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Fewer than half of individuals with a suspected Mendelian or monogenic condition receive a precise molecular diagnosis 

after comprehensive clinical genetic testing. Improvements in data quality and costs have heightened interest in using 

long-read sequencing (LRS) to streamline clinical genomic testing, but the absence of control data sets for variant filtering 

and prioritization has made tertiary analysis of LRS data challenging. To address this, the 1000 Genomes Project (1KGP) 

Oxford Nanopore Technologies Sequencing Consortium aims to generate LRS data from at least 800 of the 1KGP samples. 

Our goal is to use LRS to identify a broader spectrum of variation so we may improve our understanding of normal patterns 

of human variation. Here, we present data from analysis of the first 100 samples, representing all 5 superpopulations and 19 

subpopulations. These samples, sequenced to an average depth of coverage of 37× and sequence read N50 of 54 kbp, have 

high concordance with previous studies for identifying single nucleotide and indel variants outside of homopolymer re- 

gions. Using multiple structural variant (SV) callers, we identify an average of 24,543 high-confidence SVs per genome, 

including shared and private SVs likely to disrupt gene function as well as pathogenic expansions within disease-associated 

repeats that were not detected using short reads. Evaluation of methylation signatures revealed expected patterns at known 

imprinted loci, samples with skewed X-inactivation patterns, and novel differentially methylated regions. All raw sequencing 

data, processed data, and summary statistics are publicly available, providing a valuable resource for the clinical genetics 

community to discover pathogenic SVs. 

[Supplemental material is available for this article.] 
 

As an initiative to sequence a large set of healthy reference ge- 

nomes from globally diverse ancestries, the 1000 Genomes 

Project (1KGP) marked a significant milestone in genomic re- 

search, yielding the first sequencing-based map of normal patterns 

of human genetic variation for filtering and prioritizing candidate 

disease-causing variants (International HapMap Consortium 

2005; The 1000 Genomes Project Consortium 2015; Byrska- 

Bishop et al. 2022). The impact of 1KGP on our understanding 

of human genetic diversity has been enormous, and the flagship 

papers have been cited more than 10,000 times in clinical and ba- 

sic research studies. The success of the project has been amplified 

by the use of diverse, high-quality, open-access data sets, and data- 

bases such as gnomAD (Koenig et al. 2024) and DECIPHER (Firth 

et al. 2009) have built on the 1KGP principles for determining 

the population allele frequency of variants to aid in variant inter- 

pretation. Pooling of data from large projects has improved the 

usefulness of these databases, and analyses of 1KGP data to date 

have made profound contributions using arrays or short-read se- 

quencing technology. However, these approaches are inherently 

limited in their ability to identify variants in complex genomic re- 

gions or to capture certain types of genetic differences, such as 

structural variants (SVs), repeat expansions, and epigenetic 

changes (Chaisson et al. 2019; Ebert et al. 2021; Liao et al. 2023). 

SVs—defined as insertions, deletions, duplications, inver- 

sions, repeat expansions, and translocations at least 50 bp in size 

—are major contributors to genetic diversity and disease suscepti- 

bility and are more likely to have a larger effect size than single nu- 

cleotide variants (SNVs) (Eichler 2019). SV calling using short-read 

sequencing can be challenging because it detects fewer than half of 

the ∼25,000 SVs present in an individual, is incapable of fully re- 

solving the complex structure of many SVs, and has low concor- 

dance between callers (Cameron et al. 2019; Chaisson et al. 

2019; Zhao et al. 2021). These challenges extend into clinical test- 

ing where commonly used approaches, such as exome sequencing, 

have low sensitivity for SV detection, meaning individuals with 

disease-causing SVs may remain undiagnosed (Hiatt et al. 2021; 

Miller et al. 2021; Cohen et al. 2022; AlAbdi et al. 2023). 

Therefore, there is broad interest in using long-read sequencing 

(LRS) to develop comprehensive catalogs of common human SVs 

to facilitate improved detection of disease-associated variants 

(Wojcik et al. 2023). 

LRS has increasingly demonstrated its ability to detect and re- 

solve SVs missed by traditional methods. Previous concerns about 

cost, error rates, sample preparation, and computational tools 

for both commercially available LRS technologies (Pacific 

Biosciences, PacBio and Oxford Nanopore Technologies, ONT) 

have largely been resolved (Logsdon et al. 2020; Wang et al. 

2021; Kolmogorov et al. 2023), paving the way for its adoption 

into clinical settings (Wojcik et al. 2023; Damaraju et al. 2024). 

Building on the landmark effort of the 1KGP, the 1000 

Genomes Project ONT Sequencing Consortium (1KGP-ONT) is le- 

veraging ONT LRS with the goal of generating high-coverage, 

high-quality sequencing data from the 1KGP sample set. This in- 

ternational initiative aims to: (1) assess both assembly-based and 

alignment-based approaches to LRS data analysis; (2) evaluate var- 

iants in difficult-to-analyze regions of the genome; and (3) facili- 

tate the identification of SVs not fully characterized by short- 

read approaches. This effort is complementary to work from other 

groups performing PacBio LRS of 1KGP samples, such as the 

Human Pangenome Reference Consortium (HPRC) (Wang et al. 

2022) and the Human Genome Structural Variant Consortium 

(HGSVC) (Ebert et al. 2021), as well as lower coverage and N50 

ONT sequencing from Schloissnig et al. (2024). With these collec- 

tive endeavors, it is increasingly likely that the entire collection 

will ultimately be sequenced using both LRS platforms. 

Following 1KGP principles, all data generated through the 1KGP- 

ONT Consortium are publicly released for immediate incorpora- 

tion into clinical and basic research projects. 

Here, we present our analysis of the first 100 samples se- 

quenced by the 1KGP-ONT Consortium. Because a major goal of 
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the consortium is to develop a catalog of common human SVs for 

filtering and prioritizing disease-associated SVs, we demonstrate 

how SV data from a modest number of individuals can be used 

to filter variants in unsolved cases and identify high-priority re- 

gions for follow-up analysis. We also describe variation that would 

be difficult or impossible to detect or fully resolve using short-read 

technology, including disease-associated repeat expansions, 

skewed X-Chromosome inactivation in 46,XX samples, and differ- 

entially methylated regions (DMRs) unique to individual samples. 

 

Results 

Approximately 3200 cell lines or DNA samples from the 1KGP are 

available at the National Human Genome Research Institute 

(NHGRI) Sample Repository for Human Genetic Research housed 

at the Coriell Institute for Medical Research repositories (Coriell) 

(International HapMap Consortium 2005; The 1000 Genomes 

Project Consortium 2015). These anonymized samples, which 

are not associated with medical or phenotypic data, are from indi- 

viduals who self-reported ancestry, sex, and good health at the 

time of sample collection. We selected 100 samples from all five 

superpopulations based on their absence from other large-scale se- 

quencing efforts (Ebert et al. 2021; Liao et al. 2023; Schloissnig 

et al. 2024); we did not attempt to balance subpopulations within 

these samples, and four of the 100 samples represent two parent– 

child pairs (Fig. 1A; Supplemental Table S1). 

 

Sequencing pipeline 

High molecular weight (HMW) DNA was isolated from lympho- 

blastoid cell lines (LCLs) cultured in the laboratory, and samples 

were sequenced using the ONT R9.4.1 pore with an average depth 

of coverage of 37.4× and read N50 of 53.8 kbp (Fig. 1B; 

Supplemental Table S2). All samples were processed using two sep- 

arate pipelines (Fig. 1C). First, an internal alignment pipeline used 

minimap2 for alignment, Clair3 for small variant calling, and 

Sniffles2, cuteSV, and SVIM for SV calling (Li 2018; Heller and 

Vingron 2019; Jiang et al. 2020; Zheng et al. 2022; Smolka et al. 

2024). SNV calls from this pipeline were used to ensure sample 

identity by comparison with previous short-read-based variant 

calls (Byrska-Bishop et al. 2022). Second, samples were processed 

using the Nanopore Analysis Pipeline (Napu), which generates as- 

sembly-based SV calls using hapdiff after generating a phased de 

novo assembly using Shasta–Hapdup, minimap2 alignment-based 

small variant calls using PEPPER-Margin-DeepVariant (PMDV), 

and minimap2 alignment-based SV calls using Sniffles2 (Shafin 

et al. 2021; Kolmogorov et al. 2023; Smolka et al. 2024). 

 

Small variant accuracy 

We evaluated the performance of our variant-calling pipelines by 

comparing small variant calls (SNVs and indels <50 bp) to those 

generated by prior studies and using orthogonal short- and long- 

read sequencing technologies. We first compared the ONT se- 

quencing of five samples (outside of our 1KGP cohort) to 

Genome in a Bottle (GIAB) benchmarking data and the HiFi 

PacBio data from the Human Pangenome Research Project. 

Restricting analysis to the GIAB high-confidence regions for 

HG002 resulted in F1 scores >0.984 for SNVs and >0.699 for indels 

for both data sets (Supplemental Table S3). However, these values 

were highly influenced by the presence of homopolymers in the 

ONT data (Harvey et al. 2023; Kolmogorov et al. 2023). When ho- 

mopolymers were removed from the analysis, F1 scores increased 

to >0.984 for SNVs and >0.874 for indels (Supplemental Fig. S1; 

Supplemental Table S4). Next, we compared ONT data from our 

1KGP cohort to complementary Illumina data. We observed an av- 

erage F1 score of 0.982 for SNVs and 0.878 for indels outside of ho- 

mopolymers. (Supplemental Fig. S2; Supplemental Table S5). 

These results validated that both variant-calling approaches 

(Clair3 and PMDV) produced high-quality small variant calls con- 

cordant with prior studies (Kolmogorov et al. 2023). 

 

Genome assembly 

We performed de novo genome assemblies for each of the 100 

samples using both the Napu pipeline (which runs Shasta– 

Hapdup) and Flye (Shafin et al. 2020; Kolmogorov et al. 2023). 

In general, we found that Flye assemblies had a higher contig 

NG50 than Shasta–Hapdup assemblies (Fig. 2A), and results were 

robust to read N50 differences (Fig. 2B). We saw similar contig 

NG50 patterns when our analysis included the five benchmarking 

genomes with similar average depth of coverage and read N50. The 

assembled genomes were highly complete, with each assembly 

covering ∼93.5% (Flye) or 93.6% (Shasta–Hapdup) of the 
GRCh38 reference genome (Supplemental Fig. S3) with a consen- 

sus accuracy similar to previously published studies using the R9 

pore (Fig. 2C; Kolmogorov et al. 2023). 

We investigated why many of the 

Flye assemblies had similar contig NG50 
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repetitive sequence (Supplemental Table 

S6). Among the 2.9% of assembly breaks 

in nonrepetitive sequence, 90% were 

seen in only one sample, suggesting sto- 

chastic artifacts of the assembly process. 

A focused analysis of Chromosome 7 re- 
Figure 1.  Summary statistics of samples, sequencing, and small variant detection. (A) Samples selected 
for sequencing are shown by superpopulation and sex. (B) Violin plots showing average read length, read 
N50, and average depth of coverage for all 100 samples. (C ) DNA was extracted from cells grown from 
aliquots received from Coriell and sequenced using the R9.4.1 pore. Data were analyzed using both align- 
ment- and assembly-based approaches. 

vealed an increased number of contig 

breaks in the telomeric and pericentro- 

meric regions for both Flye and Shasta– 

Hapdup assemblies (Fig. 2D) and at 
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ined how well disease-associated genes 

were assembled in these samples. 

Among 4615 disease-associated OMIM 

genes (excluding genes on the X and Y 

Chromosomes), we found that 97% 

(4492/4615) and 97% (4475/4615) of 

genes in the Flye or Shasta–Hapdup as- 

semblies, respectively, were completely 

and correctly assembled (i.e., they were 

spanned by a single, complete contig) 
in at least 95 out of 100 samples 
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(Supplemental File S2). Among the 200 

assemblies (100 Flye and 100 Shasta– 

Hapdup), we found that five OMIM 

genes were incompletely assembled in 

all 200 assemblies and another 45 

OMIM genes were incompletely assem- 

bled in at least 50 or more of the 200 as- 

semblies (Fig. 2F). We observed more 

incompletely assembled genes in the 

Shasta–Hapdup assemblies, partly due 

to the requirement for a single gene to 

be entirely spanned by a single contig 

in both haplotypes for it to be considered 

fully assembled. 

We subsequently applied Pan 

Genome Graph Building (PGGB) to con- 

struct chromosome-level pangenome 

graphs from the 100 Shasta–Hapdup as- 

semblies and generate multisample vari- 

ant calls including all types of variants 
(Garrison et al. 2023). To investigate the 

Figure 2. Summary of de novo assembly results. (A) Contig NG50 compared to the total number of 
contigs shows that haploid assemblies generated by Flye are longer and have fewer contigs than 
Shasta–Hapdup. No contig NG50 generated by Flye exceeds 40 Mbp. Assemblies for each benchmark- 
ing sample show similar statistics. (B) Assembly NG50 does not significantly improve with higher read 
N50. (C ) QV scores for both Flye and Shasta–Hapdup assemblies, and the five benchmarking genomes. 
(D) Count of contig breaks for all 100 samples on Chromosome 7 shows that while assembly breaks clus- 
ter there are a large number of single breaks spread across the chromosome. The 1.5–1.8 Mbp Williams– 
Beuren syndrome critical region is indicated with a dashed box and is flanked by clusters of assembly 
breaks within segdups (Morris 1993). (E) Contig sizes filtered for contigs longer than 1 Mbp for each 
superpopulation. (F ) OMIM genes incompletely assembled in 50 or more samples using Flye or 
Shasta–Hapdup. For Shasta–Hapdup, if one haplotype was completely assembled in a sample but the 
other was incomplete, the gene is counted as incompletely assembled. Assembly of five genes 
(FAM20C, HYDIN, NOTCH2NLC, PRKAR1B, and SHANK2) was incomplete for all 100 samples using 
both assemblers. Genes that are not in or do not contain a segdup are in bold with an asterisk. 

differences between assembly approach- 

es, we performed principal component 

analysis (PCA) on a Chromosome 20 

pangenome graph created by combining 

the 100 Shasta–Hapdup assemblies with 

44 assemblies from the HPRC (Liao 

et al. 2023). The PCA showed a clear sep- 

aration between the two pangenomes 

(Supplemental Fig. S5A). However, a 

PCA based on the euchromatic, noncen- 

tromeric fraction of the Chromosome 20 

graph demonstrates that this difference is 

primarily due to the improved resolution 

positions flanking well-described recurrent copy number changes 

associated with disease (Morris 1993). Visual analysis of breaks in 

nonrepetitive sequence did not reveal sample-specific differences 

that would easily explain the break in assembly, such as a duplica- 

tion, inversion, or increased number of SNVs, suggesting that local 

sequence variation did not influence the position of assembly 

breaks in nonrepetitive regions (Supplemental Fig. S4). A list of as- 

sembly breaks in 20 or more samples from either the Flye or Shasta– 

Hapdup assemblies genome-wide is available (Supplemental 

File S1). 

We then evaluated contig size across superpopulation groups 

and the assembly of disease-associated OMIM genes. The median 

contig size per sample excluding contigs <1 Mbp (Fig. 2E) was 

higher for African ancestry samples. This was expected given the 

higher genetic diversity in individuals of African ancestry, which 

results in a higher number of distinct sequences leading to longer 

and more contiguous sequences in the assembly. Next, we exam- 

of highly repetitive sequences by the HiFi-based HPRC assemblies 

(Supplemental Fig. S5B), supporting the high-quality nature of our 

assemblies. 

 

Variation within active transposable elements 

The largely repetitive and polymorphic nature of active transpos- 

able elements, especially full-length long interspersed element 1 

(LINE-1) and endogenous retroviruses (ERVs), makes them 

challenging to fully resolve and characterize using short-read as- 

semblies (Yang et al. 2024). We anticipated that long-read assem- 

blies would allow us to overcome these challenges. Using 

RepeatMasker (https://www.repeatmasker.org), we identified in- 

terspersed repeats in the 100 Shasta–Hapdup assemblies and found 

that the fraction of major interspersed repeats differs by no more 

than 3% compared to that of the T2T-CHM13 assembly 

(Supplemental Table S7; Nurk et al. 2022). Furthermore, there 

 
 
 
 
 

 

 

 

  

 
 

  

 
 
 
 
 
 
 
 
 

 
AFR 

AMR 

EAS 

EUR 

SAS 

C
o

n
ti

g
 s

iz
e
 (

M
b
) 

Q
V

 s
c
o

re
 

N
u

m
b

e
r 

o
f 

c
o

n
ti

g
s
 

N
u

m
b

e
r 

o
f 
s
a
m

p
le

s
 

N
u

m
b

e
r 

o
f 
s
a
m

p
le

s
 

*F
A

M
2
0
C

 
H

Y
D

IN
 

N
O

T
C

H
2
N

L
C

 
P

R
K

A
R

1
B

 
S

H
A

N
K

2
 

G
R

K
1
 

H
E

R
C

2
 

D
P

P
6
 

N
U

T
M

2
B

-A
S

1
 

Z
N

F
4
6
9
 

A
N

A
P

C
1
 

K
M

T
2
C

 
*C

1
R

 
S

M
N

2
 

S
M

N
1
 

*C
F

T
R

 
L
P

A
 

*H
L

A
-D

Q
A

1
 

S
O

R
D

 
T
L
K

2
 

R
A

N
B

P
2
 

T
Y

R
 

F
C

G
R

2
A

 
R

H
D

 
*Z

N
F

2
9
2
 

*P
T

P
R

F
 

K
C

N
J
1
8
 

F
C

G
R

2
B

 
C

L
N

3
 

S
M

P
D

4
 

N
S

F
 

U
S

P
1
8
 

K
A

N
S

L
1
 

N
C

F
1
 

N
O

T
C

H
2
 

O
C

L
N

 
F

C
G

R
1
A

 
R

P
S

1
5
A

 
A

B
C

C
6
 

P
L
E

K
H

M
1
 

S
U

Z
1
2
 

O
T
O

A
 

*B
B

S
9
 

E
Y

S
 

P
M

S
2
 

C
F
C

1
 

D
D

X
1
1
 

N
F
1
 

*T
E

F
M

 
A

F
F
3
 

A
s

s
e

m
b

ly
 N

G
5

0
 (
M

b
) 

http://genome.cshlp.org/
http://www.cshlpress.com/
http://www.genome.org/
https://www.repeatmasker.org/


Downloaded from genome.cshlp.org on April 6, 2025 . Published by Cold Spring Harbor Laboratory Press 

Nanopore sequencing of 1KGP samples 

Genome Research 2065 
www.genome.org 

 

 

 

was minimal variation among the 100 assemblies in interspersed 

repeat content. 

Among the youngest polymorphic interspersed repeats that 
are too long to resolve with short reads (Chaisson et al. 2019), 

LINE-1s (∼6000 bp) are the only types that are actively expanding 

in the human genome. We found that the total base pairs of 
LINE-1 sequence (including young and old LINE-1s) in the 100 as- 

semblies (496 Mbp average) is lower than observed in the CHM13 

T2T assembly (512 Mbp), likely due to LINE-1s within unassem- 

bled regions. To measure the ability of 

these ONT-based assemblies to resolve 

SV Tier1 v0.6 benchmarking regions (GIAB Tier1 Regions) (Zook 

et al. 2020) revealed F1 scores >90% for both methods among all 

three samples (Fig. 3A). When comparing genome-wide SV calls 

(not restricted to the GIAB Tier1 regions), our F1 score decreased 

to ∼70% for all three samples, suggesting difficulty in generating 

concordant SV calls in low complexity or repetitive regions of the 

genome (Supplemental Table S8). 

We observed high per-caller concordance between the num- 

ber of SV calls from the three benchmarking genomes and the 

young LINE-1s, we calculated the num- 
ber of the youngest LINE-1 elements 
(L1HS) and the number of full-length 

(≥6 kbp) L1HS elements. Overall, we 

found similar numbers of L1HS and 

full-length L1HS sequences compared 
to HG002 and HG005 from GIAB and 
the CHM13 T2T assembly (Supplemental 

Fig. S6). Although HERV-Ks (∼9000 bp) 

are unlikely to be actively replicating in 
modern humans, like LINE-1s, they are 

known to be polymorphic in the human 

population (Subramanian et al. 2011; Li 
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repeats and that there is variation in the 
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2023). The greater number than Audano 

et al. (2019) is expected given that those 

were called with older PacBio chemis- 

tries (RSII CLR) and an approach, SMRT- 

SV, that excluded SV calls in some 

pericentromeric regions or regions where 

variant calls were considered less reliable. 

Benchmarking against the HPRC Sniffles2 

SV calls (Liao et al. 2023) and restricting 

calls to regions within the GIAB HG002 

Figure 3. SV call set. (A) SV calls were benchmarked against HPRC Sniffles2 SV calls within the GIAB 
HG002 SV Tier1 benchmarking regions. (B) A similar number of genome-wide SVs were identified by 
all five callers used in this study. The confident call set is defined as variants called by hapdiff and at least 
two unique alignment-based callers. For each call set, the average number of deletions (DEL), insertions 
(INS), and total SVs (including INV, DUP, and BND events) per sample is shown. (C ) Histogram of inser- 
tion and deletion counts stratified by size. The peak ∼300 bp represents Alu insertions or deletions, and 

the peak ∼6 kbp represents LINE insertions or deletions. (D) Cumulative novel SVs per sample. The fre- 
quency of new SVs observed increases when samples from individuals of African ancestry are included. 
(E) Upset plot of overlap among SV callers after merging with Jasmine. For each sample, five VCF files 
were merged, demonstrating that the majority of calls in each sample were called by all five callers. (F ) 
Among 113,696 SVs from the Jasmine-merged confident call set, 12,432 were found in exactly two sam- 
ples, with 6181 (50%) of those calls in pairs in which both samples are from the African superpopulation. 
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100 genomes presented here (Fig. 3B). Across the five callers, we 

identified an average of 24,543 SVs per sample (min: 20,068, 

max: 28,734), similar to the 23,000–28,000 SVs per sample report- 

ed by the HGSVC (Ebert et al. 2021). Consistent with prior work, 

we observed more total SV calls in samples from the African super- 

population (The 1000 Genomes Project Consortium 2015; 

Audano et al. 2019; Ebert et al. 2021). The distribution of inser- 

tions and deletions called in this data set was also as expected, 

with an Alu peak ∼300 bp and LINE peak ∼6 kbp (Fig. 3C). A gen- 

erally proportional number of SVs per chromosome was observed 
and, on average, more insertion than deletion events were identi- 
fied per chromosome for all SV callers (Supplemental Fig. S7). The 

genome-wide distribution of total SV events was as expected, with 

more insertions and deletions near the telomeres and centromeres 

(Supplemental Fig. S8). We identified an increasing number of 

novel SVs, excluding breakends (BNDs), for each additional sample 

sequenced among all SV callers (Fig. 3D). 

Because the primary goal of our study is to identify and cata- 

log high-quality SVs among the 1KGP samples, we merged the SVs 

from each of the five SV callers per sample using Jasmine (Kirsche 

et al. 2023). We observed high concordance between SV callers 

across all samples (Fig. 3E), with an average of 16,722 SVs per sam- 

ple called by all callers and no individual sample having an SV type 

that was noticeably higher or lower than other samples within the 

same superpopulation (Supplemental Fig. S9A). An average of 

20,242, 22,685, 25,540, and 34,796 SVs were called by at least 

four, three, two, or one callers, respectively (Supplemental Fig. 

S9B). 

The SVs called exclusively by hapdiff represent the majority 

of SVs called by a single caller. Because hapdiff was the only assem- 

bly-based caller in our data set, we examined whether these calls 

represented false positives or SVs in regions where alignment 

may be challenging. Our analysis found that of the 407,779 SVs 

(excluding BNDs) called only by hapdiff across all 100 samples, 

151,575 (37.1%) were fully or partially within a segdup or within 

1000 bp of a segdup, suggesting that they may be in complex 

copy-number polymorphic regions of the genome, and thus po- 

tential artifacts because of their proximity to a segdup. Of the 

SVs that were not fully within, partially within, or within 1000 

bp of a segdup, 119,255 (46.5% of the remaining SVs) overlap a 

variable number tandem repeat (VNTR) region. Analysis of SVs 

called only by hapdiff did not reveal any individual sample or pop- 

ulation outliers (Supplemental Fig. S9C), and visual analysis of 30 

randomly selected SVs from this set found that 28/30 were likely 

false-positive calls (Supplemental Fig. S10). This suggests that dif- 

ficult-to-assemble regions are a major source of false-positive as- 

sembly-based SV calls and that annotating SV calls with 

information about genomic context might provide insight into 

the confidence of these calls. 

An SV frequency call set was generated that represented SVs 

called by all five callers (100,915 total SVs), four or more 

(119,805 total SVs), three or more (133,766 total SVs), two or 

more (155,407 total SVs), or at least one caller (252,954 total 

SVs). Among the 100 samples described here, there were a total 

of 113,696 shared or unique high-confidence SVs (SVs identified 

by hapdiff and two or more unique callers, excluding BNDs), 

with 32% found in only one sample (36,096 of 113,696). We 

found that 12,432 (11%) of these shared SVs were seen in exactly 

two samples, and that approximately half of these shared SVs 

were in samples only from the African superpopulation (Fig. 3F), 

similar to previous analysis (The 1000 Genomes Project 

Consortium 2015). Among 50,458 high-confidence SVs that inter- 

sect protein-coding genes, 97% (49,142/50,458) are within or in- 

clude intronic sequence, 3.3% (1654/50,458) are within or 

include coding sequence, and 2.0% (992/50,458) are within or in- 

clude a 5′ or 3′ untranslated region (UTR). 

To investigate the functional significance of SVs on gene ex- 

pression, we performed an SV-eQTL analysis using the merged SV 

call set and the recently published MAGE data set, which includes 

RNA-seq data from 731 samples from the 1KGP cohort 

(Supplemental Fig. S11A; Taylor et al. 2023). Among 65 samples 

shared between MAGE and this study, we found 153 significant 

SV-eQTLs (Q-value < 0.05), of which 37 were previously found us- 

ing a collection of 31 diverse LRS-based genomes (Supplemental 

Fig. S11B). This includes a 484 bp insertion associated with 

ZNF79, a gene implicated in neurological diseases (Supplemental 

Fig. S11C,D; Bu et al. 2021). This analysis also revealed several 

new significant associations, including an 81 bp deletion not pre- 

viously detected (Kirsche et al. 2023) that is associated with the 

NAPRT gene, an important factor in cancer susceptibility 

(Supplemental Fig. S11E,F; Duarte-Pereira et al. 2021). To further 

explore the application of the variant call set for SV-eQTL discov- 

ery, we genotyped the SVs in all 731 MAGE individuals using their 

matched short-read genomic data from Byrska-Bishop et al. (2022). 

Using the 65 samples common to both the 1KGP-ONT and MAGE 

data sets, we found the genotype consistency was >98% between 

the short- and long-read data sets after filtering for tandem repeats 

and Hardy–Weinberg consistency (Supplemental Fig. S11G). 

Across all 731 samples, we identified 1324 significant SV-eQTLs, 

of which 1258 were uniquely in the short-read data, including a 

2716 bp deletion associated with GBP3, a gene implicated in infec- 

tious diseases and immune responses (Supplemental Fig. S11H; 

Tretina et al. 2019). 

 

Structural variation within medically relevant genes 

Sequencing of samples from all five superpopulations allowed us 

to evaluate population-specific SVs intersecting genes associated 

with an OMIM phenotype (n = 4866) and revealed 349 high-confi- 

dence SVs in or including at least one defined exon (Supplemental 

Fig. S12A; Supplemental Table S9). These events ranged in size 

from 50 bp (deletions in TNFRSF13C and TF and insertion in 

IMPG2) to 87,776 bp (a deletion that fully includes IGHM). 

Visual analysis of 30 randomly selected events confirmed that all 

were likely true positives. These 349 SVs are distributed across all 

chromosomes and impact 335 exons in 236 unique OMIM genes, 

with 123 of those 335 exons containing ClinVar variants that are 

annotated as pathogenic or likely pathogenic (Supplemental Fig. 

S12B). We found that 150/349 (43%) of these SVs were found in 

only one sample, and no single sample had more than six unique 

SVs (HG01369). Three SVs (a 458 bp insertion in ABCC11, a 243 bp 

insertion in XYLT1, and a 118 bp insertion in MED13L) were seen 

in all 100 samples, suggesting the reference genome represents a 

minor allele at these positions. Indeed, GRCh38 has been patched 

to include a similar insertion in XYLT1. Of the 38 SVs observed in 

only two samples, 76% (29/38) were superpopulation-specific 

with 55% of those (16/29) seen in samples from the African super- 

population. We observed four SVs spanning multiple genes, some 

of which are known population variants. This includes a 22.8 kbp 

deletion spanning HBB, HBD, and HBG1 associated with beta thal- 

assemia (Huisman et al. 1972) (MIM: 613985) and two samples 

with a 19,304 bp deletion including HBA1 and HBA2 commonly 

referred to as the Southeast Asian deletion (Farashi and Harteveld 

2018) (MIM: 604131) (Supplemental Fig. S13). 
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We did not expect to find rare SVs in X-linked OMIM genes in 
46,XY samples, since those events would be more likely to be asso- 
ciated with a disease. However, we did find five such events in at 

least one 46,XY sample. Of these, four were in a 3′ UTR and were 

observed in at least two 46,XX samples. One of the four events, 

found in only one sample, was an ∼141 bp insertion in exon 15 

of RPGR (OMIM: 312610), a gene associated with several X-linked 

conditions including retinitis pigmentosa, cone-rod dystrophy, 

and macular degeneration (Fahim et al. 1993). A similar insertion 

at this position has been reported twice in ClinVar as a variant of 

uncertain significance (VUS) associated with primary ciliary dyski- 

nesia, once as a 141 bp insertion (ClinVar entry 2121719) and once 

as a 69 bp insertion (ClinVar entry 1975740). Evaluation of the 

short-read sequencing data for this sample at this position did 

not clearly demonstrate the insertion, but the insertion consists 

of only C- and T-nucleotides, which would make it difficult to 

align and evaluate using short-read technology (Supplemental 

Fig. S14). The presence of this insertion in a 46,XY 1KGP sample 

suggests that this variant may be present at a higher allele frequen- 

cy than expected, is difficult to reliably call using short-read tech- 

nology, or could be associated with a later onset of the associated 

phenotype. 

A substantial number of high-confidence SVs were observed 

in regions of the genome difficult to evaluate using short reads, 

meaning they may be filtered by variant annotation pipelines. 

For example, 42% (47,315/113,696) of the high-confidence SVs 

occur fully outside of the GIAB Tier 1 regions, and visual inspec- 

tion of 30 events confirmed the presence of an SV. We also identi- 

fied 407 high-confidence SVs within coding regions defined as 

unreliable for variant identification using short-read sequencing 

based on analysis of gnomAD data (Hijikata et al. 2024). Finally, 

9788 of the high-confidence insertions were ≥500 bp, which 
may preclude accurate resolution of these events and limit our un- 

derstanding of their impact on gene expression or splicing when 

evaluated using short-read technology. 

Cytochrome P450 (CYP) genes impact drug response and are 

among the gene sets that are challenging to interrogate using 

short-read technologies and may require separate variant calling 

approaches to fully evaluate (Zanger and Schwab 2013, Lee et al. 

2019). Within this data set, LRS enabled better resolution of full 

gene deletion and duplication SV events in highly polymorphic 

CYP pharmacogenes such as CYP2D6, a pharmacogene involved 

in the metabolism of over 20% of clinically prescribed medications 

(Zanger and Schwab 2013). For example, we identified one individ- 

ual (HG02396) with a CYP2D6 gene deletion (∗5) on one haplo- 

type and a hybrid tandem arrangement (∗36 + ∗10)—shown via 
an insertion—on the second haplotype (Supplemental Fig. 

S15A). In the equivalent short-read WGS data, it can be difficult 

to identify both the gene deletion and the hybrid tandem star al- 

lele in the same individual using specialized short-read genotyping 

tools (Twesigomwe et al. 2023). Analysis of a known complex 

CYP2B6 star allele (CYP2B6∗29) showed that it was called by hap- 
diff but not the alignment-based callers, demonstrating that some 

of these complex alleles may not be represented in our initial high- 

confidence SV set (Supplemental Fig. S15B; Twesigomwe et al. 

2024). 

We used Jasmine to test whether the SVs identified in these 

100 samples could be used to accurately filter SVs in 16 cases 

with known disease-associated SVs identified by whole-genome 

(eight cases) or targeted (eight cases) ONT sequencing 

(Supplemental Table S10; Miller et al. 2021; Wilderman et al. 

2024). Among the eight cases that had undergone whole-genome 

LRS, filtering reduced the average number of SVs called by Sniffles2 

by 93% (from 22,743 to 1664), and in all 16 cases the pathogenic 

SV was retained after filtering. Subsequent annotation of the fil- 

tered SVs (i.e., if the SV intersects with a gene, if that gene is asso- 

ciated with an OMIM phenotype, if the SV is exonic, if the SV is 

within a segmental duplication or low complexity region, etc.) al- 

lowed us to substantially further narrow the output candidate 

SVs. This demonstrates that the high-confidence SV calls can be 

used to filter SVs in cases with high suspicion of a monogenic 

condition. 

 

Analysis of disease-associated repeat expansions 

Tandem repeat expansions (e.g., short tandem repeats [STRs] and 
VNTRs) at more than 60 loci have been implicated in human dis- 

eases such as the GGC expansion in the 5′ UTR of XYLT1 (MIM: 

608124)  associated  with  Baratella–Scott  syndrome  (MIM: 

300881) (Hannan 2018; Depienne and Mandel 2021). Pathogenic 

repeat expansions associated with monogenic disease can be diffi- 

cult to precisely size or fully sequence-resolve using short-read se- 

quencing, meaning clinically relevant interruptions in the repeat 

may not be easily identified (Chaisson et al. 2023; Tanudisastro 

et al. 2024). Thus, there is interest in using LRS to evaluate repeat 

expansions genome-wide and at clinically relevant loci (Sulovari 

et al. 2019; Reis et al. 2023; Dolzhenko et al. 2024). 

We used vamos (Ren et al. 2023) to perform genome-wide 

haplotype-resolved analysis of 562,005 loci—including 66 dis- 

ease-associated loci—consisting of both simple and complex re- 

peat units, and identified pathogenic-sized expansions in RFC1, 

ATXN10, FGF14, and ATXN80S (Fig. 4A; Supplemental Figs. S16– 

S19; Supplemental File S3; Hiatt et al. 2024). We also identified al- 

leles over the pathogenic threshold but with a benign motif in 

SAMD12, BEAN1, and DAB1, as well as several alleles at AR where 

the total repeat count was over the threshold but the CAG motif 

was only a portion of the region. 

Expansions in RFC1, which are associated with autosomal re- 

cessive cerebellar ataxia, neuropathy, and vestibular areflexia syn- 

drome (CANVAS, MIM #614575), were observed in five samples 

ranging from 359 to 712 repeat units in size (Fig. 4B). Pathogenic 

expansions in this gene are typically 400 repeat units or larger 

and are motif-dependent, with AAGGG being the most common 

pathogenic expansion (Cortese et al. 2019; Beecroft et al. 2020; 

Scriba et al. 2020). Our observation that some of these samples car- 

ried the AAGGG repeat unit while others carried a nonpathogenic 

repeat unit, such as AAAAG, was similar to recent work that iden- 

tified expansions in RFC1 of varying repeat motifs in 5/100 HPRC 

samples (Fig. 4C; Dolzhenko et al. 2024). That we observed an ex- 

pansion in 5% of samples was not unexpected, as the carrier fre- 

quency of RFC1 expansions has been reported at 1%–5% across 

at least two populations (Akçimen et al. 2019; Fan et al. 2020). 

Expansions in ATXN10 are associated with autosomal domi- 

nant spinocerebellar ataxia type 10 (SCA10, MIM #603516), a 

slowly progressive ataxia with typical age of onset between 12 

and 48 years and full penetrance alleles varying from 800 to 

4500 ATTCT repeats (Matsuura and Ashizawa 1993; Alonso et al. 

2006; Raskin et al. 2007). Two of the 100 samples were heterozy- 

gous for ATXN10 alleles larger than 800 motifs, one of which 

had a second allele with 511 repeat units (Fig. 4D). In addition, 

two other samples harbored expansions close to or larger than 

280 repeat units, which has been reported as causative in one indi- 

vidual with ataxia (Matsuura et al. 2006). However, three of the 

four large alleles are purely ATTCT, and evidence suggests that 

http://genome.cshlp.org/
http://www.cshlpress.com/
http://www.genome.org/


Downloaded from genome.cshlp.org on April 6, 2025 . Published by Cold Spring Harbor Laboratory Press 

Gustafson et al. 

2068 Genome Research 
www.genome.org 

 

 

 

A Disease-associated repeat expansions 

 
* 

B RFC1 repeat motifs 

 
 
 

 
Repeat 
number 

(Dolzhenko et al. 2019). In all cases, 

when an expanded allele was present, 

the corresponding ExpansionHunter es- 
Simple repeat units 

 
 
 
 
 
 
 
 

 
5 10 15 20 

 
60 ATXN3 (SCA3, MJD) 

34 ATXN7 (SCA7) 

20 CACNA1A (SCA6) 

66 FXN (FRDA) 

12 PABPN1 (OPMD) 

51 PPP2R2B (SCA12) 
 

 
38 AR (SBMA) 

39 ATXN1 (SCA1) 

33 ATXN2 (SCA2) 

71 ATXN8OS (SCA8) 

250 C9orf72 (FTDALS1) 

75 CNBP (DM2) 

50 DMPK (DM1) 

200 FMR1 (FXS, FXTAS, POF1) 

40 HTT (HD) 

49 TBP (SCA17) 

AAAAG AAAGG AAGAG AGAGG AAGGG 0 
1 

700 

timate was larger than the normal allele 

but, in most cases, still significantly un- 

derestimated the size of the expansion 

(Fig. 4C,D; Supplemental Table S11). 

For example, in ATXN10, LRS identified 

a normal allele (15 repeat units) and an 

expansion of more than 1000 repeat 

units in HG01122. The Expansion- 

Hunter estimates for this sample are 15 

(range 15–15) and 73 (range 56–101) re- 

peat units, thus the normal allele was cor- 

rectly estimated but the expanded allele 

was markedly underestimated. 
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An advantage of LRS is the ability to 

simultaneously capture both DNA se- 

quence and modification information, 

allowing for simultaneous evaluation of 

how changes in sequence, such as a 

repeat expansion, may alter the local epi- 

genetic landscape. We evaluated methyl- 

ation both genome-wide and at loci 

associated with imprinting disorders. 

Among 69 of the 70 46,XX samples se- 

quenced, we found that 39% (27/69) 

had X-Chromosome methylation pat- 

terns suggestive of skewed X-inactivation 

(Fig. 5A; Supplemental Table S12). 

We then performed genome-wide 

PCA of methylation to evaluate whether 

samples would correlate with ancestry or 

if patterns of X-inactivation would be ap- 

parent (Supplemental Fig. S20). This 
0 200 400 600 0 250 500 750 1000 

analysis revealed that GM18864 clus- 
Figure 4. Evaluation of repeat expansions known to be associated with Mendelian conditions. (A) 
Haplotype-resolved repeat expansions of selected repeat loci for simple and complex repeat units. 

Pathogenic repeat size is shown to the right of each plot (∗), the associated condition is in parentheses, 

and the full name of each condition can be found in Supplemental Table S11. The pathogenic repeat size 
for FMR1 is listed as 200 repeats, but a dashed vertical line represents the 55-repeat threshold that puts 
46,XX and 46,XY individuals at risk for fragile X-associated tremor/ataxia syndrome (FXTAS, MIM 
#300623) and 46,XX individuals at risk of fragile X-associated primary ovarian insufficiency (POF1/ 
FXPOI, MIM #311360). (AD) autosomal dominant, (AD/AR) autosomal dominant/recessive, (AR) auto- 
somal recessive, (XR) X-linked recessive, (XD) X-linked dominant. (B) Among 200 haplotypes (y-axis), 
an expansion in RFC1 near or over 400 repeat units was seen in five haplotypes. AAGGG is the most com- 
mon pathogenic repeat expansion; additional pathogenic expansions include ACAGG (not shown), and 
a mixed AAAGG/AAGGG expansion (Cortese et al. 1993). (C ) Haplotype (HP)-resolved detail of RFC1 re- 
peat expansions in five samples with an expansion of one allele. Haplotypes are assigned arbitrarily. The 
dotted line represents the position of full penetrance alleles typically seen at 400 repeat units. (D) Three 
samples with expansions in ATXN10 larger than 280 ATTCT repeats were observed. The dotted line at 
800 repeat units represents the position of the lower end of the full penetrance range. 
ExpansionHunter (EH) estimates are overlayed atop the bar plots in (C ) and (D), placed on HP1 or 
HP2 based on their length. 

tered with 46,XY samples despite being 

reported as 46,XX. Because we validated 

each sample using SNVs from short- 

read sequencing, we wondered whether 

this sample had lost an X Chromosome. 

We found that the average X Chromo- 

some depth of coverage was ∼55% of 
the full-length autosomes in the LRS 

data and ∼75% in the short-read data, 

confirming the loss of an X Chromo- 
some in this sample (Pedersen et al. 
2020). 

Next, we evaluated methylation 

patterns at two disease-associated loci: 

11p15.5, which is associated with both 

Beckwith–Wiedemann syndrome (BWS, 
interruptions of ATTCC are necessary for the allele to be pathogen- 

ic (Morato Torres et al. 2022). 

To determine whether any of the expanded RFC1 and 

ATXN10 alleles would be identified using short-read data, we ran 

ExpansionHunter on short-read data from all affected samples 

MIM #130650) and Silver–Russell syndrome (SRS, MIM #180860) 

(Saal et al. 1993; Shuman et al. 1993); and 15q11.2-q13, associated 

with Prader–Willi syndrome (PWS, MIM #176270) and Angelman 

syndrome (AS, MIM #105830) (Dagli et al. 1993; Driscoll et al. 

1993). For the 11p15.5 region, we found that in all samples, one 
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across the 1KGP populations. While the 

expanded collection will enable a more 

accurate estimate of allele frequency for 

challenging variants and add informa- 

tion about haplotype-resolved epigenetic 

variation, we acknowledge that this co- 

hort represents a limited representation 

of human diversity, notably excluding 

individuals of indigenous Australian 

and Middle Eastern ancestries. 

Here, we describe the initial analysis 

Figure 5. Patterns of methylation among the 1000 Genomes samples. (A) Among 69 46,XX samples, 
42 had mixed X-Chromosome inactivation (top, example from HG01414), while 27 were skewed (bot- 
tom, example from HG01801). The color differences are related to breaks in phasing and do not suggest 
methylation is mixed along a single haplotype. (B) Haplotype-resolved methylation fraction is shown for 
three imprinted loci associated with four imprinting disorders. Methylated (>75%) or unmethylated 
(<25%) fraction at IC1 in H19 and IC2 in KCNQ1OT1. Haplotype-resolved methylation fraction is also 
shown for the CpG island within SNURF-SNRPN that is evaluated when testing for PWS or AS. Two sam- 
ples have either gain (GM19473) or loss (HG00525) of methylation at this locus. (C ) Unique methylation 
differences within defined CpG islands were identified in individual samples. An example from HG02389 
shows three CpG sites with increased methylation (red boxes) compared to controls (gray). 

of the first 100 samples sequenced to an 

average of 30× depth of coverage and av- 

erage read N50 >50 kbp, which was possi- 

ble because of the use of HMW DNA 

isolated directly from cell culture (Fig. 

1). This resulted in high sensitivity for 

SV detection—especially larger duplica- 

tions and repeat expansions—using 

both assembly- and alignment-based ap- 

proaches. We identified an average of 

24,543 SVs per sample, similar to the pri- 

haplotype was completely methylated while the other was 

completely unmethylated at imprinting centers IC1 and IC2 

(Fig. 5B). Evaluation of haplotype-resolved methylation at the 

SNURF-SNRPN locus on 15q11.2 revealed two samples, GM19473 

and HG00525, where one haplotype was 25%–75% methylated. 

Visual evaluation of these samples showed that one haplotype of 

GM19473 had increased methylation while one haplotype of 

HG00525 had reduced methylation, which was unexpected and 

further demonstrates that changes in methylation can occur 

throughout the genome in these cell lines, even at well-established 

DMRs (Supplemental Fig. S21). 

We used Methylation Operation Wizard (MeOW) (Zalusky 

and Miller 2024) to analyze differences in methylation at CpG sites 

genome-wide and identified 134 CpGs with methylation differ- 

ences across 37 samples, with a median of two DMRs per sample 

(Supplemental Table S13). As an example, three DMRs were found 

in HG02389 (Fig. 5C), including a hypermethylated CpG in 

SLC29A3 not present in controls (Supplemental Fig. S22). We ob- 

served both hypermethylation (86 CpGs) and hypomethylation 

(48 CpGs) among the 134 CpGs and identified four samples 

with more than 10 DMRs (Supplemental Fig. S23). Among the 

15 samples from the African superpopulation with a DMR, there 

was an enrichment of expression outliers near the DMR with in- 

creasingly stringent Z-score thresholds, suggesting associated 

changes in gene expression (Supplemental Fig. S24). 

 

 

Discussion 

Current approaches to clinical genetic testing are incomplete as 

they are unable to capture the full spectrum of disease-causing var- 

iation (Wojcik et al. 2023). This is because: (1) new technologies, 

such as LRS, are not yet widely implemented in clinical labs; (2) 

computational tools are not yet able to efficiently capitalize on 

the data provided by these new technologies, and those that can 

have substantial computational requirements; and (3) databases 

are not yet available for filtering and prioritizing variants identi- 

fied using new technologies. The 1KGP-ONT Consortium plans 

to sequence at least 800 1KGP samples to generate a more complete 

catalog of variation, especially rare yet presumably benign variants 

or analysis of other 1KGP samples by the HGSVC and HPRC (Ebert 
et al. 2021; Liao et al. 2023). Our efforts complement recent work 

that identified ∼16,000 SVs from ∼1000 1KGP samples sequenced 

to the lower average depth of coverage (15×) and median read 
length (6.2 kbp) (Schloissnig et al. 2024). While the difference in 

total SVs underscores the advantage of sequencing HMW DNA, 

further analysis will be required to fully assess the significance of 

the differences between these data sets. 

We performed one of the most comprehensive benchmark- 

ing analyses to date of SNVs, indels, and SVs using data from the 

ONT platform. Consistent with prior studies, data generated on 

the ONT platform has a higher recall and precision than 

Illumina-based approaches for SNVs in well-characterized geno- 

mic regions and performs well for indels, specifically outside of ho- 

mopolymers (Kolmogorov et al. 2023). Because all data from these 

first 100 samples were generated on the R9.4.1 pore, we anticipate 

that improvements in chemistry, such as the use of the R10.4.1 

pore, will reduce context-specific errors and result in improved 

concordance with truth sets. Because of this, we have transitioned 

ongoing sequencing to the R10.4.1 pore. SV benchmarking also re- 

vealed high F1 scores for three samples for which orthogonal calls 

were available, highlighting how the R9.4.1 pore is sufficient for 

this application. Over time, we anticipate additional updates to 

ONT chemistry or software, and plan to evaluate each change care- 

fully before data reanalysis or changing the chemistry used for this 

effort. 

SVs were called using four alignment-based and one assem- 

bly-based caller. After merging, a high-confidence SV call set com- 

prising 124,927 SVs was generated that we show can be used for 

filtering and variant prioritization. Genome-wide evaluation of 

these high-confidence SVs revealed 349 that were within or en- 

compassed an exon of a medically relevant gene. The low number 

of SVs intersecting medically relevant genes was reassuring, as we 

expect there to be selection against these events within coding re- 

gions of the genome. Nevertheless, we did identify one SV—an 

∼141 bp insertion in exon 15 of RPGR, a gene with an X-linked 
phenotype—in a 46,XY sample near two similar insertions that 

have been reported as VUSs in ClinVar. Because the 1KGP samples 

came from presumably healthy individuals, it could be that this 

event is associated with a later onset of an associated phenotype 
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or that the insertion is benign. Identification of this insertion in a 

1KGP sample is valuable as it may lead to functional studies that 

clarify the nature of the variant. Analogous to what has been re- 

ported for the relatively common occurrence of single nucleotide 

loss-of-function mutations in otherwise healthy individuals, the 

presence of an SV in a gene does not necessarily imply the variant 

is pathogenic (MacArthur et al. 2012). Indeed, early studies of hu- 

man population samples using SNP microarrays identified ex- 

tremely rare copy number variants >500 kbp in length among 

individuals without overt disease (Cooper et al. 2011). 

Genome-wide evaluation of select repeat expansions re- 

vealed expansions in complex alleles not previously reported 

and difficult to identify using short-read technology (Fig. 4). 

We identified repeat expansions associated with diseases that 

are difficult to fully interpret because the individuals recruited 

to the 1KGP were presumably healthy. These individuals may 

be at risk of developing symptoms later in life, or they may be car- 

rying alleles that are benign because of nonpathogenic motif 

composition or sequence interruptions that we did not detect. 

Alternatively, these expansions may simply be an artifact of the 

cell culture process and should be considered when these 

samples are used in other experiments or when these data are 

used for variant filtering and prioritization. We anticipate that 

comparison of this data set to larger efforts, such as All of Us, 

will allow us to better understand whether these variants repre- 

sent artifact from the cell culture process or true human genetic 

variation. 
Finally, we evaluated patterns of methylation genome-wide 

and at loci associated with disease. We observed large-scale chang- 

es, such as skewed X-inactivation, in over one-third of 46,XX sam- 

ples as well as unique changes, such as novel differential 

methylation that correlates with changes in local gene expression. 

These changes provide a mechanism by which distinct signals 

from samples maintained in cell culture can be explained and 

demonstrate the potential limitations of using immortalized cell 

lines to infer epigenetic signatures. 

Sequencing of 1KGP samples is ongoing and we expect the 

analysis of a larger number of samples to further refine many of 

the findings in this study. Most analysis presented here was per- 

formed using GRCh38 as a reference due to its widespread use in 

clinical and research laboratories; work is ongoing to evaluate 

the impact of the more complete CHM13 T2T genome on variant 

calling (Nurk et al. 2022). Overall, we anticipate that the data set 

provided here will hasten the use of LRS to evaluate individuals 

with suspected Mendelian conditions for whom a precise molecu- 

lar diagnosis remains elusive. This work not only provides valuable 

resources for candidate variant filtering and analysis but also em- 

phasizes the critical need for ongoing investment in technology, 

software, and database development to fully realize the benefits 

of LRS. The more comprehensive analysis that can be performed 

using LRS—such as the identification and resolution of complex 

SVs, improved phasing, and incorporation of associated methyla- 

tion information—will allow clinical and research teams to stop fo- 

cusing on “what’s the next best test” when evaluating an 

individual with a suspected genetic condition and instead focus 

on interpreting those variants that were previously difficult to 

detect or that may involve a novel gene. Together, these efforts 

will lead to improved clinical outcomes, new gene–phenotype as- 

sociations, the use of novel therapies, and an end to the diagnostic 

odyssey for many of the individuals and their families who are liv- 

ing with an unsolved or incompletely understood genetic 

condition. 

Methods 

DNA extraction, sequencing, alignment, validation, 

and variant calling 

DNA for sequencing was isolated from B lymphocytes obtained 
from the NHGRI Sample Repository at the Coriell Institute for 
Medical Research. After sequencing and quality checks (Supple- 
mental Table S2), an internal alignment pipeline and the Napu 

pipeline were run before variant calling and annotation (Kolmogo- 
rov et al. 2023). Additional details can be found in Supplemental 
Methods. 

 

SNV and indel benchmarking and comparison with Illumina data 

Original sequencing data for five benchmarking samples was base 

called with Dorado 0.5.0 (ONT) and downsampled to match the 
depth of coverage of the 100 study samples, then processed with 
both the internal alignment pipeline and the Napu pipeline. 

Long-read SNV and indel calls from the HPRC and GIAB (Shafin 
et al. 2020; Liao et al. 2023) and short-read SNV and indel calls 

from GIAB were obtained (Wagner et al. 2022) and preprocessed. 
Benchmarking comparisons and comparisons with Illumina data 
were conducted using hap.py (https://github.com/Illumina/hap 
.py), with analysis limited to high-confidence regions. 

 

De novo genome assembly and evaluation 

Flye (v2.9.2) (Kolmogorov et al. 2019) and Napu (Shasta–Hapdup) 
(Kolmogorov et al. 2023) were used for haploid and diploid ge- 
nome assembly then aligned to the GRCh38 reference genome us- 
ing minimap2 (v2.24) (Li 2018), with starts and ends of aligned 

contigs determined using BEDTools (v2.3.0) (Quinlan and Hall 
2010). Assembly breakpoints were characterized using precomput- 
ed segdup and RepeatMasker positions downloaded from UCSC 

(Bailey et al. 2002; Kent et al. 2002) then categorized as Satellite, 
SegDup, SegDup + Satellite, or Neither. 

 

SV analysis, merging, and benchmarking 

SV calls were parsed using BCFtools (Danecek et al. 2021) for vari- 

ants that passed filtering criteria, were ≥50 bp, and were assigned 

to a full-length chromosome. SVs were counted by type and length 
per sample and caller. Novel SVs per sample were calculated 
through iterative merging by Jasmine. To benchmark SV calling 
methods,  ONT  data  from  HG002/NA24385,  HG00733,  and 
HG02723 were processed using the Napu pipeline. SV calls for 
Sniffles2 and hapdiff were benchmarked to the HPRC (truth) calls 
using Truvari (v4.1.0) (English et al. 2022). The GIAB HG002 SV 

Tier1 benchmarking BED was used to define regions for inclusion. 
Additionally, we benchmarked HG002 SV calls against the draft 

GIAB T2TQ100 HG002 GRCh38 SV benchmark. SVs per individual 
were analyzed for multicaller concordance based on Jasmine merg- 
ing. SVs meeting a threshold of support (described in Supple- 

mental Methods) were reported as high confidence. SVs from 
this high-confidence call set were further annotated with func- 
tionally relevant genomic information (i.e., intersection with 

exonic regions, genes associated with OMIM phenotypes, centro- 
meric/telomeric regions, etc.) as defined by GENCODE release 45. 

 

Filtering and prioritization of SVs 

Sniffles2 SV calls from cases known to have a disease-causing SV 

were preprocessed as above and merged using Jasmine with 
Sniffles2 SV calls from the Napu pipeline from the 100 samples. 
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Pangenome construction 

Contigs from the Shasta–Hapdup assemblies were partitioned by 
chromosome by mapping them against the human reference ge- 

nomes using WFMASH (v0.12.6, commit 0b191bb) pangenome 
aligner (Marco-Sola et al. 2021). 

 

eQTL analysis 

We applied the SV-eQTL analysis from Kirsche et al. (2023) to the 
65 samples with both long-read DNA and short-read RNA data 
from MAGE and analyzed them as described in Supplemental 
Methods. 

Tandem repeat genotyping 

Repeats were genotyped using vamos v1.2.6 (Ren et al. 2023). A 
BED file with the coordinates and metadata for each STRchive lo- 

cus is provided. 

Methylation analysis 

Haplotype-resolved, whole-genome methylation pileup files were 
generated using Modkit v0.1.11 (ONT) from the PMDV haplo- 
tagged BAM file. For X-Chromosome analysis, the average fraction 

of methylated reads was calculated for each CpG island. CpG is- 
lands at disease-associated loci were subsetted and the average frac- 
tion of reads methylated was calculated per sample and per 

haplotype. Unique DMRs were identified using MeOW by a 
leave-one-out analysis (Zalusky and Miller 2024). 

Data access 

Data for all samples sequenced as part of the 1000 Genomes Project 
ONT Sequencing Consortium are publicly available at https:// 
s3.amazonaws.com/1000g-ont/index.html and scripts used in 

the analysis can be found at GitHub (https://github.com/ 
millerlaboratory/1000g_ONT) and as Supplemental Scripts. Data 
from the 100 samples reported here, as well as summary analysis 

data, are available at https://s3.amazonaws.com/1000g-ont/index 
.html?prefix=ALIGNMENT_AND_ASSEMBLY_DATA/FIRST_100/.  
Data and code related to pangenome analyses are available at 

GitHub (https://github.com/AndreaGuarracino/1000G-ONT-F100- 
PGGB). 
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