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Abstract

Drift and gene flow affect genetic diversity. Given that the strength of genetic drift increases as
population size decreases, management activities have focused on increasing population size
through preserving habitats to preserve genetic diversity. Few studies have empirically evaluated
the impacts of drift and gene flow on genetic diversity. Kryptolebias marmoratus, henceforth
‘rivulus’, is a small killifish restricted to fragmented New World mangrove forests with gene
flow primarily associated with ocean currents. Rivulus form distinct populations across patches,
making them a well-suited system to test the extent to which habitat area, fragmentation, and
connectivity are associated with genetic diversity. Using over 1,000 individuals genotyped at 32
microsatellite loci, high resolution landcover data, and oceanographic simulations with graph
theory, we demonstrate that centrality (connectivity) to the metapopulation is more strongly
associated with genetic diversity than habitat area or fragmentation. By comparing models with
and without centrality standardized by the source population’s genetic diversity, our results
suggest that metapopulation centrality is critical to genetic diversity regardless of the diversity of
adjacent populations. While we find evidence that habitat area and fragmentation are related to
genetic diversity, centrality is always a significant predictor with a larger effect than any measure

of habitat configuration.
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Introduction

Genetic diversity is one of the three internationally recognized levels of biological diversity
by the United Nations’ Convention on Biological Diversity and can impact the evolutionary
trajectory of species!?. Given that natural selection acts on heritable phenotypic variation,
genetic diversity dictates the ability of populations to evolve in response to environmental
conditions®*. Preserving genetically distinct populations (i.e., preserving species-level genetic
diversity) has been championed to maintain the potential for peripheral populations to rescue
declining populations with low genetic diversity through natural (i.e., evolutionary rescue) or
augmented (i.e., genetic rescue) gene flow>®. Decreases in genetic diversity are associated with
increased extinction risk”®. While all genetic diversity ultimately originates from mutation,
observed levels of genetic diversity result from previous episodes of gene flow, genetic drift, and
selection’. Thus, genetic diversity is the product of past evolutionary forces while also dictating

future evolutionary responses.

Genetic diversity often is attributed to gene flow and drift. Gene flow, the exchange of
genetic material between populations, can either increase or decrease genetic diversity,
depending on whether the focus is on the population or species-level. Gene flow can increase
population genetic diversity through introduction of alleles from adjacent populations'®'!;
however, gene flow can reduce species-level genetic diversity by homogenizing allele
frequencies and driving the loss of private alleles'?. The pattern of gene flow across a group of
populations is the result of immigration and emigration within a group of populations followed
by successful reproduction (i.e., metapopulation structure)'*!* . This genetic connectivity (i.e.,

16,17

gene flow) is impacted by the distance'®!” and environmental conditions between populations'®,

Hence, environmental spatial heterogeneity between populations and the distribution of
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populations impacts patterns of gene flow and, subsequently, patterns of genetic diversity.
However, population genetic diversity is likely not the product of incoming gene flow from one

population, but it is the sum of all incoming connections.

Genetic drift refers to stochastic changes in allele frequencies unrelated to fitness and
opposes local genetic diversity. However, independent bouts of drift between populations can
maintain species-level genetic diversity through retention of private alleles in isolated
populations'®. Because drift is stronger in smaller populations?*?!, demographic declines

22,23

decrease genetic diversity~~~ and limit the population’s ability to recover from or respond to

environmental change?*?°. Environmental changes that impact population size such as habitat

26,27 28,29

loss?*?” and fragmentation?®?’ increase drift and decrease genetic diversity***!. Gene flow and
drift can operate simultaneously”?, therefore, identifying environmental drivers of genetic
diversity requires concurrently evaluating the abiotic conditions that influence both patterns of

gene flow and the strength of drift.

Kryptolebias marmoratus, hereafter rivulus, is a cryptic self-fertilizing androdiecious
killifish** that inhabits the highly threatened and fragmented mangrove forests in North America,
Central America, the Caribbean, and the Bahamas*~%37. As anthropogenic activities such as
greenhouse gas emission and land development continue, rivulus will face reduced habitat
availability®® and may be ill-prepared to evolve in response to these novel environmental
conditions because populations often have low genetic diversity***°. Rivulus dispersal is likely
passive through eggs attached, via adhesive filaments, to flotsam or adults rafting within
debris***! thus limiting rivulus’ ability to leave unsuitable habitats. Gene flow between rivulus

populations is generally low and asymmetric, with asymmetries associated with ocean currents*!,
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resulting in complex patterns of gene flow that may limit the introduction of adaptive alleles and

genetic rescue.

Given rivulus’ limited genetic diversity, restricted gene flow, increased habitat loss, and
the future impact of climate change on rivulus’ distribution®®, preserving existing genetic
diversity is essential for the persistence of rivulus populations. By quantifying abiotic factors that
impact the strength of drift (i.e., habitat area, fragmentation) and patterns of gene flow (i.e.,
oceanic connectivity), we can explicitly evaluate their independent contributions to genetic
diversity while comparing their relative impacts. Because population genetic diversity is likely
associated with gene flow patterns across the range, we use a network approach to quantify each
population’s centrality to the metapopulation. Centrality refers to statistics that characterize how
populations are connected within a directed network (see Supplementary Materials — Network
Centrality Measures). We hypothesized that centrality to the metapopulation via ocean currents
and patch qualities (e.g., habitat area) would influence population-level genetic diversity (H1).
We predicted that increased centrality to the metapopulation would increase genetic diversity

while decreases in habitat area and increased fragmentation would decrease genetic diversity.

Methods

Genetic and Environmental Data

We used 1,245 published genetic samples®-40:41:42

genotyped at 32 microsatellite
markers* previously collected from 56 sites across Central America, the Bahamas, the
Caribbean, and North America between 1994 and 2014 (for details see Supplementary Material —
Genetic Data). Using R version 4.3.1*, we grouped sites into larger populations, filtered

samples, and estimated oceanographic connectivity between each pair of populations following

Snead et al. (2023) (for details see Supplementary Information — Biophysical Modeling) resulting
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in 17 populations and 1,120 individuals (Figure 1, Table.S1). Using the biophysical model
(CMS) output files and the Global Land Cover and Land Use 2019 dataset*, measures of
oceanographic connectivity and habitat configuration were calculated. Oceanographic
connectivity was calculated following Snead at al. (2023) (for details see SI- Biophysical
Modeling). The Global Land Cover and Land Use 2019 dataset*> was downloaded at ~30 m?
resolution and reclassified into either suitable habitat — wetlands (except salt pans) and water - or
unsuitable habitat — all remaining classifications resulting in a binary measure of potentially
suitable habitat. Total habitat area, cohesion, edge density, and the number of patches were
calculated for suitable habitat within each population cluster buffer using landscapemetrics*®.
Total habitat area is the measure of all suitable habitat within the population buffer, while the
number of patches is a count of the number of disconnected clusters of suitable habitats.
Cohesion is a measure of aggregation between zero and 100 that characterizes the continuity of

habitat within the buffer*’, and edge density represents the configuration of the landscape by

calculating the number of edges (i.e., where suitable habitat meets unsuitable habitat) and
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standardizing it by the total area of within the buffer*®.
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Figure 1 A map of all the sampling locations of Kryptolebias marmoratus in Florida and the
Caribbean. The sampling locations were grouped in populations as shown on the map and
described in the text. The number of samples in each population is shown in the table.

Genetic Analysis

Snead et al. (2023) use the same microsatellite data to explore local and regional
population structure with an Analysis of MOlecular Variance*’, a Discriminant Analysis of
Principal Components®’, TESS3°!, sNMF>2, STRUCTURE?, and InStruct™, while patterns of

gene flow were investigated using Gst>°, G'st°%, Jost’s D*’, Rst°%, and BayesAss™. Similarly to
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Snead et al. (2023), deviations from Hardy-Weinberg Equilibrium (HWE) were tested for each
microsatellite locus at the population level and for the entire dataset with the package pegas®.
With the entire dataset, all loci deviated significantly from HWE, as expected due to nonrandom
mating; however, no locus deviated from HWE in all populations. Therefore, all loci were
retained. While there is a large temporal range across the samples, previous work found low of
genetic differentiation (Fst = 0.023) between samples collect over ten years apart in Twin Cayes,
Belize (a population with more males and higher genetic diversity), and even lower patterns of
isolation by time in three populations across the Florida Keys (Fst = 0.002) which predominantly
self-fertilize with few males.**** Therefore, previous results suggest little change in genetic

diversity across the sampling period.

Unique to this experiment, the rarefied number of multilocus genotypes (eMLG; the
average number of unique multilocus genotypes after randomly subsampling ten individuals

across 1000 iterations), Zahl’s unbiased estimator (Z)®:%?

, rarefied Stoddart and Taylor’s index
(G)%, expected heterozygosity (Hexp)®*, observed heterozygosity (Hobs), and the mean rarefied
allelic richness (Ar) were calculated for each population with the packages poppr®,
PopGenReport®, adegenet®’. To account for uneven sampling across populations, both Ar and G
were calculated with rarefaction. There were no significant correlations between sample size and
genetic diversity (eMLG[r=0.13, p=0.61], Z[r=0.37, p=0.15], G[r = 0.1, p = 0.71], Hexp[r =
0.38, p=0.14], Hobs[r = 0.12, p = 0.64], Ar[r = 0.37, p = 0.14]). This combination of metrics was
chosen to facilitate comparisons between typical population genetic diversity metrics that lack
strong assumptions (i.e., Z, Hobs, Ar) with Hexp, which assumes random mating, and a measure of

genotypic diversity specifically developed for mixed mating systems (G)®. While Hobs, Hexp, and

Ar are common metrics of genetic diversity in other mixed mating systems such as plant®®?,
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comparing results with Z and G enables us to evaluate whether our inference is robust to metric

choice and mating system by comparing across metrics with different assumptions.

Statistics

Snead et al. (2023) used measures of genetic differentiation and oceanic connectivity to
demonstrate that patterns of gene flow were primarily associated with ocean currents. Novel to
this experiment, oceanic connectivity values were used to calculate two measurements of
network centrality (closeness and strength). Closeness is the inverse average distance from any
node or vertex in the network to the target node, while strength is the sum of all oceanographic
connectivity estimates to a given vertex’®’!. Models were constructed with centrality calculated
in two ways: with or without standardization of oceanographic connectivity by source population
genetic diversity. Comparing these models enabled us to determine whether source genetic
diversity modulates the impact of ocean connectivity on sink population genetic diversity (for
details see SI- Network Centrality Measures). All variables were scaled and centered prior to
variable reduction and modeling. The number of variables was reduced using a Variance
Inflation Factor (VIF) threshold of 5 before being further reducing to retain a metric of area (total
area), fragmentation (number of patches), and the two centrality measures (closeness and
strength). The VIF variable reduction was an iterative process where the variable with the
highest VIF was removed before the VIF for all variables were recalculated until no variables
had a VIF greater than 5. In fact, no variables had a VIF greater than 2.1 with the maximum
absolute correlation coefficient being between closeness and total area (-0.53) while the

minimum absolute correlation coefficient was between strength and total area (0.013).

Linear models were run separately using genetic diversity metrics as response variables

and every combination of landscape metrics, centrality measures, and all two-way interactions
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between landscape metrics and centrality measures using the package MuMIn’>. Models were
run once with centrality measures standardized by source population genetic diversity and once
without. To meet normality assumptions Z, G, and Hexp were raised to the 2731 and 3" power,
respectively, while Ar and Hobs were left untransformed. Models were compared via AICc per

Burnham and Anderson (2004).

Results

Genetic Diversity

The rarefied number of multilocus genotypes (eMLG), Zahl’s estimator (Z), Stoddart and
Taylor’s index (G), expected heterozygosity (Hexp), observed heterozygosity (Hobs), and allelic
richness (Ar) varied considerably across populations. These metrics segregated largely on a
regional basis, with few exceptions. Populations in North Florida (CC, IR, NS, SL, TB) and the
Bahamas (EI, LB, SS) had fewer eMLGs, lower G, and lower genetic diversity (Hexp , Hobs, Ar)
than populations in South Florida (EG, FL, LK, UK) and Central America (NC, LC, TA, TC,
UH). Notable exceptions included that Honduran populations (UH) were less diverse than
Belizean populations (NC, LC, TA, TC), low diversity in the southeastern-most population in
peninsular Florida (FL) was more like Bahamas and Northern Florida populations than the other
south Florida populations - Keys (LK, UK) and Everglades (EG), and two of the most
genetically diverse populations, one from south Florida (LK) and another from Belize (LC),

showed fewer eMLGs relative to other populations from the same regions (Table 1, Table S2).
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Habitat Metrics

Total suitable habitat area ranged from 244.26 m? to 20,605.72 m? and number of patches
from 8 to 1413 across rivulus populations. The general trend was for Belizean populations (LC,
NC, TA, TC) to have much less area, but more contiguous area than most populations from
Florida and the Bahamas. Exceptions included the southeastern-most population on the Florida
peninsula (FL) and one Bahamas population (EI) having low area and the Everglades (EG)
population having fewer patches compared to other non-Central American populations (Table 1,

Table S2).
Network Variables

Network closeness ranged from 0.04 to 0.21, and network strength from 1.4 x 107 to 0.35. The
Florida Keys (LK, UK) and larger islands off the coast of Belize (LC, TA, TC) had the highest
closeness values, and showed some of the highest values for strength as well. Two populations
with the highest area — Everglades (EG) in south Florida and New Smyrna (NS) in north Florida
— had relatively low centrality. Populations on the southern fringe of island systems in Central
America (UH) and the northern fringe of island systems in the Bahamas (LB) have some of the
lowest measures of centrality. The Exuma Island (EI) population was the only one to show
considerable disagreement in the two measures of centrality, closeness and strength; this
population showed moderate-to-low closeness but high strength indicating that the population
receives a large number of immigrants from a few adjacent populations but is not well connected

to the entire metapopulation (Tablel, Table S2).

Table 1 The rarefied number of multilocus genotypes (eMLG), Stoddart and Taylor’s index (G),
Simpson’s index (1), expected heterozygosity (Hexp), observed heterozygosity (Hobs), mean
allelic richness (Ar), total habitat area (A), number of patches (NP), network closeness (C), and
network strength (S) for each population along with the population abbreviation.

Population N eMLG Z G Hewp  Hobs  Ar A (m?) NP C S




Charlotte County (CC) 17 8.56 0.42 7.81 025 0.02 192 5907.72 677 0.1 0.03
Everglades (EG) 28 11.65 0.97 245 045 0.002 3.86 20,605.72 142 0.05 6.28¢”
Exuma Island (EI) 12 9 0.21 8 0.14 0 1.37 806.16 289 0.08  0.05
Fort Lauderdale (FL) 13 12 0.78 13 0.44 0 2.79 645.06 515 0.1 6.0le?
Indian River (IR) 14 2.7 0.14 1.34  0.07 0 145 515691 905 0.08 2.12¢3
Lower Bogue (LB) 14 5.43 0.6 3.5 036 0.02 222  7278.16 474 0.04 1.44¢7
Long Caye (LC) 272 10.95 1.25  38.69 0.6 0.16 4.59 244.26 14 0.15 0.01
Lower Keys (LK) 143 1131 1.19 5396 0.54 0.01 459 1095934 711 0.14 0.21
Northern Caye (NC) 67 12 1.12 65.06 0.55 0.2 4.1 272.7 8 0.14 e
New Smyrna (NS) 92 9.85 0.34 2035 0.18 0.001 1.93 112,717.53 1413 0.06 9.42¢°
Saint Lucie (SL) 29 11.51 047 2403 029 0.03 2 4,061.9 704 0.08  0.01
San Salvador (SS) 81 9.27 0.77 141 039 001 3.05 5,906.9 265 0.06 5.2¢°
Turneffe Atoll (TA) 30 12 1.29 30 0.59 028 482 3,026.49 51 0.18 0.03
Tampa Bay (TB) 130 5.49 0.45 412 028 0.001 1.89 3,682.99 1069 0.09 7.26¢3
Twin Cayes (TC) 59 12 1.61 59 0.69 052 6.13 287.14 40 021 0.04
Utila, Honduras (UH) 20 11.65 099 18.18 0.5 0.004 3.66 3,435.69 154  0.01 1.43¢*
Upper Keys (UK) 99 11.92 1.28 883 056 0.05 515 3,733.57 793  0.14 035

226

227 Statistical Models

228 The model rankings, coefficient estimates, and R? were similar between models that used
229  centrality measures calculated with or without standardizing oceanic connectivity by the genetic
230  diversity of the source population (Table 2, Table S3); therefore, models without centrality

231  standardized are reported and discussed. Regardless of the diversity measure (Z, G, Hexp, Hobs,
232 Ar) used as the response variable, closeness was always included within the best model and was
233 significant (p < 0.05). In the set of models within 2 AICc units of the best model, habitat area
234 was included in at least one of the best fit models for Hexp and Ar . The number of patches was
235  included in the set of best fit models for all but diversity metrics. Strength was included only in
236  the Ar set and was not significant. Habitat area, number of patches, and closeness were all

237  significance (0.05 <p < 0.1) for at least one model in each set except G ( Hexp, Hobs, Ar) with

238  closeness being the only significant predictor of G (Table 2.

239  Table 2 A table with the formula, coefficient values, standard errors, significance, AICc, AICc
240  weight (AICcy), and adjusted R-squared (R?) for all models using unstandardized centrality
241  measures within 2 AICc units of the best model for all the diversity metrics (Stoddart and

242 Taylor’s Index = G, Expected Heterozygosity = Hexp, Observed Heterozygosity = Hobs, Allelic
243 Richness = Ar). Covariates are symbolized by their abbreviations (Total Area = A, Number of
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Patches = NP, Closeness = C, Strength = S) with interactions between variables indicated with an
x between the two covariates and the intercept is reported for all models. Estimates shown in
italics are significant at 0.01 < P < 0.05, and those shown in bold are significant at P <0.01. If a
cell is blank, it indicates that the covariate was not included in the best fit model(s).
Habitat Centrality
Response Intercept A NP C S AxC AlCc AlCew R?
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Discussion
The spatial distribution of genetic variation is the product of drift, gene flow, natural
selection, and mutation’*”. Because decreases in habitat area’®?” and increases in fragmentation
often decrease population size?®?’ and because the strength of drift increases as population sizes
decline'®?°, habitat area and configuration are frequently prioritized when attempting to maintain
genetic diversity’®”’. However, comparing the relative importance of habitat measures against
connectivity is uncommon. In this study, we combined over a thousand genetic samples from
across rivulus’ range, ocean current simulations, and land classification data within a network
framework to test the role of habitat area, fragmentation, and connectivity in maintaining genetic
variation. While our models show that both habitat configuration and connectivity dictate genetic
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variation, connectivity was repeatedly identified as the most important determinant with the
largest effect size.

Considering that mating system impacts genetic diversity’®, rivulus’ status as a self-
fertilizing vertebrate may spark warranted apprehension regarding the applicability of this study
to other species, while variation in outcrossing and selfing rates across rivulus populations may
raise concern regarding the determinants of genetic diversity. However, mixed mating systems
are extremely common in plant studies using the same genetic diversity metrics®®®. Research
suggests that mixed-mating systems can maintain genetic diversity at similar levels to purely
outcrossing populations’°. Within this study, there are examples of populations that primarily
self and have low genetic diversity (North Florida) along with populations that primarily self and
have high genetic diversity (South Florida). Populations with high genetic diversity and in which

self-fertilization is the predominant mode of reproduction®®44?

also have high centrality to the
metapopulation (Table 1, Table S2). Studies suggest that the genetic diversity metrics applied
within this study and the comparison across populations with different outcrossing rates are
robust and can be applied to other systems. However, mating systems should still be considered
when designing management plans and interpreting patterns of genetic variation because mating
systems have large impacts on genetic diversity.

Habitat area and fragmentation are often significantly associated with decreased genetic
diversity, a finding that has inspired many management decisions®'. While we found evidence
for habitat area or fragmentation impacting the distribution of genetic variation for rivulus (Table
2), these variables were not always within the best model, nor did they have the largest effect

size. When habitat area and fragmentation were included within the model, habitat area was

positively associated with genetic diversity, while fragmentation was negatively associated with
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genetic diversity, supporting previous studies in plants and mammals**3!. When testing our
genotypic measure of diversity (G), neither habitat area nor fragmentation were important
determinants. Hence, we find support for habitat configuration dictating genetic diversity but not
genotypic diversity (H1).

Drift and gene flow are regularly described as antagonistic, with drift decreasing and
gene flow increasing population-level genetic diversity!®*°. We find that closeness (i.e., the
number and magnitude of incoming connections) was a significant predictor for all measures of
genetic diversity (i.e., Z, G, Hexp, Hobs, Ar) (H1; Table 2). We ran the analysis with and without
scaling measures of connectivity (used to calculate closeness and strength) by the source
populations’ genetic pool (i.e., rarefied number of multilocus genotypes). Given that the results
of the two analyses were similar (Table 2; Table S3), genetic diversity may be more impacted by
centrality to the metapopulation than the specific genetic source pools of immigrants. While
there has been recent interest in preserving populations with high emigration that harbor genetic
diversity to facilitate natural genetic rescue®?, our results indicate that, for rivulus, genetic
diversity is linked more tightly with metapopulation structure than the level of genetic diversity
within connected populations or local habitat configuration.

While this research uses connectivity and measures of habitat configuration as proxies for
gene flow and drift, gene flow and drift are complex evolutionary forces that cannot be reduced
to any single environmental measure. Patterns of genetic variation are the product of historical
changes such as demography’*’° that may not necessarily be represented in current
environmental conditions. Hence, the use of habitat configuration and connectivity as proxies for
drift and gene flow, respectively, should not be misconstrued as proposing equivalency because

current environmental patterns may not represent past patterns of evolutionary forces.
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Furthermore, this study does not include all populations of rivulus across the range meaning that
some aspects of connectivity may have been missed. The sampling does represent populations
from all major areas across the range (i.e., Caribbean, Central America, South Florida, East
Florida, and West Florida) which suggests that our estimated patterns of oceanic connectivity are
representative even without some of the unsampled populations.

Anthropogenic activities are increasing fragmentation, decreasing habitat area, and
exposing species to novel environmental stressors®>. Hence, understanding the determinants of

genetic variation, which is essential for the evolvability of populations®*%

, 1s critical to mitigate
population extirpation. Using a network approach, we calculated connectivity with respect to the
entire metapopulation and compared inferences with and without standardizing connectivity by
source genetic diversity. While previous research emphasized associations between habitat
configuration and genetic diversity, we found that patterns of connectivity - the population’s
location within the metapopulation network - is more important for genetic variation than the
amount of habitat area or fragmentation suggesting that range-wide connectivity assessments are

essential for designing effective management plans that not only protect populations in the

present but preserve the evolvability of populations under future environmental change.
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