations, visiting the regions of
interest in the three areas.

Case 3: The first two cases considered training data that
correspond to the exact formation task, defined by the leader
profile x0 and the constants cij , and communication graph
Ḡ. In the third case, we generate 120 different formation
instances Fk := (xk

0 , f
k
, g

k
, c

k
, Ḡk

, x
k(0)), k 2 {1, . . . , 120},

i.e., different trajectory profiles for the leader, different terms
f
k and g

k for the agents, different communication graphs Ḡ,

different formation constants cij , for (i, j) 2 Ē , and different
initial conditions for the agents. In every instance k, we set
the parameters in f

k, and g
k as in the previous two cases,

we set randomly the communication graph Ḡk such that it
satisfies Assumption 2, we set random offsets cij in the
interval (�5, 5)1̄3, for (i, j) 2 Ē , and the initial conditions
of the agents as xi,1(0) = rand(�10, 10)1̄3, xi,2(0) =
rand(�2.5, 2.5)1̄3, for all i 2 {1, . . . , 5}. Finally, the leader
trajectory x0 is set for each instance k 2 {1, . . . , 120} as
follows: we create four points in R3 randomly in (�10, 10)
in the x- and y- directions, and in (1, 20) in the z direction.
We then create a random sequence of these points, and set the
leader trajectory as a smooth path that visits them according
to that sequence, with a duration of 40 seconds.

We separate the 120 instances into 100 training and 20 test
instances. We train next 5 neural networks, one for each agent,
using data from system runs that correspond to the 100 first
training instances Fk, k 2 {1, . . . , 100}. We test the control
policy on the 20 first training instances Fk, k 2 {1, . . . , 20},
as well as on the 20 test instances that were not used in the
training, i.e., Fk, k 2 {101, . . . , 120}. In addition, we com-
pare the performance of the proposed control algorithm with
(i) a no-neural-network (no-NN) control policy, i.e., a policy
that does not employ the neural network, (term ui,nn in (13a)),
(ii) a non-adaptive control control policy ui = ui,nn � k2ei,2,
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Fig. 7. Evolution of the error signals kei,1(t)k + kėi,1(t)k and kei,2(t)k,
for i 2 {1, . . . , 5}, and t 2 [0, 225], in Case 2.
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Fig. 8. Left: The evolution of the adaptation signals d̂i,1(t) for i 2
{1, . . . , 5}, in Case 2. Right: The evolution of CH(t) in Case 2.

i.e., without the adaptation terms d̂i,1, and (iii) the control
algorithm of [12]. The comparison results are given in Fig.
10, which depicts the mean and standard deviation of the
signal kē1(t)k + k ˙̄e1(t)k for the 20 of the training instances
(top), and for the 20 test instances (bottom). In both cases,
the proposed control algorithm outperforms the other policies,
which, in many of the instances, resulted in unstable closed-
loop systems. The control gains of the algorithm of [12]
were chosen so that the resulting control-input magnitude is
similar to the proposed method. Nevertheless, it should be
noted that in many instances the stability of the closed-loop
system of [12] required control effort at least one order of
magnitude larger than the proposed method. Moreover, from
the comparison with the no-NN and non-adaptive policies,
one can conclude that both the neural networks and the
adaptation terms are necessary in order to achieve the desired

Fig. 9. The evolution of the control inputs ui(t) and the neural-network
controllers ui,nn(t), for i 2 {1, . . . , 5}, in Case 2.

performance. When the algorithm does not use the learned
neural networks (as in the no-NN policy), it fails to drive the
multi-agent disagreement error to zero, as depicted in Fig. 10.
The reason is that, without the neural networks, there is no way
to accommodate the uncertainties imposed by the unknown
functions f(·) and g(·). In particular, without the use of neural
networks, Assumption 3 does not hold, i.e., there is no  such
that eq. (12) holds. Therefore, the adaptive controller cannot
compensate accurately for the dynamic uncertainties and drive
the multi-agent errors e1(t) and e2(t) to zero. Further note
that there is no essential difference among training and test
instances for the no-NN policy since there is no use of neural
networks. Similarly, the non-adaptive policy is not sufficient
to drive the errors to zero, since there are no adaptation terms
to compensate for the unknown dynamic terms in real time.

Case 4: Finally, the fourth case shows the applicability
of the proposed algorithm to large teams of agents and its
robustness to time-varying graphs. In particular, we consider
a team of 50 follower agents in R3, whose connectivity graph
Ḡ depends on their pair-wise distances; agents i and j are
connected, i.e., (i, j) 2 Ē , if kxi,1 � xj,1k  Ds, where
we choose Ds = 15. Similarly to Case 3, we generate 120
different formation instances Fk := (xk

0 , f
k
, g

k
, c

k
, x

k(0)),
k 2 {1, . . . , 120}, making sure that the initial conditions xk(0)
form connected connectivity graphs Ḡk(0). Next, we follow
the same procedure as in Case 3, separating the instances
into 100 training and 20 test ones. The results are depicted
in Fig. 11, which shows the convergence of the errors to
zero, illustrating the robustness of the proposed algorithm to
switching graphs. It is worth noting that the no-NN control and
non-adaptive control policies lead to instability in most of the
cases and hence we do not present the respective trajectories.

We now provide more details regarding the collection of
data, the form of the neural networks, and the respective
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Fig. 10. Evolution of the mean (left) and standard deviation (right) of the
signals kē1(t)k+ k ˙̄e1(t)k for the 20 training instances (top) and the 20 test
instances (bottom) of Case 3.

training for the aforementioned experiments. For the execution
of the trajectories that are used in the training of the neural
networks, we use the control policies

ui = gi(xi, t)
�1(u0(t)� ei,2 � fi(xi, t)),

for all i 2 N . The data for the training of the neural networks
consist of 100 system trajectories, sampled at 500 points,
making a total of 50000 points. The neural networks we use
consist of 4 fully connected layers of 512 neurons; each layer
is followed by a batch-normalization module [55] and a ReLU
activation function fa(?) = max(0, ?). For the training, we
deploy standard backpropagation using the Adam stochastic
optimizer [54] and the Mean-Square-Error loss function; we
choose the learning rate of Adam as 10�3. Finally, we use a
batch size of 256, and we train the neural networks until an
average (per batch) loss of the order of 10�4 is achieved.

V. CONCLUSION AND FUTURE WORK

We develop a learning-based control algorithm for the
formation control of networked multi-agent systems with
unknown nonlinear dynamics. The algorithm integrates dis-
tributed neural-network-based learning and adaptive control.
We provide formal guarantees and perform extensive numer-
ical experiments. Future efforts will focus on relaxing the
considered assumptions and extending the proposed method-
ology to account for directed and time-varying communication
graphs as well as underactuated systems.
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APPENDIX

We provide here the proof of Theorem 1.
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Proof of Theorem 1. Let the continuously differentiable func-
tion

V1 :=
k
2
1

2g
e
>
1 H

�1
e1 +

1

2g
e
>
2 H

�1
e2. (14)

where g = mini2{1,...,N}{�min(gi)}. By differentiating V1

and using (9), one obtains
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and by further using (13a),
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By using the positive definiteness of gi(xi, t), the fact that
g = mini2N {�min(gi)}, and the fact that d̂i,1(t) is positive,
i 2 N , we obtain
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and in view of Assumption 3, for kek  r,
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By using d1 = k1kH�1k
g

+ 

g
, (15) becomes
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3
1e

>
1 H

�1
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(k2 + d̂i,1 � d1)kei,2k2. (16)

In view of the aforementioned expression, the individual
adaptation variables d̂i,1 aim to approximate d1. Therefore,
we define the adaptation errors ed1 := [ed1,1, . . . , edN,1]> :=
d̂1�d̄1 := [d̂1,1�d1, . . . , d̂N,1�d1]>, and the overall state ex :=
[e>1 , e

>
2 ,

ed>1 ]> 2 RN(2n+1). Let the continuously differentiable
function

V2(ex) := V1(ex) +
1

2
ed>1 M�1

1
ed1,

where M1 := diag{µ1,1, . . . , µN,1}. Note that V2(ex) satisfies
Wm(ex)  V2(ex)  Wm̄(ex), where Wm(ex) := mkexk2,

Wm̄(ex) := m̄kexk2 for some positive constants m, m̄. By
differentiating V2 and using (16), we obtain
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and by substituting (13b),
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k2kei,2k2 =: �WQ(ex).

Therefore, V2(t)  V2(0), implying the boundedness of e1(t),
e2(t), and ed1(t), for all t � 0. In view of (13), we also
conclude the boundedness of u(t) and ˙̂

d1(t), for all t � 0.
By differentiating V̇2 and using (9) and (13), we further
conclude the boundedness of V̈2(t), t � 0, which implies the
uniform continuity of V2. By employing Barbalat’s Lemma
(Theorem 8.4 of [56]), we conclude that limt!1 e1(t) =
limt!1 e2(t) = 0.

In view of Assumptions 1 and 3, the aforementioned results
hold under the conditions x 2 ⌦x := ⌦1 ⇥ · · · ⇥ ⌦N and
kek  r. Therefore, we need to establish that the proposed
control algorithm and initial conditions do not force e(t) to
grow larger than r at any point in time t � 0. Alternatively, we
need to establish that, for ex(0) 2 ⌦̄, it holds that ex(t) 2 ⌦x

and ke(t)k  r, for all t � 0. Let the set

M :={ex 2 RN(2n+1) : V2(ex)  V0},

where we choose V0 as the largest constant for which M ✓
{ex 2 RN(2n+1) : ex 2 ⌦x, kek  r, ed1  V2(ex(0))}. Then, for
all ex(0) 2 ⌦̄, where ⌦̄ ✓ M, it follows that V2 is bounded
from above by V2(ex(0)), which implies that ex 2 ⌦x and
ke(t)k  r, for all t � 0. Since ex = [e>, ed1]> = [e>, d̂1 �
d̄1]> and d̄1 is constant, ex(0) 2 ⌦̄ implies [e(0)>, d̂1(0)>]> 2
⌦̄x̂ := {[e>, d̂>1 ]> 2 RN(2n+1) : ex 2 ⌦x}, leading to the
conclusion of the proof.
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