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Abstract 26 

Drift and gene flow affect genetic diversity. Given that the strength of genetic drift increases as 27 

population size decreases, management activities have focused on increasing population size 28 

through preserving habitats to preserve genetic diversity. Few studies have empirically evaluated 29 

the impacts of drift and gene flow on genetic diversity. Kryptolebias marmoratus, henceforth 30 

‘rivulus’, is a small killifish restricted to fragmented New World mangrove forests with gene 31 

flow primarily associated with ocean currents. Rivulus form distinct populations across patches, 32 

making them a well-suited system to test the extent to which habitat area, fragmentation, and 33 

connectivity are associated with genetic diversity. Using over 1,000 individuals genotyped at 32 34 

microsatellite loci, high resolution landcover data, and oceanographic simulations with graph 35 

theory, we demonstrate that centrality (connectivity) to the metapopulation is more strongly 36 

associated with genetic diversity than habitat area or fragmentation. By comparing models with 37 

and without centrality standardized by the source population’s genetic diversity, our results 38 

suggest that metapopulation centrality is critical to genetic diversity regardless of the diversity of 39 

adjacent populations. While we find evidence that habitat area and fragmentation are related to 40 

genetic diversity, centrality is always a significant predictor with a larger effect than any measure 41 

of habitat configuration.   42 



Introduction  43 

Genetic diversity is one of the three internationally recognized levels of biological diversity 44 

by the United Nations’ Convention on Biological Diversity and can impact the evolutionary 45 

trajectory of species1,2. Given that natural selection acts on heritable phenotypic variation, 46 

genetic diversity dictates the ability of populations to evolve in response to environmental 47 

conditions3,4. Preserving genetically distinct populations (i.e., preserving species-level genetic 48 

diversity) has been championed to maintain the potential for peripheral populations to rescue 49 

declining populations with low genetic diversity through natural (i.e., evolutionary rescue) or 50 

augmented (i.e., genetic rescue) gene flow5,6. Decreases in genetic diversity are associated with 51 

increased extinction risk7,8. While all genetic diversity ultimately originates from mutation, 52 

observed levels of genetic diversity result from previous episodes of gene flow, genetic drift, and 53 

selection9. Thus, genetic diversity is the product of past evolutionary forces while also dictating 54 

future evolutionary responses. 55 

Genetic diversity often is attributed to gene flow and drift. Gene flow, the exchange of 56 

genetic material between populations, can either increase or decrease genetic diversity, 57 

depending on whether the focus is on the population or species-level. Gene flow can increase 58 

population genetic diversity through introduction of alleles from adjacent populations10,11; 59 

however, gene flow can reduce species-level genetic diversity by homogenizing allele 60 

frequencies and driving the loss of private alleles12. The pattern of gene flow across a group of 61 

populations is the result of immigration and emigration within a group of populations followed 62 

by successful reproduction (i.e., metapopulation structure)14,15 . This genetic connectivity (i.e., 63 

gene flow) is impacted by the distance16,17 and environmental conditions between populations18. 64 

Hence, environmental spatial heterogeneity between populations and the distribution of 65 



populations impacts patterns of gene flow and, subsequently, patterns of genetic diversity. 66 

However, population genetic diversity is likely not the product of incoming gene flow from one 67 

population, but it is the sum of all incoming connections. 68 

Genetic drift refers to stochastic changes in allele frequencies unrelated to fitness and 69 

opposes local genetic diversity. However, independent bouts of drift between populations can 70 

maintain species-level genetic diversity through retention of private alleles in isolated 71 

populations19. Because drift is stronger in smaller populations20,21, demographic declines 72 

decrease genetic diversity22,23 and limit the population’s ability to recover from or respond to 73 

environmental change24,25. Environmental changes that impact population size such as habitat 74 

loss26,27 and fragmentation28,29 increase drift and decrease genetic diversity30,31. Gene flow and 75 

drift can operate simultaneously32, therefore, identifying environmental drivers of genetic 76 

diversity requires concurrently evaluating the abiotic conditions that influence both patterns of 77 

gene flow and the strength of drift.  78 

 Kryptolebias marmoratus33, hereafter rivulus, is a cryptic self-fertilizing androdiecious 79 

killifish34 that inhabits the highly threatened and fragmented mangrove forests in North America, 80 

Central America, the Caribbean, and the Bahamas35,36,37. As anthropogenic activities such as 81 

greenhouse gas emission and land development continue, rivulus will face reduced habitat 82 

availability38 and may be ill-prepared to evolve in response to these novel environmental 83 

conditions because populations often have low genetic diversity39,40. Rivulus dispersal is likely 84 

passive through eggs attached, via adhesive filaments, to flotsam or adults rafting within 85 

debris40,41, thus limiting rivulus’ ability to leave unsuitable habitats. Gene flow between rivulus 86 

populations is generally low and asymmetric, with asymmetries associated with ocean currents41, 87 



resulting in complex patterns of gene flow that may limit the introduction of adaptive alleles and 88 

genetic rescue.  89 

Given rivulus’ limited genetic diversity, restricted gene flow, increased habitat loss, and 90 

the future impact of climate change on rivulus’ distribution38, preserving existing genetic 91 

diversity is essential for the persistence of rivulus populations. By quantifying abiotic factors that 92 

impact the strength of drift (i.e., habitat area, fragmentation) and patterns of gene flow (i.e., 93 

oceanic connectivity), we can explicitly evaluate their independent contributions to genetic 94 

diversity while comparing their relative impacts. Because population genetic diversity is likely 95 

associated with gene flow patterns across the range, we use a network approach to quantify each 96 

population’s centrality to the metapopulation. Centrality refers to statistics that characterize how 97 

populations are connected within a directed network (see Supplementary Materials – Network 98 

Centrality Measures). We hypothesized that centrality to the metapopulation via ocean currents 99 

and patch qualities (e.g., habitat area) would influence population-level genetic diversity (H1). 100 

We predicted that increased centrality to the metapopulation would increase genetic diversity 101 

while decreases in habitat area and increased fragmentation would decrease genetic diversity.  102 

Methods 103 

Genetic and Environmental Data 104 

We used 1,245 published genetic samples39,40,41,42 genotyped at 32 microsatellite 105 

markers43 previously collected from 56 sites across Central America, the Bahamas, the 106 

Caribbean, and North America between 1994 and 2014 (for details see Supplementary Material – 107 

Genetic Data). Using R version 4.3.144, we grouped sites into larger populations, filtered 108 

samples, and estimated oceanographic connectivity between each pair of populations following 109 

Snead et al. (2023) (for details see Supplementary Information – Biophysical Modeling) resulting 110 



in 17 populations and 1,120 individuals (Figure 1, Table.S1). Using the biophysical model 111 

(CMS) output files and the Global Land Cover and Land Use 2019 dataset45, measures of 112 

oceanographic connectivity and habitat configuration were calculated. Oceanographic 113 

connectivity was calculated following Snead at al. (2023) (for details see SI– Biophysical 114 

Modeling). The Global Land Cover and Land Use 2019 dataset45 was downloaded at ~30 m2 115 

resolution and reclassified into either suitable habitat – wetlands (except salt pans) and water - or 116 

unsuitable habitat – all remaining classifications resulting in a binary measure of potentially 117 

suitable habitat. Total habitat area, cohesion, edge density, and the number of patches were 118 

calculated for suitable habitat within each population cluster buffer using landscapemetrics46. 119 

Total habitat area is the measure of all suitable habitat within the population buffer, while the 120 

number of patches is a count of the number of disconnected clusters of suitable habitats. 121 

Cohesion is a measure of aggregation between zero and 100 that characterizes the continuity of 122 

habitat within the buffer47, and edge density represents the configuration of the landscape by 123 

calculating the number of edges (i.e., where suitable habitat meets unsuitable habitat) and 124 



standardizing it by the total area of within the buffer48. 125 

 126 

Figure 1 A map of all the sampling locations of Kryptolebias marmoratus in Florida and the 127 

Caribbean. The sampling locations were grouped in populations as shown on the map and 128 

described in the text. The number of samples in each population is shown in the table. 129 

 130 
Genetic Analysis 131 

 Snead et al. (2023) use the same microsatellite data to explore local and regional 132 

population structure with an Analysis of MOlecular Variance49, a Discriminant Analysis of 133 

Principal Components50, TESS351, sNMF52, STRUCTURE53, and InStruct54, while patterns of 134 

gene flow were investigated using GST
55, G′ST

56, Jost’s D57, RST
58, and BayesAss59. Similarly to 135 



Snead et al. (2023), deviations from Hardy-Weinberg Equilibrium (HWE) were tested for each 136 

microsatellite locus at the population level and for the entire dataset with the package pegas60. 137 

With the entire dataset, all loci deviated significantly from HWE, as expected due to nonrandom 138 

mating; however, no locus deviated from HWE in all populations. Therefore, all loci were 139 

retained. While there is a large temporal range across the samples, previous work found low of 140 

genetic differentiation (FST = 0.023) between samples collect over ten years apart in Twin Cayes, 141 

Belize (a population with more males and higher genetic diversity), and even lower patterns of 142 

isolation by time in three populations across the Florida Keys (FST = 0.002) which predominantly 143 

self-fertilize with few males.40,42 Therefore, previous results suggest little change in genetic 144 

diversity across the sampling period.  145 

Unique to this experiment, the rarefied number of multilocus genotypes (eMLG; the 146 

average number of unique multilocus genotypes after randomly subsampling ten individuals 147 

across 1000 iterations), Zahl’s unbiased estimator (Z)61,62, rarefied Stoddart and Taylor’s index 148 

(G)63, expected heterozygosity (Hexp)
64, observed heterozygosity (Hobs), and the mean rarefied 149 

allelic richness (Ar) were calculated for each population with the packages poppr65, 150 

PopGenReport66, adegenet67. To account for uneven sampling across populations, both Ar and G 151 

were calculated with rarefaction. There were no significant correlations between sample size and 152 

genetic diversity (eMLG[r = 0.13, p = 0.61], Z[r = 0.37, p = 0.15], G[r = 0.1, p = 0.71], Hexp[r = 153 

0.38, p = 0.14], Hobs[r = 0.12, p = 0.64], Ar[r = 0.37, p = 0.14]). This combination of metrics was 154 

chosen to facilitate comparisons between typical population genetic diversity metrics that lack 155 

strong assumptions (i.e., Z, Hobs, Ar) with Hexp, which assumes random mating, and a measure of 156 

genotypic diversity specifically developed for mixed mating systems (G)63. While Hobs, Hexp, and 157 

Ar are common metrics of genetic diversity in other mixed mating systems such as plant68,69, 158 



comparing results with Z and G enables us to evaluate whether our inference is robust to metric 159 

choice and mating system by comparing across metrics with different assumptions.  160 

Statistics 161 

 Snead et al. (2023) used measures of genetic differentiation and oceanic connectivity to 162 

demonstrate that patterns of gene flow were primarily associated with ocean currents. Novel to 163 

this experiment, oceanic connectivity values were used to calculate two measurements of 164 

network centrality (closeness and strength). Closeness is the inverse average distance from any 165 

node or vertex in the network to the target node, while strength is the sum of all oceanographic 166 

connectivity estimates to a given vertex70,71. Models were constructed with centrality calculated 167 

in two ways: with or without standardization of oceanographic connectivity by source population 168 

genetic diversity. Comparing these models enabled us to determine whether source genetic 169 

diversity modulates the impact of ocean connectivity on sink population genetic diversity (for 170 

details see SI– Network Centrality Measures). All variables were scaled and centered prior to 171 

variable reduction and modeling. The number of variables was reduced using a Variance 172 

Inflation Factor (VIF) threshold of 5 before being further reducing to retain a metric of area (total 173 

area), fragmentation (number of patches), and the two centrality measures (closeness and 174 

strength). The VIF variable reduction was an iterative process where the variable with the 175 

highest VIF was removed before the VIF for all variables were recalculated until no variables 176 

had a VIF greater than 5. In fact, no variables had a VIF greater than 2.1 with the maximum 177 

absolute correlation coefficient being between closeness and total area (-0.53) while the 178 

minimum absolute correlation coefficient was between strength and total area (0.013).  179 

 Linear models were run separately using genetic diversity metrics as response variables 180 

and every combination of landscape metrics, centrality measures, and all two-way interactions 181 



between landscape metrics and centrality measures using the package MuMIn72. Models were 182 

run once with centrality measures standardized by source population genetic diversity and once 183 

without. To meet normality assumptions Z, G, and Hexp were raised to the 2nd, 3rd, and 3rd power, 184 

respectively, while Ar and Hobs were left untransformed. Models were compared via AICc per 185 

Burnham and Anderson (2004). 186 

Results 187 

Genetic Diversity 188 

 The rarefied number of multilocus genotypes (eMLG), Zahl’s estimator (Z), Stoddart and 189 

Taylor’s index (G), expected heterozygosity (Hexp), observed heterozygosity (Hobs), and allelic 190 

richness (Ar) varied considerably across populations. These metrics segregated largely on a 191 

regional basis, with few exceptions. Populations in North Florida (CC, IR, NS, SL, TB) and the 192 

Bahamas (EI, LB, SS) had fewer eMLGs, lower G, and lower genetic diversity (Hexp , Hobs, Ar) 193 

than populations in South Florida (EG, FL, LK, UK) and Central America (NC, LC, TA, TC, 194 

UH). Notable exceptions included that Honduran populations (UH) were less diverse than 195 

Belizean populations (NC, LC, TA, TC), low diversity in the southeastern-most population in 196 

peninsular Florida (FL) was more like Bahamas and Northern Florida populations than the other 197 

south Florida populations - Keys (LK, UK) and Everglades (EG), and two of the most 198 

genetically diverse populations, one from south Florida (LK) and another from Belize (LC), 199 

showed fewer eMLGs relative to other populations from the same regions (Table 1, Table S2). 200 

 201 



Habitat Metrics 202 

 Total suitable habitat area ranged from 244.26 m2 to 20,605.72 m2 and number of patches 203 

from 8 to 1413 across rivulus populations. The general trend was for Belizean populations (LC, 204 

NC, TA, TC) to have much less area, but more contiguous area than most populations from 205 

Florida and the Bahamas. Exceptions included the southeastern-most population on the Florida 206 

peninsula (FL) and one Bahamas population (EI) having low area and the Everglades (EG) 207 

population having fewer patches compared to other non-Central American populations (Table 1, 208 

Table S2). 209 

Network Variables 210 

Network closeness ranged from 0.04 to 0.21, and network strength from 1.4 x 10-7 to 0.35. The 211 

Florida Keys (LK, UK) and larger islands off the coast of Belize (LC, TA, TC) had the highest 212 

closeness values, and showed some of the highest values for strength as well. Two populations 213 

with the highest area – Everglades (EG) in south Florida and New Smyrna (NS) in north Florida 214 

– had relatively low centrality. Populations on the southern fringe of island systems in Central 215 

America (UH) and the northern fringe of island systems in the Bahamas (LB) have some of the 216 

lowest measures of centrality. The Exuma Island (EI) population was the only one to show 217 

considerable disagreement in the two measures of centrality, closeness and strength; this 218 

population showed moderate-to-low closeness but high strength indicating that the population 219 

receives a large number of immigrants from a few adjacent populations but is not well connected 220 

to the entire metapopulation (Table1, Table S2). 221 

Table 1 The rarefied number of multilocus genotypes (eMLG), Stoddart and Taylor’s index (G), 222 
Simpson’s index (λ), expected heterozygosity (Hexp), observed heterozygosity (Hobs), mean 223 
allelic richness (Ar), total habitat area (A), number of patches (NP), network closeness (C), and 224 
network strength (S) for each population along with the population abbreviation. 225 

Population N eMLG Z G Hexp Hobs Ar A (m2) NP C S 



Charlotte County (CC) 17 8.56 0.42 7.81 0.25 0.02 1.92 5907.72 677 0.1 0.03 

Everglades (EG) 28 11.65 0.97 24.5 0.45 0.002 3.86 20,605.72 142 0.05 6.28e-7 

Exuma Island (EI) 12 9 0.21 8 0.14 0 1.37 806.16 289 0.08 0.05 

Fort Lauderdale (FL) 13 12 0.78 13 0.44 0 2.79 645.06 515 0.1 6.01e-3 

Indian River (IR) 14 2.7 0.14 1.34 0.07 0 1.45 5156.91 905 0.08 2.12e-3 

Lower Bogue (LB) 14 5.43 0.6 3.5 0.36 0.02 2.22 7278.16 474 0.04 1.44e-7 

Long Caye (LC) 272 10.95 1.25 38.69 0.6 0.16 4.59 244.26 14 0.15 0.01 

Lower Keys (LK) 143 11.31 1.19 53.96 0.54 0.01 4.59 10,959.34 711 0.14 0.21 

Northern Caye (NC) 67 12 1.12 65.06 0.55 0.2 4.1 272.7 8 0.14 8e-3 

New Smyrna (NS) 92 9.85 0.34 20.35 0.18 0.001 1.93 112,717.53 1413 0.06 9.42e-5 

Saint Lucie (SL) 29 11.51 0.47 24.03 0.29 0.03 2 4,061.9 704 0.08 0.01 

San Salvador (SS) 81 9.27 0.77 14.1 0.39 0.01 3.05 5,906.9 265 0.06 5.2e3 

Turneffe Atoll (TA) 30 12 1.29 30 0.59 0.28 4.82 3,026.49 51 0.18 0.03 

Tampa Bay (TB) 130 5.49 0.45 4.12 0.28 0.001 1.89 3,682.99 1069 0.09 7.26e-3 

Twin Cayes (TC) 59 12 1.61 59 0.69 0.52 6.13 287.14 40 0.21 0.04 

Utila, Honduras (UH) 20 11.65 0.99 18.18 0.5 0.004 3.66 3,435.69 154 0.01 1.43e-4 

Upper Keys (UK) 99 11.92 1.28 88.3 0.56 0.05 5.15 3,733.57 793 0.14 0.35 

 226 

Statistical Models 227 

 The model rankings, coefficient estimates, and R2 were similar between models that used 228 

centrality measures calculated with or without standardizing oceanic connectivity by the genetic 229 

diversity of the source population (Table 2, Table S3); therefore, models without centrality 230 

standardized are reported and discussed. Regardless of the diversity measure (Z, G, Hexp, Hobs, 231 

Ar) used as the response variable, closeness was always included within the best model and was 232 

significant (p < 0.05). In the set of models within 2 AICc units of the best model, habitat area 233 

was included in at least one of the best fit models for Hexp and Ar . The number of patches was 234 

included in the set of best fit models for all but diversity metrics. Strength was included only in 235 

the Ar set and was not significant. Habitat area, number of patches, and closeness were all 236 

significance (0.05 < p < 0.1) for at least one model in each set except G ( Hexp, Hobs, Ar) with 237 

closeness being the only significant predictor of G (Table 2.  238 

Table 2 A table with the formula, coefficient values, standard errors, significance, AICc, AICc 239 
weight (AICcw), and adjusted R-squared (R2) for all models using unstandardized centrality 240 
measures within 2 AICc units of the best model for all the diversity metrics (Stoddart and 241 
Taylor’s Index = G, Expected Heterozygosity = Hexp, Observed Heterozygosity = Hobs, Allelic 242 
Richness = Ar). Covariates are symbolized by their abbreviations (Total Area = A, Number of 243 



Patches = NP, Closeness = C, Strength = S) with interactions between variables indicated with an 244 
x between the two covariates and the intercept is reported for all models. Estimates shown in 245 

italics are significant at 0.01  P < 0.05, and those shown in bold are significant at P < 0.01. If a 246 
cell is blank, it indicates that the covariate was not included in the best fit model(s). 247 

  Habitat  Centrality    

Response Intercept A NP C S A x C AICc AICcw R2 

Z ~ 
0.85 ± 0.16 

p < 0.0001 

0.27 ± 0.19 

p = 0.01 

-0.24 ± 0.18 

p = 0.01 

0.67 ± 0.2 

p < 0.0001 
  18.26 0.41 0.84 

G ~  
1014.5 ± 285.578 

p < 0.0001 
  

404.8 ± 0294.4 
p = 0.01 

  268.66 0.37 0.32 

G ~   
1014.5 ± 279.889 

p < 0.0001 
 

-196.2 ± 312.65 

p = 0.2 

329.2 ± 312.68 

p = 0.04 
  270.06 0.16 0.36 

Hexp ~  
0.1 ± 0.02 

p < 0.0001 

0.02 ± 0.02 

p = 0.04 

-0.03 ± 0.02 

p = 0.006 

0.08 ± 0.02 

p < 0.0001 
  -54.67 0.37 0.85 

Hexp ~   
0.1 ± 0.02 

p < 0.0001 
 

-0.03 ± 0.02 
p = 0.02 

0.07 ± 0.02 

p < 0.0001 
  -53.04 0.17 0.81 

Hobs ~ 
0.05 ± 0.03 

p =0.005 
 

-0.05 ± 0.03 

p = 0.004 

0.06 ± 0.04 

p = 0.005 
 

-0.07 ± 0.04 

p = 0.001 
-39 0.49 0.84 

Ar ~ 
3.27 ± 0.35 

p < 0.0001 

0.68 ± 0.43 

p =0.005 

-0.5 ± 0.4 

p =0.02 

1.31 ± 0.45 

p < 0.0001 
  45.61 0.38 0.79 

Ar ~ 
3.27 ± 0.33 

p < 0.0001 
0.6 ± 0.41 

p = 0.008 
-0.63 ± 0.4 

p = 0.005 

1.09 ± 0.49 

p = 0.0004 

0.34 ± 0.41 
p = 0.09 

 46.34 0.26 0.82 

 248 

Discussion 249 

The spatial distribution of genetic variation is the product of drift, gene flow, natural 250 

selection, and mutation74,75. Because decreases in habitat area26,27 and increases in fragmentation 251 

often decrease population size28,29 and because the strength of drift increases as population sizes 252 

decline16,20, habitat area and configuration are frequently prioritized when attempting to maintain 253 

genetic diversity76,77. However, comparing the relative importance of habitat measures against 254 

connectivity is uncommon. In this study, we combined over a thousand genetic samples from 255 

across rivulus’ range, ocean current simulations, and land classification data within a network 256 

framework to test the role of habitat area, fragmentation, and connectivity in maintaining genetic 257 

variation. While our models show that both habitat configuration and connectivity dictate genetic 258 



variation, connectivity was repeatedly identified as the most important determinant with the 259 

largest effect size.  260 

Considering that mating system impacts genetic diversity78, rivulus’ status as a self-261 

fertilizing vertebrate may spark warranted apprehension regarding the applicability of this study 262 

to other species, while variation in outcrossing and selfing rates across rivulus populations may 263 

raise concern regarding the determinants of genetic diversity. However, mixed mating systems 264 

are extremely common in plant studies using the same genetic diversity metrics68,69. Research 265 

suggests that mixed-mating systems can maintain genetic diversity at similar levels to purely 266 

outcrossing populations79,80. Within this study, there are examples of populations that primarily 267 

self and have low genetic diversity (North Florida) along with populations that primarily self and 268 

have high genetic diversity (South Florida). Populations with high genetic diversity and in which 269 

self-fertilization is the predominant mode of reproduction39,40,42 also have high centrality to the 270 

metapopulation (Table 1, Table S2). Studies suggest that the genetic diversity metrics applied 271 

within this study and the comparison across populations with different outcrossing rates are 272 

robust and can be applied to other systems. However, mating systems should still be considered 273 

when designing management plans and interpreting patterns of genetic variation because mating 274 

systems have large impacts on genetic diversity.  275 

Habitat area and fragmentation are often significantly associated with decreased genetic 276 

diversity, a finding that has inspired many management decisions81. While we found evidence 277 

for habitat area or fragmentation impacting the distribution of genetic variation for rivulus (Table 278 

2), these variables were not always within the best model, nor did they have the largest effect 279 

size. When habitat area and fragmentation were included within the model, habitat area was 280 

positively associated with genetic diversity, while fragmentation was negatively associated with 281 



genetic diversity, supporting previous studies in plants and mammals30,31. When testing our 282 

genotypic measure of diversity (G), neither habitat area nor fragmentation were important 283 

determinants. Hence, we find support for habitat configuration dictating genetic diversity but not 284 

genotypic diversity (H1).  285 

Drift and gene flow are regularly described as antagonistic, with drift decreasing and 286 

gene flow increasing population-level genetic diversity10,30.  We find that closeness (i.e., the 287 

number and magnitude of incoming connections) was a significant predictor for all measures of 288 

genetic diversity (i.e., Z, G, Hexp, Hobs, Ar) (H1; Table 2). We ran the analysis with and without 289 

scaling measures of connectivity (used to calculate closeness and strength) by the source 290 

populations’ genetic pool (i.e., rarefied number of multilocus genotypes). Given that the results 291 

of the two analyses were similar (Table 2; Table S3), genetic diversity may be more impacted by 292 

centrality to the metapopulation than the specific genetic source pools of immigrants. While 293 

there has been recent interest in preserving populations with high emigration that harbor genetic 294 

diversity to facilitate natural genetic rescue82, our results indicate that, for rivulus, genetic 295 

diversity is linked more tightly with metapopulation structure than the level of genetic diversity 296 

within connected populations or local habitat configuration.  297 

While this research uses connectivity and measures of habitat configuration as proxies for 298 

gene flow and drift, gene flow and drift are complex evolutionary forces that cannot be reduced 299 

to any single environmental measure. Patterns of genetic variation are the product of historical 300 

changes such as demography74,75 that may not necessarily be represented in current 301 

environmental conditions. Hence, the use of habitat configuration and connectivity as proxies for 302 

drift and gene flow, respectively, should not be misconstrued as proposing equivalency because 303 

current environmental patterns may not represent past patterns of evolutionary forces.  304 



Furthermore, this study does not include all populations of rivulus across the range meaning that 305 

some aspects of connectivity may have been missed. The sampling does represent populations 306 

from all major areas across the range (i.e., Caribbean, Central America, South Florida, East 307 

Florida, and West Florida) which suggests that our estimated patterns of oceanic connectivity are 308 

representative even without some of the unsampled populations. 309 

Anthropogenic activities are increasing fragmentation, decreasing habitat area, and 310 

exposing species to novel environmental stressors83. Hence, understanding the determinants of 311 

genetic variation, which is essential for the evolvability of populations24,25, is critical to mitigate 312 

population extirpation. Using a network approach, we calculated connectivity with respect to the 313 

entire metapopulation and compared inferences with and without standardizing connectivity by 314 

source genetic diversity. While previous research emphasized associations between habitat 315 

configuration and genetic diversity, we found that patterns of connectivity - the population’s 316 

location within the metapopulation network - is more important for genetic variation than the 317 

amount of habitat area or fragmentation suggesting that range-wide connectivity assessments are 318 

essential for designing effective management plans that not only protect populations in the 319 

present but preserve the evolvability of populations under future environmental change.  320 
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